US20100225252A1 - Novel amoled display architecture - Google Patents

Novel amoled display architecture Download PDF

Info

Publication number
US20100225252A1
US20100225252A1 US12/752,792 US75279210A US2010225252A1 US 20100225252 A1 US20100225252 A1 US 20100225252A1 US 75279210 A US75279210 A US 75279210A US 2010225252 A1 US2010225252 A1 US 2010225252A1
Authority
US
United States
Prior art keywords
light emitting
organic light
emitting device
cie
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/752,792
Other languages
English (en)
Inventor
Michael S. Weaver
Julie J. Brown
Peter Levermore
Woo-Young So
Michael Hack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Display Corp
Original Assignee
Universal Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/565,115 external-priority patent/US9385167B2/en
Application filed by Universal Display Corp filed Critical Universal Display Corp
Priority to US12/752,792 priority Critical patent/US20100225252A1/en
Priority to KR1020197018927A priority patent/KR102284003B1/ko
Priority to EP10712665.8A priority patent/EP2553729B1/en
Priority to KR1020167033628A priority patent/KR101996645B1/ko
Priority to JP2013502550A priority patent/JP5864532B2/ja
Priority to CN201080065975.2A priority patent/CN102822973B/zh
Priority to PCT/US2010/029796 priority patent/WO2011123134A1/en
Priority to CN201610177615.0A priority patent/CN105720082B/zh
Priority to EP20173051.2A priority patent/EP3751618A1/en
Priority to KR1020197018928A priority patent/KR102248776B1/ko
Priority to KR1020127026581A priority patent/KR20130079333A/ko
Assigned to UNIVERSAL DISPLAY CORPORATION reassignment UNIVERSAL DISPLAY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, JULIE J., HACK, MICHAEL, LEVERMORE, PETER, SO, WOO-YOUNG, WEAVER, MICHAEL S.
Publication of US20100225252A1 publication Critical patent/US20100225252A1/en
Priority to US14/686,547 priority patent/US9559151B2/en
Priority to US15/405,749 priority patent/US10177201B2/en
Priority to US16/174,594 priority patent/US10192936B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
  • the present invention relates to organic light emitting devices, and more specifically to the use of both light and deep blue organic light emitting devices to render color.
  • Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
  • OLEDs organic light emitting devices
  • the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
  • OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
  • organic emissive molecules is a full color display.
  • Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors.
  • these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
  • a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy) 3 , which has the structure of Formula I:
  • organic includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices.
  • Small molecule refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety.
  • the core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter.
  • a dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
  • top means furthest away from the substrate, while “bottom” means closest to the substrate.
  • first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer.
  • a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
  • solution processable means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
  • a ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material.
  • a ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.
  • a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level.
  • IP ionization potentials
  • a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative).
  • a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative).
  • the LUMO energy level of a material is higher than the HOMO energy level of the same material.
  • a “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.
  • a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.
  • a device that may be used as a multi-color pixel has a first organic light emitting device, a second organic light emitting device, a third organic light emitting device, and a fourth organic light emitting device.
  • the device may be a pixel of a display having four sub-pixels.
  • the first organic light emitting device emits red light
  • the second organic light emitting device emits green light
  • the third organic light emitting device emits light blue light
  • the fourth organic light emitting device emits deep blue light.
  • the peak emissive wavelength of the fourth device is at least 4 nm less than that of the third device.
  • red means having a peak wavelength in the visible spectrum of 600-700 nm
  • green means having a peak wavelength in the visible spectrum of 500-600 nm
  • light blue means having a peak wavelength in the visible spectrum of 400-500 nm
  • “deep blue” means having a peak wavelength in the visible spectrum of 400-500 nm, where: light” and “deep” blue are distinguished by a 4 nm difference in peak wavelength.
  • the light blue device has a peak wavelength in the visible spectrum of 465-500 nm
  • “deep blue” has a peak wavelength in the visible spectrum of 400-465 nm
  • the first, second, third and fourth organic light emitting devices each have an emissive layer that includes an organic material that emits light when an appropriate voltage is applied across the device.
  • the emissive material in each of the first and second organic light emissive devices is a phosphorescent material.
  • the emissive material in the third organic light emitting device is a fluorescent material.
  • the emissive material in the fourth organic light emitting device may be either a fluorescent material or a phosphorescent material.
  • the emissive material in the fourth organic light emitting device is a phosphorescent material.
  • the first, second, third and fourth organic light emitting devices may have the same surface area, or may have different surface areas.
  • the first, second, third and fourth organic light emitting devices may be arranged in a quad pattern, in a row, or in some other pattern.
  • the device may be operated to emit light having a desired CIE coordinate by using at most three of the four devices for any particular CIE coordinate.
  • Use of the deep blue device may be significantly reduced compared to a display having only red, green and deep blue devices.
  • the light blue device may be used to effectively render the blue color, while the deep blue device may need to be illuminated only when the pixels require highly saturated blue colors. If the use of the deep blue device is reduced, then in addition to reducing power consumption and extending display lifetime, this may also allow for a more saturated deep blue device to be used with minimal loss of lifetime or efficiency, so the color gamut of the display can be improved.
  • the device may be a consumer product.
  • FIG. 1 shows an organic light emitting device
  • FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.
  • FIG. 3 shows a rendition of the 1931 CIE chromaticity diagram.
  • FIG. 4 shows a rendition of the 1931 CIE chromaticity diagram that also shows color gamuts.
  • FIG. 5 shows CIE coordinates for various devices.
  • FIG. 6 shows various configurations for a pixel having four sub-pixels.
  • an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode.
  • the anode injects holes and the cathode injects electrons into the organic layer(s).
  • the injected holes and electrons each migrate toward the oppositely charged electrode.
  • an “exciton,” which is a localized electron-hole pair having an excited energy state is formed.
  • Light is emitted when the exciton relaxes via a photoemissive mechanism.
  • the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
  • the initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
  • FIG. 1 shows an organic light emitting device 100 .
  • Device 100 may include a substrate 110 , an anode 115 , a hole injection layer 120 , a hole transport layer 125 , an electron blocking layer 130 , an emissive layer 135 , a hole blocking layer 140 , an electron transport layer 145 , an electron injection layer 150 , a protective layer 155 , and a cathode 160 .
  • Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164 .
  • Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.
  • each of these layers are available.
  • a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety.
  • An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
  • Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety.
  • An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety.
  • the theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No.
  • FIG. 2 shows an inverted OLED 200 .
  • the device includes a substrate 210 , a cathode 215 , an emissive layer 220 , a hole transport layer 225 , and an anode 230 .
  • Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230 , device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200 .
  • FIG. 2 provides one example of how some layers may be omitted from the structure of device 100 .
  • FIGS. 1 and 2 The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures.
  • the specific materials and structures described are exemplary in nature, and other materials and structures may be used.
  • Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers.
  • hole transport layer 225 transports holes and injects holes into emissive layer 220 , and may be described as a hole transport layer or a hole injection layer.
  • an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2 .
  • OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety.
  • PLEDs polymeric materials
  • OLEDs having a single organic layer may be used.
  • OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety.
  • the OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2 .
  • the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
  • any of the layers of the various embodiments may be deposited by any suitable method.
  • preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety.
  • OVPD organic vapor phase deposition
  • OJP organic vapor jet printing
  • Other suitable deposition methods include spin coating and other solution based processes.
  • Solution based processes are preferably carried out in nitrogen or an inert atmosphere.
  • preferred methods include thermal evaporation.
  • Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used.
  • the materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing.
  • Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
  • Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign.
  • PDAs personal digital assistants
  • Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).
  • the materials and structures described herein may have applications in devices other than OLEDs.
  • other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures.
  • organic devices such as organic transistors, may employ the materials and structures.
  • halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.
  • AMOLED active matrix OLED
  • FIG. 3 shows the 1931 CIE chromaticity diagram, developed in 1931 by the International Commission on Illumination, usually known as the CIE for its French name Commission Internationale de l'Eclairage. Any color can be described by its x and y coordinates on this diagram.
  • a “saturated” color in the strictest sense, is a color having a point spectrum, which falls on the CIE diagram along the U-shaped curve running from blue through green to red. The numbers along this curve refer to the wavelength of the point spectrum. Lasers emit light having a point spectrum.
  • FIG. 4 shows another rendition of the 1931 chromaticity diagram, which also shows several color “gamuts.”
  • a color gamut is a set of colors that may be rendered by a particular display or other means of rendering color.
  • any given light emitting device has an emission spectrum with a particular CIE coordinate.
  • Emission from two devices can be combined in various intensities to render color having a CIE coordinate anywhere on the line between the CIE coordinates of the two devices.
  • Emission from three devices can be combined in various intensities to render color having a CIE coordinate anywhere in the triangle defined by the respective coordinates of the three devices on the CIE diagram.
  • the three points of each of the triangles in FIG. 4 represent industry standard CIE coordinates for displays.
  • the three points of the triangle labeled “NTSC/PAL/SECAM/HDTV gamut” represent the colors of red, green and blue (RGB) called for in the sub-pixels of a display that complies with the standards listed.
  • RGB red, green and blue
  • a pixel having sub-pixels that emit the RGB colors called for can render any color inside the triangle by adjusting the intensity of emission from each sub-pixel.
  • the CIE coordinates called for by NTSC standards are: red (0.67, 0.33); green (0.21, 0.72); blue (0.14, 0.08).
  • red (0.67, 0.33); green (0.21, 0.72); blue (0.14, 0.08).
  • blue (0.14, 0.08).
  • devices having suitable lifetime and efficiency properties that are close to the blue called for by industry standards, but remain far enough from the standard blue that the display fabricated with such devices instead of the standard blue would have noticeable shortcomings in rendering blues.
  • the blue called for industry standards is a “deep” blue as defined below, and the colors emitted by efficient and long-lived blue devices are generally “light” blues as defined below.
  • a display which allows for the use of a more stable and long lived light blue device, while still allowing for the rendition of colors that include a deep blue component. This is achieved by using a quad pixel, i.e., a pixel with four devices. Three of the devices are highly efficient and long-lived devices, emitting red, green and light blue light, respectively.
  • the fourth device emits deep blue light, and may be less efficient or less long lived that the other devices. However, because many colors can be rendered without using the fourth device, its use can be limited such that the overall lifetime and efficiency of the display does not suffer much from its inclusion.
  • a device has a first organic light emitting device, a second organic light emitting device, a third organic light emitting device, and a fourth organic light emitting device.
  • the device may be a pixel of a display having four sub-pixels.
  • a preferred use of the device is in an active matrix organic light emitting display, which is a type of device where the shortcomings of deep blue OLEDs are currently a limiting factor.
  • the first organic light emitting device emits red light
  • the second organic light emitting device emits green light
  • the third organic light emitting device emits light blue light
  • the fourth organic light emitting device emits deep blue light.
  • the peak emissive wavelength of the fourth device is at least 4 nm less than that of the third device.
  • red means having a peak wavelength in the visible spectrum of 600-700 nm
  • green means having a peak wavelength in the visible spectrum of 500-600 nm
  • light blue means having a peak wavelength in the visible spectrum of 400-500 nm
  • deep blue means having a peak wavelength in the visible spectrum of 400-500 nm, where “light” and “deep” blue are distinguished by a 4 nm difference in peak wavelength.
  • the light blue device has a peak wavelength in the visible spectrum of 465-500 nm, and “deep blue” has a peak wavelength in the visible spectrum of 400-465 nm Preferred ranges include a peak wavelength in the visible spectrum of 610-640 nm for red and 510-550 nm for green.
  • “light blue” may be further defined, in addition to having a peak wavelength in the visible spectrum of 465-500 nm that is at least 4 nm greater than that of a deep blue OLED in the same device, as preferably having a CIE x-coordinate less than 0.2 and a CIE y-coordinate less than 0.5
  • “deep blue” may be further defined, in addition to having a peak wavelength in the visible spectrum of 400-465 nm, as preferably having a CIE y-coordinate less than 0.15 and preferably less than 0.1, and the difference between the two may be further defined such that the CIE coordinates of light emitted by the third organic light emitting device and the CIE coordinates of light emitted by the fourth organic light emitting device are sufficiently different that the difference in the CIE x-coordinates plus the difference in the CIE y-coordinates is at least 0.01.
  • the peak wavelength is the primary characteristic that defines light and deep blue
  • light blue may mean having a peak wavelength in the visible spectrum of 400-500 nm
  • deep blue may mean having a peak wavelength in the visible spectrum of 400-500 nm., and at least 4 nm less than the peak wavelength of the light blue.
  • light blue may mean having a CIE y coordinate less than 0.25
  • deep blue may mean having a CIE y coordinate at least 0.02 less than that of “light blue.”
  • the definitions for light and deep blue provided herein may be combined to reach a narrower definition.
  • any of the CIE definitions may be combined with any of the wavelength definitions.
  • the reason for the various definitions is that wavelengths and CIE coordinates have different strengths and weaknesses when it comes to measuring color. For example, lower wavelengths normally correspond to deeper blue. But a very narrow spectrum having a peak at 472 may be considered “deep blue” when compared to another spectrum having a peak at 471 nm, but a significant tail in the spectrum at higher wavelengths. This scenario is best described using CIE coordinates. It is expected that, in view of available materials for OLEDs, that the wavelength-based definitions are well-suited for most situations. In any event, embodiments of the invention include two different blue pixels, however the difference in blue is measured.
  • the first, second, third and fourth organic light emitting devices each have an emissive layer that includes an organic material that emits light when an appropriate voltage is applied across the device.
  • the emissive material in each of the first and second organic light emissive devices is a phosphorescent material.
  • the emissive material in the third organic light emitting device is a fluorescent material.
  • the emissive material in the fourth organic light emitting device may be either a fluorescent material or a phosphorescent material.
  • the emissive material in the fourth organic light emitting device is a phosphorescent material.
  • “Red” and “green” phosphorescent devices having lifetimes and efficiencies suitable for use in a commercial display are well known and readily achievable, including devices that emit light sufficiently close to the various industry standard reds and greens for use in a display. Examples of such devices are provided in M. S. Weaver, V. Adamovich, B. D'Andrade, B. Ma, R. Kwong, and J. J. Brown, Proceedings of the International Display Manufacturing Conference, pp. 328-331 (2007); see also B. D'Andrade, M. S. Weaver, P. B. MacKenzie, H. Yamamoto, J. J. Brown, N.C. Giebink, S. R. Forrest and M. E. Thompson, Society for Information Display Digest of Technical Papers 34, 2, pp. 712-715 (2008).
  • the emissive layer comprises a 9,10-bis(2′-napthyl)anthracene (ADN) host and a 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) dopant.
  • ADN 9,10-bis(2′-napthyl)anthracene
  • DPAVBi 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl
  • An example of a light blue phosphorescent device has the structure:
  • LG101 is available from LG Chem. Ltd. of Korea.
  • Such a device has been measured to have a lifetime of 3,000 hrs from initial luminance 1000 nits at constant dc current to 50% of initial luminance, 1931 CIE coordinates of CIE (0.175, 0.375), and a peak emission wavelength of 474 nm in the visible spectrum.
  • “Deep blue” devices are also readily achievable, but not necessarily having the lifetime and efficiency properties desired for a display suitable for consumer use.
  • One way to achieve a deep blue device is by using a fluorescent emissive material that emits deep blue, but does not have the high efficiency of a phosphorescent device.
  • An example of a deep blue fluorescent device is provided in Masakazu Funahashi et al., Society for Information Display Digest of Technical Papers 47. 3, pp. 709-711 (2008). Funahashi discloses a deep blue fluorescent device having CIE coordinates of (0.140, 0.133) and a peak wavelength of 460 nm.
  • Another way is to use a phosphorescent device having a phosphorescent emissive material that emits light blue, and to adjust the spectrum of light emitted by the device through the use of filters or microcavities.
  • Filters or microcavities can be used to achieve a deep blue device, as described in Baek-Woon Lee, Young In Hwang, Hae-Yeon Lee and Chi Woo Kim and Young-Gu Ju Society for Information Display Digest of Technical Papers 68.4, pp. 1050-1053 (2008), but there may be an associated decrease in device efficiency. Indeed, the same emitter may be used to fabricate a light blue and a deep blue device, due to microcavity differences.
  • ITO 80 nm
  • Compound C (30 nm)/NPD (10 nm)/Compound A:Emitter B (30 nm:9%)/Compound A (5 nm)/Alq3 (30 nm)/LiF(1 nm)/Al (100 nm)
  • Such a device has been measured to have a lifetime of 600 hrs from initial luminance 1000 nits at constant dc current to 50% of initial luminance, 1931 CIE coordinates of CIE: (0.148, 0.191), and a peak emissive wavelength of 462 nm.
  • the difference in luminous efficiency and lifetime of deep blue and light blue devices may be significant.
  • the luminous efficiency of a deep blue fluorescent device may be less than 25% or less than 50% of that of a light blue fluorescent device.
  • the lifetime of a deep blue fluorescent device may be less than 25% or less than 50% of that of a light blue fluorescent device.
  • a standard way to measure lifetime is LT 50 at an initial luminance of 1000 nits, i.e., the time required for the light output of a device to fall by 50% when run at a constant current that results in an initial luminance of 1000 nits.
  • the luminous efficiency of a light blue fluorescent device is expected to be lower than the luminous efficiency of a light blue phosphorescent device, however, the operational lifetime of the fluorescent light blue device may be extended in comparison to available phosphorescent light blue devices.
  • a device or pixel having four organic light emitting devices may be used to render any color inside the shape defined by the CIE coordinates of the light emitted by the devices on a CIE chromaticity diagram.
  • FIG. 5 illustrates this point.
  • FIG. 5 should be considered with reference to the CIE diagrams of FIGS. 3 and 4 , but the actual CIE diagram is not shown in FIG. 5 to make the illustration clearer.
  • point 511 represents the CIE coordinates of a red device
  • point 512 represents the CIE coordinates of a green device
  • point 513 represents the CIE coordinates of a light blue device
  • point 514 represents the CIE coordinates of a deep blue device.
  • the pixel may be used to render any color inside the quadrangle defined by points 511 , 512 , 513 and 514 . If the CIE coordinates of points 511 , 512 , 513 and 514 correspond to, or at least encircle, the CIE coordinates of devices called for by a standard gamut—such as the corners of the triangles in FIG. 4 —the device may be used to render any color in that gamut.
  • any color inside the triangle defined by points 511 , 512 and 513 may be rendered without using the deep blue device.
  • the deep blue device would only be needed for colors falling outside of this triangle. Depending upon the color content of the images in question, only minimal use of the deep blue device may be needed.
  • FIG. 5 shows a “light blue” device having CIE coordinates 513 that are outside the triangle defined by the CIE coordinates 511 , 512 and 514 of the red, green and deep blue devices, respectively.
  • the light blue device may have CIE coordinates that fall inside of said triangle.
  • a preferred way to operate a device having a red, green, light blue and deep blue device, or first, second, third and fourth devices, respectively, as described herein is to render a color using only 3 of the 4 devices at any one time, and to use the deep blue device only when it is needed.
  • points 511 , 512 and 513 define a first triangle, which includes areas 521 and 523 .
  • Points 511 , 512 and 514 define a second triangle, which includes areas 521 and 522 .
  • Points 512 , 513 and 514 define a third triangle, which includes areas 523 and 524 .
  • a desired color has CIE coordinates falling within this first triangle (areas 521 and 523 )
  • only the first, second and third devices are used to render the color.
  • a desired color has CIE coordinates falling within the second triangle, and does not also fall within the first triangle (area 522 )
  • only the first, second and fourth devices are used to render color.
  • a desired color has CIE coordinates falling within the third triangle, and does not fall within the first triangle (area 524 )
  • only the first, third and fourth, or only the second, third and fourth devices are used to render color.
  • Such a device could be operated in other ways as well. For example, all four devices could be used to render color. However, such use may not achieve the purpose of minimizing use of the deep blue device.
  • Red, green, light blue and blue bottom-emission phosphorescent microcavity devices were fabricated.
  • Luminous efficiency (cd/A) at 1,000 cd/m 2 and CIE 1931 (x, y) coordinates are summarized for these devices in Table 1 in Rows 1 - 4 .
  • Data for a fluorescent deep blue device in a microcavity are given in Row 5 . This data was taken from Woo-Young So et al., paper 44.3, SID Digest (2010) (accepted for publication), and is a typical example for a fluorescent deep blue device in a microcavity. Values for a fluorescent light blue device in a microcavity are given in Row 9 .
  • the luminous efficiency given here (16.0 cd/A) is a reasonable estimate of the luminous efficiency that could be demonstrated if the fluorescent light blue materials presented in patent application WO 2009/107596 were built into a microcavity device.
  • the CIE 1931 (x, y) coordinates of the fluorescent light blue device match the coordinates of the light blue phosphorescent device.
  • RGB where red and green are phosphorescent and the blue device is a fluorescent deep blue
  • RGB1B2 where the red, green and light blue (B1) are phosphorescent and deep blue (B2) device is a fluorescent deep blue
  • RGB1B2 where the red and green are phosphorescent and the light blue (B1) and deep blue (B2) are fluorescent.
  • the average power consumed by (1) was 196 mW
  • the average power consumed by (2) was 132 mW. This is a power savings of 33% compared to (1).
  • the power consumed by pixel layout (3) was 157 mW. This is a power savings of 20% compared to (1).
  • This power savings is much greater than one would have expected for a device using a fluorescent blue emitter as the B1 emitter. Moreover, since the device lifetime of such a device would be expected to be substantially longer than an RGB device using only a deeper blue fluorescent emitter, a power savings of 20% in combination with a long lifetime is be highly desirable.
  • fluorescent light blue materials examples include a 9,10-bis(2′-napthyl)anthracene (ADN) host with a 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl) vinyl]biphenyl (DPAVBi) dopant, or dopant EK9 as described in “Organic Electronics: Materials, Processing, Devices and Applications”, Franky So, CRC Press, p 448-p 449 (2009), or host EM2′ with dopant DM1-1′ as described in patent application WO 2009/107596 A1. Further examples of fluorescent materials that could be used are described in patent application US 2008/0203905.
  • pixel layout (3) is expected to result in significant and previously unexpected power savings relative to pixel layout (1) where the light blue (B1) device has a luminous efficiency of at least 12 cd/A. It is preferred that light blue (B1) device has a luminous efficiency of at least 15 cd/A to achieve more significant power savings. In either case, pixel layout (3) may also provide superior lifetime relative to pixel layout (1).
  • Luminous Efficiency CIE 1931 (x, y) Red R Phosphorescent 48.1 (0.674, 0.324) Green G Phosphorescent 94.8 (0.195, 0.755) Light Blue B1 Phosphorescent 22.5 (0.144, 0.148) Deep Blue B2 Phosphorescent 6.3 (0.144, 0.061) Deep Blue B2 Fluorescent 4.0 (0.145, 0.055) Light Blue B1 Fluorescent 16.0 (0.144, 0.148)
  • Rows 1-4 are phosphorescent devices. Rows 5-6 are fluorescent devices.
  • RGBW red, green, blue, white
  • RGBW devices Similar algorithms may be used to map an RGB color to RG B1 B2.
  • RGBW devices are disclosed in A. Arnold, T. K. Hatwar, M. Hettel, P. Kane, M. Miller, M. Murdoch, J. Spindler, S. V. Slyke, Proc. Asia Display (2004); J. P. Spindler, T. K. Hatwar, M. E. Miller, A. D. Arnold, M. J. Murdoch, P. J. Lane, J. E. Ludwicki and S. V. Slyke, SID 2005 International Symposium Technical Digest 36, 1, pp.
  • RGBW displays are significantly different from those disclosed herein because they still need a good deep blue device. Moreover, there is teaching that the “fourth” or white device of an RGBW display should have particular “white” CIE coordinates, see Spindler at 37 and Peng at 13.
  • a device having four different organic light emitting devices, each emitting a different color, may have a number of different configurations.
  • FIG. 6 illustrates some of these configurations.
  • R is a red-emitting device
  • G is a green-emitting device
  • B1 is a light blue emitting device
  • B2 is a deep blue emitting device.
  • Configuration 610 shows a quad configuration, where the four organic light emitting devices making up the overall device or multicolor pixel are arranged in a two by two array. Each of the individual organic light emitting devices in configuration 610 has the same surface area. In a quad pattern, each pixel could use two gate lines and two data lines.
  • Configuration 620 shows a quad configuration where some of the devices have surface areas different from the others. It may be desirable to use different surface areas for a variety of reasons. For example, a device having a larger area may be run at a lower current than a similar device with a smaller area to emit the same amount of light. The lower current may increase device lifetime. Thus, using a relatively larger device is one way to compensate for devices having a lower expected lifetime.
  • Configuration 630 shows equally sized devices arranged in a row, and configuration 640 shows devices arranged in a row where some of the devices have different areas. Patterns other than those specifically illustrated may be used.
  • a stacked OLED with four separately controllable emissive layers, or two stacked OLEDs each with two separately controllable emissive layers, may be used to achieve four sub-pixels that can each emit a different color of light.
  • OLEDs may be used to implement various configurations, including transparent OLEDs and flexible OLEDs.
  • Displays with devices having four sub-pixels may be fabricated and patterned using any of a number of conventional techniques. Examples include shadow mask, laser induced thermal imaging (LITI), ink-jet printing, organic vapor jet printing (OVJP), or other OLED patterning technology.
  • LITI laser induced thermal imaging
  • OJP organic vapor jet printing
  • An extra masking or patterning step may be needed for the emissive layer of the fourth device, which may increase fabrication time.
  • the material cost may also be somewhat higher than for a conventional display. These additional costs would be offset by improved display performance.
  • a single pixel may incorporate more than the four sub-pixels disclosed herein, possibly with more than four discrete colors. However, due to manufacturing concerns, four sub-pixels per pixel is preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
US12/752,792 2008-10-01 2010-04-01 Novel amoled display architecture Abandoned US20100225252A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US12/752,792 US20100225252A1 (en) 2008-10-01 2010-04-01 Novel amoled display architecture
KR1020127026581A KR20130079333A (ko) 2010-04-01 2010-04-02 신규한 oled 디스플레이 아키텍쳐
PCT/US2010/029796 WO2011123134A1 (en) 2010-04-01 2010-04-02 Novel oled display architecture
EP20173051.2A EP3751618A1 (en) 2010-04-01 2010-04-02 Novel oled display architecture
KR1020167033628A KR101996645B1 (ko) 2010-04-01 2010-04-02 신규한 oled 디스플레이 아키텍쳐
JP2013502550A JP5864532B2 (ja) 2010-04-01 2010-04-02 新規有機発光デバイスディスプレイアーキテクチャ
CN201080065975.2A CN102822973B (zh) 2010-04-01 2010-04-02 Oled显示器架构
KR1020197018927A KR102284003B1 (ko) 2010-04-01 2010-04-02 신규한 oled 디스플레이 아키텍쳐
CN201610177615.0A CN105720082B (zh) 2010-04-01 2010-04-02 新型oled显示器架构
EP10712665.8A EP2553729B1 (en) 2010-04-01 2010-04-02 Novel oled display architecture
KR1020197018928A KR102248776B1 (ko) 2010-04-01 2010-04-02 신규한 oled 디스플레이 아키텍쳐
US14/686,547 US9559151B2 (en) 2008-10-01 2015-04-14 OLED display architecture
US15/405,749 US10177201B2 (en) 2008-10-01 2017-01-13 OLED display architecture
US16/174,594 US10192936B1 (en) 2008-10-01 2018-10-30 OLED display architecture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10175708P 2008-10-01 2008-10-01
US12/565,115 US9385167B2 (en) 2008-10-01 2009-09-23 OLED display architecture
US12/752,792 US20100225252A1 (en) 2008-10-01 2010-04-01 Novel amoled display architecture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/565,115 Continuation-In-Part US9385167B2 (en) 2008-10-01 2009-09-23 OLED display architecture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/686,547 Continuation US9559151B2 (en) 2008-10-01 2015-04-14 OLED display architecture

Publications (1)

Publication Number Publication Date
US20100225252A1 true US20100225252A1 (en) 2010-09-09

Family

ID=43086160

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/752,792 Abandoned US20100225252A1 (en) 2008-10-01 2010-04-01 Novel amoled display architecture
US14/686,547 Active US9559151B2 (en) 2008-10-01 2015-04-14 OLED display architecture
US15/405,749 Active US10177201B2 (en) 2008-10-01 2017-01-13 OLED display architecture
US16/174,594 Active US10192936B1 (en) 2008-10-01 2018-10-30 OLED display architecture

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/686,547 Active US9559151B2 (en) 2008-10-01 2015-04-14 OLED display architecture
US15/405,749 Active US10177201B2 (en) 2008-10-01 2017-01-13 OLED display architecture
US16/174,594 Active US10192936B1 (en) 2008-10-01 2018-10-30 OLED display architecture

Country Status (6)

Country Link
US (4) US20100225252A1 (zh)
EP (2) EP3751618A1 (zh)
JP (1) JP5864532B2 (zh)
KR (4) KR102284003B1 (zh)
CN (2) CN102822973B (zh)
WO (1) WO2011123134A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090620A1 (en) * 2008-10-01 2010-04-15 Universal Display Corporation Novel oled display architecture
US20110127506A1 (en) * 2009-12-02 2011-06-02 Universal Display Corporation OLED Display Architecture with Improved Aperture Ratio
WO2012138790A1 (en) * 2011-04-07 2012-10-11 Universal Display Corporation Method for driving quad-subpixel display
WO2012138999A1 (en) * 2011-04-08 2012-10-11 Universal Display Corporation Novel oled display architecture
CN102856350A (zh) * 2012-08-28 2013-01-02 李崇 全色oled显示器
CN103003358A (zh) * 2010-07-16 2013-03-27 住友化学株式会社 含有高分子化合物的组合物及使用该组合物的发光元件
US20130127698A1 (en) * 2011-11-23 2013-05-23 Au Optronics Corporation Display panel
US8957579B2 (en) 2012-09-14 2015-02-17 Universal Display Corporation Low image sticking OLED display
US20150267903A1 (en) * 2012-12-07 2015-09-24 Lg Chem, Ltd. LIGHTING APPARATUS AND FABRICATING METHOD THEREOF (As Amended)
US20160071468A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Lid. Display device
US9331299B2 (en) 2014-04-11 2016-05-03 Universal Display Corporation Efficient white organic light emitting diodes with high color quality
US20160315279A1 (en) * 2012-11-29 2016-10-27 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US9559151B2 (en) 2008-10-01 2017-01-31 Universal Display Corporation OLED display architecture
CN106653792A (zh) * 2015-11-03 2017-05-10 上海和辉光电有限公司 显示面板及其像素阵列
CN106935612A (zh) * 2015-12-30 2017-07-07 昆山工研院新型平板显示技术中心有限公司 Oled像素结构、有机发光显示器件及其显示方法
US11222928B2 (en) 2019-04-01 2022-01-11 Universal Display Corporation Display architecture with reduced number of data line connections
US11282875B2 (en) 2019-04-10 2022-03-22 Samsung Electronics Co., Ltd. Image sensor including shared pixels

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533764B1 (ko) * 2009-05-01 2015-07-06 엘지디스플레이 주식회사 유기전계발광소자와 그 구동방법 및 제조방법
KR102140086B1 (ko) * 2013-07-19 2020-07-31 엘지디스플레이 주식회사 유기전계발광 다이오드 표시장치 및 그 제조방법
KR102271226B1 (ko) * 2013-11-13 2021-06-29 엘지디스플레이 주식회사 유기발광표시패널 및 이를 이용한 유기발광표시장치
KR20160082546A (ko) * 2014-12-26 2016-07-08 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP6516236B2 (ja) * 2015-02-20 2019-05-22 Tianma Japan株式会社 電気光学装置
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
TWI621277B (zh) * 2017-03-08 2018-04-11 錼創科技股份有限公司 顯示裝置與磊晶晶圓
CN107104128B (zh) * 2017-05-11 2021-04-27 京东方科技集团股份有限公司 一种像素单元及驱动方法、显示面板、显示装置
US10770690B2 (en) 2017-11-15 2020-09-08 The Regents Of The University Of Michigan OLED with minimal plasmonic losses
CN108511488A (zh) * 2018-03-01 2018-09-07 云谷(固安)科技有限公司 显示面板和显示装置及显示面板的驱动方法
CN108987441B (zh) * 2018-06-29 2020-12-11 云谷(固安)科技有限公司 有机电致发光装置及其显示方法
US11777065B2 (en) * 2020-05-29 2023-10-03 X Display Company Technology Limited White-light-emitting LED structures
GB202010090D0 (en) 2020-07-01 2020-08-12 Savvy Science Improved light emitting devices
GB202010088D0 (en) 2020-07-01 2020-08-12 Savvy Science Novel light emitting device architectures
WO2023209494A1 (ja) * 2022-04-29 2023-11-02 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
CN115000319B (zh) * 2022-07-29 2022-12-06 京东方科技集团股份有限公司 显示面板及其制作方法、发光器件

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US4886343A (en) * 1988-06-20 1989-12-12 Honeywell Inc. Apparatus and method for additive/subtractive pixel arrangement in color mosaic displays
US5247190A (en) * 1989-04-20 1993-09-21 Cambridge Research And Innovation Limited Electroluminescent devices
US5642125A (en) * 1992-06-17 1997-06-24 Xerox Corporation Two path liquid crystal light valve color display
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5834893A (en) * 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US6013982A (en) * 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6294398B1 (en) * 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US20020015859A1 (en) * 2000-03-31 2002-02-07 Teruichi Watanabe Organic electroluminescence element
US6366025B1 (en) * 1999-02-26 2002-04-02 Sanyo Electric Co., Ltd. Electroluminescence display apparatus
US20020186214A1 (en) * 2001-06-05 2002-12-12 Eastman Kodak Company Method for saving power in an organic electroluminescent display using white light emitting elements
US20030042848A1 (en) * 2001-08-29 2003-03-06 Jae-Yong Park Organic electroluminescent device and method of fabricating the same
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US20040032205A1 (en) * 2002-08-16 2004-02-19 Michael Hack Organic light emitting devices for illumination
US6747618B2 (en) * 2002-08-20 2004-06-08 Eastman Kodak Company Color organic light emitting diode display with improved lifetime
US20040113875A1 (en) * 2002-12-16 2004-06-17 Eastman Kodak Company Color oled display with improved power efficiency
US6771028B1 (en) * 2003-04-30 2004-08-03 Eastman Kodak Company Drive circuitry for four-color organic light-emitting device
US20040174116A1 (en) * 2001-08-20 2004-09-09 Lu Min-Hao Michael Transparent electrodes
US20040201558A1 (en) * 2003-04-11 2004-10-14 Eastman Kodak Company Color OLED display with improved power efficiency
US20050253795A1 (en) * 2004-05-12 2005-11-17 Seiko Epson Corporation Display device and electronic apparatus
US20050258433A1 (en) * 2004-05-18 2005-11-24 Entire Interest Carbene metal complexes as OLED materials
US7091986B2 (en) * 1997-09-13 2006-08-15 Gia Chuong Phan Dynamic pixel resolution, brightness and contrast for displays using spatial elements
US20060231842A1 (en) * 2005-04-19 2006-10-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US20070001584A1 (en) * 2005-06-30 2007-01-04 Lg.Philips Lcd Co., Ltd. Organic light emitting device
US20070015429A1 (en) * 2005-07-15 2007-01-18 Seiko Epson Corporation Electroluminescence device, method of manufacturing electroluminescence device, and electronic apparatus
US20070075627A1 (en) * 2005-09-30 2007-04-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7215347B2 (en) * 1997-09-13 2007-05-08 Gia Chuong Phan Dynamic pixel resolution, brightness and contrast for displays using spatial elements
US20070164664A1 (en) * 2006-01-19 2007-07-19 Eastman Kodak Company OLED device with improved power consumption
US20070222800A1 (en) * 2004-04-16 2007-09-27 Koninklijke Philips Electronics, N.V. Colour Electroluminescent Display Device and its Driving Method
US7279704B2 (en) * 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20070236135A1 (en) * 2006-04-05 2007-10-11 Canon Kabushiki Kaisha Organic electroluminescent display apparatus
US20080203905A1 (en) * 2007-02-28 2008-08-28 Sfc Co., Ltd. Blue light emitting compound and organic electroluminescent device using the same
US20080224968A1 (en) * 2007-03-14 2008-09-18 Sony Corporation Display device, method for driving display device, and electronic apparatus
US20090261715A1 (en) * 2008-04-22 2009-10-22 Un-Cheol Sung Organic light emitting display device
US20100013378A1 (en) * 2008-07-16 2010-01-21 Universal Display Corporation Intermediate connector for stacked organic light emitting devices

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257653A (ja) 2001-08-13 2003-09-12 Victor Co Of Japan Ltd 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
US7431968B1 (en) 2001-09-04 2008-10-07 The Trustees Of Princeton University Process and apparatus for organic vapor jet deposition
GB0311234D0 (en) 2003-05-16 2003-06-18 Isis Innovation Organic phosphorescent material and organic optoelectronic device
JP4198654B2 (ja) * 2003-08-07 2008-12-17 三星エスディアイ株式会社 イリジウム化合物及びそれを採用した有機電界発光素子
US7030553B2 (en) * 2003-08-19 2006-04-18 Eastman Kodak Company OLED device having microcavity gamut subpixels and a within gamut subpixel
JP2005156925A (ja) * 2003-11-26 2005-06-16 Hitachi Displays Ltd 表示装置
US7333080B2 (en) 2004-03-29 2008-02-19 Eastman Kodak Company Color OLED display with improved power efficiency
US7129634B2 (en) 2004-04-07 2006-10-31 Eastman Kodak Company Color OLED with added color gamut pixels
KR100730115B1 (ko) 2004-06-23 2007-06-19 삼성에스디아이 주식회사 이리듐 화합물 및 이를 이용한 유기 전계 발광 소자
US7189675B2 (en) 2005-03-07 2007-03-13 Equistar Chemicals, Lp Olefin polymerization catalyst on plasma-contacted support
JP2007018902A (ja) 2005-07-08 2007-01-25 Pentax Corp 多色発光表示装置
JP2007122033A (ja) * 2005-09-30 2007-05-17 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
JP2007123065A (ja) * 2005-10-28 2007-05-17 Seiko Epson Corp 発光装置の製造方法及び電子機器
JP5241128B2 (ja) 2006-04-26 2013-07-17 キヤノン株式会社 多色表示装置
JP4833748B2 (ja) 2006-06-14 2011-12-07 パナソニック電工株式会社 有機発光素子
US20080102223A1 (en) 2006-11-01 2008-05-01 Sigurd Wagner Hybrid layers for use in coatings on electronic devices or other articles
US7968146B2 (en) 2006-11-01 2011-06-28 The Trustees Of Princeton University Hybrid layers for use in coatings on electronic devices or other articles
TWI359626B (en) 2007-03-22 2012-03-01 Au Optronics Corp Electro-luminescence display
JP5401448B2 (ja) * 2007-06-01 2014-01-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 深青色発光用途のためのクリセン類
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
KR20150038544A (ko) 2008-05-07 2015-04-08 더 트러스티즈 오브 프린스턴 유니버시티 전자 장치들 또는 다른 물품들 위의 코팅들에 사용하기 위한 혼성 층들
JP2010002755A (ja) * 2008-06-20 2010-01-07 Canon Inc 表示装置
FR2933536B1 (fr) 2008-07-03 2013-05-10 Commissariat Energie Atomique Dispositif d'affichage electronique polychrome a ecran electroluminescent
JP2010060826A (ja) * 2008-09-03 2010-03-18 Canon Inc 発光表示装置
US9385167B2 (en) * 2008-10-01 2016-07-05 Universal Display Corporation OLED display architecture
US20100225252A1 (en) 2008-10-01 2010-09-09 Universal Display Corporation Novel amoled display architecture
US8827488B2 (en) 2008-10-01 2014-09-09 Universal Display Corporation OLED display architecture
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US4886343A (en) * 1988-06-20 1989-12-12 Honeywell Inc. Apparatus and method for additive/subtractive pixel arrangement in color mosaic displays
US5247190A (en) * 1989-04-20 1993-09-21 Cambridge Research And Innovation Limited Electroluminescent devices
US5642125A (en) * 1992-06-17 1997-06-24 Xerox Corporation Two path liquid crystal light valve color display
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5834893A (en) * 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6013982A (en) * 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US7091986B2 (en) * 1997-09-13 2006-08-15 Gia Chuong Phan Dynamic pixel resolution, brightness and contrast for displays using spatial elements
US7215347B2 (en) * 1997-09-13 2007-05-08 Gia Chuong Phan Dynamic pixel resolution, brightness and contrast for displays using spatial elements
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6366025B1 (en) * 1999-02-26 2002-04-02 Sanyo Electric Co., Ltd. Electroluminescence display apparatus
US6468819B1 (en) * 1999-11-23 2002-10-22 The Trustees Of Princeton University Method for patterning organic thin film devices using a die
US6294398B1 (en) * 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US20020015859A1 (en) * 2000-03-31 2002-02-07 Teruichi Watanabe Organic electroluminescence element
US20020186214A1 (en) * 2001-06-05 2002-12-12 Eastman Kodak Company Method for saving power in an organic electroluminescent display using white light emitting elements
US20040174116A1 (en) * 2001-08-20 2004-09-09 Lu Min-Hao Michael Transparent electrodes
US20030042848A1 (en) * 2001-08-29 2003-03-06 Jae-Yong Park Organic electroluminescent device and method of fabricating the same
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US20040032205A1 (en) * 2002-08-16 2004-02-19 Michael Hack Organic light emitting devices for illumination
US6747618B2 (en) * 2002-08-20 2004-06-08 Eastman Kodak Company Color organic light emitting diode display with improved lifetime
US20040113875A1 (en) * 2002-12-16 2004-06-17 Eastman Kodak Company Color oled display with improved power efficiency
US20040201558A1 (en) * 2003-04-11 2004-10-14 Eastman Kodak Company Color OLED display with improved power efficiency
US6771028B1 (en) * 2003-04-30 2004-08-03 Eastman Kodak Company Drive circuitry for four-color organic light-emitting device
US20070222800A1 (en) * 2004-04-16 2007-09-27 Koninklijke Philips Electronics, N.V. Colour Electroluminescent Display Device and its Driving Method
US20050253795A1 (en) * 2004-05-12 2005-11-17 Seiko Epson Corporation Display device and electronic apparatus
US20050258433A1 (en) * 2004-05-18 2005-11-24 Entire Interest Carbene metal complexes as OLED materials
US7279704B2 (en) * 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20060231842A1 (en) * 2005-04-19 2006-10-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US20070001584A1 (en) * 2005-06-30 2007-01-04 Lg.Philips Lcd Co., Ltd. Organic light emitting device
US20070015429A1 (en) * 2005-07-15 2007-01-18 Seiko Epson Corporation Electroluminescence device, method of manufacturing electroluminescence device, and electronic apparatus
US20070075627A1 (en) * 2005-09-30 2007-04-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20070164664A1 (en) * 2006-01-19 2007-07-19 Eastman Kodak Company OLED device with improved power consumption
US20070236135A1 (en) * 2006-04-05 2007-10-11 Canon Kabushiki Kaisha Organic electroluminescent display apparatus
US20080203905A1 (en) * 2007-02-28 2008-08-28 Sfc Co., Ltd. Blue light emitting compound and organic electroluminescent device using the same
US20080224968A1 (en) * 2007-03-14 2008-09-18 Sony Corporation Display device, method for driving display device, and electronic apparatus
US20090261715A1 (en) * 2008-04-22 2009-10-22 Un-Cheol Sung Organic light emitting display device
US20100013378A1 (en) * 2008-07-16 2010-01-21 Universal Display Corporation Intermediate connector for stacked organic light emitting devices

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192936B1 (en) 2008-10-01 2019-01-29 Universal Display Corporation OLED display architecture
US20100090620A1 (en) * 2008-10-01 2010-04-15 Universal Display Corporation Novel oled display architecture
US9559151B2 (en) 2008-10-01 2017-01-31 Universal Display Corporation OLED display architecture
US9385167B2 (en) 2008-10-01 2016-07-05 Universal Display Corporation OLED display architecture
US8827488B2 (en) 2008-10-01 2014-09-09 Universal Display Corporation OLED display architecture
US10177201B2 (en) 2008-10-01 2019-01-08 Universal Display Corporation OLED display architecture
US20110127506A1 (en) * 2009-12-02 2011-06-02 Universal Display Corporation OLED Display Architecture with Improved Aperture Ratio
WO2011068761A1 (en) 2009-12-02 2011-06-09 Universal Display Corporation Oled display architecture with improved aperture ratio
US8330152B2 (en) 2009-12-02 2012-12-11 Universal Display Corporation OLED display architecture with improved aperture ratio
CN103003358A (zh) * 2010-07-16 2013-03-27 住友化学株式会社 含有高分子化合物的组合物及使用该组合物的发光元件
WO2012138790A1 (en) * 2011-04-07 2012-10-11 Universal Display Corporation Method for driving quad-subpixel display
US8902245B2 (en) 2011-04-07 2014-12-02 Universal Display Corporation Method for driving quad-subpixel display
WO2012138999A1 (en) * 2011-04-08 2012-10-11 Universal Display Corporation Novel oled display architecture
US9151994B2 (en) * 2011-11-23 2015-10-06 Au Optronics Corporation Display panel
US20130127698A1 (en) * 2011-11-23 2013-05-23 Au Optronics Corporation Display panel
CN102856350A (zh) * 2012-08-28 2013-01-02 李崇 全色oled显示器
US8957579B2 (en) 2012-09-14 2015-02-17 Universal Display Corporation Low image sticking OLED display
US9876185B2 (en) * 2012-11-29 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising light-emitting layers
US20160315279A1 (en) * 2012-11-29 2016-10-27 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US9777907B2 (en) * 2012-12-07 2017-10-03 Lg Display Co., Ltd. Lighting apparatus and fabricating method thereof
US20150267903A1 (en) * 2012-12-07 2015-09-24 Lg Chem, Ltd. LIGHTING APPARATUS AND FABRICATING METHOD THEREOF (As Amended)
US9331299B2 (en) 2014-04-11 2016-05-03 Universal Display Corporation Efficient white organic light emitting diodes with high color quality
US9779647B2 (en) * 2014-09-04 2017-10-03 Samsung Display Co., Ltd. Display device
US20160071468A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Lid. Display device
CN106653792A (zh) * 2015-11-03 2017-05-10 上海和辉光电有限公司 显示面板及其像素阵列
CN106935612A (zh) * 2015-12-30 2017-07-07 昆山工研院新型平板显示技术中心有限公司 Oled像素结构、有机发光显示器件及其显示方法
US11222928B2 (en) 2019-04-01 2022-01-11 Universal Display Corporation Display architecture with reduced number of data line connections
US11282875B2 (en) 2019-04-10 2022-03-22 Samsung Electronics Co., Ltd. Image sensor including shared pixels

Also Published As

Publication number Publication date
KR101996645B1 (ko) 2019-07-04
KR102284003B1 (ko) 2021-07-30
US20150221704A1 (en) 2015-08-06
KR20130079333A (ko) 2013-07-10
WO2011123134A1 (en) 2011-10-06
CN105720082B (zh) 2018-05-18
CN102822973B (zh) 2016-04-27
EP3751618A1 (en) 2020-12-16
JP5864532B2 (ja) 2016-02-17
US10192936B1 (en) 2019-01-29
KR20190080987A (ko) 2019-07-08
US20170133439A1 (en) 2017-05-11
EP2553729B1 (en) 2020-05-06
US9559151B2 (en) 2017-01-31
JP2013524432A (ja) 2013-06-17
KR102248776B1 (ko) 2021-05-06
EP2553729A1 (en) 2013-02-06
CN105720082A (zh) 2016-06-29
KR20160142410A (ko) 2016-12-12
CN102822973A (zh) 2012-12-12
US10177201B2 (en) 2019-01-08
KR20190080986A (ko) 2019-07-08

Similar Documents

Publication Publication Date Title
US10192936B1 (en) OLED display architecture
US9385167B2 (en) OLED display architecture
US8330152B2 (en) OLED display architecture with improved aperture ratio
US8827488B2 (en) OLED display architecture
US8334545B2 (en) OLED display architecture
US9655199B2 (en) Four component phosphorescent OLED for cool white lighting application
US8902245B2 (en) Method for driving quad-subpixel display

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSAL DISPLAY CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEAVER, MICHAEL S.;BROWN, JULIE J.;LEVERMORE, PETER;AND OTHERS;REEL/FRAME:024413/0795

Effective date: 20100518

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION