US20100170215A1 - Cord, method of producing same, and rubber-cord composite body - Google Patents

Cord, method of producing same, and rubber-cord composite body Download PDF

Info

Publication number
US20100170215A1
US20100170215A1 US12/689,738 US68973810A US2010170215A1 US 20100170215 A1 US20100170215 A1 US 20100170215A1 US 68973810 A US68973810 A US 68973810A US 2010170215 A1 US2010170215 A1 US 2010170215A1
Authority
US
United States
Prior art keywords
strand
cord
core
rubber
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/689,738
Inventor
Mitsuhiro Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NISHIMURA, MITSUHIRO
Publication of US20100170215A1 publication Critical patent/US20100170215A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2036Strands characterised by the use of different wires or filaments
    • D07B2201/2037Strands characterised by the use of different wires or filaments regarding the dimension of the wires or filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/2039Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/204Strands characterised by the number of wires or filaments nine or more wires or filaments respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2048Cores characterised by their cross-sectional shape
    • D07B2201/2049Cores characterised by their cross-sectional shape having protrusions extending radially functioning as spacer between strands or wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2073Spacers in circumferencial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2079Fillers characterised by the kind or amount of filling
    • D07B2201/2081Fillers characterised by the kind or amount of filling having maximum filling
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/20Type of machine
    • D07B2207/204Double twist winding
    • D07B2207/205Double twist winding comprising flyer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to a cord used for reinforcing a rubber product such as a tire and an industrial belt, method of producing same, and a rubber-cord composite body.
  • a high strength is demanded for a cord used for reinforcing a tire, especially a tire for a construction vehicle, so that a cord made of a plurality of strands produced by twisting a plurality of filaments, which strands are further twisted to form a so-called multiple-twisting structure, is used for this purpose.
  • a strand is made from a plurality of filaments and then a plurality of strands are twisted to give the cord.
  • it has more filaments and a more complicated twisting structure than a cord having a single twisting structure used for reinforcing, for example, a passenger vehicle.
  • a tensile strength of the cord becomes smaller than the sum of tensile strengths of the cords, which increases twisting loss.
  • Patent Document 1 JP 2992783 B
  • Patent Document 2 JP 8158275 A
  • the above-mentioned technique can suppress the twisting loss, it is demanded particularly for a cord used for reinforcing a tire to ensure corrosion resistance as a reinforcing material. That is, when the tire suffers an external injury, water intrudes from the external injury into the tire to reach the cords, which may corrode the cords. If any spaces exist inside the cords, the water disperses through the spaces in the axial direction of the cord and the corrosion area expands along the cord. This may cause a malfunction due to a separation with the corrosion area being as the origination of the separation.
  • a characteristic capable of suppressing the intrusion of water into the inside of the cord, i.e. corrosion resistance is, therefore, demanded particularly for a cord for reinforcing a tire in order to avoid such dispersion of the corrosion.
  • the corrosion resistance is highly desired for the cord having the above-mentioned multiple-twisting structure.
  • a commonly used means is that sufficient spaces extending from the outside of the strands to the inside of the strands are provided to allow the rubber to sufficiently intrude into the inside of the strand during a vulcanization step of a tire manufacturing process.
  • the cord having the multiple-twisting structure is, however, formed by twisting a plurality of filaments to obtain a strand and further twisting a plurality of the strands.
  • the structure of the cord thus, becomes complicated and it is difficult to provide spaces for allowing the rubber to sufficiently intrude into the inside of the strands. As a result, the rubber cannot sufficiently intrude into the inside of the strands during the vulcanization step of the tire manufacturing process, so that improvement of the corrosion resistance is difficult.
  • the object of the present invention is, therefore, to provide a cord structure capable of suppressing twisting loss and improving corrosion resistance particularly of a cord having a complicated multiple-twisting structure by allowing rubber to sufficiently intrude into the inside of strands constituting the cord.
  • the present inventor had dedicated to study a means for improving corrosion resistance of a cord having a complicated multiple-twisting structure and found it effective for allowing the rubber to sufficiently intrude into the inside of the strands during the vulcanization step of the tire manufacturing process to coat the filaments used for the production of the strands with unvulcanized rubber prior to twisting a plurality of the strands to form a cord.
  • the present invention is completed in this way.
  • the gist of the present invention is as follows:
  • a cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths arranged around the core, each sheath being composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber.
  • a rubber-cord composite body wherein a plurality of the cord according to any one of the above-items (1) to (5) are arranged in parallel with each other and coated with rubber.
  • a method of producing a cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths around the core composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber prior to form the cord.
  • the filaments constituting the strand are preliminarily coated with unvulcanized rubber, so that the unvulcanized rubber is allowed to flow and thus be distributed into the space between the filaments in the strand.
  • the rubber therefore, can sufficiently intrude into the inside of the strand, which enables to provide a cord having improved corrosion resistance and suppressed twisting reduction.
  • FIG. 1 is a sectional view of a cord according to the present invention
  • FIG. 2 is a sectional view of a cord according to the present invention.
  • FIG. 3 is a diagram showing a method of producing a cord according to the present invention.
  • FIG. 4 is a diagram showing a method of producing a cord according to the present invention.
  • FIG. 5 is a sectional view of a cord according to Comparative Example
  • FIG. 6 is a sectional view of a cord according to the present invention.
  • FIG. 7 is a sectional view of a cord according to the present invention.
  • FIG. 8 is a sectional view of a cord of Comparative example
  • FIG. 9 is a sectional view of a cord according to the present invention.
  • FIG. 10 is a sectional view of a cord according to the present invention.
  • FIG. 11 is a sectional view of a cord according to Comparative Example
  • FIG. 12 is a sectional view of a cord according to the present invention.
  • FIG. 13 is a sectional view of a cord according to the present invention.
  • FIG. 14 is a sectional view of a cord according to Comparative Example
  • FIG. 15 is a sectional view of a cord of Conventional Example
  • FIG. 16 is a sectional view of a cord of Conventional Example
  • FIG. 17 is a sectional view of a cord according to Conventional Example.
  • FIG. 18 is a sectional view of a cord according to Conventional Example.
  • FIG. 1 A cross-section of the cord according to the present invention is shown in FIG. 1 .
  • the cord 1 shown in the figure has a core strand 2 and six sheath strands 3 twisted around the core strand 2 .
  • the core strand 2 and the sheath strands 3 have the same configuration. That is, each strand has a 3+9 structure in which a sheath 6 consisting of nine sheath filaments 4 a is twisted around a core 5 consisting of three core filaments 5 . It is essential that at least a circumferential surface of the core 5 constituting the core strand 2 and sheath strand 3 is coated with unvulcanized rubber 7 .
  • the unvulcanized rubber 7 coating the surroundings of the core 5 constituting the core strand 2 and the sheath strand 3 fill inside of the each strand to prevent water intruding through an external injury of the tire from reaching the inside of the cord.
  • the corrosion resistance can be improved.
  • the twisting loss can also be suppressed.
  • each strand 2 and the sheath strand 3 do not necessarily have the shown structure as far as they are formed by twisting a plurality of filaments. It is, however, preferable that each strand has a compact structure in which the plurality of filaments are twisted in the same direction with the same pitch.
  • the compact structure allows a line contact between the filaments in the cord and avoids a point contact between the filaments to suppress fretting wear, so that the corrosion resistance is improved. Further, the compact structure enables to complete the twisting of the strands in a single step in the process of producing the strand, which improves the productivity.
  • a circumferential surface of the core strand 2 is preferably coated with the unvulcanized rubber 7 , as shown in FIG. 2 .
  • the circumferential surface of the core strand 1 is coated with the unvulcanized rubber to more certainly avoid a contact between the core strand 2 and the sheath strand 3 , so that the twisting reduction can be further suppressed.
  • the inside of the cord is filled with the unvulcanized rubber, which improves the corrosion resistance of the cord.
  • the cord formed by twisting six sheath strands around a core strand as shown in FIGS. 1 and 2 is a typical multiple-twisting structure cord, and has an advantage that overall balance of the cord can be easily maintained when strands with the same structure are twisted together.
  • cord consists of filaments with the same diameter, but filaments with different diameters may be used in combination.
  • a wrapping cord or a wrapping filament may be used if the strand needs to be constrained.
  • a number of the above-mentioned cords are arranged in parallel to give a composite body of rubberized cords and rubber used for reinforcing a tire. More specifically, the rubber-cord composite body is applied to a tire as a belt of a ply of a carcass to reinforce the tire.
  • the apparatus for producing a cord shown in FIG. 3 uses a so-called buncher twisting machine and is provided with a wire-bundler 9 which is equipped with a given number of unwind reels 11 for unwinding respective core filaments 4 and a given number of unwind reels 11 for unwinding respective sheath filament 4 a and which bundles the filaments unwound from the respective unwind reels 11 , and a twisting machine 10 for twisting the bundled filaments together.
  • An unvulcanized rubber-coater 8 for coating the core filament 4 with unvulcanized rubber is disposed between the unwind reels 11 and the wire-bundler 9 .
  • filaments 4 to be a core and filaments 4 a to be a sheath are firstly fed from the unwind reels 11 to the unvulcanized rubber-coater 8 where circumferential surfaces of the filaments 4 are coated with unvulcanized rubber. Thereafter, the core filaments 4 and the sheath filaments 4 a are gathered and twisted by the wire-bundler 9 to form a core strand 2 .
  • Six sheath strands 3 are produced in the same manner, and the core strands 2 and the sheath strand 3 are twisted together by means of the twisting machine 10 shown in FIG. 3 to produce a cord 1 .
  • the unvulcanized rubber-coater 8 is disposed between the unwind reels 11 and the wire-bundlers 9 to coat at least the circumferential surface of the core of the strand with unvulcanized rubber.
  • the apparatus for producing a cord shown in FIG. 4 uses a multiple-twisting machine and is provided with a wire-bundler 9 which is equipped with an unwind reel 11 for unwinding a core strand 2 and a given number of unwind reels 11 for unwinding respective sheath strand 3 and which bundles the strands unwound from the respective unwind reels 11 , and a twisting machine 10 for twisting the bundled strands together.
  • An unvulcanized rubber-coater 8 for coating the core strand 2 with unvulcanized rubber is disposed between the unwind reel 11 for unwinding a core strand 2 and the wire-bundler 9 .
  • a strand 2 to be a core is firstly fed from the unwind reel 11 to the unvulcanized rubber-coater 8 where circumferential surface of the strand 2 is coated with unvulcanized rubber.
  • the unwind reels 11 for unwinding the sheath strand 3 unwind the sheath strand 3 while rotating around the core strand 2 .
  • the core strand 2 and the sheath strands 3 are gathered by the wire-bundler 9 , and a plurality of the sheath strands 3 are twisted around the core strand 2 to produce a cord 1 .
  • the unvulcanized rubber coating the circumferential surface of the core strand 2 serves as a cushion material.
  • the core strand 2 and the sheath strands 3 bear the tensile strength while they are twisted together, tightening of twist due to contacts between strands can be reduced. As a result a cord having less twisting loss can be obtained.
  • the strand constituting the cord according to the present invention is twisted by a buncher twisting machine, so that the strand having, for example, a 3+9 structure or a 1+6+12 structure can be formed into a so-called compact structure of 12 cc or 19 cc to reduce the number of production steps and to improve productivity of the strands.
  • FIGS. 1 , 2 and 5 - 18 The structures of the cords are shown in FIGS. 1 , 2 and 5 - 18 . It is noted that each of FIGS. 15-18 shows a sectional view of a conventional cord and each of FIGS. 1 , 2 and 5 - 14 shows a sectional view of a cord according to the present invention.
  • a ply in which a plurality cords according to the present invention are arranged in parallel with each other and embedded in a rubber sheet with a given space therebetween is applied to a belt and a test tire is built with using this belt.
  • the test tire is examined in relation to a ratio (%) of rubber intruding inside of a core strand of a cord used for reinforcement, a ratio (%) of rubber intruding inside of a sheath strand, a ratio (%) of rubber intruding between the core strand and the sheath strand, and twisting loss (%).
  • the number of steps is also examined in the method of producing a cord according to the present invention.
  • the test tire is dissected and a cord is isolated and separated into strands.
  • the circumferential surface of the core strand is observed from four directions with a magnifying glass to measure an area on the circumferential surface covered with the rubber by means of an image processing and analyzing device.
  • each strand has two layered twisting structure
  • the sheathes of each strand are removed and the circumferential surface of the core is observed from four directions with the magnifying glass to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device.
  • each strand has three layered twisting structure, the sheathes in the outermost layer of each strand are removed, the circumferential surface of the first sheath 6 a located in the middle of the core and the outermost sheath is observed from four directions with the magnifying glass to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device, thereafter the first sheath is removed, and the circumferential surface of the core is observed from four directions to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device.
  • a cord without an unvulcanized rubber coating is subjected to a similar image processing to measure the surface area of each strand.
  • the number of twisting steps is calculated by the following equation (4). The results are also shown in Tables 1 and 2. It is noted that the number of multiple-twisting step is always 1 in the present invention.
  • the inventive examples 2, 4, 6 and 8 in which the circumferential surface of the core strand is coated with unvulcanized rubber can greatly suppress the twisting loss as compared to the conventional examples 1-4 since the unvulcanized rubber serves as a cushion material. Further, the rubber intrusion between the core strand and the sheath strand is improved, so that it is possible to concurrently improve the ratio of exerting strength and the corrosion resistance of the entire cord.
  • the ratio of exerting strength as used herein is defined as a ratio of actual strength of the cord with respect to a value calculated from a steel material, a strand diameter and the number of element strands.
  • FIG. 6 FIG. 7 FIG. 8 Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure Core strand structure 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 Sheath strand structure 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 Rubber coating in sheath strand absence presence presence absence Rubber coating in core strand absence presence presence presence Rubber coating between core strand absence absence presence presence and sheath strand Rubber intrusion ratio in sheath 3 95 95 3 strand (%) Rubber intrusion ratio in core 0 95 95 95 strand (%) Rubber intrusion ratio between 55 65 95 90 core strand and sheath strand (%) Twisting loss (%) 13 10 7 10 Number of production steps 2 2 2 2 2 2 2 2
  • FIG. 12 FIG. 13 FIG. 14 Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure Core strand structure 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 Sheath strand structure 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 Rubber coating in sheath strand absence presence presence absence Rubber coating in core strand absence presence presence presence Rubber coating between core strand absence absence presence presence and sheath strand Rubber intrusion ratio in sheath 0 85 90 0 strand (%) Rubber intrusion ratio in core 0 85 85 80 strand (%) Rubber intrusion ratio between 50 60 85 80 core strand and sheath strand (%) Twisting loss (%) 16 14 10 13 Number of production steps 2 2 2 2 2 2 2

Landscapes

  • Ropes Or Cables (AREA)

Abstract

A cord obtained by twisting a plurality of strands each composed of a plurality of filaments is provided. A circumferential surface of the filament is coated with unvulcanized rubber to improve rubber intrusion, thereby improving corrosion resistance and suppressing twisting-loss.

Description

    TECHNICAL FIELD
  • The present invention relates to a cord used for reinforcing a rubber product such as a tire and an industrial belt, method of producing same, and a rubber-cord composite body.
  • RELATED ART
  • A high strength is demanded for a cord used for reinforcing a tire, especially a tire for a construction vehicle, so that a cord made of a plurality of strands produced by twisting a plurality of filaments, which strands are further twisted to form a so-called multiple-twisting structure, is used for this purpose.
  • In the production of the cord having a multiple-twisting structure, however, a strand is made from a plurality of filaments and then a plurality of strands are twisted to give the cord. Thus, it has more filaments and a more complicated twisting structure than a cord having a single twisting structure used for reinforcing, for example, a passenger vehicle. As a result, a tensile strength of the cord becomes smaller than the sum of tensile strengths of the cords, which increases twisting loss.
  • In a field of a wire rope used in a cargo handling machinery represented by a crane, for example, due to the large number of filaments constituting a strand and an indentation produced by an action of a mesh of respective strands constituting the wire rope, the twisting loss increases. Therefore, a technique that suppresses the twisting loss by filling an elastomer or a thermal plastic resin between an inside of a core and side strands has been proposed.
  • Patent Document 1: JP 2992783 B
  • Patent Document 2: JP 8158275 A
  • DISCLOSURE OF THE INVENTION
  • Although the above-mentioned technique can suppress the twisting loss, it is demanded particularly for a cord used for reinforcing a tire to ensure corrosion resistance as a reinforcing material. That is, when the tire suffers an external injury, water intrudes from the external injury into the tire to reach the cords, which may corrode the cords. If any spaces exist inside the cords, the water disperses through the spaces in the axial direction of the cord and the corrosion area expands along the cord. This may cause a malfunction due to a separation with the corrosion area being as the origination of the separation. A characteristic capable of suppressing the intrusion of water into the inside of the cord, i.e. corrosion resistance, is, therefore, demanded particularly for a cord for reinforcing a tire in order to avoid such dispersion of the corrosion.
  • The corrosion resistance is highly desired for the cord having the above-mentioned multiple-twisting structure. In order to improve the corrosion resistance of the cord having such multiple-twisting structure, it is necessary to allow the rubber to sufficiently intrude into the inside of the strands constituting the cord.
  • In order to improve the ability of the rubber to intrude into the strands constituting the cord, a commonly used means is that sufficient spaces extending from the outside of the strands to the inside of the strands are provided to allow the rubber to sufficiently intrude into the inside of the strand during a vulcanization step of a tire manufacturing process.
  • The cord having the multiple-twisting structure is, however, formed by twisting a plurality of filaments to obtain a strand and further twisting a plurality of the strands. The structure of the cord, thus, becomes complicated and it is difficult to provide spaces for allowing the rubber to sufficiently intrude into the inside of the strands. As a result, the rubber cannot sufficiently intrude into the inside of the strands during the vulcanization step of the tire manufacturing process, so that improvement of the corrosion resistance is difficult.
  • The object of the present invention is, therefore, to provide a cord structure capable of suppressing twisting loss and improving corrosion resistance particularly of a cord having a complicated multiple-twisting structure by allowing rubber to sufficiently intrude into the inside of strands constituting the cord.
  • The present inventor had dedicated to study a means for improving corrosion resistance of a cord having a complicated multiple-twisting structure and found it effective for allowing the rubber to sufficiently intrude into the inside of the strands during the vulcanization step of the tire manufacturing process to coat the filaments used for the production of the strands with unvulcanized rubber prior to twisting a plurality of the strands to form a cord. The present invention is completed in this way.
  • The gist of the present invention is as follows:
  • (1) A cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths arranged around the core, each sheath being composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber.
  • (2) The cord according to the above-item (1), wherein the strand is produced by wrapping a plurality of filaments in an identical direction at an identical pitch.
  • (3) The cord according to the above-item (1) or (2), wherein the cord is obtained by wrapping a plurality of sheath strands composed of a plurality of filaments around a core strand composed of a plurality of filaments.
  • (4) The cord according to the above-item (3), wherein a circumferential surface of the core strand is coated with unvulcanized rubber.
  • (5) The cord according to the above-item (3) or (4), wherein six strands are arranged around a sheath strand.
  • (6) A rubber-cord composite body, wherein a plurality of the cord according to any one of the above-items (1) to (5) are arranged in parallel with each other and coated with rubber.
  • (7) A method of producing a cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths around the core composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber prior to form the cord.
  • (8) The method according to the above-item (7), wherein a plurality of sheath strands are twisted around a core strand, and a circumferential surface of the core strand is coated with unvulcanized rubber.
  • According to the present invention, the filaments constituting the strand are preliminarily coated with unvulcanized rubber, so that the unvulcanized rubber is allowed to flow and thus be distributed into the space between the filaments in the strand. The rubber, therefore, can sufficiently intrude into the inside of the strand, which enables to provide a cord having improved corrosion resistance and suppressed twisting reduction.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view of a cord according to the present invention;
  • FIG. 2 is a sectional view of a cord according to the present invention;
  • FIG. 3 is a diagram showing a method of producing a cord according to the present invention;
  • FIG. 4 is a diagram showing a method of producing a cord according to the present invention;
  • FIG. 5 is a sectional view of a cord according to Comparative Example;
  • FIG. 6 is a sectional view of a cord according to the present invention;
  • FIG. 7 is a sectional view of a cord according to the present invention;
  • FIG. 8 is a sectional view of a cord of Comparative example;
  • FIG. 9 is a sectional view of a cord according to the present invention;
  • FIG. 10 is a sectional view of a cord according to the present invention;
  • FIG. 11 is a sectional view of a cord according to Comparative Example;
  • FIG. 12 is a sectional view of a cord according to the present invention;
  • FIG. 13 is a sectional view of a cord according to the present invention;
  • FIG. 14 is a sectional view of a cord according to Comparative Example;
  • FIG. 15 is a sectional view of a cord of Conventional Example;
  • FIG. 16 is a sectional view of a cord of Conventional Example;
  • FIG. 17 is a sectional view of a cord according to Conventional Example;
  • FIG. 18 is a sectional view of a cord according to Conventional Example;
  • REFERENCE SYMBOLS
      • 1 cord
      • 2 core strand
      • 3 sheath strand
      • 4 core filament
      • 4 a sheath filament
      • 4 b sheath filament
      • 5 core
      • 6 outermost sheath layer
      • 6 first sheath
      • 7 unvulcanized rubber
      • 8 unvulcanized rubber-coating equipment
      • 9 wire collector
      • 10 twisting machine
      • 11 unwind reel
    BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter a cord according to the present invention is discussed in detail with reference to the attached drawings. A cross-section of the cord according to the present invention is shown in FIG. 1. The cord 1 shown in the figure has a core strand 2 and six sheath strands 3 twisted around the core strand 2. In this embodiment, the core strand 2 and the sheath strands 3 have the same configuration. That is, each strand has a 3+9 structure in which a sheath 6 consisting of nine sheath filaments 4 a is twisted around a core 5 consisting of three core filaments 5. It is essential that at least a circumferential surface of the core 5 constituting the core strand 2 and sheath strand 3 is coated with unvulcanized rubber 7.
  • This is because the unvulcanized rubber 7 coating the surroundings of the core 5 constituting the core strand 2 and the sheath strand 3 fill inside of the each strand to prevent water intruding through an external injury of the tire from reaching the inside of the cord. Thus, the corrosion resistance can be improved. Further, as a result of preventing the contacts between the filaments, the twisting loss can also be suppressed.
  • It is noted that the core strand 2 and the sheath strand 3 do not necessarily have the shown structure as far as they are formed by twisting a plurality of filaments. It is, however, preferable that each strand has a compact structure in which the plurality of filaments are twisted in the same direction with the same pitch.
  • This is because the compact structure allows a line contact between the filaments in the cord and avoids a point contact between the filaments to suppress fretting wear, so that the corrosion resistance is improved. Further, the compact structure enables to complete the twisting of the strands in a single step in the process of producing the strand, which improves the productivity.
  • In the above-mentioned cord shown in FIG. 1, a circumferential surface of the core strand 2 is preferably coated with the unvulcanized rubber 7, as shown in FIG. 2.
  • That is, in addition to coating at least the circumferential surface of the core 5 of the each strand with the unvulcanized rubber 7, the circumferential surface of the core strand 1 is coated with the unvulcanized rubber to more certainly avoid a contact between the core strand 2 and the sheath strand 3, so that the twisting reduction can be further suppressed. Moreover, the inside of the cord is filled with the unvulcanized rubber, which improves the corrosion resistance of the cord.
  • The cord formed by twisting six sheath strands around a core strand as shown in FIGS. 1 and 2 is a typical multiple-twisting structure cord, and has an advantage that overall balance of the cord can be easily maintained when strands with the same structure are twisted together.
  • It is noted that the shown cord consists of filaments with the same diameter, but filaments with different diameters may be used in combination.
  • Furthermore, although not shown, a wrapping cord or a wrapping filament may be used if the strand needs to be constrained.
  • A number of the above-mentioned cords are arranged in parallel to give a composite body of rubberized cords and rubber used for reinforcing a tire. More specifically, the rubber-cord composite body is applied to a tire as a belt of a ply of a carcass to reinforce the tire.
  • Next, a method of producing a cord according to the present invention is discussed in detail with reference to an apparatus for producing a cord shown FIG. 3. The apparatus for producing a cord shown in FIG. 3 uses a so-called buncher twisting machine and is provided with a wire-bundler 9 which is equipped with a given number of unwind reels 11 for unwinding respective core filaments 4 and a given number of unwind reels 11 for unwinding respective sheath filament 4 a and which bundles the filaments unwound from the respective unwind reels 11, and a twisting machine 10 for twisting the bundled filaments together. An unvulcanized rubber-coater 8 for coating the core filament 4 with unvulcanized rubber is disposed between the unwind reels 11 and the wire-bundler 9. In order to produce a cord by means of the twisting machine, filaments 4 to be a core and filaments 4 a to be a sheath are firstly fed from the unwind reels 11 to the unvulcanized rubber-coater 8 where circumferential surfaces of the filaments 4 are coated with unvulcanized rubber. Thereafter, the core filaments 4 and the sheath filaments 4 a are gathered and twisted by the wire-bundler 9 to form a core strand 2. Six sheath strands 3 are produced in the same manner, and the core strands 2 and the sheath strand 3 are twisted together by means of the twisting machine 10 shown in FIG. 3 to produce a cord 1.
  • In this regard, it is essential for producing a cord according to the present invention that the unvulcanized rubber-coater 8 is disposed between the unwind reels 11 and the wire-bundlers 9 to coat at least the circumferential surface of the core of the strand with unvulcanized rubber.
  • This is because arranging the unvulcanized rubber-coater between the unwind step and the wind step of the production of the cord enables to produce a cord in a series of cord producing steps as in a conventional manner, so that the present method can be a remarkably effective for improving productivity and ensuring an operation space.
  • Further, the apparatus for producing a cord shown in FIG. 4 uses a multiple-twisting machine and is provided with a wire-bundler 9 which is equipped with an unwind reel 11 for unwinding a core strand 2 and a given number of unwind reels 11 for unwinding respective sheath strand 3 and which bundles the strands unwound from the respective unwind reels 11, and a twisting machine 10 for twisting the bundled strands together. An unvulcanized rubber-coater 8 for coating the core strand 2 with unvulcanized rubber is disposed between the unwind reel 11 for unwinding a core strand 2 and the wire-bundler 9. In order to produce a cord by means of the twisting machine, a strand 2 to be a core is firstly fed from the unwind reel 11 to the unvulcanized rubber-coater 8 where circumferential surface of the strand 2 is coated with unvulcanized rubber. The unwind reels 11 for unwinding the sheath strand 3 unwind the sheath strand 3 while rotating around the core strand 2. The core strand 2 and the sheath strands 3 are gathered by the wire-bundler 9, and a plurality of the sheath strands 3 are twisted around the core strand 2 to produce a cord 1.
  • In the cord 1 thus produced, the unvulcanized rubber coating the circumferential surface of the core strand 2 serves as a cushion material. Thus, when the core strand 2 and the sheath strands 3 bear the tensile strength while they are twisted together, tightening of twist due to contacts between strands can be reduced. As a result a cord having less twisting loss can be obtained.
  • The strand constituting the cord according to the present invention is twisted by a buncher twisting machine, so that the strand having, for example, a 3+9 structure or a 1+6+12 structure can be formed into a so-called compact structure of 12 cc or 19 cc to reduce the number of production steps and to improve productivity of the strands.
  • Examples
  • Various cords are manufactured under the specifications shown in Tables 1 and 2. The structures of the cords are shown in FIGS. 1, 2 and 5-18. It is noted that each of FIGS. 15-18 shows a sectional view of a conventional cord and each of FIGS. 1, 2 and 5-14 shows a sectional view of a cord according to the present invention.
  • A ply in which a plurality cords according to the present invention are arranged in parallel with each other and embedded in a rubber sheet with a given space therebetween is applied to a belt and a test tire is built with using this belt. The test tire is examined in relation to a ratio (%) of rubber intruding inside of a core strand of a cord used for reinforcement, a ratio (%) of rubber intruding inside of a sheath strand, a ratio (%) of rubber intruding between the core strand and the sheath strand, and twisting loss (%). In addition, the number of steps is also examined in the method of producing a cord according to the present invention.
  • In order to measure the ratio (%) of rubber intruding inside of a core strand, the ration (%) of rubber intruding inside of a sheath strand and the ratio (%) of rubber intruding between the core strand and the sheath strand, the test tire is dissected and a cord is isolated and separated into strands. The circumferential surface of the core strand is observed from four directions with a magnifying glass to measure an area on the circumferential surface covered with the rubber by means of an image processing and analyzing device. Then, if each strand has two layered twisting structure, the sheathes of each strand are removed and the circumferential surface of the core is observed from four directions with the magnifying glass to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device. If each strand has three layered twisting structure, the sheathes in the outermost layer of each strand are removed, the circumferential surface of the first sheath 6a located in the middle of the core and the outermost sheath is observed from four directions with the magnifying glass to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device, thereafter the first sheath is removed, and the circumferential surface of the core is observed from four directions to measure an area on the circumferential surface covered with the rubber by means of the image processing and analyzing device. A cord without an unvulcanized rubber coating is subjected to a similar image processing to measure the surface area of each strand.
  • The value thus measured is substitutes in the following equations (1), (2) and (3) to give the rubber intrusion ratio (%) of the core strand, the rubber intrusion ratio (%) of the sheath strand and the rubber intrusion ratio (%) between the core strand and the sheath strand. The results are also shown in Tables 1 and 2.

  • rubber intrusion ratio between the core strand and the sheath strand=(the area on the circumferential surface of the core strand covered with rubber/the surface area of the circumference of the core strand)*100   (1)

  • rubber intrusion ratio of inside of each strand (two-layered twisting structure)=(the area on the circumferential surface of the core covered with rubber/the surface area of the circumference of the core)*100   (2)

  • rubber intrusion ratio of inside of the core strand and inside of the sheath strand (three-layered twist structure)=[(the area on the circumferential surface of the first sheath/the surface area of the circumference of the first sheath)*the number of filaments in the first sheath+(the area on the circumferential surface of the core covered with the rubber/the surface area of the circumference of the core)*the number of filaments in the core]*100/the number of filaments in the first sheath and the core   (3)
  • The difference between the sum of the strengths of the filaments constituting the cord and the strength of the cord measured by subjecting the cord isolated from the dissected test tire to a tensile testing compliant with JIS Z 2241 is calculated, and the twisting loss is computed as a ratio of the calculated difference to the sum of the strengths of the filaments constituting the cord. The results are also shown in Tables 1 and 2.
  • The number of twisting steps is calculated by the following equation (4). The results are also shown in Tables 1 and 2. It is noted that the number of multiple-twisting step is always 1 in the present invention.

  • the number of twisting steps=the number of strand-twisting steps+the number of multiple-twisting steps   (4)
  • As shown in Tables 1 and 2, in comparison with the conventional examples 1-4 and the comparative examples 1-4, the inventive examples 1-8 in which inside of each strand is coated with rubber have remarkably improved rubber intrusion ratio of inside of each strand. Thus, the corrosion resistance and the effect of suppressing fretting wear are enhanced.
  • In order to facilitate the rubber intrusion between the core strand and the sheath strand, as can be seen from the results of the inventive example 1-8, it is effective to coat the circumferential surface of the core strand with rubber and then twist the sheath strands together.
  • With respect to reducing the contact pressure due to the tightening of twist between the core strand and the sheath strand, attention should be drawn to the fact that the inventive examples 2, 4, 6 and 8 in which the circumferential surface of the core strand is coated with unvulcanized rubber can greatly suppress the twisting loss as compared to the conventional examples 1-4 since the unvulcanized rubber serves as a cushion material. Further, the rubber intrusion between the core strand and the sheath strand is improved, so that it is possible to concurrently improve the ratio of exerting strength and the corrosion resistance of the entire cord. The ratio of exerting strength as used herein is defined as a ratio of actual strength of the cord with respect to a value calculated from a steel material, a strand diameter and the number of element strands.
  • TABLE 1
    strand with 3 + 9 structure, 1 + 6 structure
    Conventional Inventive Inventive Comparative
    Example 1 Example 1 Example 2 Example 1
    Sectional view of cord FIG. 15 FIG. 1 FIG. 2 FIG. 5
    Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure
    Core strand structure (3 + 9)*0.34 (3 + 9)*0.34 (3 + 9)*0.34 (3 + 9)*0.34
    Sheath strand structure (3 + 9)*0.34 (3 + 9)*0.34 (3 + 9)*0.34 (3 + 9)*0.34
    Rubber coating in sheath strand absence presence presence absence
    Rubber coating in core strand absence presence presence presence
    Rubber coating between core strand absence absence presence presence
    and sheath strand
    Rubber intrusion ratio in sheath 10 96 100 10
    strand (%)
    Rubber intrusion ratio in core  5 95 95 95
    strand (%)
    Rubber intrusion ratio between 60 70 95 90
    core strand and sheath strand (%)
    Twisting loss (%) 10  9 7  9
    Number of production steps  3  3 3  3
    strand with two-layered compact structure, 1 + 6 structure
    Conventional Inventive Inventive Comparative
    Example 2 Example 3 Example 4 Example 2
    Sectional view of cord FIG. 16 FIG. 6 FIG. 7 FIG. 8
    Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure
    Core strand structure 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3
    Sheath strand structure 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3 3*0.34/9*0.3
    Rubber coating in sheath strand absence presence presence absence
    Rubber coating in core strand absence presence presence presence
    Rubber coating between core strand absence absence presence presence
    and sheath strand
    Rubber intrusion ratio in sheath 3 95 95  3
    strand (%)
    Rubber intrusion ratio in core 0 95 95 95
    strand (%)
    Rubber intrusion ratio between 55 65 95 90
    core strand and sheath strand (%)
    Twisting loss (%) 13 10  7 10
    Number of production steps 2  2  2  2
  • TABLE 2
    strand with 3 + 9 + 15 structure, 1 + 6 structure
    Conventional Inventive Inventive Comparative
    Example 3 Example 5 Example 6 Example 3
    Sectional view of cord FIG. 17 FIG. 9 FIG. 10 FIG. 11
    Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure
    Core strand structure (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24
    Sheath strand structure (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24 (3 + 9 + 15)*0.24
    Rubber coating in sheath strand absence presence presence absence
    Rubber coating in core strand absence presence presence presence
    Rubber coating between core strand absence absence presence presence
    and sheath strand
    Rubber intrusion ratio in sheath 3 87 90  5
    strand (%)
    Rubber intrusion ratio in core 0 85 90 85
    strand (%)
    Rubber intrusion ratio between 50 60 90 85
    core strand and sheath strand (%)
    Twisting loss (%) 14 12  9 11
    Number of production steps 4  4  4  4
    strand with three-layered compact structure, 1 + 6 structure
    Conventional Inventive Inventive Comparative
    Example 4 Example 7 Example 8 Example 4
    Sectional view of cord FIG. 18 FIG. 12 FIG. 13 FIG. 14
    Cord structure 1 + 6 structure 1 + 6 structure 1 + 6 structure 1 + 6 structure
    Core strand structure 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24
    Sheath strand structure 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24 1*0.26/6 + 12*0.24
    Rubber coating in sheath strand absence presence presence absence
    Rubber coating in core strand absence presence presence presence
    Rubber coating between core strand absence absence presence presence
    and sheath strand
    Rubber intrusion ratio in sheath 0 85 90  0
    strand (%)
    Rubber intrusion ratio in core 0 85 85 80
    strand (%)
    Rubber intrusion ratio between 50 60 85 80
    core strand and sheath strand (%)
    Twisting loss (%) 16 14 10 13
    Number of production steps 2  2  2  2

Claims (8)

1. A cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths arranged around the core, each sheath being composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber.
2. The cord according to claim 1, wherein the strand is produced by wrapping a plurality of filaments in an identical direction at an identical pitch.
3. The cord according to claim 1, wherein the cord is obtained by wrapping a plurality of sheath strands composed of a plurality of filaments around a core strand composed of a plurality of filaments.
4. The cord according to claim 3, wherein a circumferential surface of the core strand is coated with unvulcanized rubber.
5. The cord according to claim 3, wherein the cord has six sheath strands around one core strand.
6. A rubber-cord composite body, wherein a plurality of the cord according to claim 1 are arranged in parallel with each other and coated with rubber.
7. A method of producing a cord including a plurality of strands that are twisted together, each strand having a core composed of a filament or a plurality of filaments that are twisted together, and at least one layer of sheaths around the core composed of a plurality of filaments that are twisted together, wherein at least a circumferential surface of the core of the strand is coated with unvulcanized rubber prior to form the cord.
8. The method according to claim 7, wherein a plurality of sheath strands are twisted around a core strand, and a circumferential surface of the core strand is coated with unvulcanized rubber.
US12/689,738 2007-07-17 2010-01-19 Cord, method of producing same, and rubber-cord composite body Abandoned US20100170215A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-186027 2007-07-17
JP2007186027 2007-07-17
PCT/JP2008/062944 WO2009011397A1 (en) 2007-07-17 2008-07-17 Cord, process for producing the same, and composite of cord with rubber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062944 Continuation-In-Part WO2009011397A1 (en) 2007-07-17 2008-07-17 Cord, process for producing the same, and composite of cord with rubber

Publications (1)

Publication Number Publication Date
US20100170215A1 true US20100170215A1 (en) 2010-07-08

Family

ID=40259729

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/689,738 Abandoned US20100170215A1 (en) 2007-07-17 2010-01-19 Cord, method of producing same, and rubber-cord composite body

Country Status (5)

Country Link
US (1) US20100170215A1 (en)
EP (1) EP2184401A4 (en)
JP (1) JPWO2009011397A1 (en)
CN (1) CN101802297A (en)
WO (1) WO2009011397A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159919A1 (en) * 2009-07-03 2012-06-28 Jacques Gauthier Multi-Strand Cord in which the Basic Strands are Dual Layer Cords, Rubberized in Situ
US20120174557A1 (en) * 2009-07-03 2012-07-12 Sandra Boisseau Multi-Strand Cord in which the Basic Strands are Dual Layer Cords, Rubberized in Situ
US20120227885A1 (en) * 2009-11-27 2012-09-13 Nv Bekaert Sa Open multi-strand cord
US20130270043A1 (en) * 2010-12-22 2013-10-17 Otis Elevator Company Elevator system belt
US20150184335A1 (en) * 2012-07-24 2015-07-02 Nv Bekaert Sa Steel cord for rubber reinforcement
US20150368859A1 (en) * 2013-02-21 2015-12-24 Tokusen Kogyo Co., Ltd. Steel cord and elastic crawler using same
US20190084257A1 (en) * 2015-09-30 2019-03-21 Pirelli Tyre S.P.A. Method and apparatus for controlling the feed of semifinished products in a tyre building process
US10358769B2 (en) 2012-02-06 2019-07-23 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
US10619271B2 (en) 2012-02-06 2020-04-14 Nv Bekaert Sa Process for manufacturing an elongated steel element to reinforce rubber products
US20200308763A1 (en) * 2017-12-15 2020-10-01 Bridgestone Corporation Steel cord for rubber article reinforcement, and tire
US10895037B2 (en) * 2014-07-28 2021-01-19 Bridgestone Corporation Steel cord for reinforcing rubber article
EP3875677A1 (en) * 2018-10-30 2021-09-08 Bridgestone Corporation Elastomer reinforcement cord
FR3115799A1 (en) * 2020-11-05 2022-05-06 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cable with sheathed inner layer with improved penetrability
US11401656B2 (en) * 2017-12-19 2022-08-02 Compagnie Generale Des Etablissments Michelin Two-layer multi-strand cords having very low, low and medium moduli
US11458772B2 (en) 2017-12-19 2022-10-04 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cords having very low, low and medium moduli
US11535982B2 (en) * 2016-12-20 2022-12-27 Compagnie Generale Des Etablissements Michelin Multi-strand cable with two layers having improved penetrability
US11578459B1 (en) * 2016-12-20 2023-02-14 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cable with improved penetrability
US11591750B2 (en) 2017-12-19 2023-02-28 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cables having very low, low and medium modulus
US11795613B2 (en) 2018-10-30 2023-10-24 Bridgestone Corporation Cord for elastomer reinforcement use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982885B1 (en) * 2011-11-23 2014-11-07 Michelin Soc Tech PROCESS FOR MANUFACTURING A TWO-LAYER IN SITU GEL METAL CABLE WITH AN UNSATURATED THERMOPLASTIC ELASTOMER
JP6343872B2 (en) * 2013-04-11 2018-06-20 横浜ゴム株式会社 Steel cord and rubber product manufacturing method
CN103696304B (en) * 2013-12-19 2016-05-18 江苏法尔胜特钢制品有限公司 A kind of conveyer belt steel wire rope, its preparation method and device of pre-filler mud
CN106460320A (en) * 2014-05-14 2017-02-22 贝卡尔特公司 Multi-strand steel cord
FR3029542B1 (en) * 2014-12-09 2017-07-28 Michelin & Cie TEXTILE CABLE HIGH MODULE AT AT LEAST TRIPLE TORSION
JP6607237B2 (en) * 2017-08-21 2019-11-20 横浜ゴム株式会社 Manufacturing method and apparatus for rubber-coated stranded wire cord

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485019A (en) * 1947-03-28 1949-10-18 Jones & Laughlin Steel Corp Lubricated wire rope
US2792868A (en) * 1951-11-21 1957-05-21 Us Rubber Co Reinforced rubber article
US3979896A (en) * 1975-02-24 1976-09-14 The United States Of America As Represented By The Secretary Of The Navy Impregnated and encapsulated wire rope and cable
US4344278A (en) * 1980-05-30 1982-08-17 Projected Lubricants, Inc. Lubricated wire rope
US6334293B1 (en) * 1999-03-04 2002-01-01 N.V. Bekaert S.A. Steel cord with polymer core
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
US20030106300A1 (en) * 2000-05-08 2003-06-12 Paul Bruyneel Zinc-coated steel cord with improved fatigue resistance
US6817395B2 (en) * 2002-07-30 2004-11-16 The Goodyear Tire & Rubber Company Crown reinforcement for heavy duty tires
US20050121126A1 (en) * 2000-09-11 2005-06-09 The Yokohama Rubber Co. Ltd. Steel cord for tire and radial tire
US7152391B2 (en) * 2000-12-01 2006-12-26 Nv Bekaert Sa Steel cord for reinforcing off-the-road tires and conveyor belts
US7228681B2 (en) * 2003-07-17 2007-06-12 Nv Bekaert Sa Open layered steel cord with high breaking load
US7272921B2 (en) * 2005-04-12 2007-09-25 Wire Rope Industries Ltd. Wire rope with galvanized outer wires
US20080028740A1 (en) * 2004-10-19 2008-02-07 Kenichi Ushijima Cable Made Of High Strength Fiber Composite Material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740188Y1 (en) * 1969-12-16 1972-12-05
JP2992783B2 (en) 1991-12-19 1999-12-20 東京製綱株式会社 High strength wire rope
JPH08158275A (en) 1994-11-25 1996-06-18 Tokyo Seiko Co Ltd High strength wire rope
JPH1193087A (en) * 1997-09-11 1999-04-06 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic tire
JP4355111B2 (en) * 2001-03-30 2009-10-28 横浜ゴム株式会社 Manufacturing method of elastomer composite steel cord
JP2004068213A (en) * 2002-08-07 2004-03-04 Bridgestone Corp Steel cord for rubber article reinforcement and pneumatic tire
FR2864556B1 (en) * 2003-12-24 2006-02-24 Michelin Soc Tech LAYERED CABLE FOR PNEUMATIC CARCASS REINFORCEMENT
FR2873721A1 (en) * 2004-08-02 2006-02-03 Michelin Soc Tech LAYERED CABLE FOR PNEUMATIC TOP REINFORCEMENT

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485019A (en) * 1947-03-28 1949-10-18 Jones & Laughlin Steel Corp Lubricated wire rope
US2792868A (en) * 1951-11-21 1957-05-21 Us Rubber Co Reinforced rubber article
US3979896A (en) * 1975-02-24 1976-09-14 The United States Of America As Represented By The Secretary Of The Navy Impregnated and encapsulated wire rope and cable
US4344278A (en) * 1980-05-30 1982-08-17 Projected Lubricants, Inc. Lubricated wire rope
US6334293B1 (en) * 1999-03-04 2002-01-01 N.V. Bekaert S.A. Steel cord with polymer core
US20030106300A1 (en) * 2000-05-08 2003-06-12 Paul Bruyneel Zinc-coated steel cord with improved fatigue resistance
US20050121126A1 (en) * 2000-09-11 2005-06-09 The Yokohama Rubber Co. Ltd. Steel cord for tire and radial tire
US7152391B2 (en) * 2000-12-01 2006-12-26 Nv Bekaert Sa Steel cord for reinforcing off-the-road tires and conveyor belts
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
US6817395B2 (en) * 2002-07-30 2004-11-16 The Goodyear Tire & Rubber Company Crown reinforcement for heavy duty tires
US7228681B2 (en) * 2003-07-17 2007-06-12 Nv Bekaert Sa Open layered steel cord with high breaking load
US20080028740A1 (en) * 2004-10-19 2008-02-07 Kenichi Ushijima Cable Made Of High Strength Fiber Composite Material
US7272921B2 (en) * 2005-04-12 2007-09-25 Wire Rope Industries Ltd. Wire rope with galvanized outer wires

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159919A1 (en) * 2009-07-03 2012-06-28 Jacques Gauthier Multi-Strand Cord in which the Basic Strands are Dual Layer Cords, Rubberized in Situ
US20120174557A1 (en) * 2009-07-03 2012-07-12 Sandra Boisseau Multi-Strand Cord in which the Basic Strands are Dual Layer Cords, Rubberized in Situ
US8857146B2 (en) * 2009-07-03 2014-10-14 Michelin Recherche Et Techniques S.A. Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ
US8863490B2 (en) * 2009-07-03 2014-10-21 Michelin Recherche Et Techniques S.A. Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ
US20120227885A1 (en) * 2009-11-27 2012-09-13 Nv Bekaert Sa Open multi-strand cord
US8899007B2 (en) * 2009-11-27 2014-12-02 Nv Bekaert Sa Open multi-strand cord
US20130270043A1 (en) * 2010-12-22 2013-10-17 Otis Elevator Company Elevator system belt
US10619271B2 (en) 2012-02-06 2020-04-14 Nv Bekaert Sa Process for manufacturing an elongated steel element to reinforce rubber products
US10358769B2 (en) 2012-02-06 2019-07-23 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
US9951469B2 (en) * 2012-07-24 2018-04-24 Nv Bekaert Sa Steel cord for rubber reinforcement
US20150184335A1 (en) * 2012-07-24 2015-07-02 Nv Bekaert Sa Steel cord for rubber reinforcement
US20150368859A1 (en) * 2013-02-21 2015-12-24 Tokusen Kogyo Co., Ltd. Steel cord and elastic crawler using same
US10895037B2 (en) * 2014-07-28 2021-01-19 Bridgestone Corporation Steel cord for reinforcing rubber article
US20190084257A1 (en) * 2015-09-30 2019-03-21 Pirelli Tyre S.P.A. Method and apparatus for controlling the feed of semifinished products in a tyre building process
US11584100B2 (en) * 2015-09-30 2023-02-21 Pirelli Tyre S.P.A. Method and apparatus for controlling the feed of semifinished products in a tyre building process
US11578459B1 (en) * 2016-12-20 2023-02-14 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cable with improved penetrability
US11535982B2 (en) * 2016-12-20 2022-12-27 Compagnie Generale Des Etablissements Michelin Multi-strand cable with two layers having improved penetrability
US20200308763A1 (en) * 2017-12-15 2020-10-01 Bridgestone Corporation Steel cord for rubber article reinforcement, and tire
US11591749B2 (en) * 2017-12-15 2023-02-28 Bridgestone Corporation Steel cord for rubber article reinforcement, and tire
US11458772B2 (en) 2017-12-19 2022-10-04 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cords having very low, low and medium moduli
US11401656B2 (en) * 2017-12-19 2022-08-02 Compagnie Generale Des Etablissments Michelin Two-layer multi-strand cords having very low, low and medium moduli
US11591750B2 (en) 2017-12-19 2023-02-28 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cables having very low, low and medium modulus
EP3875677A4 (en) * 2018-10-30 2022-08-31 Bridgestone Corporation Elastomer reinforcement cord
EP3875677A1 (en) * 2018-10-30 2021-09-08 Bridgestone Corporation Elastomer reinforcement cord
US11795613B2 (en) 2018-10-30 2023-10-24 Bridgestone Corporation Cord for elastomer reinforcement use
WO2022096799A1 (en) * 2020-11-05 2022-05-12 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cord having a sheathed inner layer with improved penetrability
FR3115799A1 (en) * 2020-11-05 2022-05-06 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cable with sheathed inner layer with improved penetrability

Also Published As

Publication number Publication date
EP2184401A1 (en) 2010-05-12
EP2184401A4 (en) 2013-09-18
CN101802297A (en) 2010-08-11
WO2009011397A1 (en) 2009-01-22
JPWO2009011397A1 (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US20100170215A1 (en) Cord, method of producing same, and rubber-cord composite body
EP2065511B1 (en) Rubber reinforcing steel cord and pneumatic radial tire
US20190077195A1 (en) Pneumatic tire
US7870715B2 (en) Steel cord
EP2639082B1 (en) Pneumatic tire
US20170210169A1 (en) Steel cord for reinforcing rubber article
CN104334792A (en) Steel cord for reinforcing rubber article and tire using same
US20170211229A1 (en) Steel cord for reinforcing rubber article
JP2002302885A (en) Method for producing elastomer combined steel cord
US10173470B2 (en) Steel cord for reinforcing rubber article
JP2011042910A (en) Steel cord for reinforcing rubber article and tire produced by using the same
EP3023265A1 (en) Reinforcing member for tire, and tire using same
JP4373585B2 (en) Steel cord for reinforcing rubber articles and pneumatic tire using the same
JP2009084711A (en) Process for producing rubber-steel composite cord and thus obtained rubber-steel composite cord
JP3759292B2 (en) Steel cord for reinforcing rubber articles and pneumatic tire
EP3368353B1 (en) Hybrid bead cores for tires
JP2008031561A (en) Steel cord for reinforcing rubber and method for producing the same, and pneumatic tire using the same
JP6100614B2 (en) Steel cord for reinforcing rubber articles and pneumatic radial tire using the same
JPH04308287A (en) Steel cord for reinforcing rubber article
JP3411621B2 (en) Pneumatic radial tire for heavy loads
JP7288396B2 (en) pneumatic tire
JP5656346B2 (en) Method for producing rubber-steel cord composite
JP2011231419A (en) Steel cord for reinforcing rubber article and tire using the same
WO2017075221A1 (en) Metal hybrid bead cores for tires
JPH06108387A (en) Steel cord for reinforcing rubber article and its production

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NISHIMURA, MITSUHIRO;REEL/FRAME:024086/0866

Effective date: 20100223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION