US20100215493A1 - Wind Turbine Blade And Method For Controlling The Load On A Blade - Google Patents

Wind Turbine Blade And Method For Controlling The Load On A Blade Download PDF

Info

Publication number
US20100215493A1
US20100215493A1 US12/770,243 US77024310A US2010215493A1 US 20100215493 A1 US20100215493 A1 US 20100215493A1 US 77024310 A US77024310 A US 77024310A US 2010215493 A1 US2010215493 A1 US 2010215493A1
Authority
US
United States
Prior art keywords
blade
lift
wind turbine
regulator
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/770,243
Other languages
English (en)
Inventor
Imad Abdallah
Jonas Romblad
Carsten Hein Westergaard
Chee Kang Lim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Assigned to VESTAS WIND SYSTEMS A/S reassignment VESTAS WIND SYSTEMS A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WESTERGAARD, CARSTEN HEIN, LIM, CHEE KANG, ROMBLAD, JONAS, ABDALLAH, IMAD
Publication of US20100215493A1 publication Critical patent/US20100215493A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0232Adjusting aerodynamic properties of the blades with flaps or slats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0256Stall control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine blade comprising a blade body and lift-regulating means adapted for movement in relation to the blade body by an actuation means controlled by an actuation controller, wherein the actuation controller controls a setting of the lift-regulating means based on an input from a sensor.
  • Another aspect of the invention relates to a method for regulating the lift of a wind turbine blade and controlling the load on a blade.
  • Wind turbines have grown considerably in size over the last decades, and at present have blades with a length of up to 100 m, and even longer blades can be anticipated in the future.
  • Wind turbine blades are typically arranged in sets of three on a hub to constitute a rotor.
  • the rotor is in turn connected to a main shaft arranged in a nacelle on top of a tower.
  • a rotor having blades of 100 m sweeps a rotor area of more than 31,000 m 2 .
  • WO 2004/088130 A1 discloses a wind turbine blade having a variable geometry.
  • the blade comprises a deformable leading edge and/or trailing edge.
  • the deformation is controlled by monitoring blade inflow measurements, flow pressures, strain gauges and accelerometers.
  • WO 2004/074681 A1 Another example can be seen in WO 2004/074681 A1, which relates to a method of controlling aerodynamic load of a wind turbine based on local blade flow measurement.
  • the blades comprise a movable trailing edge flap.
  • WO 2004/099608 A1 discloses a wind turbine blade with active flaps.
  • the flaps can be adjusted by means of activating means and thus alter the aerodynamic properties of the blade.
  • Strain gauges mounted on the inner face of the blade shell or a bracing interconnecting the inner faces of the blade shells measure the loads on the blades and are used to adjust the flaps.
  • An object of the invention is to provide a wind turbine blade with fast-responding lift-regulating means.
  • this object is obtained by a wind turbine blade as outlined in the introduction, wherein the sensor is a force sensor adapted for sensing force from a wind flow acting on the lift-regulating means.
  • the sensor senses the force from the wind flow acting directly on the lift-regulating means, not on the blade in general, which means that inertia effects are limited and hence response time lag is considerably reduced.
  • sensors for local wind speed measurements such as pitot-tubes or built-in pressure sensors in the blade
  • such force sensors are very robust.
  • the price of the force sensors is comparatively low.
  • the arrangement of the sensor at the lift-regulating means facilitates installation and maintenance, and may even enable retrofitting of lift-regulating means according to the invention on existing blades.
  • the senor is a strain or pressure gauge, which are a particularly robust and cheap kind of sensors.
  • the senor is a piezo-electric array.
  • a piezo-electric array may provide more detailed information on the force, and hence a more precise regulation, which will further reduce the loads on the blades.
  • a piezo-electric array may further double as both actuator means and sensor means at the same time.
  • the lift-regulating means according to the invention may be arranged at any suitable position of the wing, and it may take any suitable form. According to an embodiment, however, the lift-regulating means is a trailing edge flap.
  • a trailing edge flap allows for considerable alleviation of the loads on a wind turbine blade, and is less prone to failure compared to a leading edge flap.
  • the flap may be an integral part of blade, and may even form the entire trailing edge portion of the blade from a root area to a position at or near the blade tip. According to an embodiment, however, the flap comprises a plurality of individually movable flap segments. Hereby adjustment can be precisely adapted for the momentary load situation at any part of the blade.
  • the flap segments may be arranged side-by-side in the length-wise direction of the blade.
  • lift-regulating means covering only a relatively small portion of the blade length
  • lift-regulating means are arranged along a substantial part of the length of the blade, such as more than quarter of the blade length.
  • the lift-regulating means is adapted for providing a substantially continuous shape change in the longitudinal direction of the blade.
  • the continuous shape change may be provided by a plurality of flap segments covered by a common outer skin of a flexible material, such as rubber.
  • the actuation controller is adapted for receiving data relating to one or more of the following parameters: wind speed, wind shear, speed of wind flow locally in at least one position on one or more blades, blade vibrations, weather conditions such as density of the air, turbulence, rain and snow, power consumption of the actuation means, actual blade load, and blade load history.
  • wind shear is to be understood the difference of the wind speed over the area swept by the rotor. It is e.g. often seen that the wind speed is higher at the top of the rotor plane than at the bottom due to the grounds and objects on the grounds resistance to the moving air.
  • blade load history is to be understood that e.g. a condition monitoring system, a main wind turbine controller or other could—based on historic observations of the blade load—conclude that the loads on the blade would have to be reduced for the blade to last until the next maintenance call, for the blade to last a given period of time or other.
  • the lift-regulating means is connected to the blade by means of at least one hinge allowing the lift-regulating means to move in relation to the blade and wherein the sensor is adapted to sense a torque acting on the lift-regulating means around the hinge.
  • Hinging the lift-regulating means on the blade body is advantageous in that the hinge is a simple and durable way of allowing the lift-regulating means to move in relation to the blade body.
  • FIG. 1 Another embodiment relates to a wind turbine comprising a wind turbine blade as outlined above.
  • a wind turbine fitted with a wind turbine blade according to the invention will be able to operate in higher winds, and hence exploit the wind energy better. Further the wind turbine will be subjected to less stress and strain, so the life expectancy will be longer, as will the mean time between failures, which is an important parameter for the economy of wind turbines, as maintenance is costly due to the often remote sites.
  • the actuation controller of one blade is adapted for receiving input from an actuation controller of another blade of the wind turbine.
  • the actuation controller of one blade is adapted for receiving input from an actuation controller of another blade of the wind turbine.
  • data from an actuation controller of another blade of the wind turbine can be used.
  • Further data from different actuation controllers can be used for assessment of the data quality, so it can be detected whether a sensor is faulty.
  • the actuation controller can take into consideration the data of a blade in a “future” position, i.e. in a position in which the blade in question will come shortly later.
  • local flow phenomena like tower shadow etc. can be taken into account in advance.
  • the wind turbine comprises a pitch control adapted for receiving input from an actuation controller of one or more of the blades.
  • the pitch control can take the necessary action to pitch the blade if, for example, the actuation controller of the lift-regulating means indicates an excessive loading of the blade.
  • the invention relates to a method for regulating the lift of a wind turbine blade, wherein the blade comprises a blade body and lift-regulating means adapted for movement in relation to the blade body by at least one actuation means.
  • the method comprises the steps of
  • the method further comprises the steps of
  • an actuation controller which in turn controls a setting of the lift-regulating means is advantageous in that an actuation controller enables a more complex control of the setting of the lift-regulating means e.g. the setting of the lift-regulating means can be controlled on the basis of other parameters than the output signal from the sensor, the relationship between the sensor output and the setting of the lift-regulating means could be controlled in a non-linear fashion or other.
  • the method further comprises the steps of
  • the wind turbine main controller could e.g. be the controller controlling the operation of the rotor including pitching of the blades, it could be an overall controller controlling the overall operation of the entire wind turbine or it could be any other kind of superior controller in the wind turbine or controlling the wind turbine from a remote location.
  • the method further comprises the steps of
  • Making the wind turbine main controller control the settings of the lift-regulating means is advantageous in that no extra controllers would have to be installed in the wind turbine and in that it enables that the lift-regulating means in a simple way could be controlled on the basis of other parameters than the force from the wind acting on the lift-regulating means.
  • the method further comprises the step of controlling a setting of a first lift-regulating means located on a first blade, on the basis of an input from a first actuation controller, wherein said input is additionally established on the basis of an output signal from an second actuation controller, wherein said second actuation controller controls a second lift-regulating means located on a further blade.
  • Controlling the settings of the lift-regulating means additionally on the basis of the output of an actuation controller in another blade is advantageous, in that a more uniform load of the wind turbine can be achieved and in that the experience of a first controller could be sheared with a following controller to enable that a given load situation was anticipated and thereby handled better.
  • the blade comprises more than one lift-regulating means each controlled by an independent actuation controller and wherein the method further comprises the step of checking an overall consistency of at least two of the independent actuation controllers to ensure that the lift-regulating means are coordinating reactions.
  • Checking the overall consistency of at least two of the independent actuation controllers is advantageous in that it hereby, in a simple way, is possible to fail check the different controllers and lift-regulating means and in that it is possible to prevent one lift-regulating mean from malfunctioning if sudden local changes in the force sensed by the force sensor occurred e.g. caused by a local turbulence phenomenon, by local icing, by local blade surface irregularities, bird strikes or other.
  • Another aspect of the invention relates to a method for controlling the load on a wind turbine blade, said method comprising the steps of:
  • the sensor input relates to pressure distribution on the lift-regulating means.
  • a very precise determination of the loading of the lift-regulating means can be achieved.
  • the sensor input relates to power consumption of the actuator, such as by using a power transformer to measure the power consumption of the actuator for the lift-regulating means.
  • a power transformer to measure the power consumption of the actuator for the lift-regulating means.
  • the sensor input relates to measured strain by a strain-gauge at the lift-regulating means.
  • a very robust determination of the loading of the lift-regulating means can be achieved.
  • the sensor input relates to measured load by a load cell at the lift-regulating means.
  • a very robust determination of the loading of the lift-regulating means can be achieved.
  • FIG. 1 illustrates a common wind turbine
  • FIG. 2 is a graph showing pressure distribution at different angles of attack
  • FIG. 3 illustrates pressure distribution at different flap angles
  • FIG. 4 illustrates lift values at different flap angles
  • FIG. 5 is a rough sketch showing a prior art blade with flaps
  • FIG. 6 is a rough sketch of a section of a blade showing the principle according to the invention.
  • FIG. 7 illustrates pressure forces as function of angle of attack and flap angle
  • FIG. 8 is a schematic sectional view showing a detail of a trailing edge of an alternative embodiment of the blade according to the invention.
  • FIG. 9 is an isometric view of an embodiment of the blade according to the invention.
  • FIG. 10 illustrates an ideal wind turbine power curve and an embodiment of a real power curve
  • FIG. 11 illustrates an embodiment of a control system for a wind turbine according to the invention
  • FIG. 12 shows schematically lift vs. angle of attack for various flap angles
  • FIG. 13 shows schematically flap hinge moment vs. angle of attack for various flap angles
  • FIG. 14 illustrates a velocity contour plot of airfoil at 8° angle of attack and flap angle ⁇ 20°
  • FIG. 15 illustrates a velocity contour plot of airfoil at 8° angle of attack and flap angle +20°
  • FIG. 16 illustrates a pressure contour plot of airfoil at 18° angle of attack and flap angle ⁇ 20°.
  • FIG. 1 A common type of modern wind turbine 10 is shown in FIG. 1 .
  • the wind turbine 10 comprises a tower 11 with a nacelle 12 on top.
  • the wind turbine 10 comprises a rotor made up of three blades 1 having a root 17 thereof mounted on a hub 13 .
  • the wind will actuate the blades 1 of the rotor to thereby make the rotor turn as indicated by the arrow.
  • the hub 13 is connected to a shaft (not shown) in the nacelle 12 , and normally the shaft is connected to a generator (not shown) for producing electrical power.
  • the shaft may be connected to the generator through a gear.
  • the blades 1 of the wind turbine 10 of FIG. 1 are pitch-regulated and can hence be turned about the longitudinal axis thereof.
  • each blade 1 is connected to the hub 13 through a pitch bearing 14 , and means are provided for pitching the blades, such as an electromotor, a hydraulic motor or mechanical means, e.g. a piston.
  • Each blade 1 comprises a leading edge 15 , a trailing edge 16 , a root 17 and a tip 18 .
  • Each blade 1 is subject to a force by the wind.
  • the force on the blade 1 is the sum of local force contribution at local airfoils, i.e. cross sections of the blade 1 .
  • the force on the airfoil is a function of the angle of attack a onto the local airfoil section.
  • the angle of attack a causes a certain pressure distribution (negative on the suction side and positive on the pressure side) producing a lift force.
  • the pressure distribution is normally denoted (C p ) and lift force, being the integral of C p , with (C L ).
  • FIG. 2 shows two pressure distributions at two different angles of attack ⁇ .
  • the pressure distribution relating to the largest angle of attack ⁇ is shown in solid.
  • FIG. 3 shows such an example.
  • the pressure distribution relating to the flap angle ⁇ shown is drawn in solid line.
  • the corresponding set of lift values C L is shown for different flap setting in the context of angle of attack ⁇ .
  • FIG. 5 is a rough sketch illustrating the principle of a prior art wind turbine blade 1 according to WO 2004/074681 A1.
  • the wind turbine blade 1 comprises a blade body 2 and a movable trailing edge flap 7 adjusted by an actuator 4 controlled by a actuation controller 5 based on measurements from a flow sensor 26 at the leading edge 15 of the blade 1 .
  • It is the angle of attack ⁇ , detected with a 5-hole pitot tube and computed into the airfoil surface, which is used as the primary input for regulating the lift coefficient on the airfoil section. i.e. changing the loading on the entire turbine blade 1 .
  • the normal position of the flap 7 is shown with a dotted line, whereas an adjusted position of the flap 7 is shown with a solid line.
  • a wind turbine blade 1 according to the invention is illustrated in the rough sketch of FIG. 6 .
  • the blade 1 comprises a blade body 2 and lift-regulating means 3 , which is here illustrated as a trailing edge flap 7 .
  • the position of the flap 7 is adjusted by an activation means, here in the form of a linear actuator 4 .
  • an activation means here in the form of a linear actuator 4 .
  • FIG. 2 the normal position of the flap 7 is shown with a dotted line, whereas an adjusted position of the flap 7 is shown with a solid line.
  • the flap 7 is schematically illustrated with a flap hinge 19 to connect to the blade body 2 .
  • the flap 7 is further connected to the actuator at a flap connection point 20 , and the actuator is in turn connected to the blade 1 at an anchor point 21 .
  • activation means such as an electric linear actuator, a hydraulic linear actuator, a screw spindle etc.
  • a piezo-electric array 9 could be used, as will be discussed in more detail below.
  • the position of the flap 7 is controlled by a actuation controller 5 based on data from a force sensor 6 adapted for sensing force acting on the flap 7 .
  • the sensor 6 is a strain gauge on the actuator 4 .
  • the actuation controller 5 could include signal processing means, means for data processing and an actuator power control.
  • a robust way to detect the angle of attack ⁇ is provided, namely by identifying that the pressure forces acting upon the flap surface is a function of the angle of attack ⁇ and the flap angle ⁇ .
  • this is linear functions, which is illustrated in FIG. 7 .
  • this is more complex functions.
  • Aerodynamic force loading 22 on the trailing edge flap 7 is shown schematically in FIG. 6 .
  • This loading 22 will be dependent on the position of the trailing edge flap 7 as discussed above.
  • Aerodynamic force loading 22 of the trailing edge flap 7 will be directly measured by the sensor 6 on the actuator 4 .
  • Data from the sensor 6 is fed to the actuation controller 5 through a sensor wire 24 .
  • the actuation controller 5 evaluates the data from the sensor 6 and based on the evaluation sends a control signal to the actuator 4 through the actuator control wire 23 for possible adjustment of the position of the trailing edge flap 7 .
  • the lift-regulating means 3 may be any type of flap and may be different from the movable trailing edge portion illustrated in FIG. 6 and discussed above.
  • the lift-regulating means 3 may be a thin, surface type flap, which may be embedded in a recess of the blade 1 .
  • FIG. 8 which is a schematic, cross-sectional view of a trailing edge portion of a blade 1 .
  • the blade 1 comprises a blade body 2 and a separate, deformable trailing edge flap 7 .
  • the flap 7 may be made of a flexible material to be deformable.
  • the flap 7 is connected to a mounting block 25 .
  • a sensor 6 is positioned to bridge between the blade body 2 and the mounting block 25 to sense the relative movement of the trailing edge flap 7 with regard to the blade body 2 . Again the sensor 6 is connected to a actuation controller for evaluation of the sensed data and possible adjustment of the flap 7 .
  • FIG. 9 is a sketch in isometric view of a part of a wind turbine blade 1 .
  • the blade 1 comprises a trailing edge 16 with a trailing edge flap 7 .
  • the flap 7 is connected to the blade body by a flap hinge 19 to be movable up and down.
  • actuators (not shown) are provided at four positions in the longitudinal direction of the blade 1 for adjusting the position of the flap 7 at respective positions.
  • the aerodynamic force loading 22 at the respective positions are measured by force sensors (not shown), and the data evaluated by a common actuation controller 5 , which will send actuator control signals through actuator control wires 23 to adjust the individual actuators.
  • the trailing edge flap 7 may form a continuously varied curve in the longitudinal direction of the blade 1 . This embodiment will have a relatively low noise generation, as all adjustments give rise to smooth changes of the shape of the trailing edge 16 .
  • the sensors 6 are pressure sensors positioned on the trailing edge flap 7 of a wind turbine blade 1 . Signals from the pressure sensors are distributed to the data collection means 28 through signal lines 27 .
  • the signal lines may be plastic tubes to communicate the pressure at the pressure sensors to the data collection means 28 .
  • the position of the pressure sensors at the flap 7 is relatively protected, and may allow for retrofitting on existing blades 1 .
  • the sensors 6 are piezoelectric diaphragms positioned on the trailing edge flap 7 of a wind turbine blade 1 to measure dynamic pressure. Signals from the pressure sensors are distributed to the data collection means 28 through electric signal lines 27 to communicate the pressure at the piezoelectric diaphragms to the data collection means 28 .
  • a piezo-electric array 9 could be used as actuator and/or force sensor.
  • piezo-electric arrays or actuators it is possible to provide materials which change shape when subjected to an electric current.
  • An advantage of piezo-electric arrays 9 is that they are practically maintenance-free.
  • wind turbine blade 1 it will be possible to significantly reduce fatigue and extreme loading.
  • blade bending moments can be reduced by 25%, tower bending moments by 15% and yaw/tilt moment also by 15%.
  • the wind turbine blade 1 according to the invention will make it possible to operate wind turbines 10 in higher wind, as loading of the blade may be alleviated by adjustment of the lift-regulating means 3 . This would significantly lower the cost of energy produced by the wind turbine 10 , as the wind energy increases significantly with increasing wind speed.
  • the control strategy may be developed by means of aero-elastic calculations emulating wind field and the turbine structure or simply by means of practical experience converted into control schemes, say by means of fuzzy logics and neural networks. Forces acting on the flap 3 have been mapped to the angle of attack ⁇ .
  • the angle of attack a provides the primary parameter as input to a control strategy, since the angle ⁇ also uniquely determines the local blade loading. All the load data is collected, from each flap sensor 6 and from each blade 1 .
  • the flap position can be re-adjusted in order to minimize the loading on the blade 1 and turbine structure while maintaining or even increasing the power output.
  • actuation controller 5 may be a central controller for all blades 1 and hence not positioned in individual blades 1 . Communication with the actuation controller 5 could be performed using by wireless communication, whereby delicate wiring systems are avoided.
  • Optimization may be used to in such a way to minimize the number of lift-regulating means 3 over the span of the blade 1 , but still maximize the load alleviation potential.
  • the invention is not restricted to any particular number of lift-regulating means 3 or actuators 4 .
  • FIG. 10 illustrates an ideal wind turbine power curve 29 and an embodiment of an actual real power curve 30 .
  • the axis of abscissa shows the wind speed v and the axis of ordinate shows the wind turbine output power P.
  • the ideal wind turbine power curve 29 is the curve the wind turbine output power P ideally should follow at a given wind speed to maximise the efficiency of the wind turbine but due to fluctuations in the wind speed, turbulence, latency in turbine regulation system and other the actual power curve 30 will oscillate around the ideal curve 29 .
  • FIG. 11 illustrates an embodiment of a control system for a wind turbine 10 according to the invention.
  • the wind turbine 10 comprises a main controller 32 which among other communicates with a power controller 36 for controlling the power output of the wind turbine 10 to a utility grid 34 , a pitch controller 31 for controlling the pitch angle of the individual wind turbine blades 1 and one or more actuation controllers 5 for controlling the lift-regulating means 3 in response to the force of the wind acting on the flaps 3 .
  • the lift-regulating means 3 could e.g. additionally receive a set-point signal from the main controller 32 or from the pitch controller 31 whereby the setting of the lift-regulating means 3 is controlled directly or partly on a basis of the difference between the output signal from the force sensor 6 —measuring the force of the wind acting on the flaps 3 —and the set-point signal.
  • the lift-regulating means 3 could be controlled by another wind turbine main controller such as the pitch controller 31 or the main controller 32 .
  • FIG. 12 shows schematically lift CI vs. angle of attack a for various flap angles ⁇
  • FIG. 13 shows schematically flap hinge moment CM i.e. the force of the wind acting on the lift-regulating means 3 expressed as the resulting moment around a flap hinge 19 vs. angle of attack ⁇ for various flap angles ⁇ .
  • the x marked graph is with flaps at +20°
  • the ⁇ marked graph is with flaps at +10°
  • the ⁇ marked graph is with flaps at +0°
  • the ⁇ marked graph is with flaps at ⁇ 10°
  • the ⁇ marked graph is with flaps at ⁇ 20°.
  • the corresponding set of lift coefficient values CI is shown for different flap settings in the context of angle of attack ⁇ . For a negative flap angle ⁇ of the flap deflected downwards, the lift is increased. For a positive flap angle ⁇ of the flap deflected upwards, the lift is decreased. Values are obtained from Computational Fluid Dynamics (CFD) simulations of an airfoil at a flow condition of Reynolds number of 6 million.
  • CFD Computational Fluid Dynamics
  • FIG. 13 the corresponding set of flap hinge moment coefficient CM values is shown for different flap settings in the context of angle of attack ⁇ a.
  • the flap hinge moment CM is a function of the angle of attack ⁇ a and the flap angle ⁇ .
  • FIG. 14 illustrates a velocity contour plot of airfoil at 8° angle of attack ⁇ and flap angle ⁇ 20°
  • FIG. 15 illustrates a velocity contour plot of airfoil at 8° angle of attack ⁇ and flap angle +20°
  • FIG. 16 illustrates a pressure contour plot of airfoil at 18° angle of attack ⁇ and flap angle ⁇ 20°.
US12/770,243 2007-10-29 2010-04-29 Wind Turbine Blade And Method For Controlling The Load On A Blade Abandoned US20100215493A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200701545 2007-10-29
DKPA200701545 2007-10-29
PCT/DK2008/000380 WO2009056136A2 (en) 2007-10-29 2008-10-29 Wind turbine blade and method for controlling the load on a blade

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2008/000380 Continuation WO2009056136A2 (en) 2007-10-29 2008-10-29 Wind turbine blade and method for controlling the load on a blade

Publications (1)

Publication Number Publication Date
US20100215493A1 true US20100215493A1 (en) 2010-08-26

Family

ID=40591544

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/770,243 Abandoned US20100215493A1 (en) 2007-10-29 2010-04-29 Wind Turbine Blade And Method For Controlling The Load On A Blade

Country Status (5)

Country Link
US (1) US20100215493A1 (zh)
EP (1) EP2222955B1 (zh)
CN (1) CN101874158A (zh)
DK (1) DK2222955T3 (zh)
WO (1) WO2009056136A2 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090302609A1 (en) * 2004-07-30 2009-12-10 Windtech GmbH Power train for a wind power plant
US20110144814A1 (en) * 2010-06-29 2011-06-16 Detlef Menke Wind turbine and method for operating a wind turbine
US20110205348A1 (en) * 2010-12-16 2011-08-25 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
WO2012055419A3 (en) * 2010-10-27 2012-06-14 Vestas Wind Systems A/S A method of controlling a wind turbine
US20120224965A1 (en) * 2009-11-11 2012-09-06 Vestas Wind Systems A/S Control of wind turbine blade lift regulating means
US20130136594A1 (en) * 2011-06-03 2013-05-30 Wilic S.Ar.L. Wind turbine and control method for controlling the same
US20130195657A1 (en) * 2010-06-30 2013-08-01 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
US20140007702A1 (en) * 2010-06-29 2014-01-09 Airbus Operations Gmbh Measurement device for the measurement of forces in structural components
US20140248148A1 (en) * 2011-04-28 2014-09-04 Vestas Wind Systems A/S Wind turbine noise control methods
US20140271187A1 (en) * 2013-03-15 2014-09-18 Frontier Wind, Llc Distributed Control System
US20150176563A1 (en) * 2012-08-06 2015-06-25 Stichting Energieonderzoek Centrum Nederland Swallow tail airfoil
EP2995812A1 (en) * 2014-09-12 2016-03-16 Frontier Wind, LLC Wind turbine air deflector system control
US20180119678A1 (en) * 2015-05-19 2018-05-03 Wobben Properties Gmbh Measuring assembly on a wind turbine
US20180238298A1 (en) * 2012-08-06 2018-08-23 Stichting Energieonderzoek Centrum Nederland Swallow tail airfoil
US10225629B2 (en) * 2013-11-25 2019-03-05 Chi Hung Louis Lam System for monitoring condition of adjustable construction temporary supports
US11067496B2 (en) 2017-11-27 2021-07-20 Goodrich Actuation Systems Limited System for detecting a mechanical fault in a rotating shaft
US11448187B2 (en) * 2012-05-11 2022-09-20 Vestas Wind Systems A/S Power system and method for operating a wind power system with a dispatching algorithm

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418967B2 (en) 2008-02-21 2013-04-16 Cornerstone Research Group, Inc. Passive adaptive structures
WO2009137143A1 (en) 2008-02-21 2009-11-12 Cornerstone Research Group, Inc. Passive adaptive structures
DK200900420A (en) * 2009-03-26 2010-09-27 Vestas Wind Sys As A wind turbine blade comprising a trailing edge flap and a piezoelectric actuator
WO2010151230A2 (en) * 2009-06-26 2010-12-29 Vestas Wind Systems A/S Actuator system, wind turbine blade, and wind turbine
WO2011000628A2 (en) * 2009-06-30 2011-01-06 Vestas Wind Systems A/S Improved wind turbine blade control
WO2011029447A2 (en) * 2009-09-09 2011-03-17 Vestas Wind Systems A/S Wind turbine rotor blade
EP2333322A3 (en) 2009-11-30 2017-02-22 Vestas Wind Systems A/S Measuring loads on wind turbine blades
WO2011077424A1 (en) 2009-12-21 2011-06-30 Ramot At Tel-Aviv University Ltd. Oscillatory vorticity generator and applications thereof
DE102010027229A1 (de) * 2010-07-15 2012-01-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bereitstellung eines Abstellwinkel-Korrektursignals für ein vorbestimmtes Rotorblatt eier Windkraftanlage
US8011887B2 (en) * 2010-07-21 2011-09-06 General Electric Company Rotor blade assembly
DE102010047918A1 (de) * 2010-10-08 2014-04-30 Smart Blade Gmbh Flexible Hinterkante eines Rotorblattes einer Windkraftanlage
CN203670092U (zh) * 2011-01-21 2014-06-25 通用电气公司 用于对风力涡轮机转子叶片执行内部检查的系统
FR3011818B1 (fr) 2013-10-11 2015-12-25 Eurocopter France Pale a vrillage adaptatif, et aeronef muni d'une telle pale
CN106460793B (zh) * 2014-06-19 2019-01-15 维斯塔斯风力系统集团公司 响应于风切变而对风力涡轮机的控制
CN104234929B (zh) * 2014-07-24 2017-11-07 南京航空航天大学 一种控制风力机叶片载荷与变形的装置
CN114427512A (zh) * 2016-12-08 2022-05-03 赛创尼克株式会社 能量转换装置、包含其的能量转换系统及其运转方法
CN109519341A (zh) * 2018-10-16 2019-03-26 安徽科技学院 一种风力机叶片及其风力机
CN110374801B (zh) * 2019-07-02 2024-04-05 中国大唐集团新能源科学技术研究院有限公司 叶根独立变桨装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320491A (en) * 1992-07-09 1994-06-14 Northern Power Systems, Inc. Wind turbine rotor aileron
US5347870A (en) * 1992-01-29 1994-09-20 State University Of New York Dual function system having a piezoelectric element
US6361275B1 (en) * 1997-07-25 2002-03-26 Aloys Wobben Wind energy installation
US20020141867A1 (en) * 2001-04-03 2002-10-03 Eurocopter Deutschland Gmbh Method and control arrangement for adjusting a flap that is pivotally supported in a rotor blade of a helicopter
US6481667B1 (en) * 2001-03-05 2002-11-19 Northrop Grumman Corporation System and method for deflecting an aerodynamic control surface
US20040067134A1 (en) * 2002-10-08 2004-04-08 Beauchamp Charles H. Dynamically reconfigurable wind turbine blade assembly
US20040261411A1 (en) * 1999-08-12 2004-12-30 Macgregor Roderick Shape-memory alloy actuators and control methods
US20060145483A1 (en) * 2003-02-18 2006-07-06 Larsen Torben J Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021850A1 (de) * 2000-05-05 2001-11-08 Olaf Frommann Adaptive Profilierung für Windenergierotoren
DK200300670A (da) * 2003-05-05 2004-11-06 Lm Glasfiber As Vindmölleving med opdriftsregulerende organer
FR2863320B1 (fr) * 2003-12-09 2007-11-16 Ocea Sa Pale d'aerogenerateur equipee de moyens deflecteurs, et aerogenerateur correspondant
DK176352B1 (da) * 2005-12-20 2007-09-10 Lm Glasfiber As Profilserie til vinge til vindenergianlæg
CN101400892B (zh) * 2006-03-16 2013-04-17 维斯塔斯风力系统有限公司 用于减小受到风轮面不对称加载的风力涡轮机的部件的疲劳负载的方法与控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347870A (en) * 1992-01-29 1994-09-20 State University Of New York Dual function system having a piezoelectric element
US5320491A (en) * 1992-07-09 1994-06-14 Northern Power Systems, Inc. Wind turbine rotor aileron
US6361275B1 (en) * 1997-07-25 2002-03-26 Aloys Wobben Wind energy installation
US20040261411A1 (en) * 1999-08-12 2004-12-30 Macgregor Roderick Shape-memory alloy actuators and control methods
US6481667B1 (en) * 2001-03-05 2002-11-19 Northrop Grumman Corporation System and method for deflecting an aerodynamic control surface
US20020141867A1 (en) * 2001-04-03 2002-10-03 Eurocopter Deutschland Gmbh Method and control arrangement for adjusting a flap that is pivotally supported in a rotor blade of a helicopter
US20040067134A1 (en) * 2002-10-08 2004-04-08 Beauchamp Charles H. Dynamically reconfigurable wind turbine blade assembly
US20060145483A1 (en) * 2003-02-18 2006-07-06 Larsen Torben J Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816798B2 (en) * 2004-07-30 2010-10-19 Amsc Windtec Gmbh Power train for a wind power plant
US20090302609A1 (en) * 2004-07-30 2009-12-10 Windtech GmbH Power train for a wind power plant
US20120224965A1 (en) * 2009-11-11 2012-09-06 Vestas Wind Systems A/S Control of wind turbine blade lift regulating means
US9039366B2 (en) * 2009-11-11 2015-05-26 Vestas Wind Systems A/S Control of wind turbine blade lift regulating means
US20140007702A1 (en) * 2010-06-29 2014-01-09 Airbus Operations Gmbh Measurement device for the measurement of forces in structural components
US20110144814A1 (en) * 2010-06-29 2011-06-16 Detlef Menke Wind turbine and method for operating a wind turbine
US9046449B2 (en) * 2010-06-29 2015-06-02 Airbus Operations Gmbh Measurement device for the measurement of forces in structural components
US9567869B2 (en) * 2010-06-30 2017-02-14 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
US20130195657A1 (en) * 2010-06-30 2013-08-01 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
WO2012055419A3 (en) * 2010-10-27 2012-06-14 Vestas Wind Systems A/S A method of controlling a wind turbine
US9556850B2 (en) 2010-10-27 2017-01-31 Vestas Wind Systems A/S Method of controlling a wind turbine
US8743196B2 (en) 2010-12-16 2014-06-03 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
US20110205348A1 (en) * 2010-12-16 2011-08-25 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
US20140248148A1 (en) * 2011-04-28 2014-09-04 Vestas Wind Systems A/S Wind turbine noise control methods
US20130136594A1 (en) * 2011-06-03 2013-05-30 Wilic S.Ar.L. Wind turbine and control method for controlling the same
US11448187B2 (en) * 2012-05-11 2022-09-20 Vestas Wind Systems A/S Power system and method for operating a wind power system with a dispatching algorithm
US20180238298A1 (en) * 2012-08-06 2018-08-23 Stichting Energieonderzoek Centrum Nederland Swallow tail airfoil
US20150176563A1 (en) * 2012-08-06 2015-06-25 Stichting Energieonderzoek Centrum Nederland Swallow tail airfoil
US11136958B2 (en) * 2012-08-06 2021-10-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Swallow tail airfoil
US9897067B2 (en) * 2012-08-06 2018-02-20 Stichting Energieonderzoek Centrum Nederland Swallow tail airfoil
US9388792B2 (en) * 2013-03-15 2016-07-12 Frontier Wind, Llc Distributed control system
US20140271187A1 (en) * 2013-03-15 2014-09-18 Frontier Wind, Llc Distributed Control System
US10225629B2 (en) * 2013-11-25 2019-03-05 Chi Hung Louis Lam System for monitoring condition of adjustable construction temporary supports
US9926911B2 (en) 2014-09-12 2018-03-27 Ge Infrastructure Technology, Llc Wind turbine air deflector system control
EP2995812A1 (en) * 2014-09-12 2016-03-16 Frontier Wind, LLC Wind turbine air deflector system control
US20180119678A1 (en) * 2015-05-19 2018-05-03 Wobben Properties Gmbh Measuring assembly on a wind turbine
US11067496B2 (en) 2017-11-27 2021-07-20 Goodrich Actuation Systems Limited System for detecting a mechanical fault in a rotating shaft

Also Published As

Publication number Publication date
WO2009056136A2 (en) 2009-05-07
EP2222955B1 (en) 2017-01-11
DK2222955T3 (en) 2017-02-27
EP2222955A2 (en) 2010-09-01
CN101874158A (zh) 2010-10-27
WO2009056136A3 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP2222955B1 (en) Wind turbine blade and method for controlling the load on a blade
US7293959B2 (en) Wind turbine blade with lift-regulating means
US8807940B2 (en) Wind turbine blade with lift-regulating means in form of slots or holes
US8267654B2 (en) Wind turbine with gust compensating air deflector
EP2306003B1 (en) System and methods for controlling a wind turbine
US6619918B1 (en) Method of controlling the operation of a wind turbine and wind turbine for use in said method
US7632070B2 (en) Telescoping wind turbine blade
US10451037B2 (en) Wind turbine blade
US9556850B2 (en) Method of controlling a wind turbine
EP2598750B1 (en) Improvements relating to wind turbines
CA2845432C (en) A method and system for controlling wind turbines
CA2845842C (en) Determining loads using various sensor locations
EP2685095A2 (en) Method and system to actively pitch to reduce extreme loads on wind turbine
CA2845322C (en) Blade balancing
AU2014201463A1 (en) Load distribution estimation
WO2011157271A2 (en) A method and control unit for controlling a wind turbine in dependence on loading experienced by the wind turbine
US20180187647A1 (en) Methods for Controlling Wind Turbine with Thrust Control Twist Compensation
US10422318B2 (en) Wind turbine blade
WO2023078521A1 (en) A method for reducing blade flap loads in a wind turbine

Legal Events

Date Code Title Description
AS Assignment

Owner name: VESTAS WIND SYSTEMS A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABDALLAH, IMAD;ROMBLAD, JONAS;WESTERGAARD, CARSTEN HEIN;AND OTHERS;SIGNING DATES FROM 20081211 TO 20090115;REEL/FRAME:024350/0390

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION