US20100071882A1 - Natural microtubule encapsulated phase-change materials and preparation thereof - Google Patents

Natural microtubule encapsulated phase-change materials and preparation thereof Download PDF

Info

Publication number
US20100071882A1
US20100071882A1 US12/565,504 US56550409A US2010071882A1 US 20100071882 A1 US20100071882 A1 US 20100071882A1 US 56550409 A US56550409 A US 56550409A US 2010071882 A1 US2010071882 A1 US 2010071882A1
Authority
US
United States
Prior art keywords
phase
change material
change
microtubules
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/565,504
Inventor
Xiaoyan Zhang
Ning Chao
Xiaoli ZHANG
Jian Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eternal Materials Co Ltd
Original Assignee
Eternal Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eternal Chemical Co Ltd filed Critical Eternal Chemical Co Ltd
Assigned to ETERNAL CHEMICAL CO., LTD. reassignment ETERNAL CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, XIAOYAN, XU, JIAN, ZHANG, XIAOLI, ZHAO, NING
Publication of US20100071882A1 publication Critical patent/US20100071882A1/en
Assigned to ETERNAL MATERIALS CO., LTD. reassignment ETERNAL MATERIALS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETERNAL CHEMICAL CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49357Regenerator or recuperator making

Definitions

  • the present invention relates to natural microtubule encapsulated microcapsules of a phase-change material and the preparation thereof.
  • phase-change materials also called as latent thermal energy storage (LTES) materials
  • LTES latent thermal energy storage
  • the phase-change materials have the advantages of high thermal storage density, small equipment volume, and high thermal efficiency, and heat absorption or release is a constant temperature process, thus the energy utilization can be improved, and the problem of energy crisis can be solved to some extent.
  • phase-change materials have been widely used in refrigeration and cool storage of refrigerators and air-conditioners, automatic thermostatic control of smart buildings, energy storage and exchange technology in solar energy application, peak load shifting in power supply, recovery and reuse of waste heat and residual heat, and commodities. Due to simple and convenient use without energy consumption, the phase-change materials have wide application prospect and broad market.
  • the phase-change materials are mainly divided into solid-liquid phase-change material, solid-solid phase-change material, solid-gas phase-change material, and liquid-gas phase-change material.
  • the material must be packed in a sealed container, so as to prevent leakage and environment pollution, and the container must be inert to the phase-change material.
  • the method for performing shape stabilization process on the phase-change materials mainly includes shaped and microcapsulation.
  • the shaped phase-change materials are substantially composite phase-change energy storage materials, and refer to phase-change material having non-fluidity and capable of maintaining solid form formed by combining the phase-change material and the carrier material, which can substitute solid-solid phase-change materials.
  • the phase-change materials contains two main components: one is working material component, that is, phase-change material, for storing and releasing energy through phase change, including various phase-change materials, with solid-liquid phase-change materials being mostly used; and the other is carrier material component, for maintaining the non-fluidity and processability of the phase-change material. Therefore, the melting temperature of the carrier material is required to be higher than the phase-change temperature of the phase-change material, such that the working material can maintain the solid shape and material performance in the phase change range.
  • the main preparation method substantially includes: co-blending, grafting, sintering, in-situ intercalation, and sol-gel method.
  • the physical effect of the shaped phase-change material is relatively small, after being used repeatedly, the solid-liquid phase-change material may be easily desorbed from the carrier, and leakage and exudation, and two-phase separation may occur.
  • the microcapsulated phase-change materials are composite phase-change materials having a core-shell structure formed by covering the surface of the solid-liquid phase-change material particles with a layer of polymer membrane or inorganic material with stable performance by using microcapsule technology.
  • solid-liquid phase change occurs in the core of the microcapsulated phase-change material, while the outer layer polymer membrane maintains solid form, so the phase-change materials present as solid particles at macroscopic.
  • the chemical preparation method of the microcapsules of a phase-change material mainly includes: in-situ polymerization, interfacial polymerization, reaction phase separation, and complex coacervation, and the shell performance obtained by different preparation methods is different.
  • phase-change energy storage microcapsule materials are widely concerned and researched due to the special performance and usage.
  • the energy storage principle of heat absorption and release of the phase-change microcapsule is equivalent to that of a thermal battery.
  • the encapsulation by the micro container makes the phase-change material converted into numerous small working units, thus significantly expanding the application field and situation of the phase-change material.
  • the product with phase-change microcapsule blended therein will establish a microclimate environment in the melting point range of the phase-change material used, so as to meet the requirement for comfort on temperature.
  • the microcapsulated phase-change materials can well solve the serious problems of easily melting and flowing, penetration and migration, phase separation, and corrosion during the solid-liquid phase change process, and after being encapsulated and protected with the shell material, the phase-change material is separated from the external environment to be stabilized.
  • the polymer shell material or the modified shell material significantly increases the compatibility of the phase-change material and the matrix material, thus significantly improving the practicality of the phase-change material.
  • the strength of the microcapsule wall is insufficient, the leakage and heat resistance of the phase-change material still need to be improved, and particularly, the cost is high, which are the problems in urgent need to be solved in the industry presently.
  • the present invention is directed to a phase-change microcapsule of a truncated natural microtubule encapsulated phase-change material and the preparation thereof.
  • the microcapsules of a phase-change material of the present invention comprise a phase-change material, truncated microtubules, and a polymer.
  • the truncated microtubules are formed by truncating hollow tubular natural fibers into fiber segments with a length of 0.1 mm to 5 cm.
  • the hollow tubular natural fibers have a diameter in the range from 0.1 ⁇ m to 1000 ⁇ m.
  • the phase-change material is encapsulated in the truncated microtubules, and the truncated microtubules are then encapsulated by the polymer.
  • FIG. 1 is a DSC curve diagram of microcapsules of a phase-change material according to Example 1 under cyclic temperature rise and drop.
  • FIG. 2 is a scanning electron microscope photo of the microcapsules of a phase-change material according to Example 1, in which (A) is truncated natural kapok tubule; (B) and (C) are encapsulated kapok microtubules filled with paraffin; (D) is encapsulated paraffin-filled kapok tubule further encapsulated with urea-formaldehyde resin.
  • useful natural fiber can be selected from kapok fiber, milkweed fiber, luffa fiber, bamboo fiber, tex bamboo fiber, flax fiber, wool, and down.
  • the phase-change material may be at least one of 1) solid-liquid phase-change material and 2) solid-solid phase-change material.
  • the solid-liquid phase-change material may be at least one of a) an inorganic phase-change material and b) an organic phase-change material.
  • the inorganic phase-change material can be a crystalline hydrated salt and/or molten salt.
  • the crystalline hydrated salt may be any one of alkaline metal or alkaline-earth metal halides, sulfates, phosphates, nitrates, acetates, or carbonates, or any combination thereof, such as, Na 2 SO 4 .10H 2 O, Na 2 HPO 4 .12H 2 O, CaCl 2 .6H 2 O, and SnCl.6H 2 O and a combination thereof.
  • the molten salt can be K 2 WO 4 and/or K 2 MoO 4 .
  • the organic phase-change material can be any one of the following materials: higher aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, salts of higher fatty acids or esters, higher aliphatic alcohols, aromatic hydrocarbons, aromatic ketones, aromatic amides, fluorochloroalkanes, multicarbonyl carbonic acids, and crystalline polymers.
  • the higher aliphatic hydrocarbons are generally aliphatic hydrocarbons having 6 or more carbon atoms, preferably 6-36 carbon atoms.
  • the higher fatty acids generally refer to C6-C26 mono-carboxylic acids.
  • the higher aliphatic hydrocarbon can be any of the following 16 substances or a combination thereof: n-octacosane, n-heptacosane, n-hexacosane, n-pentacosane, n-tetracosane, n-tricosane, n-docosane, n-henicosane, n-icosane, n-nonadecane, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, n-tetradecane, and n-tridecane.
  • the crystalline polymer is high density polyethylene, polyvinylidene, or crystalline polyvinyl chloride having a density higher than 0.94 g/cm 3 .
  • the solid-solid phase-change material is an inorganic salt, a polyol, or a cross-linked polymer resin.
  • the inorganic salt may be Li 2 SO 4 and/or KHF 2 .
  • the polyol may be any of the following 6 substances or a combination thereof: pentaerythritol (PE), 2,2-bis(hydroxymethyl) propanol, neopentyl glycol (NPG), 2-amino-2-methyl-1,3-propanediol, trimethylolethane, and tris(hydroxymethyl)aminomethane.
  • the cross-linked polymer resin may be a cross-linked polyolefin, a cross-linked polyacetal, a co-polymer of a cross-linked polyolefin and cross-linked polyacetal, or a blend of a cross-linked polyolefin and cross-linked polyacetal.
  • the polymer in the polymer layer of the microcapsules of phase-change a material of the present invention is any of the following 10 polymers or copolymers or blends thereof: urea-formaldehyde resin, melamine-formaldehyde resin, melamine-urea-formaldehyde resin, polyurethane, polymethylmethacrylate, poly(ethyl methacrylate), phenolic resin, epoxy resin, polyacrylonitrile, cellulose acetate.
  • the truncated microtubule encapsulated phase-change microcapsules can be prepared by the method comprising the following steps:
  • the method further comprises washing off the phase-change material adsorbed on the surface of the resultant microcapsules of the phase-change material.
  • the solvent may be any one of the following 10 solvents or a mixture thereof: deionized water, N,N′-dimethylformamide, N,N′-dimethylacetamide, tetrahydrofurane, methylene chloride, trichloromethane, cyclohexane, methanol, ethanol, and acetone.
  • the present invention Compared with the existing microcapsulated phase-change material encapsulation technology, the present invention has the following advantageous effects:
  • the encapsulation tubules used in the present invention are cheap and easily available natural microfibers.
  • kapok fiber is a natural fiber having a large specific surface area and a high hollowness up to 80-90%, which is difficult to be realized by current artificial preparation methods, thus being more suitable for manufacturing phase-change energy material than man-made fibers.
  • kapok fiber has a high thermostability and substantially will not be thermally degraded at 250° C.
  • kapok fiber has a high chemical stability, and will only be dissolved in high-concentration strong acids.
  • the truncated natural microfibers having micropore structure with large specific surface area are used as supporting materials, and through the capillary force of the micropores, the liquid organic phase-change energy storage material or the inorganic phase-change energy storage material (at a temperature higher than the phase change temperature) is absorbed into the micropores, so as to form an organic phase-change energy storage material, inorganic phase-change energy storage material, or a composite of an organic and inorganic phase-change energy storage materials.
  • the liquid phase-change energy storage material will not easily overflow from the micropores.
  • microcapsulated microtubules with the phase-change material adsorbed therein can be further closed and terminated with a polymer.
  • the microfibers have a high hollowness and therefore a high energy storage density, and can transfer energy stably due to the closed structure, and transfer heat rapidly due to the very fine micro-tubular structures, and may be used for a long term in view of the heat and chemical stability. Further, the special lipophilic and hydrophobic wetting performance can be utilized during the processing.
  • the microcapsulated form of the phase-change material can be better dispersed in a matrix material during practical technical process. After being mixed with the matrix material, the micron-level size of the encapsulated phase-change material can make the appearance of the product be maintained and not be affected.
  • the organic phase-change material paraffin was heated to above the melting point of 60° C. to obtain a liquid paraffin phase-change material.
  • the urea-formaldehyde resin encapsulated and phase-change material fully filled microtubules obtained in Step (3) were taken out, and placed in hot water to wash off the phase-change material adsorbed on the surfaces of the tubules, and dried, so as to form the microcapsulated phase-change material.
  • the DSC curve of the phase-change material under cyclic temperature rise and drop is as shown in FIG. 1
  • the scanning electron microscope photo of the phase-change material is shown in FIG. 2 .
  • microcapsules of a phase-change material have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop.
  • Organic phase-change material pentaerythritol (PE) was dissolved in a small amount of ethanol, to obtain a liquid pentaerythritol (PE) solution phase-change material.
  • phase-change material microcapsule containing ethanol solvent obtained in Step (2) was vaporized, the phase-change material pentaerythritol (PE) solution was concentrated and solidified, and then immersed in 5 mL of 5 wt % cellulose acetate solution in methylene chloride, such that the microcapsulated phase-change material was encapsulated by cellulose acetate through interfacial deposition.
  • PE pentaerythritol
  • the cellulose acetate encapsulated and phase-change material filled milkweed fiber obtained in Step (3) was taken out and dried, so as to form the microcapsulated phase-change material.
  • microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated milkweed microfibers filled with pentaerythritol (PE) form the encapsulated phase-change material with good dispersion after being encapsulated by cellulose acetate.
  • PE pentaerythritol
  • phase-change material microcapsules containing deionized water obtained in Step (2) was vaporized, the phase-change material CaCl 2 .6H 2 O solution was concentrated and solidified, and then immersed in 10 mL of 5 wt % cellulose acetate solution in methylene chloride, such that the microcapsulated phase-change material was encapsulated by cellulose acetate through interfacial deposition.
  • the cellulose acetate encapsulated and phase-change material filled bamboo fiber obtained in Step (3) was taken out and dried, so as to form the microcapsulated phase-change material.
  • microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated bamboo microfibers filled with inorganic phase-change material CaCl 2 .6H 2 O form the encapsulated phase-change material with good dispersion after being encapsulated by cellulose acetate.
  • the deionized water and alcohol in the phase-change material microcapsule containing deionized water and alcohol solvent obtained in Step (2) were vaporized, the mixed pentaerythritol (PE) and Li 2 SO 4 solution phase-change material was concentrated and solidified, and immersed into 5 mL of 5 wt % polyacrylonitrile solution in N,N′-dimethylformamide, such that the microcapsulated phase-change material was encapsulated by polyacrylonitrile through interfacial deposition.
  • PE pentaerythritol
  • Li 2 SO 4 solution phase-change material was concentrated and solidified, and immersed into 5 mL of 5 wt % polyacrylonitrile solution in N,N′-dimethylformamide, such that the microcapsulated phase-change material was encapsulated by polyacrylonitrile through interfacial deposition.
  • the polyacrylonitrile encapsulated and phase-change material filled flax fiber obtained in Step (3) was taken out and immersed in deionized water to solidify the polyacrylonitrile, and then dried.
  • microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated natural flax microfibers filled with the phase-change material pentaerythritol (PE) and Li 2 SO 4 form the encapsulated phase-change material with good dispersion after being encapsulated by polyacrylonitrile.
  • PE pentaerythritol
  • Li 2 SO 4 form the encapsulated phase-change material with good dispersion after being encapsulated by polyacrylonitrile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Microtubule encapsulated microcapsules of a phase-change material and preparation thereof are provided. The microcapsules of a phase-change material consist of a phase-change material, truncated microtubules, and a polymer. The truncated microtubules are formed by truncating hollow tubular natural fibers into fiber segments with a length of 0.1 mm-5 cm. The diameter of the hollow tubular natural fiber is 0.1-1000 μm. The phase-change material is encapsulated in the truncated microtubules and the truncated microtubules are covered with the polymer. The microtubules have high energy storage density due to high hollowness, and can transfer energy stably due to the closed structure, transfer heat rapidly due to the very fine micro-tubular structures, and may be used for a long term in view of the heat and chemical stability.

Description

    FIELD OF THE INVENTION
  • The present invention relates to natural microtubule encapsulated microcapsules of a phase-change material and the preparation thereof.
  • DESCRIPTION OF THE PRIOR ART
  • Generally, phase-change materials (PCM), also called as latent thermal energy storage (LTES) materials, refer to materials that are capable of absorb or release energy upon phase change while the temperature of the material does not change or change a little. When serving as an energy storage carrier, the phase-change materials have the advantages of high thermal storage density, small equipment volume, and high thermal efficiency, and heat absorption or release is a constant temperature process, thus the energy utilization can be improved, and the problem of energy crisis can be solved to some extent. Presently, phase-change materials have been widely used in refrigeration and cool storage of refrigerators and air-conditioners, automatic thermostatic control of smart buildings, energy storage and exchange technology in solar energy application, peak load shifting in power supply, recovery and reuse of waste heat and residual heat, and commodities. Due to simple and convenient use without energy consumption, the phase-change materials have wide application prospect and broad market.
  • In view of the phase change process of the material, the phase-change materials are mainly divided into solid-liquid phase-change material, solid-solid phase-change material, solid-gas phase-change material, and liquid-gas phase-change material. A large amount of gas exists during the phase change process of the later two materials, so that the volume change of the material is great, thus the two materials are rarely used in practical application. Due to small volume change, high latent heat, good energy storage, and wide phase-change temperature range, the solid-liquid phase-change material has been widely used in practice. However, as liquid phase is generated during the phase-change process, the material must be packed in a sealed container, so as to prevent leakage and environment pollution, and the container must be inert to the phase-change material. This disadvantage greatly limits the application of the solid-liquid phase-change energy storage materials in practice. Recently, with the development of technology and the requirement of application, people try to perform shape stabilization to convert the solid-liquid phase-change energy storage materials into solid-solid phase-change materials in form. However, solid-liquid phase change still occurs in practice, which solves the melting problem of the phase-change materials, and greatly facilitates the practical application. Presently, the method for performing shape stabilization process on the phase-change materials mainly includes shaped and microcapsulation.
  • The shaped phase-change materials are substantially composite phase-change energy storage materials, and refer to phase-change material having non-fluidity and capable of maintaining solid form formed by combining the phase-change material and the carrier material, which can substitute solid-solid phase-change materials. The phase-change materials contains two main components: one is working material component, that is, phase-change material, for storing and releasing energy through phase change, including various phase-change materials, with solid-liquid phase-change materials being mostly used; and the other is carrier material component, for maintaining the non-fluidity and processability of the phase-change material. Therefore, the melting temperature of the carrier material is required to be higher than the phase-change temperature of the phase-change material, such that the working material can maintain the solid shape and material performance in the phase change range. From the development of the compounding of the shaped composite phase-change materials in recent years, the main preparation method substantially includes: co-blending, grafting, sintering, in-situ intercalation, and sol-gel method. As the physical effect of the shaped phase-change material is relatively small, after being used repeatedly, the solid-liquid phase-change material may be easily desorbed from the carrier, and leakage and exudation, and two-phase separation may occur.
  • The microcapsulated phase-change materials are composite phase-change materials having a core-shell structure formed by covering the surface of the solid-liquid phase-change material particles with a layer of polymer membrane or inorganic material with stable performance by using microcapsule technology. During the phase change process, solid-liquid phase change occurs in the core of the microcapsulated phase-change material, while the outer layer polymer membrane maintains solid form, so the phase-change materials present as solid particles at macroscopic. The chemical preparation method of the microcapsules of a phase-change material mainly includes: in-situ polymerization, interfacial polymerization, reaction phase separation, and complex coacervation, and the shell performance obtained by different preparation methods is different. With the development of the polymer science, microcapsulation technology gets mature gradually, thus the phase-change energy storage microcapsule materials are widely concerned and researched due to the special performance and usage. The energy storage principle of heat absorption and release of the phase-change microcapsule is equivalent to that of a thermal battery. The encapsulation by the micro container makes the phase-change material converted into numerous small working units, thus significantly expanding the application field and situation of the phase-change material. The product with phase-change microcapsule blended therein will establish a microclimate environment in the melting point range of the phase-change material used, so as to meet the requirement for comfort on temperature. The microcapsulated phase-change materials can well solve the serious problems of easily melting and flowing, penetration and migration, phase separation, and corrosion during the solid-liquid phase change process, and after being encapsulated and protected with the shell material, the phase-change material is separated from the external environment to be stabilized. Also, the polymer shell material or the modified shell material significantly increases the compatibility of the phase-change material and the matrix material, thus significantly improving the practicality of the phase-change material. However, the strength of the microcapsule wall is insufficient, the leakage and heat resistance of the phase-change material still need to be improved, and particularly, the cost is high, which are the problems in urgent need to be solved in the industry presently.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a phase-change microcapsule of a truncated natural microtubule encapsulated phase-change material and the preparation thereof.
  • The microcapsules of a phase-change material of the present invention comprise a phase-change material, truncated microtubules, and a polymer. The truncated microtubules are formed by truncating hollow tubular natural fibers into fiber segments with a length of 0.1 mm to 5 cm. The hollow tubular natural fibers have a diameter in the range from 0.1 μm to 1000 μm. The phase-change material is encapsulated in the truncated microtubules, and the truncated microtubules are then encapsulated by the polymer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a DSC curve diagram of microcapsules of a phase-change material according to Example 1 under cyclic temperature rise and drop.
  • FIG. 2 is a scanning electron microscope photo of the microcapsules of a phase-change material according to Example 1, in which (A) is truncated natural kapok tubule; (B) and (C) are encapsulated kapok microtubules filled with paraffin; (D) is encapsulated paraffin-filled kapok tubule further encapsulated with urea-formaldehyde resin.
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to the present invention, useful natural fiber can be selected from kapok fiber, milkweed fiber, luffa fiber, bamboo fiber, tex bamboo fiber, flax fiber, wool, and down.
  • The phase-change material may be at least one of 1) solid-liquid phase-change material and 2) solid-solid phase-change material.
  • The solid-liquid phase-change material may be at least one of a) an inorganic phase-change material and b) an organic phase-change material.
  • According to the present invention, the inorganic phase-change material can be a crystalline hydrated salt and/or molten salt. The crystalline hydrated salt may be any one of alkaline metal or alkaline-earth metal halides, sulfates, phosphates, nitrates, acetates, or carbonates, or any combination thereof, such as, Na2SO4.10H2O, Na2HPO4.12H2O, CaCl2.6H2O, and SnCl.6H2O and a combination thereof. The molten salt can be K2WO4 and/or K2MoO4.
  • The organic phase-change material can be any one of the following materials: higher aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, salts of higher fatty acids or esters, higher aliphatic alcohols, aromatic hydrocarbons, aromatic ketones, aromatic amides, fluorochloroalkanes, multicarbonyl carbonic acids, and crystalline polymers.
  • The higher aliphatic hydrocarbons are generally aliphatic hydrocarbons having 6 or more carbon atoms, preferably 6-36 carbon atoms. The higher fatty acids generally refer to C6-C26 mono-carboxylic acids.
  • The higher aliphatic hydrocarbon can be any of the following 16 substances or a combination thereof: n-octacosane, n-heptacosane, n-hexacosane, n-pentacosane, n-tetracosane, n-tricosane, n-docosane, n-henicosane, n-icosane, n-nonadecane, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, n-tetradecane, and n-tridecane.
  • The crystalline polymer is high density polyethylene, polyvinylidene, or crystalline polyvinyl chloride having a density higher than 0.94 g/cm3.
  • The solid-solid phase-change material is an inorganic salt, a polyol, or a cross-linked polymer resin. The inorganic salt may be Li2SO4 and/or KHF2. The polyol may be any of the following 6 substances or a combination thereof: pentaerythritol (PE), 2,2-bis(hydroxymethyl) propanol, neopentyl glycol (NPG), 2-amino-2-methyl-1,3-propanediol, trimethylolethane, and tris(hydroxymethyl)aminomethane. The cross-linked polymer resin may be a cross-linked polyolefin, a cross-linked polyacetal, a co-polymer of a cross-linked polyolefin and cross-linked polyacetal, or a blend of a cross-linked polyolefin and cross-linked polyacetal.
  • The polymer in the polymer layer of the microcapsules of phase-change a material of the present invention is any of the following 10 polymers or copolymers or blends thereof: urea-formaldehyde resin, melamine-formaldehyde resin, melamine-urea-formaldehyde resin, polyurethane, polymethylmethacrylate, poly(ethyl methacrylate), phenolic resin, epoxy resin, polyacrylonitrile, cellulose acetate.
  • According to the present invention, the truncated microtubule encapsulated phase-change microcapsules can be prepared by the method comprising the following steps:
  • 1) Liquefying the Phase-Change Material:
      • heating the phase-change material to above the melting point or dissolving it with a solvent, so as to obtain a liquid phase-change material;
        2) Filling Truncated Natural Microtubules with the Liquid Phase-Change Material:
      • dispersing and immersing truncated natural microfibers into the liquid phase-change material obtained in 1), so as to make the microtubules filled with the liquid phase-change material through capillary absorption; and
    3) Encapsulating the Phase-Change Material:
      • encapsulating the microtubules filled with the phase-change material obtained in Step 2) with a polymer, so as to obtain the microcapsules of the phase-change material.
  • Optionally, the method further comprises washing off the phase-change material adsorbed on the surface of the resultant microcapsules of the phase-change material.
  • The solvent may be any one of the following 10 solvents or a mixture thereof: deionized water, N,N′-dimethylformamide, N,N′-dimethylacetamide, tetrahydrofurane, methylene chloride, trichloromethane, cyclohexane, methanol, ethanol, and acetone.
  • Compared with the existing microcapsulated phase-change material encapsulation technology, the present invention has the following advantageous effects:
  • 1. The encapsulation tubules used in the present invention are cheap and easily available natural microfibers. For example, kapok fiber is a natural fiber having a large specific surface area and a high hollowness up to 80-90%, which is difficult to be realized by current artificial preparation methods, thus being more suitable for manufacturing phase-change energy material than man-made fibers. Further, kapok fiber has a high thermostability and substantially will not be thermally degraded at 250° C. Also, kapok fiber has a high chemical stability, and will only be dissolved in high-concentration strong acids.
  • 2. The truncated natural microfibers having micropore structure with large specific surface area are used as supporting materials, and through the capillary force of the micropores, the liquid organic phase-change energy storage material or the inorganic phase-change energy storage material (at a temperature higher than the phase change temperature) is absorbed into the micropores, so as to form an organic phase-change energy storage material, inorganic phase-change energy storage material, or a composite of an organic and inorganic phase-change energy storage materials. When a solid-liquid phase change of the phase-change energy storage material occurs in the micropores, due to the capillary force, the liquid phase-change energy storage material will not easily overflow from the micropores.
  • 3. Although the capillary force solves the fluidity problem of the solid-liquid phase-change material to some extent, it is still an “open” package system. Thus the microcapsulated microtubules with the phase-change material adsorbed therein can be further closed and terminated with a polymer.
  • 4. The microfibers have a high hollowness and therefore a high energy storage density, and can transfer energy stably due to the closed structure, and transfer heat rapidly due to the very fine micro-tubular structures, and may be used for a long term in view of the heat and chemical stability. Further, the special lipophilic and hydrophobic wetting performance can be utilized during the processing.
  • 5. The microcapsulated form of the phase-change material can be better dispersed in a matrix material during practical technical process. After being mixed with the matrix material, the micron-level size of the encapsulated phase-change material can make the appearance of the product be maintained and not be affected.
  • EXAMPLES Example 1 Preparation of Natural Kapok Fiber Encapsulated Paraffin and Urea-Formaldehyde Resin Encapsulated Microcapsules of a Phase-Change Material
  • (1) Liquefaction of Phase-Change Material:
  • The organic phase-change material paraffin was heated to above the melting point of 60° C. to obtain a liquid paraffin phase-change material.
  • (2) Filling Truncated Natural Microtubules with the Liquid Phase-Change Material:
  • 1 g natural kapok fiber (truncated microtubules) having a length of 10-50 μm was dispersed into 10 mL liquid phase-change material obtained in Step (1), and immersed to make the capillary absorption reach a balance, such that the kapok fiber was fully filled with the liquid phase-change material.
  • (3) Encapsulation of Microcapsulated Phase-Change Material:
  • 2 g urea-formaldehyde prepolymer (obtained by adding 1 g urea into 2 ml 36% volume fraction aqueous formaldehyde solution and stirring until the mixture was fully dissolved, heating to 60° C., and maintaining at this temperature for 15 min) was directly added dropwise into the melt of the phase-change material filled natural kapok fiber obtained in Step (2), the temperature of the melt was raised to 97-98° C. and the reaction lasted for 1 h. Urea-formaldehyde resin polymer was generated around the kapok fiber, and thus phase separation and deposition occurred, such that the microcapsulated phase-change material was encapsulated by the urea-formaldehyde resin.
  • (4) Purification of the Microcapsulated Phase-Change Material:
  • The urea-formaldehyde resin encapsulated and phase-change material fully filled microtubules obtained in Step (3) were taken out, and placed in hot water to wash off the phase-change material adsorbed on the surfaces of the tubules, and dried, so as to form the microcapsulated phase-change material.
  • The DSC curve of the phase-change material under cyclic temperature rise and drop is as shown in FIG. 1, and the scanning electron microscope photo of the phase-change material is shown in FIG. 2.
  • It can be seen from FIG. 1 that the microcapsules of a phase-change material have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop.
  • It can be seen from FIG. 2 that the encapsulated kapok microtubules filled with paraffin form encapsulated phase-change materials after being encapsulated with the urea-formaldehyde resin.
  • Example 2 Preparation of Natural Milkweed Fiber Encapsulated Pentaerythritol and Cellulose Acetate Encapsulated Microcapsules of a Phase-Change Material
  • (1) Liquefaction of Phase-Change Material:
  • Organic phase-change material pentaerythritol (PE) was dissolved in a small amount of ethanol, to obtain a liquid pentaerythritol (PE) solution phase-change material.
  • (2) Filling Truncated Natural Microtubules with the Liquid Phase-Change Material:
  • 1 g natural milkweed fiber having a length of 0.5-10 μm was dispersed into 10 mL liquid phase-change material obtained in Step (1), and immersed to make the capillary absorption reach a balance, such that the milkweed fiber was fully filled with the liquid phase-change material.
  • (3) Encapsulation of Microcapsulated Phase-Change Material:
  • The ethanol in the phase-change material microcapsule containing ethanol solvent obtained in Step (2) was vaporized, the phase-change material pentaerythritol (PE) solution was concentrated and solidified, and then immersed in 5 mL of 5 wt % cellulose acetate solution in methylene chloride, such that the microcapsulated phase-change material was encapsulated by cellulose acetate through interfacial deposition.
  • (4) Purification of Microcapsulated Phase-Change Material:
  • The cellulose acetate encapsulated and phase-change material filled milkweed fiber obtained in Step (3) was taken out and dried, so as to form the microcapsulated phase-change material.
  • The microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated milkweed microfibers filled with pentaerythritol (PE) form the encapsulated phase-change material with good dispersion after being encapsulated by cellulose acetate.
  • Example 3 Preparation of Natural Bamboo Fiber Encapsulated CaCl2.6H2O and Cellulose Acetate Encapsulated Microcapsules of Phase-Change a Material
  • (1) Liquefaction of Phase-Change Material:
  • 1 g inorganic phase-change material CaCl2.6H2O was dissolved in 10 mL deionized water, to obtain a liquid CaCl2.6H2O solution phase-change material.
  • (2) Filling Truncated Natural Microtubules with the Liquid Phase-Change Material:
  • 1 g natural bamboo fiber having a length of 500-1000 μm was dispersed in 10 mL liquid phase-change material obtained in Step (1), and immersed to make the capillary absorption reach a balance, such that the bamboo fiber was fully filled with the liquid phase-change material.
  • (3) Encapsulation of Microcapsulated Phase-Change Material:
  • The deionized water in the phase-change material microcapsules containing deionized water obtained in Step (2) was vaporized, the phase-change material CaCl2.6H2O solution was concentrated and solidified, and then immersed in 10 mL of 5 wt % cellulose acetate solution in methylene chloride, such that the microcapsulated phase-change material was encapsulated by cellulose acetate through interfacial deposition.
  • (4) Purification of Microcapsulated Phase-Change Material:
  • The cellulose acetate encapsulated and phase-change material filled bamboo fiber obtained in Step (3) was taken out and dried, so as to form the microcapsulated phase-change material.
  • The microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated bamboo microfibers filled with inorganic phase-change material CaCl2.6H2O form the encapsulated phase-change material with good dispersion after being encapsulated by cellulose acetate.
  • Example 4 Preparation of Natural Flax Fiber Encapsulated Pentaerythritol and Li2SO4 and Polyacrylonitrile Encapsulated Microcapsules of a Phase-Change Material
  • (1) Liquefaction of Phase-Change Material:
  • 10 g organic phase-change material pentaerythritol (PE) and 10 g inorganic phase-change material Li2SO4 were dissolved in 10 mL mixed solution of deionized water and alcohol (50:50 v/v), to get a liquid organic/inorganic mixed phase-change material.
  • (2) Filling Truncated Natural Microtubules with the Liquid Phase-Change Material:
  • 5 g natural flax fiber having a length of 100-500 μm was dispersed in 10 mL liquid phase-change material obtained in Step (1), and immersed to make the capillary absorption reach a balance, such that the flax fiber was fully filled with the liquid phase-change material.
  • (3) Encapsulation of Microcapsulated Phase-Change Material:
  • The deionized water and alcohol in the phase-change material microcapsule containing deionized water and alcohol solvent obtained in Step (2) were vaporized, the mixed pentaerythritol (PE) and Li2SO4 solution phase-change material was concentrated and solidified, and immersed into 5 mL of 5 wt % polyacrylonitrile solution in N,N′-dimethylformamide, such that the microcapsulated phase-change material was encapsulated by polyacrylonitrile through interfacial deposition.
  • (4) Purification of Microcapsulated Phase-Change Material:
  • The polyacrylonitrile encapsulated and phase-change material filled flax fiber obtained in Step (3) was taken out and immersed in deionized water to solidify the polyacrylonitrile, and then dried.
  • The microcapsules of a phase-change material prepared according to this method have a good cyclic phase-change energy storage effect under cyclic temperature rise and drop, and the encapsulated natural flax microfibers filled with the phase-change material pentaerythritol (PE) and Li2SO4 form the encapsulated phase-change material with good dispersion after being encapsulated by polyacrylonitrile.

Claims (8)

1. Microcapsules of a phase-change material, comprising:
a phase-change material, truncated microtubules, and a polymer;
wherein the truncated microtubules are formed by truncating hollow tubular natural fibers into fiber segments having a length of 0.1 mm-5 cm, and
the hollow tubular natural fibers have a diameter of 0.1-1000 μm; the phase-change material is encapsulated in the truncated microtubules, and the truncated microtubules are encapsulated by the polymer.
2. The microcapsules of a phase-change material according to claim 1, wherein the natural fiber is at least one of the following natural fibers: kapok fiber, milkweed fiber, luffa fiber, bamboo fiber, tex bamboo fiber, flax fiber, wool, and down.
3. The microcapsules of a phase-change material according to claim 1, wherein the polymer is any one of the following polymers or copolymers or blends thereof: urea-formaldehyde resin, melamine-formaldehyde resin, melamine-urea-formaldehyde resin, polyurethane, polymethylmethacrylate, poly(ethyl methacrylate), phenolic resin, epoxy resin, polyacrylonitrile, and cellulose acetate.
4. The microcapsules of a phase-change material according to claim 1, wherein the phase-change material is at least one of 1) a solid-liquid phase-change material and 2) a solid-solid phase-change material;
the solid-liquid phase-change material is at least one of a) an inorganic phase-change material and b) an organic phase-change material;
the inorganic phase-change material is a crystalline hydrated salt and/or molten salt;
the organic phase-change material is any one of the following materials: higher aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, salts of higher fatty acids, higher aliphatic alcohols, aromatic hydrocarbons, aromatic ketones, aromatic amides, fluorochloroalkanes, multicarbonyl carbonic acids, and crystalline polymers; and
the solid-solid phase-change material is an inorganic salt, a polyol, or a cross-linked polymer resin.
5. The microcapsules of a phase-change material according to claim 4, wherein the crystalline hydrated salt is selected from: alkali metal halides, alkaline-earth metal halides, sulfates, phosphates, nitrates, acetates, carbonates, and combinations thereof;
the molten salt is K2WO4 and/or K2MoO4;
the inorganic salt is Li2SO4 and/or KHF2;
the higher aliphatic hydrocarbon is selected from: n-octacosane, n-heptacosane, n-hexacosane, n-pentacosane, n-tetracosane, n-tricosane, n-docosane, n-henicosane, n-icosane, n-nonadecane, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, n-tetradecane, n-tridecane, and combinations thereof;
the crystalline polymer is high density polyethylene, polyvinylidene, or crystalline polyvinyl chloride having a density of higher than 0.94 g/cm3;
the polyol is selected from: pentaerythritol, 2,2-bis(hydroxymethyl)propanol, neopentyl glycol, 2-amino-2-methyl-1,3-propanediol, trimethylolethane, and tris(hydroxymethyl)aminomethane; the cross-linked polymer resin is a cross-linked polyolefin, a cross-linked polyacetal, a copolymer of a cross-linked polyolefin and cross-linked polyacetal, a blend of a cross-linked polyolefin and cross-linked polyacetal, and combinations thereof.
6. A method for preparing the microcapsules of a phase-change material according to one of claims 1 to 5, comprising:
1) heating a phase-change material to above the melting point, or dissolving it with a solvent, so as to obtain a liquid phase-change material;
2) dispersing and immersing truncated microtubules into the liquid phase-change material obtained in Step 1), so as to make the microfibers filled with the liquid phase-change material through capillary absorption; and
3) encapsulating the truncated microtubules filled with the phase-change material obtained in Step 2) with a polymer, so as to obtain the microcapsules of the phase-change material.
7. The method according to claim 6, further comprising washing off the phase-change material adsorbed on the surface of the obtained microcapsules of the phase-change material.
8. The method according to claim 6, wherein the solvent is selected from: deionized water, N,N′-dimethylformamide, N,N′-dimethylacetamide, tetrahydrofurane, methylene chloride, trichloromethane, cyclohexane, methanol, ethanol, acetone, and mixtures thereof.
US12/565,504 2008-09-25 2009-09-23 Natural microtubule encapsulated phase-change materials and preparation thereof Abandoned US20100071882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810222787.0 2008-09-25
CN200810222787.0A CN101684403B (en) 2008-09-25 2008-09-25 Phase change material microcapsules encapsulated by natural microtubules and preparation method thereof

Publications (1)

Publication Number Publication Date
US20100071882A1 true US20100071882A1 (en) 2010-03-25

Family

ID=41720059

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/565,504 Abandoned US20100071882A1 (en) 2008-09-25 2009-09-23 Natural microtubule encapsulated phase-change materials and preparation thereof

Country Status (4)

Country Link
US (1) US20100071882A1 (en)
JP (1) JP5180171B2 (en)
CN (1) CN101684403B (en)
DE (1) DE102009043077A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430371A (en) * 2011-08-25 2012-05-02 华东理工大学 Urea-formaldehyde resin microcapsule material with capsule core half-filled structure and preparation method thereof
CN102493010A (en) * 2011-11-17 2012-06-13 大连工业大学 Preparation method for phase change fiber through grafting polyacrylonitrile to macromonomer
CN102504765A (en) * 2011-09-28 2012-06-20 兰州理工大学 Dodecanol phase-change microcapsule material and method of preparing same
EP2626653A2 (en) * 2012-02-13 2013-08-14 Hussmann Corporation Secondary referigeration circuit including micro-encapsulated phase change material
WO2015140764A1 (en) * 2014-03-21 2015-09-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Particles of melamine-urea-formaldehyde (muf) containing a polymer with a tg less than 75 °c.
EP3240372A1 (en) * 2016-04-27 2017-11-01 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
CN107408545A (en) * 2015-03-27 2017-11-28 英特尔公司 Energy storage material and associated technology and configuration for heat management
US10266679B2 (en) 2012-12-27 2019-04-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Composite material for heat storage, method for preparation and use
CN109674085A (en) * 2017-10-18 2019-04-26 湖南中烟工业有限责任公司 It is a kind of for reducing the heat accumulation capsule of cigarette mainstream flue gas temperature and its preparation and application
CN113136170A (en) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 Hydrated salt-porous material composite based on in-situ precipitation secondary coating and preparation method and application thereof
US11320212B2 (en) * 2018-03-15 2022-05-03 Agency For Science, Technology And Research Thermal control system
CN114775292A (en) * 2022-03-25 2022-07-22 江南大学 Preparation method of down feather fiber with heat storage and temperature adjustment functions

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388864B (en) * 2011-09-20 2014-01-29 中国科学院化学研究所 Pesticide microcapsule and preparation method thereof
CN102379286A (en) * 2011-09-20 2012-03-21 中国科学院化学研究所 Pesticide microcapsule and preparation method thereof
CN103183922B (en) * 2011-12-27 2015-09-02 比亚迪股份有限公司 For the carrier of phase-change accumulation energy and phase-changing energy storage material and their preparation method
US9435299B2 (en) * 2014-02-27 2016-09-06 GM Global Technology Operations LLC Fluid system and method of making and using the same
CN106190042B (en) * 2016-08-14 2019-11-19 张天奇 A kind of hot energy storage material
CN106773220B (en) * 2017-02-16 2020-05-12 京东方科技集团股份有限公司 Negative thermal expansion microsphere, preparation method thereof and liquid crystal display panel
CN107779173A (en) * 2017-10-12 2018-03-09 北京宇田相变储能科技有限公司 A kind of microcapsules for improving thermal storage performance and combinations thereof formed body
CN108034410A (en) * 2017-12-14 2018-05-15 吴海 Excellent Lauxite phase-change microcapsule of a kind of heat preservation and insulation and preparation method thereof
CN109183180A (en) * 2018-07-16 2019-01-11 苏州联畅特种纤维有限公司 The preparation method of functional fiber with phase transformation transforming factor
JP7192714B2 (en) * 2019-08-26 2022-12-20 トヨタ自動車株式会社 Coolant composition and cooling system
DE102020104272A1 (en) 2020-02-18 2021-08-19 Axiotherm GmbH Temperature control agents for the transport of temperature-sensitive goods and processes for the temperature control of temperature-sensitive goods during their transport
CN111499253B (en) * 2020-04-15 2022-03-04 东南大学 Microwave controlled release-based additive microcapsule and preparation method thereof
CN112724934A (en) * 2020-12-25 2021-04-30 武汉理工大学 Based on kawo fibers encapsulation and SiO2End-capped composite phase change material and preparation method thereof
CN112852387B (en) * 2021-02-23 2022-09-27 全球能源互联网研究院有限公司 Phase change material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504402A (en) * 1983-06-13 1985-03-12 Pennwalt Corporation Encapsulated phase change thermal energy _storage materials
US4851291A (en) * 1986-06-19 1989-07-25 The United States Of America As Represented By The Secretary Of Agriculture Temperature adaptable textile fibers and method of preparing same
US20020046970A1 (en) * 2000-09-21 2002-04-25 Mitsubishi Rayon Co., Ltd. Porous membrane
US6689466B2 (en) * 2000-09-21 2004-02-10 Outlast Technologies, Inc. Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL69390A (en) * 1983-06-13 1987-01-30 Pennwalt Corp Thermal energy storage products and their production
CA2423123A1 (en) * 2000-09-21 2002-03-28 Outlast Technologies, Inc. Multi-component fibers having reversible thermal properties
US6855422B2 (en) * 2000-09-21 2005-02-15 Monte C. Magill Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
DE10342416A1 (en) * 2003-09-13 2005-04-07 Outlast Technologies, Inc., Boulder filter material
CN100447316C (en) * 2006-08-10 2008-12-31 中国科学院广州化学研究所 Phase-change energy-storage ultra-fine composite fiber and preparation method and application thereof
CN100447315C (en) * 2006-08-23 2008-12-31 中国科学院广州化学研究所 Super fine composite terylene fibers storing energy through phase change, and preparation method
CN100406641C (en) * 2006-10-18 2008-07-30 东华大学 Bombax cotton phase-change material production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504402A (en) * 1983-06-13 1985-03-12 Pennwalt Corporation Encapsulated phase change thermal energy _storage materials
US4851291A (en) * 1986-06-19 1989-07-25 The United States Of America As Represented By The Secretary Of Agriculture Temperature adaptable textile fibers and method of preparing same
US20020046970A1 (en) * 2000-09-21 2002-04-25 Mitsubishi Rayon Co., Ltd. Porous membrane
US6689466B2 (en) * 2000-09-21 2004-02-10 Outlast Technologies, Inc. Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430371A (en) * 2011-08-25 2012-05-02 华东理工大学 Urea-formaldehyde resin microcapsule material with capsule core half-filled structure and preparation method thereof
CN102504765A (en) * 2011-09-28 2012-06-20 兰州理工大学 Dodecanol phase-change microcapsule material and method of preparing same
CN102493010A (en) * 2011-11-17 2012-06-13 大连工业大学 Preparation method for phase change fiber through grafting polyacrylonitrile to macromonomer
EP2626653A2 (en) * 2012-02-13 2013-08-14 Hussmann Corporation Secondary referigeration circuit including micro-encapsulated phase change material
EP2626653A3 (en) * 2012-02-13 2013-10-02 Hussmann Corporation Secondary referigeration circuit including micro-encapsulated phase change material
US11292894B2 (en) 2012-12-27 2022-04-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Composite material for heat storage, method for preparation and use
EP2938696B1 (en) * 2012-12-27 2020-02-05 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Composite material for heat storage and method for preparation
US10266679B2 (en) 2012-12-27 2019-04-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Composite material for heat storage, method for preparation and use
WO2015140764A1 (en) * 2014-03-21 2015-09-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Particles of melamine-urea-formaldehyde (muf) containing a polymer with a tg less than 75 °c.
FR3018701A1 (en) * 2014-03-21 2015-09-25 Commissariat Energie Atomique MELAMINE-UREA-FORMALDEHYDE (MUF) PARTICLES CONTAINING A POLYMER HAVING A TG LESS THAN 75 ° C
US20180068926A1 (en) * 2015-03-27 2018-03-08 Intel Corporation Energy storage material for thermal management and associated techniques and configurations
EP3275015A4 (en) * 2015-03-27 2018-11-21 Intel Corporation Energy storage material for thermal management and associated techniques and configurations
CN107408545A (en) * 2015-03-27 2017-11-28 英特尔公司 Energy storage material and associated technology and configuration for heat management
WO2017186856A1 (en) * 2016-04-27 2017-11-02 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
US10945332B2 (en) 2016-04-27 2021-03-09 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
EP3240372A1 (en) * 2016-04-27 2017-11-01 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
CN109674085A (en) * 2017-10-18 2019-04-26 湖南中烟工业有限责任公司 It is a kind of for reducing the heat accumulation capsule of cigarette mainstream flue gas temperature and its preparation and application
US11320212B2 (en) * 2018-03-15 2022-05-03 Agency For Science, Technology And Research Thermal control system
CN113136170A (en) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 Hydrated salt-porous material composite based on in-situ precipitation secondary coating and preparation method and application thereof
CN114775292A (en) * 2022-03-25 2022-07-22 江南大学 Preparation method of down feather fiber with heat storage and temperature adjustment functions

Also Published As

Publication number Publication date
DE102009043077A1 (en) 2010-04-01
JP2010077435A (en) 2010-04-08
JP5180171B2 (en) 2013-04-10
CN101684403B (en) 2013-03-20
CN101684403A (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US20100071882A1 (en) Natural microtubule encapsulated phase-change materials and preparation thereof
Pielichowska et al. Phase change materials for thermal energy storage
Zhou et al. Recent advances in organic/composite phase change materials for energy storage
CN100593559C (en) Phase-change material of natural kawo fiber pipe encapsulation and encapsulation method thereof
Wu et al. Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management
Zahir et al. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon
Umair et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review
Hu Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system
Şahan et al. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials
Abdeali et al. Review on nanostructure supporting material strategies in shape-stabilized phase change materials
Fleischer Thermal energy storage using phase change materials: fundamentals and applications
Zhang et al. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: a review
CN101738120B (en) Sensible heat-latent heat compound thermal storage device
Song et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity
Samykano Role of phase change materials in thermal energy storage: Potential, recent progress and technical challenges
EP3824041B1 (en) A method for heat storage using phase change material coated with nanoparticles
Tebaldi et al. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials
Kim et al. Recent progress in PEG-based composite phase change materials
Yang et al. Review on organic phase change materials for sustainable energy storage
KR20140106553A (en) Mixture for thermal energy storage and device for heat storage and release using said mixture
Dash et al. A review on organic phase change materials and their applications
kumar Dubey et al. Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: an approach towards net zero
CN108360082B (en) Multi-walled carbon nanotube modified composite phase change material capable of being woven and preparation method thereof
TWI411464B (en) Microcapsule of phase change materials encapsulated with natural microtubule and their production
Yang et al. Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: A comprehensive review

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETERNAL CHEMICAL CO., LTD.,TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, XIAOYAN;ZHAO, NING;ZHANG, XIAOLI;AND OTHERS;SIGNING DATES FROM 20090904 TO 20090906;REEL/FRAME:023274/0975

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ETERNAL MATERIALS CO., LTD., TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:ETERNAL CHEMICAL CO., LTD.;REEL/FRAME:034659/0563

Effective date: 20140701