US20100142042A1 - Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask - Google Patents

Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask Download PDF

Info

Publication number
US20100142042A1
US20100142042A1 US12/517,583 US51758307A US2010142042A1 US 20100142042 A1 US20100142042 A1 US 20100142042A1 US 51758307 A US51758307 A US 51758307A US 2010142042 A1 US2010142042 A1 US 2010142042A1
Authority
US
United States
Prior art keywords
polarization
optical
conditions
optical system
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/517,583
Other versions
US9134626B2 (en
Inventor
Hans-Juergen Mann
Michael Totzeck
Norbert Kerwien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMS GmbH filed Critical Carl Zeiss SMS GmbH
Priority to US12/517,583 priority Critical patent/US9134626B2/en
Assigned to CARL ZEISS SMS GMBH reassignment CARL ZEISS SMS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KERWIEN, NORBERT, MANN, HANS-JUERGEN, TOTZECK, MICHAEL
Publication of US20100142042A1 publication Critical patent/US20100142042A1/en
Application granted granted Critical
Publication of US9134626B2 publication Critical patent/US9134626B2/en
Assigned to CARL ZEISS SMT GMBH reassignment CARL ZEISS SMT GMBH MERGER (SEE DOCUMENT FOR DETAILS). Assignors: CARL ZEISS SMS GMBH
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50

Definitions

  • the predetermined structure is imaged onto a detector, with the contrast in the optical image on the detector strongly depending on the polarization condition of the irradiated light.
  • effects of electromagnetic interaction can cause a variation in the position of an edge of the structure in the optical image, depending on the polarization condition of the electromagnetic radiation used to illuminate the structure.
  • the polarization condition of the electromagnetic radiation for illumination of the predetermined structure has not been taken into account in such microscopes so far. Also, changes in polarization properties, which change results from the optics of the microscope, e.g. from polarization-dependent properties of the lens coatings, intrinsic birefringence, stress-induced birefringence of glasses, as well as, in particular, of mirrors and beam splitters, are not taken into account and lead to errors of measurement.
  • the object is achieved by a microscope for space-resolved measurement of a predetermined structure, said microscope comprising a source of radiation, which emits electromagnetic radiation of a predetermined wavelength; an optical system, which irradiates electromagnetic radiation onto the structure to be measured and images said structure, irradiated with the electromagnetic radiation, onto a detector,
  • the optical system has two eigen polarization conditions and the apparatus includes a polarization module by which a polarization condition can be set for the electromagnetic radiation of the source of radiation, which condition comprises only those components of a known quantity which correspond to the eigen polarization conditions.
  • the eigen polarization conditions (intrinsic polarization conditions) of the optical system are polarization conditions which are not modified when passing through the optical system, this has the advantageous effect that the optical system does not lead to any polarization-dependent deterioration during measurement.
  • the polarization-dependent error can then be taken into account, for example computationally, during imaging onto the detector, so that a very high precision of measurement can be achieved.
  • the polarization condition is defined as precisely as possible according to the present invention. Therefore, preferably no variation of the polarization condition is effected during the measurement process.
  • the microscope can measure the predetermined structure by transmission and/or reflection. If it measures the structure by reflection, preferably at least one optical element of the optical system is employed for both illumination and detection.
  • the microscope can also be provided such that switching between transmission measurement and reflection measurement is possible.
  • the optical system of the microscope may comprise illumination optics for irradiating the electromagnetic radiation onto the structure to be measured, as well as detection optics for imaging the irradiated structure onto the detector, wherein the eigen polarization conditions of the illumination optics and/or of the detection optics correspond to the eigen polarization conditions of the optical system.
  • the eigen polarization conditions of the illumination optics and of the detection optics may coincide and, thus, correspond to the eigen polarization conditions of the optical system.
  • the eigen polarization conditions of the optical system are linear polarization conditions and the polarization condition of the electromagnetic radiation which can be set by means of the polarization module coincides with one of said two linear polarization conditions.
  • the eigen polarization conditions of the predetermined structure are frequently also linear polarization conditions, so that also the structure itself does not exert any polarization-dependent negative influence on measurement.
  • the predetermined structure may generally comprise two eigen polarization conditions, wherein at least one of said two eigen polarization conditions of the predetermined structure coincides with at least one of the eigen polarization conditions of the optical system.
  • This may be realized by a suitable design of the optical system, a suitable selection of the structure and/or suitable orientation of the structure relative to the optical system.
  • the optical system may further comprise an eigen polarization unit, by which the two eigen polarization conditions of the optical system can be modified.
  • the eigen polarization conditions of the optical system can be adapted to the respective eigen polarization conditions of the predetermined structure to be examined (which generally comprises elliptical eigen polarization conditions).
  • the polarization module can be used to set a polarization condition of the electromagnetic radiation under which the contrast of the image of the predetermined structure recorded by the detector is at a maximum.
  • the microscope serves to measure a structure on a lithographic mask or on a semi-conductor wafer.
  • the source of radiation is, in particular, a laser source. It may emit in the deep UV-range, for example at a wavelength of 193 nm.
  • the predetermined maximum wavefront error of claim 8 may be ⁇ /10, ⁇ /50, or even ⁇ /100, wherein ⁇ refers to the predetermined wavelength of the electromagnetic radiation of the source of radiation.
  • a microscopy method for space-resolved measurement of a predetermined structure wherein a source of radiation emits electromagnetic radiation of a predetermined wavelength, an optical system having two eigen polarization conditions irradiates the electromagnetic radiation onto the structure to be measured and images said structure, irradiated with said electromagnetic radiation, onto a detector, wherein a polarization condition is set for the electromagnetic radiation of the source or radiation, which polarization condition comprises only components of a known quantity which correspond to the eigen polarization conditions.
  • the predetermined structure can be measured by reflection and/or transmission. Further, it is possible to carry out the reflection and transmission measurements after each other in any desired sequence.
  • the optical system may comprise illumination optics for irradiating the electromagnetic radiation onto the predetermined structure, and detection optics for imaging the irradiated structure onto a detector, wherein the eigen polarization conditions of the illumination optics and/or of the detection optics correspond to the eigen polarization conditions of the optical system.
  • the eigen polarization conditions of the illumination optics and of the detection optics may coincide and, thus, correspond to the eigen polarization conditions of the optical system.
  • the eigen polarization conditions may be linear polarization conditions and the set polarization condition of the electromagnetic radiation may coincide with one of said two linear polarization conditions.
  • the predetermined structure may have two eigen polarization conditions, wherein at least one of said two eigen polarization conditions of the predetermined structure coincides with at least one of the eigen polarization conditions of the optical system.
  • the optical system may comprise an eigen polarization condition, by which the two eigen polarization conditions of the optical system can be modified. This allows the eigen polarization conditions of the optical system to be adapted to the predetermined structure to be examined respectively.
  • microscopy method in particular, structures on a lithographic mask or on a semiconductor wafer are measured.
  • the microscopy method can be improved according to the dependent method claims.
  • the maximum wavefront error in claim 21 may be ⁇ /10, ⁇ /50, or even ⁇ /100.
  • FIG. 1 shows a first embodiment of the microscope according to the invention
  • FIG. 2 shows a schematic top view of the lithographic mask 8 of FIG. 1 .
  • FIG. 3 shows a second embodiment of the microscope according to the invention.
  • the measurement apparatus 1 for space-resolved measurement of a structure (in this case, on a lithographic mask 8 ) comprises a source of radiation 2 emitting electromagnetic radiation 3 of a wavelength of 193 nm, as well as, in this order, a polarization module 4 , a beam splitter 5 , and imaging optics 6 .
  • the polarization module 4 , the beam splitter 5 , and the imaging optics 6 together form illumination optics 7 , which irradiate the lithographic mask 8 with the electromagnetic radiation 3 coming from the source of radiation 2 .
  • the radiation reflected by the lithographic mask 8 passes through the imaging optics 6 and is transmitted by the beam splitter 5 (at least partially) to a detector 9 , which is arranged following the beam splitter 5 and may be provided, for example, as an LCD detector.
  • the imaging optics 6 together with the beam splitter 5 , form detection optics 10 for the optical radiation reflected by the lithographic mask 8 .
  • the detection optics 10 and the illumination optics 7 together form an optical system 3 .
  • the imaging optics 6 are represented only schematically. They can be provided, in particular, as microscope optics, comprising objective optics and tube optics, and can, thus, comprise several optical imaging elements, wherein the beam splitter 5 can be arranged between these imaging elements (preferably in an infinite beam path).
  • the measurement apparatus 1 further comprises a mask stage 11 , which is provided, for example, as an x-y stage, to allow positioning of predetermined test structures 12 of the lithographic mask 8 in the detection region of the measurement apparatus 1 .
  • FIG. 2 schematically shows several test structures 12 in a top view of the lithographic mask 8 .
  • said test structures can be provided as crosses; the representation in FIG. 2 is not to scale, and the size of the test structures is shown strongly enlarged.
  • the mask structures (not shown) are present which are required for exposure of a wafer in a lithographic exposure apparatus.
  • a control unit 14 ( FIG. 1 ) is provided, which is connected to the mask stage 11 , to the detector 9 and optionally also to the source of radiation 2 , as well as to the polarization module 4 .
  • the optical system 13 of the measurement apparatus 1 has the eigen polarization conditions Z 1 and Z 2 schematically represented in FIG. 1 .
  • Both eigen polarization conditions Z 1 and Z 2 are linear polarization conditions, which are oriented in the x-direction as well as perpendicular to the drawing plane. These eigen polarizations conditions Z 1 and Z 2 may be caused, for example, by the beam splitter 5 .
  • the imaging optics 6 are regarded here as not influencing the polarization condition of the electromagnetic radiation transmitted through them.
  • the polarization condition of the electromagnetic radiation 3 emitted by the source of radiation 2 is indicated. As schematically indicated by the circle in the drawing, this may be, for example, a circular polarization PL.
  • the polarization module 4 is adapted to convert the electromagnetic radiation 3 having said circular polarization into a linear polarization coinciding with the eigen polarization condition Z 1 , or to transmit only this component, so that the electromagnetic radiation incident on the beam splitter 5 has a polarization P 1 which coincides with the first eigen polarization condition Z 1 of the optical system 13 .
  • This has the advantageous effect that the polarization P 2 of the electromagnetic radiation 3 in the illumination optics 7 is not changed.
  • the polarization module may be adapted such that electromagnetic radiation of any polarization is converted to the eigen polarization condition of the optical system or only the corresponding component is transmitted.
  • the polarization condition of the magnetic radiation is not changed even by reflection at the test structure 12 , because a first eigen polarization condition T 1 of the test structure coincides with the polarization condition P 2 of the electromagnetic radiation incident on the test structure 12 .
  • the first eigen polarization condition T 1 of the test structure is represented together with the second eigen polarization condition T 2 of the test structure in FIG. 2 (these are linear polarization conditions).
  • the polarization P 2 , P 3 of the reflected electromagnetic radiation passing through the detection optics 10 is not modified, because the detection optics 10 have the same eigen polarization conditions Z 1 and Z 2 as the illumination optics 7 .
  • the reflected radiation, having the linear polarization P 3 schematically indicated in FIG. 1 is then incident on the detector 9 .
  • the test structure can be measured by the measurement apparatus 1 with extreme precision.
  • FIG. 3 shows an improvement of the measurement apparatus of FIG. 1 , wherein the same elements are designated by the same reference numerals and, for description thereof, reference is made to the above statements.
  • an eigen polarization unit 15 which causes the eigen polarization conditions Z 1 and Z 2 of the optical system 13 to be elliptically polarized conditions.
  • the polarization module 4 is provided such that the electromagnetic radiation 3 coming from the polarization module 4 is elliptically polarized (according to one of the eigen polarization conditions Z 1 and Z 2 ).
  • the embodiment of FIG. 3 also achieves the advantage that the optical system 13 does not change the polarization condition which coincides with one of its eigen polarization conditions Z 1 , Z 2 .
  • the eigen polarization unit 15 can be used to correct polarization aberrations such that a maximum polarization-dependent wavefront error of ⁇ /10 or ⁇ /50, or ⁇ /100, respectively, is not exceeded.
  • the eigen polarization unit 15 can be controllable such that different eigen polarization conditions can be set under the control of the control unit 14 . Preferably, these are defined depending on the eigen polarization conditions T 1 , T 2 of the test structures 12 to be examined.

Abstract

A microscope is provided for space-resolved measurement of a predetermined structure (12), said microscope comprising a source of radiation (2), which emits electromagnetic radiation (3) of a predetermined wavelength, an optical system (13), which irradiates the electromagnetic radiation (3) onto the structure (12) to be measured and images the structure (12), irradiated with the electromagnetic radiation, onto a detector (9), wherein the optical system (13) has two eigen polarization conditions (Z1, Z2), and the apparatus includes a polarization module (4) by which a polarization condition can be set for the electromagnetic radiation (3) of the source of radiation (2), which condition includes only components of a known quantity which correspond to the eigen polarization conditions (Z1, Z2).

Description

  • In a microscope for space-resolved measurement of a predetermined structure and a corresponding microscopy method, the predetermined structure is imaged onto a detector, with the contrast in the optical image on the detector strongly depending on the polarization condition of the irradiated light. Moreover, effects of electromagnetic interaction can cause a variation in the position of an edge of the structure in the optical image, depending on the polarization condition of the electromagnetic radiation used to illuminate the structure.
  • The polarization condition of the electromagnetic radiation for illumination of the predetermined structure has not been taken into account in such microscopes so far. Also, changes in polarization properties, which change results from the optics of the microscope, e.g. from polarization-dependent properties of the lens coatings, intrinsic birefringence, stress-induced birefringence of glasses, as well as, in particular, of mirrors and beam splitters, are not taken into account and lead to errors of measurement.
  • In view thereof, it is an object of the invention to provide a microscope and a microscopy method for space-resolved measurement of a predetermined structure, which allows higher accuracy to be achieved.
  • According to the invention, the object is achieved by a microscope for space-resolved measurement of a predetermined structure, said microscope comprising a source of radiation, which emits electromagnetic radiation of a predetermined wavelength; an optical system, which irradiates electromagnetic radiation onto the structure to be measured and images said structure, irradiated with the electromagnetic radiation, onto a detector,
  • wherein the optical system has two eigen polarization conditions and the apparatus includes a polarization module by which a polarization condition can be set for the electromagnetic radiation of the source of radiation, which condition comprises only those components of a known quantity which correspond to the eigen polarization conditions.
  • Since the eigen polarization conditions (intrinsic polarization conditions) of the optical system are polarization conditions which are not modified when passing through the optical system, this has the advantageous effect that the optical system does not lead to any polarization-dependent deterioration during measurement. On the basis of the known amounts of those components of the electromagnetic radiation for illumination of the structure which correspond to the eigen polarization conditions, the polarization-dependent error can then be taken into account, for example computationally, during imaging onto the detector, so that a very high precision of measurement can be achieved.
  • In contrast to the measuring methods of imaging polarimetry, which aim to analyze the polarization condition in the image by varying the polarization condition in the illumination and imaging beam paths, the polarization condition is defined as precisely as possible according to the present invention. Therefore, preferably no variation of the polarization condition is effected during the measurement process.
  • The microscope can measure the predetermined structure by transmission and/or reflection. If it measures the structure by reflection, preferably at least one optical element of the optical system is employed for both illumination and detection. The microscope can also be provided such that switching between transmission measurement and reflection measurement is possible.
  • The optical system of the microscope may comprise illumination optics for irradiating the electromagnetic radiation onto the structure to be measured, as well as detection optics for imaging the irradiated structure onto the detector, wherein the eigen polarization conditions of the illumination optics and/or of the detection optics correspond to the eigen polarization conditions of the optical system. In particular, the eigen polarization conditions of the illumination optics and of the detection optics may coincide and, thus, correspond to the eigen polarization conditions of the optical system.
  • In particular, the eigen polarization conditions of the optical system are linear polarization conditions and the polarization condition of the electromagnetic radiation which can be set by means of the polarization module coincides with one of said two linear polarization conditions. This is particularly easy to realize. In particular, the eigen polarization conditions of the predetermined structure are frequently also linear polarization conditions, so that also the structure itself does not exert any polarization-dependent negative influence on measurement. The predetermined structure may generally comprise two eigen polarization conditions, wherein at least one of said two eigen polarization conditions of the predetermined structure coincides with at least one of the eigen polarization conditions of the optical system.
  • This may be realized by a suitable design of the optical system, a suitable selection of the structure and/or suitable orientation of the structure relative to the optical system.
  • The optical system may further comprise an eigen polarization unit, by which the two eigen polarization conditions of the optical system can be modified. Thus, the eigen polarization conditions of the optical system can be adapted to the respective eigen polarization conditions of the predetermined structure to be examined (which generally comprises elliptical eigen polarization conditions).
  • In particular, the polarization module can be used to set a polarization condition of the electromagnetic radiation under which the contrast of the image of the predetermined structure recorded by the detector is at a maximum.
  • In particular, the microscope serves to measure a structure on a lithographic mask or on a semi-conductor wafer.
  • The source of radiation is, in particular, a laser source. It may emit in the deep UV-range, for example at a wavelength of 193 nm.
  • Improvements of the microscope are further indicated in dependent claims 2 to 12. The predetermined maximum wavefront error of claim 8 may be λ/10, λ/50, or even λ/100, wherein λ refers to the predetermined wavelength of the electromagnetic radiation of the source of radiation.
  • Further, a microscopy method for space-resolved measurement of a predetermined structure is provided, wherein a source of radiation emits electromagnetic radiation of a predetermined wavelength, an optical system having two eigen polarization conditions irradiates the electromagnetic radiation onto the structure to be measured and images said structure, irradiated with said electromagnetic radiation, onto a detector, wherein a polarization condition is set for the electromagnetic radiation of the source or radiation, which polarization condition comprises only components of a known quantity which correspond to the eigen polarization conditions.
  • This has the effect that the optical system causes no polarization-dependent deterioration during measurement of the predetermined structure.
  • The predetermined structure can be measured by reflection and/or transmission. Further, it is possible to carry out the reflection and transmission measurements after each other in any desired sequence.
  • The optical system may comprise illumination optics for irradiating the electromagnetic radiation onto the predetermined structure, and detection optics for imaging the irradiated structure onto a detector, wherein the eigen polarization conditions of the illumination optics and/or of the detection optics correspond to the eigen polarization conditions of the optical system. In particular, the eigen polarization conditions of the illumination optics and of the detection optics may coincide and, thus, correspond to the eigen polarization conditions of the optical system.
  • Further the eigen polarization conditions may be linear polarization conditions and the set polarization condition of the electromagnetic radiation may coincide with one of said two linear polarization conditions.
  • The predetermined structure may have two eigen polarization conditions, wherein at least one of said two eigen polarization conditions of the predetermined structure coincides with at least one of the eigen polarization conditions of the optical system.
  • The optical system may comprise an eigen polarization condition, by which the two eigen polarization conditions of the optical system can be modified. This allows the eigen polarization conditions of the optical system to be adapted to the predetermined structure to be examined respectively.
  • Further, it is possible to set a polarization condition of the electromagnetic radiation under which the contrast of the image of the predetermined structure recorded by means of the detector becomes maximal.
  • Using the microscopy method, in particular, structures on a lithographic mask or on a semiconductor wafer are measured.
  • The microscopy method can be improved according to the dependent method claims. The maximum wavefront error in claim 21 may be λ/10, λ/50, or even λ/100.
  • It is evident that the features mentioned above and those mentioned below, which are yet to be explained, can be used not only in the combinations mentioned, but also in any other combinations, or alone, without departing from the scope of the present invention.
  • The invention will be explained in more detail below, by way of example and with reference to the enclosed Figures, which also disclose essential features of the invention. In the drawings:
  • FIG. 1 shows a first embodiment of the microscope according to the invention;
  • FIG. 2 shows a schematic top view of the lithographic mask 8 of FIG. 1, and
  • FIG. 3 shows a second embodiment of the microscope according to the invention.
  • In the embodiment shown in FIG. 1, the measurement apparatus 1 according to the invention, for space-resolved measurement of a structure (in this case, on a lithographic mask 8) comprises a source of radiation 2 emitting electromagnetic radiation 3 of a wavelength of 193 nm, as well as, in this order, a polarization module 4, a beam splitter 5, and imaging optics 6.
  • The polarization module 4, the beam splitter 5, and the imaging optics 6 together form illumination optics 7, which irradiate the lithographic mask 8 with the electromagnetic radiation 3 coming from the source of radiation 2.
  • The radiation reflected by the lithographic mask 8 passes through the imaging optics 6 and is transmitted by the beam splitter 5 (at least partially) to a detector 9, which is arranged following the beam splitter 5 and may be provided, for example, as an LCD detector. The imaging optics 6, together with the beam splitter 5, form detection optics 10 for the optical radiation reflected by the lithographic mask 8. The detection optics 10 and the illumination optics 7 together form an optical system 3.
  • In this case, the imaging optics 6 are represented only schematically. They can be provided, in particular, as microscope optics, comprising objective optics and tube optics, and can, thus, comprise several optical imaging elements, wherein the beam splitter 5 can be arranged between these imaging elements (preferably in an infinite beam path).
  • The measurement apparatus 1 further comprises a mask stage 11, which is provided, for example, as an x-y stage, to allow positioning of predetermined test structures 12 of the lithographic mask 8 in the detection region of the measurement apparatus 1.
  • FIG. 2 schematically shows several test structures 12 in a top view of the lithographic mask 8. As is evident from FIG. 2, said test structures can be provided as crosses; the representation in FIG. 2 is not to scale, and the size of the test structures is shown strongly enlarged. Between the test structures, the mask structures (not shown) are present which are required for exposure of a wafer in a lithographic exposure apparatus.
  • For control of the measurement apparatus 1, a control unit 14 (FIG. 1) is provided, which is connected to the mask stage 11, to the detector 9 and optionally also to the source of radiation 2, as well as to the polarization module 4.
  • The optical system 13 of the measurement apparatus 1 has the eigen polarization conditions Z1 and Z2 schematically represented in FIG. 1. Both eigen polarization conditions Z1 and Z2 are linear polarization conditions, which are oriented in the x-direction as well as perpendicular to the drawing plane. These eigen polarizations conditions Z1 and Z2 may be caused, for example, by the beam splitter 5. In order to simplify the description, the imaging optics 6 are regarded here as not influencing the polarization condition of the electromagnetic radiation transmitted through them.
  • Further, the polarization condition of the electromagnetic radiation 3 emitted by the source of radiation 2 is indicated. As schematically indicated by the circle in the drawing, this may be, for example, a circular polarization PL.
  • The polarization module 4 is adapted to convert the electromagnetic radiation 3 having said circular polarization into a linear polarization coinciding with the eigen polarization condition Z1, or to transmit only this component, so that the electromagnetic radiation incident on the beam splitter 5 has a polarization P1 which coincides with the first eigen polarization condition Z1 of the optical system 13. This has the advantageous effect that the polarization P2 of the electromagnetic radiation 3 in the illumination optics 7 is not changed. Of course, the polarization module may be adapted such that electromagnetic radiation of any polarization is converted to the eigen polarization condition of the optical system or only the corresponding component is transmitted.
  • The polarization condition of the magnetic radiation is not changed even by reflection at the test structure 12, because a first eigen polarization condition T1 of the test structure coincides with the polarization condition P2 of the electromagnetic radiation incident on the test structure 12. The first eigen polarization condition T1 of the test structure is represented together with the second eigen polarization condition T2 of the test structure in FIG. 2 (these are linear polarization conditions).
  • Also, the polarization P2, P3 of the reflected electromagnetic radiation passing through the detection optics 10 is not modified, because the detection optics 10 have the same eigen polarization conditions Z1 and Z2 as the illumination optics 7. The reflected radiation, having the linear polarization P3 schematically indicated in FIG. 1, is then incident on the detector 9.
  • By setting the polarization of the electromagnetic radiation 3 to one of the eigen polarization conditions Z1 of the optical system, polarization-dependent imaging errors can be minimized. Thereby, the test structure can be measured by the measurement apparatus 1 with extreme precision.
  • FIG. 3 shows an improvement of the measurement apparatus of FIG. 1, wherein the same elements are designated by the same reference numerals and, for description thereof, reference is made to the above statements.
  • In contrast to the measurement apparatus 1 of FIG. 1, there is arranged, in the optical system 13 between the beam splitter 5 and the imaging optics 6 of the measurement apparatus 1 in FIG. 3, an eigen polarization unit 15 which causes the eigen polarization conditions Z1 and Z2 of the optical system 13 to be elliptically polarized conditions. In this case, the polarization module 4 is provided such that the electromagnetic radiation 3 coming from the polarization module 4 is elliptically polarized (according to one of the eigen polarization conditions Z1 and Z2). Thus, the embodiment of FIG. 3 also achieves the advantage that the optical system 13 does not change the polarization condition which coincides with one of its eigen polarization conditions Z1, Z2.
  • In particular, this allows the eigen polarization conditions of the measurement system to be freely adapted to those of the structure to be examined. Moreover, the eigen polarization unit 15 can be used to correct polarization aberrations such that a maximum polarization-dependent wavefront error of λ/10 or λ/50, or λ/100, respectively, is not exceeded.
  • The eigen polarization unit 15 can be controllable such that different eigen polarization conditions can be set under the control of the control unit 14. Preferably, these are defined depending on the eigen polarization conditions T1, T2 of the test structures 12 to be examined.

Claims (25)

1. A microscope for space-resolved measurement of a predetermined structure, said microscope comprising
a source of radiation, which emits electromagnetic radiation of a predetermined wavelength,
an optical system, which irradiates the electromagnetic radiation onto the structure to be measured and images the structure, irradiated with the electromagnetic radiation, onto a detector,
wherein the optical system has two optical polarization conditions, and the apparatus includes a polarization module by which a polarization condition can be set for the electromagnetic radiation of the source of radiation, which set polarization condition includes only components of a known quantity which correspond to the optical polarization conditions.
2. The microscope as claimed in claim 1, wherein the optical system uses at least one optical element for both illumination and detection.
3. The microscope as claimed in claim 1, wherein the optical system comprises illumination optics for illuminating the structure and detection optics for imaging the structure onto the detector, wherein the optical polarization conditions of the illumination optics and of the detection optics correspond to the optical polarization conditions of the optical system.
4. The microscope as claimed in claim 1, wherein the optical
polarization conditions of the optical system are linear polarization conditions, and the polarization condition of the electromagnetic radiation which can be set by means of the polarization module coincides with one of the two linear polarization conditions.
5. The microscope as claimed in claim 1, wherein the structure to be measured comprises two optical polarization conditions (T1, T2), wherein at least one of said two optical polarization conditions (T1, T2) of the structure coincides with at least one of the optical polarization conditions of the optical system.
6. The microscope as claimed in claim 1, wherein the optical system comprises an optical polarization unit, by which the two optical polarization conditions of the optical system can be modified.
7. The microscope as claimed in claim 3, wherein the optical system comprises an optical polarization unit using which, together with the polarization module, the optical polarization conditions of the illumination optics and of the detection optics can be modified independently of each other.
8. The microscope as claimed in claim 6, wherein the optical polarization unit is used to correct polarization aberrations to such an extent that a predetermined maximum polarization-dependent wavefront error is not exceeded.
9. The microscope as claimed in claim 1, wherein the polarization module does not vary the set polarization condition during measurement of the predetermined structure.
10. The microscope as claimed in claim 6, wherein the optical polarization unit does not vary the optical polarization conditions of the optical system during measurement of the predetermined structure.
11. The microscope as claimed in claim 1, wherein the microscope can measure by reflection and by transmission and is switchable between these modes of measurement.
12. The microscope as claimed in claim 1, wherein using the polarization module a polarization condition of the electromagnetic radiation can be set at which the contrast of the image of the structure recorded by means of the detector is at a maximum.
13. Microscopy method for space-resolved measurement of a predetermined structure, wherein
a source of radiation emits electromagnetic radiation of a predetermined wavelength,
an optical system having two optical polarization conditions irradiates the structure to be measured with the electromagnetic radiation and images said structure, irradiated with the electromagnetic radiation, onto a detector,
wherein a polarization condition is set for the electromagnetic radiation, which set polarization condition only comprises components of a known quantity which correspond to the optical polarization conditions.
14. The method as claimed in claim 13, wherein the structure is measured by reflection.
15. The method as claimed in claim 13, wherein the structure is measured by transmission.
16. The method as claimed in claim 14, wherein the structure is measured by transmission and it is possible to switch between reflection and transmission measurement.
17. The method as claimed in claim 13, wherein the optical system comprises illumination optics for irradiating the structure with the electromagnetic radiation and detection optics for imaging the irradiated structure, and the optical polarization conditions of the illumination optics and of the detection optics correspond to the optical polarization conditions of the optical system.
18. The method as claimed in claim 13, wherein the optical polarization conditions are linear polarization conditions and the set polarization condition of the electromagnetic radiation coincides with one of the two linear polarization conditions.
19. The method as claimed in claim 13, wherein the structure has two optical polarization conditions, wherein at least one of the two optical polarization conditions of the structure coincides with at least one of the optical polarization conditions of the optical system.
20. The method as claimed in claim 13, wherein the optical system comprises an optical polarization unit by which the two optical polarization conditions of the optical system can be modified.
21. The method as claimed in claim 20, wherein the optical polarization unit is used to correct polarization aberrations to such an extent that a predetermined maximum polarization-dependent wavefront error is not exceeded.
22. The method as claimed in claim 20, wherein the optical polarization unit does not vary the optical polarization conditions (Z1, Z2) of the optical system during measurement of the predetermined structure.
23. The method as claimed in claim 17, wherein the two optical polarization conditions of the illumination optics and the two optical polarization conditions of the detection optics can be set independently of each other.
24. The method as claimed in claim 13, wherein a polarization condition of the electromagnetic radiation is set at which the contrast of the image of the structure recorded by means of the detector becomes maximal.
25. The method as claimed in claim 13, wherein the set polarization condition is not varied during space-resolved measurement of the predetermined structure.
US12/517,583 2006-12-15 2007-11-20 Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask Active 2031-07-31 US9134626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/517,583 US9134626B2 (en) 2006-12-15 2007-11-20 Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US87028706P 2006-12-15 2006-12-15
DE102006059435A DE102006059435A1 (en) 2006-12-15 2006-12-15 Microscope for position-resolved measurement of especially lithography mask has source of electromagnetic radiation of defined radiation, optical system that applies radiation to structure to be measured, forms image on detector
DE102006059435 2006-12-15
DE102006059435.5 2006-12-15
PCT/EP2007/010044 WO2008071294A1 (en) 2006-12-15 2007-11-20 Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask
US12/517,583 US9134626B2 (en) 2006-12-15 2007-11-20 Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask

Publications (2)

Publication Number Publication Date
US20100142042A1 true US20100142042A1 (en) 2010-06-10
US9134626B2 US9134626B2 (en) 2015-09-15

Family

ID=39399717

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/517,583 Active 2031-07-31 US9134626B2 (en) 2006-12-15 2007-11-20 Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask

Country Status (4)

Country Link
US (1) US9134626B2 (en)
DE (1) DE102006059435A1 (en)
TW (1) TW200835904A (en)
WO (1) WO2008071294A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048660B4 (en) 2008-09-22 2015-06-18 Carl Zeiss Sms Gmbh Method and device for measuring structures on photolithography masks
DE102008049365A1 (en) 2008-09-26 2010-04-01 Carl Zeiss Sms Gmbh Mask inspection microscope with variable illumination setting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795246A (en) * 1987-07-30 1989-01-03 Loro Albert Differential interference contrast microscope using non-uniformly deformed plastic birefringent components
US6111690A (en) * 1997-01-23 2000-08-29 Yokogawa Electric Corporation Confocal microscopic equipment
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20090040601A1 (en) * 2005-05-18 2009-02-12 Olympus Corporation Polarization microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249026A (en) 1998-03-03 1999-09-17 Nikon Corp Polarization microscope
JP2001356276A (en) 2000-06-13 2001-12-26 Nikon Corp Polarizing microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795246A (en) * 1987-07-30 1989-01-03 Loro Albert Differential interference contrast microscope using non-uniformly deformed plastic birefringent components
US6111690A (en) * 1997-01-23 2000-08-29 Yokogawa Electric Corporation Confocal microscopic equipment
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20090040601A1 (en) * 2005-05-18 2009-02-12 Olympus Corporation Polarization microscope

Also Published As

Publication number Publication date
US9134626B2 (en) 2015-09-15
TW200835904A (en) 2008-09-01
DE102006059435A1 (en) 2008-06-19
WO2008071294A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
KR100930941B1 (en) Inspection methods and apparatus, lithographic apparatus, lithographic processing cells and device manufacturing methods
CN101089733B (en) A method of characterising the transmission losses of an optical system
KR100989377B1 (en) A scatterometer, a lithographic apparatus and a focus analysis method
KR101357081B1 (en) Overlay measurement apparatus, lithographic apparatus, and device manufacturing method using such overlay measurement apparatus
US10585363B2 (en) Alignment system
KR101522676B1 (en) Pattern inspecting device
JP2005519460A (en) Overlay measurement method and system
KR102195269B1 (en) Method and device for characterizing a mask for microlithography
TW200925796A (en) An optical focus sensor, an inspection apparatus and a lithographic apparatus
KR20080070863A (en) Overlay metrology using the near infra-red spectral range
TW201115282A (en) Lithographic apparatus and monitoring method
US20150185623A1 (en) Optical device, lithography apparatus and manufacturing method of article
US20090040601A1 (en) Polarization microscope
JP2010121960A (en) Measuring device and method of measuring subject
CN101510051B (en) Inspection method and equipment, photolithography equipment and method for manufacturing photolithography processing unit and device
KR20090013055A (en) Adjustment method, exposure method, device manufacturing method, and exposure apparatus
KR19980063768A (en) Exposure apparatus provided with an observation apparatus, a position detection apparatus, and its position detection apparatus
US9134626B2 (en) Microscope and microscopy method for space-resolved measurement of a predetermined structure, in particular a structure of a lithographic mask
JP6629572B2 (en) Lighting device and observation system
US20170176714A1 (en) Focus Monitoring Arrangement and Inspection Apparatus Including Such an Arrangement
JP2002006226A (en) Inspecting device
Barnes et al. Zero-order imaging of device-sized overlay targets using scatterfield microscopy
JP2020094853A (en) Mask inspection device, switching method, and mask inspection method
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
JP2010230356A (en) Surface inspection apparatus and method of inspecting surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS SMS GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANN, HANS-JUERGEN;TOTZECK, MICHAEL;KERWIEN, NORBERT;SIGNING DATES FROM 20091030 TO 20091103;REEL/FRAME:023833/0673

Owner name: CARL ZEISS SMS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANN, HANS-JUERGEN;TOTZECK, MICHAEL;KERWIEN, NORBERT;SIGNING DATES FROM 20091030 TO 20091103;REEL/FRAME:023833/0673

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
AS Assignment

Owner name: CARL ZEISS SMT GMBH, GERMANY

Free format text: MERGER;ASSIGNOR:CARL ZEISS SMS GMBH;REEL/FRAME:040069/0705

Effective date: 20150512

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8