US20100212197A1 - Three-dimensional image retainer - Google Patents

Three-dimensional image retainer Download PDF

Info

Publication number
US20100212197A1
US20100212197A1 US12/640,739 US64073909A US2010212197A1 US 20100212197 A1 US20100212197 A1 US 20100212197A1 US 64073909 A US64073909 A US 64073909A US 2010212197 A1 US2010212197 A1 US 2010212197A1
Authority
US
United States
Prior art keywords
pins
retainer
plates
plane
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/640,739
Inventor
Gennady Kleyman
Yuriy Chernov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/640,739 priority Critical patent/US20100212197A1/en
Publication of US20100212197A1 publication Critical patent/US20100212197A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/102Attachment of cylinders to crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type

Definitions

  • This invention relates to a three-dimensional image retainer.
  • devices capable of forming a three-dimensional image of an object.
  • these devices are provided with a support and a plurality of pins which can slide through numerous holes formed in the support in response to an external load.
  • the pins are displaceable at different distances to form a contour corresponding to a shape of the load. While a three-dimensional image is easily formed, it is difficult to preserve this image for a prolonged period of time. Particularly, displacing the support causes the pins to move from a position corresponding to the formed image.
  • the device is provided with a plurality of pins each having a pair of smooth ends that are formed and dimensioned to prevent the device operator from uncomfortable feeling.
  • the inventive devices is configured with a plurality of retainer plates each having a respective multiplicity of openings, which are traversed by the pins.
  • the pins are displaceable in response to applying a 3-D load to one end of the pins so that the pins selectively move toward an impressed position, in which the opposite ends of selectively impressed pins recreate the contour of the load.
  • the inventive image retainer further includes a retaining assembly traversable by the plurality of pins and operative to move in a plane perpendicular to the pin axes so as to lock the pins in the impressed position.
  • FIG. 1 is a perspective view of an image retainer assembled in accordance with one embodiment of the invention
  • FIG. 2 is an exploded view of the image retainer of FIG. 1 ;
  • FIG. 3 is a side view of the image retainer of FIGS. 1 and 2 having a plurality of pins displaced in an unloaded position;
  • FIG. 4 is a front view of the image retainer of FIGS. 1-3 ;
  • FIG. 5 is a sectional view of the image retainer along lines V-V of FIG. 3 ;
  • FIG. 6 is a sectional view of the assembled image retainer along lines VI-VI of FIG. 5 ;
  • FIG. 7 is a sectional view of the disassembled image retainer along lines VI-VI of FIG. 5 ;
  • FIG. 8 is a sectional view of the assembled image retainer along lines of FIG. 5 ;
  • FIG. 9 is a sectional view of the disassembled image retainer along lines of FIG. 5 ;
  • FIG. 10 is a sectional view of the image retainer along lines X-X of FIG. 3 illustrating a position of a lock plate in which unlocked pins move freely;
  • FIG. 11 is a top sectional view of the image retainer along lines X-X of FIG. 3 illustrating a position of a lock plate in which the pins are locked;
  • FIGS. 12 and 13 are views similar to the views of FIGS. 10 and 11 , respectively, but illustrate openings having a shape different from the one shown in FIGS. 10 and 11 ;
  • FIG. 14 is a perspective view of the imager retainer assembled in accordance with another embodiment of the invention.
  • FIG. 15 is a perspective view of the inventive device configured in accordance with a further embodiment of the invention.
  • FIG. 16 is a side elevational view of the device illustrated in FIG. 15 ;
  • FIG. 17A is a diagrammatic view illustrating a plurality of pins of the device of FIG. 15 in a position, in which displacement of the pins is arrested;
  • FIG. 17B is a diagrammatic view of the device of FIG. 15 having freely displaceable pins.
  • FIG. 18 is a top view f a one-piece retainer element associated with the device of FIG. 15 ;
  • FIG. 19 is a cross-sectional view of the inventive device configured in accordance with a further embodiment of the invention and illustrating a plurality of pins that are not inserted into the device;
  • FIG. 20 is a cross sectional view of the device illustrated in FIG. 19 and illustrated in an inserted position
  • FIGS. 21 and 22 are enlarged views of a single pin before and after the pin has been inserted
  • FIG. 23 is an exploded view of the inventive device configured in accordance with still a further embodiment of the invention.
  • an image retainer 100 is configured to recreate a 3-D image of an object loaded upon either one of opposite enlarged pinhead ends 12 , 14 of pins 10 ( FIGS. 1-7 ), which are selectively displaceable in response to a load so as to recreate the 3D image of this load.
  • the image retainer 100 includes a plurality of retainer plates 22 , 24 , 26 and 28 ( FIGS. 1 , 2 ) assembled in two pairs and each having a respective multiplicity of openings 30 ( FIG. 2 ). Configuration of the openings is such that the pins 10 , each of which has a shank or body 16 provided with fixed or removable pinheads 12 , 14 ( FIGS. 1-13 ), can freely move through each of the openings 30 , which is dimensioned to have an inner diameter larger than both pin's shank or body 16 and pinheads 12 and 14 .
  • the pinheads 12 and 14 each have a smooth, preferably spherical outer surface 34 ( FIGS.
  • the enlarged pinhead 34 provides for a substantially uniform distribution of driving forces, which, in turn, allows for a better steering of the pins 10 through the openings 30 .
  • kits including the above discussed structure may be provided with a pin actuator 120 ( FIG. 14 ), provided with a relatively small pointing end 122 and a relatively large holder 124 .
  • the retainer plates 22 , 24 and 26 , 28 are positioned so that the openings 30 of these plates are aligned, as shown in FIG. 7 , and easily traversed by the pins 10 .
  • assembling the image retainer is provided on a flat surface supporting a plurality of nuts 36 ( FIGS. 1 , 2 , 8 and 9 ), each of which is aligned with holes 38 ( FIGS. 2 , 8 and 9 ) formed in the corner regions of the retainer plates 22 - 28 and later traversed by fasteners 40 .
  • the nuts 36 are not tightened to the fasteners 40 until adjacent retainer plates 22 , 24 and 26 , 28 are displaced relative to one another in a plane generally parallel to the surface, as shown in FIGS. 5 , 6 and 11 , to have the shanks ( FIGS. 6 , 7 ) of the pins 10 squeezed between inner walls 31 and 33 ( FIGS. 6 and 7 ) of the vertically adjacent openings 30 of all retainer plates.
  • the openings 30 are intentionally misaligned so that while the shanks of the pins are prevented from freely running through the openings 30 of the retainer plates 22 - 28 , each of the pins is still enabled to move in response to application of the load.
  • pins each are displaceable in response to applying a load to either of its ends, it cannot completely disengage the plates 22 , 24 , 26 and 28 because pinheads 12 and 14 are larger than a portion 35 of each opening 30 , which is formed as a result of displacement of the plates.
  • the fasteners 40 are selected from screws, bolts and pins subject only to proper dimensioning allowing for the fasteners to move through the holes 38 ( FIG. 2 ) and for displacement of the retainer plates 22 through 28 relative to one another.
  • the use of screws or threaded pins eliminates the need for the nuts 36 , but requires threaded regions in spacers 42 ( FIGS. 2 , 8 and 9 ) positioned between the pairs of the retainer plates 22 , 24 and 26 , 28 and at least two extreme holes 38 .
  • FIGS. 8 and 13 illustrate lock plate 20 formed with openings 29 which have a cross-section different from the circular one and including, but not limited to, a rather conical and/or wedged cross-section.
  • the pins 10 displaced in response to the load application, can be locked in the impressed position by a retainer assembly, which includes an actuator 18 , lock plate 20 and a holder 46 .
  • the lock plate 20 is formed with a plurality of apertures 130 ( FIGS. 2 , 6 , 7 , and 9 ) dimensioned to be slightly larger than the pinheads 12 , 14 ( FIGS. 6 , 7 ) of the pins 10 to allow for displacement of the lock plate 20 in response to a force applied to the actuator 18 ( FIG. 1 ).
  • apertures 130 of the lock plate 20 do not prevent displacement of the pins.
  • the device operator applies a torque to the actuator 18 causing the plate 20 to move and engage the portion of the pins' circumference so that the pins cannot move even if an external force were applied regardless of the position of the image retainer 100 .
  • the holder 46 ( FIG. 2 ) has a C-shape provided with opposite legs 52 ( FIG. 1 ), which are formed with respective openings traversed by the shanks of the fasteners 40 .
  • the C-shape of the holder defines a space between an end of the lock plate 20 and an inner surface of the holder which is sufficient to provide displacement of the lock plate to a position in which the impressed pins are locked.
  • a variety of actuator configurations may be provided including, for example, a threaded axle 54 ( FIG. 2 ) that is removably coupled to the lock plate 20 and further secured thereto by a pressure plate 56 and screws or axles 54 ( FIG. 2 ).
  • the actuator 18 ( FIG. 1 ) is threadedly mounted on the axle 54 and pressure plate 56 and operates so that its rotation is translated into a linear displacement of the lock plate 20 .
  • a recess 60 ( FIG. 1 ) formed in the holder 46 receives the actuator 18 and, while allowing the actuator to rotate, prevents its linear displacement with the axle 54 .
  • the actuator 18 may be coupled to the lock plate 20 and linearly displaced therewith along a linearly immovable axle.
  • the 3-D retainer assembly 100 may have a plurality of retainer plates 62 and 64 separated from one another by spacers 66 and each provided with a respective multiplicity of openings, which are traversed by pins 66 configured identically to the previously disclosed embodiments.
  • retainer 100 of FIG. 15 is provided with a modified locking mechanisms securing a final locking position of the pins in the impressed position thereof.
  • the locking mechanism has a plurality of separate strips 68 fixed to a drum 72 by one end thereof and having the other end fixed to the plate 62 . Since the strips are made from elastic material, the device operator is able to apply a torque to a handle 74 translating into tensioning the strips. Increasing tension causes the bodies of the strips to attenuate and, thus, widen a space 70 defined between each pair of neighboring strips. Conversely, reducing the tension narrows this space.
  • This mechanism as shown in FIG. 17A allows the strips 68 to squeeze the rows of the pins 10 , each inserted between a respective pair of strips, when a relatively small tensioning force is applied to the strips. In this position of the strips, the pins are displaceably fixed so as to retain the desired impressed image.
  • Displacement of the pins is provided, when the device operator applies a torque to the handle 74 , thereby rotating the drum 72 which, in turn, causes the strips 68 to attenuate and widen the space 70 , as shown in FIG. 17B , so as to allow the pins to move.
  • FIG. 18 A further modification of the locking mechanism is illustrated in FIG. 18 and includes, instead of plurality of separate strips 68 of FIG. 15 , a single body or mat 76 operating in a manner similar to the above-disclosed.
  • the mat 76 has two opposite sides 80 and 82 , one of which is fixed to the drum configured similarly to the drum 74 of FIG. 15 , and the other side 82 is fixed to the edge region of the adjacent plate.
  • the mat like the separate strips, is made from elastomeric material capable of stretching in response to applying a tensioning force. At least a portion of the mat 76 is provided with alternating slots or spaces 78 and peninsulas of material 74 .
  • each pair of adjacent peninsulas function as the strips capable of increasing the width of the grooves, when the tensioning force is applied, and reduce the width upon removing this force.
  • a width modification allows the pins to be either fixed or relatively freely move through the plates whose openings, of course, are aligned with spaces or slots 70 .
  • the embodiments illustrated in FIGS. 15-18 may have two or more plates 62 and 64 ( FIG. 1 ) either displaceable, as explained in reference to FIGS. 1-14 or fixed relative to one another. If the retainer has a structure with displaceably fixed plates, either the spaced apart strips 68 ( FIG. 15 ) or mat 76 ( FIG.
  • each pin 10 may reliably lock the pins in the impressed position. Also, preferably opposite pinheads 12 and 14 of each pin 10 ( FIG. 16 ) are dimensioned to be larger than the space or slot width between adjacent strips or peninsulas of material even when a maximum tensioning force is applied to the locking mechanism.
  • plates 90 and 92 like the previously disclosed plates of FIGS. 1-18 , have a plurality of rows of openings or spaced continuous channels 94 , are made from resilient material that yields to pins 10 in response to an external pushing force.
  • the pinheads 12 and 14 are larger than a distance D 2 of the openings or channels, during the manufacturing of the inventive assembly, in response to an external force, spherical pinheads 14 ( FIG. 20 ) force opposing edges 96 and 98 ( FIG. 21 ) of lands of materials to flex inwardly.
  • the edges spring back to the initial position, as shown in FIG.
  • FIG. 23 illustrates a method of assembling the inventive retainer assembly 100 . While having a plurality of pins 10 arranged and maintained in a plurality of parallel rows, four plates 102 , 104 , 106 and 108 , which are arranged in two spaced apart pairs are displaced so that, for example, plates 104 and 108 move in one plane and plates 102 and 108 move in a perpendicular plane. Since each plate of one pair has a plurality of teeth 114 extending perpendicular to the teeth of other plate of the same pair, displacement continues until the teeth of all four plates form a plurality of polygonal cells each traversed by a respective pin.
  • each plate is spaced from one another at a distance D 3 selected to be substantially equal to the diameter of the pin's body or shank 16 .
  • the teeth form a respective cell frictionally engaging the pin body and allowing it to move in response to applying an external force or load while preventing displacement of the pinhead through the cells.

Abstract

A 3-D image retainer is configured to have a plurality of perforated retainer plates and a retainer assembly displaceable to lock selectively impressed pins, which traverse the retained plates, in the desired position corresponding to the 3-D contour of the applied load.

Description

    FIELD OF THE INVENTION
  • This invention relates to a three-dimensional image retainer.
  • BACKGROUND OF THE INVENTION
  • It is known to utilize devices capable of forming a three-dimensional image of an object. Typically, these devices are provided with a support and a plurality of pins which can slide through numerous holes formed in the support in response to an external load. Depending on a shape of the load, the pins are displaceable at different distances to form a contour corresponding to a shape of the load. While a three-dimensional image is easily formed, it is difficult to preserve this image for a prolonged period of time. Particularly, displacing the support causes the pins to move from a position corresponding to the formed image.
  • It is therefore desirable to provide a three-dimensional image device which is capable of retaining a contour corresponding to the shape of a load even when the device is displaced.
  • SUMMARY OF THE INVENTION
  • These needs are satisfied by the inventive image retainer. Particularly, the device is provided with a plurality of pins each having a pair of smooth ends that are formed and dimensioned to prevent the device operator from uncomfortable feeling.
  • The inventive devices is configured with a plurality of retainer plates each having a respective multiplicity of openings, which are traversed by the pins. The pins are displaceable in response to applying a 3-D load to one end of the pins so that the pins selectively move toward an impressed position, in which the opposite ends of selectively impressed pins recreate the contour of the load. To ensure the impressed position of the selected pins, the inventive image retainer further includes a retaining assembly traversable by the plurality of pins and operative to move in a plane perpendicular to the pin axes so as to lock the pins in the impressed position.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages will become more readily apparent from the following detailed description accompanied by the following drawings, in which:
  • FIG. 1 is a perspective view of an image retainer assembled in accordance with one embodiment of the invention;
  • FIG. 2 is an exploded view of the image retainer of FIG. 1;
  • FIG. 3 is a side view of the image retainer of FIGS. 1 and 2 having a plurality of pins displaced in an unloaded position;
  • FIG. 4 is a front view of the image retainer of FIGS. 1-3;
  • FIG. 5 is a sectional view of the image retainer along lines V-V of FIG. 3;
  • FIG. 6 is a sectional view of the assembled image retainer along lines VI-VI of FIG. 5;
  • FIG. 7 is a sectional view of the disassembled image retainer along lines VI-VI of FIG. 5;
  • FIG. 8 is a sectional view of the assembled image retainer along lines of FIG. 5;
  • FIG. 9 is a sectional view of the disassembled image retainer along lines of FIG. 5;
  • FIG. 10 is a sectional view of the image retainer along lines X-X of FIG. 3 illustrating a position of a lock plate in which unlocked pins move freely;
  • FIG. 11 is a top sectional view of the image retainer along lines X-X of FIG. 3 illustrating a position of a lock plate in which the pins are locked;
  • FIGS. 12 and 13 are views similar to the views of FIGS. 10 and 11, respectively, but illustrate openings having a shape different from the one shown in FIGS. 10 and 11;
  • FIG. 14 is a perspective view of the imager retainer assembled in accordance with another embodiment of the invention;
  • FIG. 15 is a perspective view of the inventive device configured in accordance with a further embodiment of the invention;
  • FIG. 16 is a side elevational view of the device illustrated in FIG. 15;
  • FIG. 17A is a diagrammatic view illustrating a plurality of pins of the device of FIG. 15 in a position, in which displacement of the pins is arrested;
  • FIG. 17B is a diagrammatic view of the device of FIG. 15 having freely displaceable pins.
  • FIG. 18 is a top view f a one-piece retainer element associated with the device of FIG. 15;
  • FIG. 19 is a cross-sectional view of the inventive device configured in accordance with a further embodiment of the invention and illustrating a plurality of pins that are not inserted into the device;
  • FIG. 20 is a cross sectional view of the device illustrated in FIG. 19 and illustrated in an inserted position;
  • FIGS. 21 and 22 are enlarged views of a single pin before and after the pin has been inserted;
  • FIG. 23 is an exploded view of the inventive device configured in accordance with still a further embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1-2, an image retainer 100 is configured to recreate a 3-D image of an object loaded upon either one of opposite enlarged pinhead ends 12, 14 of pins 10 (FIGS. 1-7), which are selectively displaceable in response to a load so as to recreate the 3D image of this load.
  • The image retainer 100 includes a plurality of retainer plates 22, 24, 26 and 28 (FIGS. 1, 2) assembled in two pairs and each having a respective multiplicity of openings 30 (FIG. 2). Configuration of the openings is such that the pins 10, each of which has a shank or body 16 provided with fixed or removable pinheads 12, 14 (FIGS. 1-13), can freely move through each of the openings 30, which is dimensioned to have an inner diameter larger than both pin's shank or body 16 and pinheads 12 and 14. The pinheads 12 and 14 each have a smooth, preferably spherical outer surface 34 (FIGS. 6, 7) configured to prevent discomfort or inconvenience that may be experienced by the device operator whose limb is desired to be recreated and secured for a prolong period of time. Furthermore, the enlarged pinhead 34 provides for a substantially uniform distribution of driving forces, which, in turn, allows for a better steering of the pins 10 through the openings 30.
  • If the device operator would like not to recreate the image of the load, but to create his own design, a kit including the above discussed structure may be provided with a pin actuator 120 (FIG. 14), provided with a relatively small pointing end 122 and a relatively large holder 124.
  • During the assembly of the image retainer 100, the retainer plates 22, 24 and 26, 28 are positioned so that the openings 30 of these plates are aligned, as shown in FIG. 7, and easily traversed by the pins 10. Typically, assembling the image retainer is provided on a flat surface supporting a plurality of nuts 36 (FIGS. 1, 2, 8 and 9), each of which is aligned with holes 38 (FIGS. 2, 8 and 9) formed in the corner regions of the retainer plates 22-28 and later traversed by fasteners 40. However, the nuts 36 are not tightened to the fasteners 40 until adjacent retainer plates 22, 24 and 26, 28 are displaced relative to one another in a plane generally parallel to the surface, as shown in FIGS. 5, 6 and 11, to have the shanks (FIGS. 6, 7) of the pins 10 squeezed between inner walls 31 and 33 (FIGS. 6 and 7) of the vertically adjacent openings 30 of all retainer plates. In other words, the openings 30 are intentionally misaligned so that while the shanks of the pins are prevented from freely running through the openings 30 of the retainer plates 22-28, each of the pins is still enabled to move in response to application of the load. However, although the pins each are displaceable in response to applying a load to either of its ends, it cannot completely disengage the plates 22, 24, 26 and 28 because pinheads 12 and 14 are larger than a portion 35 of each opening 30, which is formed as a result of displacement of the plates.
  • The fasteners 40 are selected from screws, bolts and pins subject only to proper dimensioning allowing for the fasteners to move through the holes 38 (FIG. 2) and for displacement of the retainer plates 22 through 28 relative to one another. The use of screws or threaded pins eliminates the need for the nuts 36, but requires threaded regions in spacers 42 (FIGS. 2, 8 and 9) positioned between the pairs of the retainer plates 22, 24 and 26, 28 and at least two extreme holes 38.
  • Opposite ends 44 (FIG. 8) of the spacers 42 are recessed to provide for a support of the retainer plates. In the end, once the walls 31 and 33 (FIG. 6) of the openings 30 abut the pins 10, the nuts 36 (FIG. 2) are tightened on the fasteners 40 so as to allow the pins 10 move only in response to an external force. Increasing the number of the retainer plates improves the proper positioning of the pins 10, but as few as two retainer plates, for example, the plates 22 and 28, may suffice for the purposes of this invention. While the cross-section of openings 30 of lock plate 20, as shown in FIGS. 1, 2, 5,10 and 11, is circular, FIGS. 12 and 13 illustrate lock plate 20 formed with openings 29 which have a cross-section different from the circular one and including, but not limited to, a rather conical and/or wedged cross-section.
  • The pins 10, displaced in response to the load application, can be locked in the impressed position by a retainer assembly, which includes an actuator 18, lock plate 20 and a holder 46. The lock plate 20 is formed with a plurality of apertures 130 (FIGS. 2, 6, 7, and 9) dimensioned to be slightly larger than the pinheads 12, 14 (FIGS. 6, 7) of the pins 10 to allow for displacement of the lock plate 20 in response to a force applied to the actuator 18 (FIG. 1). When the plates 22, 24, 26 and 28 are displaced relative one another to a position shown in FIG. 6, in which the pins 10 still can move in response to applying an external force, apertures 130 of the lock plate 20 do not prevent displacement of the pins. However, when the desired impressed position is established, the device operator applies a torque to the actuator 18 causing the plate 20 to move and engage the portion of the pins' circumference so that the pins cannot move even if an external force were applied regardless of the position of the image retainer 100.
  • To mount the retainer assembly (FIG. 2) to the imager retainer 100, the holder 46 (FIG. 2) has a C-shape provided with opposite legs 52 (FIG. 1), which are formed with respective openings traversed by the shanks of the fasteners 40. The C-shape of the holder defines a space between an end of the lock plate 20 and an inner surface of the holder which is sufficient to provide displacement of the lock plate to a position in which the impressed pins are locked. A variety of actuator configurations may be provided including, for example, a threaded axle 54 (FIG. 2) that is removably coupled to the lock plate 20 and further secured thereto by a pressure plate 56 and screws or axles 54 (FIG. 2). The actuator 18 (FIG. 1) is threadedly mounted on the axle 54 and pressure plate 56 and operates so that its rotation is translated into a linear displacement of the lock plate 20. A recess 60 (FIG. 1) formed in the holder 46 receives the actuator 18 and, while allowing the actuator to rotate, prevents its linear displacement with the axle 54. Conversely, the actuator 18 may be coupled to the lock plate 20 and linearly displaced therewith along a linearly immovable axle.
  • In accordance with a further embodiment of the invention shown in FIGS. 15, 16, 17A and 17B, the 3-D retainer assembly 100 may have a plurality of retainer plates 62 and 64 separated from one another by spacers 66 and each provided with a respective multiplicity of openings, which are traversed by pins 66 configured identically to the previously disclosed embodiments. In contrast to the previously disclosed embodiments, retainer 100 of FIG. 15 is provided with a modified locking mechanisms securing a final locking position of the pins in the impressed position thereof.
  • The locking mechanism has a plurality of separate strips 68 fixed to a drum 72 by one end thereof and having the other end fixed to the plate 62. Since the strips are made from elastic material, the device operator is able to apply a torque to a handle 74 translating into tensioning the strips. Increasing tension causes the bodies of the strips to attenuate and, thus, widen a space 70 defined between each pair of neighboring strips. Conversely, reducing the tension narrows this space. This mechanism, as shown in FIG. 17A allows the strips 68 to squeeze the rows of the pins 10, each inserted between a respective pair of strips, when a relatively small tensioning force is applied to the strips. In this position of the strips, the pins are displaceably fixed so as to retain the desired impressed image. Displacement of the pins is provided, when the device operator applies a torque to the handle 74, thereby rotating the drum 72 which, in turn, causes the strips 68 to attenuate and widen the space 70, as shown in FIG. 17B, so as to allow the pins to move.
  • A further modification of the locking mechanism is illustrated in FIG. 18 and includes, instead of plurality of separate strips 68 of FIG. 15, a single body or mat 76 operating in a manner similar to the above-disclosed. In particular, the mat 76 has two opposite sides 80 and 82, one of which is fixed to the drum configured similarly to the drum 74 of FIG. 15, and the other side 82 is fixed to the edge region of the adjacent plate. The mat, like the separate strips, is made from elastomeric material capable of stretching in response to applying a tensioning force. At least a portion of the mat 76 is provided with alternating slots or spaces 78 and peninsulas of material 74. Accordingly, when the pins 10 (not shown) are inserted into the slots, each pair of adjacent peninsulas function as the strips capable of increasing the width of the grooves, when the tensioning force is applied, and reduce the width upon removing this force. A width modification allows the pins to be either fixed or relatively freely move through the plates whose openings, of course, are aligned with spaces or slots 70. Note that the embodiments illustrated in FIGS. 15-18 may have two or more plates 62 and 64 (FIG. 1) either displaceable, as explained in reference to FIGS. 1-14 or fixed relative to one another. If the retainer has a structure with displaceably fixed plates, either the spaced apart strips 68 (FIG. 15) or mat 76 (FIG. 18) may reliably lock the pins in the impressed position. Also, preferably opposite pinheads 12 and 14 of each pin 10 (FIG. 16) are dimensioned to be larger than the space or slot width between adjacent strips or peninsulas of material even when a maximum tensioning force is applied to the locking mechanism.
  • In accordance with another embodiment of the invention illustrated in FIGS. 19-22 plates 90 and 92, like the previously disclosed plates of FIGS. 1-18, have a plurality of rows of openings or spaced continuous channels 94, are made from resilient material that yields to pins 10 in response to an external pushing force. Although the pinheads 12 and 14 are larger than a distance D2 of the openings or channels, during the manufacturing of the inventive assembly, in response to an external force, spherical pinheads 14 (FIG. 20) force opposing edges 96 and 98 (FIG. 21) of lands of materials to flex inwardly. Upon penetration through channels 94, the edges spring back to the initial position, as shown in FIG. 22, which is characterized by distance D2 substantially equal to the diameter of pin body 16. Penetration through the lower plate includes the same principle as disclosed immediately above. In use, the operator of the inventive assembly cannot pull or push the installed pins through either of the plates because a flat underside 97 of the pinhead cannot produce the same wedge action upon the edges 96 and 98 as the spherical pinhead. Accordingly, the pins can slide in use, but cannot be completely removed.
  • FIG. 23 illustrates a method of assembling the inventive retainer assembly 100. While having a plurality of pins 10 arranged and maintained in a plurality of parallel rows, four plates 102, 104, 106 and 108, which are arranged in two spaced apart pairs are displaced so that, for example, plates 104 and 108 move in one plane and plates 102 and 108 move in a perpendicular plane. Since each plate of one pair has a plurality of teeth 114 extending perpendicular to the teeth of other plate of the same pair, displacement continues until the teeth of all four plates form a plurality of polygonal cells each traversed by a respective pin. The teeth 114 of each plate are spaced from one another at a distance D3 selected to be substantially equal to the diameter of the pin's body or shank 16. In use, the teeth form a respective cell frictionally engaging the pin body and allowing it to move in response to applying an external force or load while preventing displacement of the pinhead through the cells.
  • Once all four plates are displaced in a position in which they are aligned, a plurality of spacers and fasteners couple the plates. Completing the assembly of the inventive retainer includes installation of a variety of locking systems disclosed above in reference to FIGS. 1-22.
  • It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting the scope of the invention, but merely as exemplifications of the preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (4)

1. An image retainer comprising:
a plurality of retainer plates each having a respective multiplicity of openings and displaceable relative to one another in a first plane between a first position, in which the openings of the plurality of plates are aligned in a second plane extending transversely to the first plane, thereby forming a plurality of parallel rows of openings in the second plane, and a second position, in which the openings are misaligned;
a plurality of parallel pins each having a respective shank and a pair of spaced opposite pinheads each extending radially outwards from the respective shank, the plurality of pins each being inserted through a respective row of aligned openings in the first position of the plurality of plates and having a respective shank frictionally engaged by the plurality of plates in the second position thereof, wherein the plurality of pins are frictionally displaceable in the second plane to an impressed position of the plurality of pins in response to applying a load to one of the spaced opposite pinheads in the second position of the plurality of plates, thereby recreating a 3-D image of the load upon removing the load; and
a retaining assembly operative to move in the first plane upon displacement of the plurality of pins to the impressed position and lock the pins therein, wherein the plurality of pins displaced in the impressed position are displaceably arrested to retain the 3-D dimensional image upon removing the load regardless of a spatial position of the image retainer,
wherein the retainer assembly includes an actuator and a retaining element extending between the plurality of retainer plates, wherein the retaining element of the retainer assembly is a lock plate provided with a plurality of apertures, the plurality of apertures each being traversed by a respective one of the plurality pins, the lock plate being coupled to the actuator so that when the actuator is rotatable in one direction, the lock plate is displaced to a position in which a peripheral wall of each of the plurality of apertures presses against and arrests displacement of the plurality of pins, and when the actuator is rotatable in an opposite direction, the lock plate is displaced to unlock the pins,
wherein the retaining element includes a one-piece mat coupled to the actuator and made from a stretchable material, the mat having a plurality of alternating longitudinal ridges and valleys, the valleys being provided with a plurality of apertures each traversed by a respective one of the plurality of pins as at least some of the plurality of pins are displaceable to the impressed position.
2. The image retainer of claim 1, wherein the actuator includes a shaft rotatable about a shaft axis, the shaft being coupled to one end of the mat so that when the shaft is rotated in one direction, the ridges are displaced towards one another to lockingly engage the plurality of pins in the impressed position thereof, and when the actuator is rotatable in an opposite direction, the ridges move away from one another so as to release the plurality of pins from the impressed position.
3. An image retainer comprising:
a plurality of retainer plates each having a respective multiplicity of openings and displaceable relative to one another in a first plane between a first position, in which the openings of the plurality of plates are aligned in a second plane extending transversely to the first plane, thereby forming a plurality of parallel rows of openings in the second plane, and a second position, in which the openings are misaligned;
a plurality of parallel pins each having a respective shank and a pair of spaced opposite pinheads each extending radially outwards from the respective shank, the plurality of pins each being inserted through a respective row of aligned openings in the first position of the plurality of plates and having a respective shank frictionally engaged by the plurality of plates in the second position thereof, wherein the plurality of pins are frictionally displaceable in the second plane to an impressed position of the plurality of pins in response to applying a load to one of the spaced opposite pinheads in the second position of the plurality of plates, thereby recreating a 3-D image of the load upon removing the load; and
a retaining assembly operative to move in the first plane upon displacement of the plurality of pins to the impressed position and lock the pins therein, wherein the plurality of pins displaced in the impressed position are displaceably arrested to retain the 3-D dimensional image upon removing the load regardless of a spatial position of the image retainer,
wherein the retainer assembly includes an actuator and a retaining element extending between the plurality of retainer plates, wherein the retaining element of the retainer assembly is a lock plate provided with a plurality of apertures, the plurality of apertures each being traversed by a respective one of the plurality pins, the lock plate being coupled to the actuator so that when the actuator is rotatable in one direction, the lock plate is displaced to a position in which a peripheral wall of each of the plurality of apertures presses against and arrests displacement of the plurality of pins, and when the actuator is rotatable in an opposite direction, the lock plate is displaced to unlock the pins,
wherein the plurality of retainer plates are arranged in a multiplicity of pairs, each retainer plate being provided with a plurality of tongues space apart and extending so that the plurality of tongues of one retainer plate of each pair extends in a plane perpendicular to a plane of the plurality of tongues of the other retainer plate, whereby the plurality of tongues of the retainer plates of each pair define a respective one of the plurality of openings having a larger cross-sectional area in the first position of the plurality of retainer plates and a smaller cross-sectional area in the second position of the plurality of retainer plates.
4. An image retainer comprising:
a plurality of retainer plates each having a respective multiplicity of openings and displaceable relative to one another in a first plane between a first position, in which the openings of the plurality of plates are aligned in a second plane extending transversely to the first plane, thereby forming a plurality of parallel rows of openings in the second plane, and a second position, in which the openings are misaligned;
a plurality of parallel pins each having a respective shank and a pair of spaced opposite pinheads each extending radially outwards from the respective shank, the plurality of pins each being inserted through a respective row of aligned openings in the first position of the plurality of plates and having a respective shank frictionally engaged by the plurality of plates in the second position thereof, wherein the plurality of pins are frictionally displaceable in the second plane to an impressed position of the plurality of pins in response to applying a load to one of the spaced opposite pinheads in the second position of the plurality of plates, thereby recreating a 3-D image of the load upon removing the load; and
a retaining assembly operative to move in the first plane upon displacement of the plurality of pins to the impressed position and lock the pins therein, wherein the plurality of pins displaced in the impressed position are displaceably arrested to retain the 3-D dimensional image upon removing the load regardless of a spatial position of the image retainer,
wherein the retainer assembly includes an actuator and a retaining element extending between the plurality of retainer plates, wherein the retaining element of the retainer assembly is a lock plate provided with a plurality of apertures, the plurality of apertures each being traversed by a respective one of the plurality pins, the lock plate being coupled to the actuator so that when the actuator is rotatable in one direction, the lock plate is displaced to a position in which a peripheral wall of each of the plurality of apertures presses against and arrests displacement of the plurality of pins, and when the actuator is rotatable in an opposite direction, the lock plate is displaced to unlock the pins,
wherein the retaining element includes a plurality of separate strips made from resilient material, the plurality of separate strips being spaced from one another at a larger distance in the first and second positions of the plurality of retainer plates so as to allow the plurality of pins freely move towards the impressed position, and spaced from one another at a smaller distance in the impressed position of the plurality of pins so as to arrest displacement of the plurality of pins.
US12/640,739 2005-10-20 2009-12-17 Three-dimensional image retainer Abandoned US20100212197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/640,739 US20100212197A1 (en) 2005-10-20 2009-12-17 Three-dimensional image retainer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/255,414 US7131417B1 (en) 2005-10-20 2005-10-20 Cylinder liner providing coolant shunt flow
US12/640,739 US20100212197A1 (en) 2005-10-20 2009-12-17 Three-dimensional image retainer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/255,414 Division US7131417B1 (en) 2005-10-20 2005-10-20 Cylinder liner providing coolant shunt flow

Publications (1)

Publication Number Publication Date
US20100212197A1 true US20100212197A1 (en) 2010-08-26

Family

ID=37301111

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/255,414 Expired - Fee Related US7131417B1 (en) 2005-10-20 2005-10-20 Cylinder liner providing coolant shunt flow
US12/640,739 Abandoned US20100212197A1 (en) 2005-10-20 2009-12-17 Three-dimensional image retainer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/255,414 Expired - Fee Related US7131417B1 (en) 2005-10-20 2005-10-20 Cylinder liner providing coolant shunt flow

Country Status (4)

Country Link
US (2) US7131417B1 (en)
BR (1) BRPI0603031A (en)
CA (1) CA2557039C (en)
MX (1) MXPA06010458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306266A1 (en) * 2010-06-09 2011-12-15 Henry Goode Glass Sculpting device
US20150377601A1 (en) * 2014-06-25 2015-12-31 Yung-Long Shu Profile gauge
US9778012B1 (en) * 2016-02-02 2017-10-03 John Fales Pipe contour gauge

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443768B2 (en) * 2009-02-17 2013-05-21 Mahle International Gmbh High-flow cylinder liner cooling gallery
CN104508271A (en) * 2012-06-26 2015-04-08 万国引擎知识产权有限责任公司 Modular coolant core-cylinder head
AT517601B1 (en) * 2015-07-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Cylinder liner for an internal combustion engine
US11549459B2 (en) * 2020-02-14 2023-01-10 Caterpillar Inc. Internal combustion engine with dual-channel cylinder liner cooling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163938A (en) * 1937-01-12 1939-06-27 John G Dickson Template
US2266457A (en) * 1941-01-10 1941-12-16 Wolff Adolf Contour meter and reverser
US2621415A (en) * 1949-10-11 1952-12-16 Homer G Cooper Contour transfer device
US6298587B1 (en) * 1998-06-01 2001-10-09 Paul A. Vollom Multiple orientation three dimensional image screen
US20040020087A1 (en) * 2002-07-31 2004-02-05 Ward Fleming Color enhancing pin screen
US6860784B2 (en) * 2002-04-26 2005-03-01 Yuri Chernov Image retainer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB392091A (en) 1931-11-26 1933-05-11 Sulzer Ag Improvements in or relating to cylinder liners for internal combustion engines
DE2539478A1 (en) 1975-09-05 1977-03-10 Kloeckner Humboldt Deutz Ag WATER COOLED PISTON INTERNAL ENGINE
US4926801A (en) 1987-12-22 1990-05-22 Mack Trucks, Inc. Wet/dry cylinder liner for high output engines
US5299538A (en) 1992-06-26 1994-04-05 Detroit Diesel Corporation Internal combustion engine block having a cylinder liner shunt flow cooling system and method of cooling same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163938A (en) * 1937-01-12 1939-06-27 John G Dickson Template
US2266457A (en) * 1941-01-10 1941-12-16 Wolff Adolf Contour meter and reverser
US2621415A (en) * 1949-10-11 1952-12-16 Homer G Cooper Contour transfer device
US6298587B1 (en) * 1998-06-01 2001-10-09 Paul A. Vollom Multiple orientation three dimensional image screen
US6860784B2 (en) * 2002-04-26 2005-03-01 Yuri Chernov Image retainer
US20040020087A1 (en) * 2002-07-31 2004-02-05 Ward Fleming Color enhancing pin screen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306266A1 (en) * 2010-06-09 2011-12-15 Henry Goode Glass Sculpting device
US20150377601A1 (en) * 2014-06-25 2015-12-31 Yung-Long Shu Profile gauge
US9404726B2 (en) * 2014-06-25 2016-08-02 Yung-Long Shu Profile gauge
US9778012B1 (en) * 2016-02-02 2017-10-03 John Fales Pipe contour gauge

Also Published As

Publication number Publication date
CA2557039A1 (en) 2007-04-20
CA2557039C (en) 2013-08-20
MXPA06010458A (en) 2007-04-19
US7131417B1 (en) 2006-11-07
BRPI0603031A (en) 2007-08-14

Similar Documents

Publication Publication Date Title
US7654021B2 (en) Three-dimensional image retainer
US20100212197A1 (en) Three-dimensional image retainer
DE2804808A1 (en) BRAKE SHOE BRACKET FOR A PARTING DISC BRAKE, ESPECIALLY FOR MOTOR VEHICLES
DE69928142T2 (en) Ratchet clutch arrangement
EP1506352B1 (en) Brake lining for the disk brake of a vehicle
DE102009007463B4 (en) Ratchet wrench with three operating positions
US5806385A (en) Universal socket device
US4420194A (en) Ball slideway
WO2010091672A1 (en) Frictional lock having a transverse cage
KR101705475B1 (en) Medical holding arm
DE102004050138A1 (en) Disc brake devices
WO2007022745A1 (en) Improved keyway connection
DE112017004439T5 (en) Transmission assembly for an electric power steering device
EP0208832A1 (en) Device for gripping winding tubes, especially winding tubes supporting paper webs or the like
DE2557766A1 (en) BRAKE DISC ARRANGEMENT, ESPECIALLY FOR RAIL VEHICLES
DE102013004515A1 (en) Device for releasably securing a mounting part
DE1922603A1 (en) Friction clutch
JPH0323762B2 (en)
DE2212507A1 (en) One-way clutch
DE3028467A1 (en) JOINT FOR A TORQUE TRANSMITTING SHAFTS OR THE LIKE IN BOTH DIRECTIONS
EP1178165B1 (en) Formwork for pillars
EP1167806A2 (en) Brake lining for a partial lining disc brake
EP1308275B1 (en) Tensioning frame for a screen
EP3808629B1 (en) Braking module having integrated combining unit
JP2003083316A (en) Nut

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION