TWI411464B - Microcapsule of phase change materials encapsulated with natural microtubule and their production - Google Patents
Microcapsule of phase change materials encapsulated with natural microtubule and their production Download PDFInfo
- Publication number
- TWI411464B TWI411464B TW98127860A TW98127860A TWI411464B TW I411464 B TWI411464 B TW I411464B TW 98127860 A TW98127860 A TW 98127860A TW 98127860 A TW98127860 A TW 98127860A TW I411464 B TWI411464 B TW I411464B
- Authority
- TW
- Taiwan
- Prior art keywords
- phase change
- change material
- microcapsule
- group
- fiber
- Prior art date
Links
Landscapes
- Manufacturing Of Micro-Capsules (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本發明係關於一種天然微管包埋的相變化微膠囊及其製備方法。The invention relates to a phase change microcapsule embedded in a natural microtube and a preparation method thereof.
一般而言,相變化材料(Phase change materials,PCM),又稱為潛熱儲能材料(Latent thermal energy storage,LTES)是指物質發生相變化時能夠吸收或放出熱量而該物質本身溫度不變或變化不大的一類材料。相變化材料作為儲能載體,由於其具有貯熱密度高、設備體積小、熱效率高以及吸放熱為恆溫過程等優點,可以有效提高能源的利用率、緩解能源緊張的難題。目前,已被廣泛運用於冰箱和空調的製冷和蓄冷、智慧建築物的自動恆溫、太陽能應用中的能量儲存和交換技術、電力的“移峰填谷(peak load shifting)”、廢熱和餘熱的回收利用以及日用品中。由於它使用簡便、不耗能,因而具有很大的應用前景和廣闊市場。In general, phase change materials (PCM), also known as latent thermal energy storage (LTES), refers to the ability to absorb or release heat when a substance changes phase, and the temperature of the substance itself does not change or A type of material that does not change much. As a energy storage carrier, phase change material has the advantages of high heat storage density, small equipment volume, high thermal efficiency and constant temperature of heat absorption and release, which can effectively improve energy utilization and alleviate energy shortage. At present, it has been widely used in refrigeration and cold storage of refrigerators and air conditioners, automatic constant temperature of intelligent buildings, energy storage and exchange technology in solar energy applications, "peak load shifting" of electric power, waste heat and waste heat. Recycling and daily necessities. Because it is easy to use and does not consume energy, it has great application prospects and a broad market.
從材料的相態變化過程,相變化材料主要分為固-液相變化、固-固相變化、固-氣相變化及液-氣相變化,後兩者在相變化過程中伴隨有大量的氣體存在,使材料體積變化較大,在實際應用中很少被選用。固-液相變化由於體積變化小,潛熱較大,儲能好,相變化溫度範圍廣,在實際應用中得到了廣泛的應用。但由於該材料在相變化過程中有液相產生,因此必須用容器密封盛裝,以防止洩漏污染環境,並且容器對相變化材料而言必須是惰性的。這一缺點極大地束縛了固-液相變化儲能材料的實際應用。近年來,隨著技術的發展和應用場合的要求,人們試圖對其進行形狀穩定處理使其轉變成形式上的“固-固”相變化,但實際上仍發生固-液相變化,解決了相變化材料的熔融問題,大大方便了實際應用。目前對相變化材料進行形狀穩定的方法主要有定型化和微膠囊(microcapsules)化兩種方法。From the phase change process of materials, phase change materials are mainly divided into solid-liquid phase changes, solid-solid phase changes, solid-gas phase changes and liquid-gas phase changes, which are accompanied by a large number of phase changes. The presence of gas causes a large change in the volume of the material and is rarely used in practical applications. The solid-liquid phase change is widely used in practical applications due to small volume change, large latent heat, good energy storage, and wide temperature range of phase change. However, since the material has a liquid phase during phase change, it must be sealed with a container to prevent leakage from contaminating the environment, and the container must be inert to the phase change material. This shortcoming greatly limits the practical application of solid-liquid phase change energy storage materials. In recent years, with the development of technology and the requirements of applications, people have tried to shape them to transform into a form-like "solid-solid" phase change, but in fact, solid-liquid phase changes still occur, and solved. The melting problem of phase change materials greatly facilitates practical applications. At present, the methods for shape stabilization of phase change materials mainly include stereotypes and microcapsules.
定型化相變化材料實質上是一類複合相變化儲能材料,是指將相變化材料與載體物質相結合,形成一種外形上可保持固體形狀、具有不流動性的相變化材料,其可代替固-固相變化材料。這類相變化材料的主要組成有兩種:其一是工作物質成分,即相變化材料,利用其相變化來進行儲能、放能,工作物質包括各種相變化材料,但用的較多的主要是固-液相變化材料。其二是載體物質,其作用是保持相變化材料的不流動性和可加工性,因而要求載體物質的熔化溫度高於相變化材料的相變化溫度,使工作物質在相變化範圍內保持其固體的形狀和材料性能。從近年定型複合相變化材料的合成發展狀況看,主要製備方法可大致歸為:共混法,接枝法,燒結法,原位插層法和溶膠一凝膠法。但由於定型化相變化材料的物理作用相對較小,材料經多次使用時易發生固-液相變化材料在載體上的脫附,洩漏滲出以及兩相分離等現象。The stereotyped phase change material is essentially a kind of composite phase change energy storage material, which refers to the phase change material combined with the carrier material to form a phase change material which can maintain a solid shape and has no fluidity in shape, which can replace solid - Solid phase change material. There are two main components of such phase change materials: one is the working material component, that is, the phase change material, and the phase change is used for energy storage and energy release. The working materials include various phase change materials, but more are used. Mainly solid-liquid phase change materials. The second is a carrier material, which functions to maintain the fluidity and processability of the phase change material. Therefore, the melting temperature of the carrier material is required to be higher than the phase change temperature of the phase change material, so that the working material maintains its solid within the phase change range. Shape and material properties. From the recent development of the synthesis of phase-change composite phase change materials, the main preparation methods can be roughly classified into: blending method, grafting method, sintering method, in-situ intercalation method and sol-gel method. However, due to the relatively small physical effect of the shaped phase change material, the material is prone to desorption, leakage and two-phase separation of the solid-liquid phase change material when it is used multiple times.
微膠囊化相變化材料是利用微膠囊技術將固-液相變化材料微粒表面包覆一層性能穩定的高分子膜或無機材料而構成具有核-殼(core-shell)結構的複合相變化材料。微膠囊化相變化材料在相變過程中,內核發生固-液相變化,而其外層的高分子膜保持為固態,因此該類相變化材料在宏觀上表現為固態顆粒。相變化微膠囊的化學製備方法主要有原位聚合法、介面聚合法、反應相分離法、介面沈積反應以及複凝聚法等類,不同的製備方法所得到的外殼性能有所差別。隨著聚合物科學的發展,微膠囊化技術逐漸成熟,因此,相變化儲能微膠囊材料由於其特殊的性能和用途受到了廣泛的關注和研究。相變化微膠囊的吸熱、放熱的儲熱原理相當於一種“熱電池”,微容器的包埋(encapsulation)使相變化材料轉變成無數微小的工作單元,因此,大大擴展了相變化材料的應用領域和場合。摻混了相變化微膠囊的製品會在其周圍建立起所採用相變化物質熔點範圍的微氣候環境,從而可滿足對溫度之舒適度的要求,例如,可應用於保暖衣料。微膠囊化相變化材料可以很好地解決固-液相變化過程中極易熔融流動、滲透遷移、相分離、腐蝕等嚴重問題,經殼層材料包埋保護後,相變化材料與外界環境相分離而得以穩定,同時,聚合物殼層材料或經改質的殼層材料大大增加了相變化材料與基體材料的相容性,從而大大增加了相變化材料的實用性。然而,微膠囊的囊壁的強度不足、相變化材料滲漏以及耐熱性尚待提高,特別是成本較高,皆是目前業界急需解決之問題。The microencapsulated phase change material is a composite phase change material having a core-shell structure by coating a surface of a solid-liquid phase change material particle with a polymer film or an inorganic material with a stable performance by using a microcapsule technique. In the phase change process of the microencapsulated phase change material, the core undergoes a solid-liquid phase change, and the polymer film of the outer layer remains solid, so the phase change material is macroscopically solid particles. The chemical preparation methods of phase change microcapsules mainly include in-situ polymerization, interface polymerization, reaction phase separation, interface deposition and complex coacervation. The properties of the shells obtained by different preparation methods are different. With the development of polymer science, microencapsulation technology has gradually matured. Therefore, phase change energy storage microcapsule materials have received extensive attention and research due to their special properties and uses. The heat-absorbing and exothermic heat storage principle of phase-change microcapsules is equivalent to a “heat battery”. The encapsulation of micro-containers transforms phase-change materials into numerous tiny working units, thus greatly expanding the application of phase-change materials. Fields and occasions. An article incorporating phase change microcapsules establishes a microclimate environment around which the melting point of the phase change material is employed, thereby satisfying the requirements for temperature comfort, for example, for warm clothing. The microencapsulated phase change material can well solve the serious problems of melt flow, osmotic migration, phase separation and corrosion during the solid-liquid phase change process. After the shell material is embedded and protected, the phase change material and the external environment are phased. Separation and stabilization, at the same time, the polymer shell material or the modified shell material greatly increases the compatibility of the phase change material with the matrix material, thereby greatly increasing the practicability of the phase change material. However, the insufficient strength of the capsule wall of the microcapsule, the leakage of the phase change material, and the heat resistance have to be improved, especially the high cost, which is an urgent problem to be solved in the industry.
有鑑於此,本發明的目的是提供一種利用切短的天然微管包埋相變化材料的相變化微膠囊及其製備方法。In view of the above, it is an object of the present invention to provide a phase change microcapsule utilizing a chopped natural microtube embedding phase change material and a method of preparing the same.
本發明所提供的相變化微膠囊,係包含相變化材料、切短的微管和聚合物;其中所述切短的微管是將中空管狀天然纖維切成長度為0.1mm-5cm的纖維段;所述中空管狀天然纖維的直徑為0.1-1000μm,相變化材料包埋在所述切短的微管中,切短的微管以所述聚合物包埋。The phase change microcapsule provided by the invention comprises a phase change material, a chopped micro tube and a polymer; wherein the chopped micro tube is a fiber segment cut into a length of 0.1 mm to 5 cm. The hollow tubular natural fiber has a diameter of 0.1 to 1000 μm, a phase change material is embedded in the chopped microtube, and the chopped microtube is embedded in the polymer.
所述天然纖維其例如但不限於選自:木棉纖維、乳草纖維、絲瓜纖維、竹纖維、天竹纖維、亞麻纖維、羊毛、羽絨、及其混合物所組成之群組。The natural fibers are, for example but not limited to, selected from the group consisting of kapok fibers, milk grass fibers, loofah fibers, bamboo fibers, diatom fibers, flax fibers, wool, down, and mixtures thereof.
所述相變化材料可為下述1)和2)中的至少一者:1)為固-液相變化材料,2)為固-固相變化材料;所述固-液相變化材料可為下述a)和b)中的至少一者:a)為無機相變化材料,b)為有機相變化材料;其中,所述無機相變化材料可為結晶水合鹽和/或熔融鹽。所述結晶水合鹽可為鹼金屬或鹼土金屬的鹵化物、硫酸鹽、磷酸鹽、硝酸鹽、醋酸鹽或碳酸鹽中的任一者或其任意組合,其例如但不限於Na2 sO4 ‧10H2 O、Na2 HPO4 ‧12H2 O、CaCl2 ‧6H2 O、SnCl‧6H2 O等;所述熔融鹽可為K2 WO4 和/或K2 MoO4 等。The phase change material may be at least one of the following 1) and 2): 1) a solid-liquid phase change material, 2) a solid-solid phase change material; and the solid-liquid phase change material may be At least one of the following a) and b): a) is an inorganic phase change material, and b) is an organic phase change material; wherein the inorganic phase change material may be a crystalline hydrated salt and/or a molten salt. The crystalline hydrated salt may be any one or any combination of an alkali metal or alkaline earth metal halide, sulfate, phosphate, nitrate, acetate or carbonate, such as, but not limited to, Na 2 sO 4 ‧ 10H 2 O, Na 2 HPO 4 ‧12H 2 O, CaCl 2 ‧6H 2 O, SnCl‧6H 2 O, etc.; the molten salt may be K 2 WO 4 and/or K 2 MoO 4 or the like.
所述有機相變化材料其例如但不限於選自:高級脂肪烴、高級脂肪酸、高級脂肪酸酯、高級脂肪酸的鹽、高級脂肪醇、芳香烴、芳香酮、芳香醯胺、氟氯烷、多羰基碳酸、結晶高分子、及其混合物所構成之群組。The organic phase change material is, for example but not limited to, selected from the group consisting of: higher aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, higher fatty acid salts, higher aliphatic alcohols, aromatic hydrocarbons, aromatic ketones, aromatic guanamines, chlorofluorocarbons, and more. A group consisting of carbonyl carbonate, crystalline polymer, and mixtures thereof.
高級脂肪烴通常是含6個以上碳原子的脂肪烴,較佳為6~36個碳原子。高級脂肪酸通常指含C6~C26的一元羧酸。The higher aliphatic hydrocarbon is usually an aliphatic hydrocarbon having 6 or more carbon atoms, preferably 6 to 36 carbon atoms. Higher fatty acids generally refer to monocarboxylic acids containing C6 to C26.
所述高級脂肪烴為下述十六種物質中的任一者或其任意組合:正二十八烷、正二十七烷、正二十六烷、正二十五烷、正二十四烷、正二十三烷、正二十二烷、正二十一烷、正二十烷、正十九烷、正十八烷、正十七烷、正十六烷、正十五烷、正十四烷和正十三烷;所述結晶高分子為密度高於0.94g/cm3 的高密度聚乙烯、聚乙二烯或結晶聚氯乙烯。The higher aliphatic hydrocarbon is any one of the following sixteen substances or any combination thereof: n-octacosane, n-heptadecane, n-hexadecane, n-pentadecane, n. Alkane, n-docosane, n-docosane, n-docosane, n-icosane, n-nonadecane, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, N-tetradecane and n-tridecane; the crystalline polymer is high density polyethylene, polyvinylidene or crystalline polyvinyl chloride having a density higher than 0.94 g/cm 3 .
所述固-固相變材料其例如但不限於選自:無機鹽、多元醇、高分子交聯樹脂及其混合物所組成之群組。The solid-solid phase change material is, for example but not limited to, selected from the group consisting of inorganic salts, polyols, polymer crosslinked resins, and mixtures thereof.
其中,所述無機鹽可為Li2 SO4 和/或KHF2 ;所述多元醇可為下述六種物質中的任一者或其任意組合:季戊四醇(PE)、2,2-二羥甲基丙醇(PG)、新戊二醇(NPG)、2-氨基-2-甲基-1,3-丙二醇、三羥甲基乙烷和三羥甲基氨基甲烷;所述高分子交聯樹脂為交聯聚烯烴、交聯聚縮醛、交聯聚烯烴和交聯聚縮醛的共聚物或交聯聚烯烴和交聯聚縮醛的共混物。Wherein, the inorganic salt may be Li 2 SO 4 and/or KHF 2 ; the polyol may be any one of the following six substances or any combination thereof: pentaerythritol (PE), 2,2-dihydroxyl Methyl propanol (PG), neopentyl glycol (NPG), 2-amino-2-methyl-1,3-propanediol, trimethylolethane and trishydroxymethylaminomethane; The co-resin is a copolymer of crosslinked polyolefin, crosslinked polyacetal, crosslinked polyolefin and crosslinked polyacetal or a blend of crosslinked polyolefin and crosslinked polyacetal.
所述聚合物可為下述十種聚合物中的任一者或其任意共聚物或其任意共混物:脲醛樹脂、三聚氰胺-甲醛樹脂、三聚氰胺脲醛樹脂、聚胺基甲酸酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、酚醛樹脂、環氧樹脂、聚丙烯腈或醋酸纖維素。The polymer may be any one of the following ten polymers or any copolymer thereof or any blend thereof: urea-formaldehyde resin, melamine-formaldehyde resin, melamine urea-formaldehyde resin, polyurethane, polymethyl Methyl methacrylate, polyethyl methacrylate, phenolic resin, epoxy resin, polyacrylonitrile or cellulose acetate.
本發明所提供的製備切短微管包埋的相變化材料的微膠囊的方法,包括以下步驟:The method for preparing microcapsules for cutting short microtubule-embedded phase change materials provided by the invention comprises the following steps:
1)芯材相變化材料的液化1) Liquefaction of core material phase change materials
將相變化材料加熱到熔點以上或用溶劑溶解得到液態的相變材料;Heating the phase change material to above the melting point or dissolving with a solvent to obtain a liquid phase change material;
2)以液態相變化材料填充切短的天然微管2) Fill the chopped natural microtubules with a liquid phase change material
將切短的天然微管分散於步驟1)的液態相變化材料中,浸泡,經過毛細吸收使所述天然微管內充滿液態的相變化材料;Dispersing the short natural microtubes in the liquid phase change material of step 1), soaking, and absorbing the capillary to fill the natural microtubes with a liquid phase change material;
3)微膠囊化相變化材料的包埋3) Encapsulation of microencapsulated phase change materials
用聚合物包埋步驟2)中填充了相變化材料的微管,得到了所述的相變化材料的微膠囊。The microcapsules filled with the phase change material in step 2) are embedded with a polymer to obtain microcapsules of the phase change material.
所述方法還包括將所得的相變化材料的微膠囊表面所吸附的相變化材料洗掉的步驟。The method also includes the step of washing away the phase change material adsorbed on the surface of the microcapsule of the resulting phase change material.
所述溶劑其例如但不限於選自:去離子水、N,N’-二甲基甲醯胺、N,N’-二甲基乙醯胺、四氫呋喃、二氯甲烷、三氯甲烷、環己烷、甲醇、乙醇、丙酮及其混合物所組成之群組。The solvent is, for example but not limited to, selected from the group consisting of: deionized water, N,N'-dimethylformamide, N,N'-dimethylacetamide, tetrahydrofuran, dichloromethane, chloroform, ring A group consisting of hexane, methanol, ethanol, acetone, and mixtures thereof.
本發明與現有的微膠囊化相變化材料包埋技術相比具有如下之有益效果:Compared with the existing microencapsulated phase change material embedding technology, the invention has the following beneficial effects:
1、本發明採用的包埋管是廉價易得的天然微管。例如,木棉纖維是一種具有比表面積大且中空度大的的天然纖維,其中空度高達80~90%,是現有的人造纖維難以達到的,因此應用於製造相變化儲能材料比人造纖維更具有優勢;且木棉纖維熱穩定性好,在250℃下基本上是不會發生熱降解。同時,木棉纖維的化學穩定性較好,只在高濃度的強酸中才可溶解。1. The embedding tube used in the present invention is a natural micro tube which is cheap and easy to obtain. For example, kapok fiber is a kind of natural fiber with large specific surface area and large hollowness, wherein the emptyness is as high as 80-90%, which is difficult to achieve by existing man-made fibers, so it is more suitable for manufacturing phase change energy storage materials than man-made fibers. It has advantages; and the kapok fiber has good thermal stability, and substantially no thermal degradation occurs at 250 °C. At the same time, kapok fiber has good chemical stability and can be dissolved only in high concentration of strong acid.
2、利用切短的具有比表面積大之微孔結構的天然微管作為支撐材料,經過微孔的毛細作用力,將液態的有機相變化儲熱材料或無機相變化儲熱材料(高於相變溫度條件下)吸入到微孔內,形成有機相變化儲熱材料、無機相變化儲熱材料、或有機和無機所組成之複合相變化儲熱材料。當上述相變化儲熱材料在微孔內發生固-液相變化時,由於毛細管力的作用,液態的相變化儲熱材料很難從微孔中溢出。2. Using a short natural micro-tube having a microporous structure with a large specific surface area as a supporting material, the liquid organic phase changes the heat storage material or the inorganic phase change heat storage material (above the phase) through the capillary force of the micropores. Under variable temperature conditions, it is sucked into the micropores to form an organic phase change heat storage material, an inorganic phase change heat storage material, or a composite phase change heat storage material composed of organic and inorganic. When the phase change heat storage material undergoes a solid-liquid phase change in the micropores, the liquid phase change heat storage material hardly overflows from the micropores due to the capillary force.
3、雖然毛細力作用在一定程度上解決了固-液相變化材料的流動性問題,但其仍為一個“開放”的包裹體系,所以可進一步用聚合物對微膠囊化的已吸附了相變化材料的微管封壁、封端。3. Although the capillary action solves the fluidity problem of the solid-liquid phase change material to a certain extent, it is still an "open" package system, so the polymer can be further used to microcapsule the adsorbed phase. Microtubules of varying materials are sealed and capped.
4、由於微管的中空度大使其儲能密度大,封閉結構使能量傳輸穩定,極細的微米級管狀結構使傳熱迅速,熱及化學穩定性有利於長期使用,特殊的親油疏水的浸潤性能在加工過程中可被利用。4. Due to the large hollowness of the microtube, the energy storage density is large, the closed structure makes the energy transmission stable, and the extremely fine micron-sized tubular structure makes the heat transfer rapid, the thermal and chemical stability is favorable for long-term use, and the special lipophilic hydrophobic infiltration Performance can be utilized during processing.
5、微膠囊化的相變化材料形態在實際技術過程中能更好地分散在基體材料中。與基體材料混合後,微米級的膠囊化相變化材料尺寸可以保持製品的外觀不受影響。5. The microencapsulated phase change material morphology can be better dispersed in the matrix material in the actual technical process. After mixing with the matrix material, the micron-sized encapsulated phase change material size can maintain the appearance of the article unaffected.
實施例1、製備以天然木棉纖維管包埋石蠟並用脲醛樹脂包埋的相變化微膠囊Example 1. Preparation of phase change microcapsules embedding paraffin wax with natural kapok fiber tube and embedding with urea-formaldehyde resin
(1)芯材相變化材料的液化(1) Liquefaction of core material phase change materials
將有機相變化材料石蠟加熱到熔點60℃以上獲得液態的石蠟相變化材料;Heating the organic phase change material paraffin to a melting point of 60 ° C or more to obtain a liquid paraffin phase change material;
(2)以液態相變化材料填充切短的天然微管(2) filling the chopped natural microtubules with a liquid phase change material
將1g長度為10-50μm的天然木棉纖維(切短的微管)分散於10mL步驟(1)的液態相變化材料中,浸泡使毛細吸收達到平衡,使木棉纖維管內充滿液態的相變化材料;1g of natural kapok fiber (short microtubule) with a length of 10-50μm is dispersed in 10mL of the liquid phase change material of step (1), soaked to balance the capillary absorption, and the kapok fiber tube is filled with liquid phase change material. ;
(3)微膠囊化相變化材料的包埋(3) Encapsulation of microencapsulated phase change materials
直接在步驟(2)填充了相變化材料的天然木棉纖維的熔體中滴加2g尿素甲醛預聚物(將1g尿素加到2ml的36%甲醛水溶液中並攪拌到完全溶解,且受熱至60℃,並保溫15分鐘而得到的),提高熔體溫度到97~98℃,反應1小時。在木棉纖維周圍生成脲醛樹脂聚合物進而產生相分離而沉積,使微膠囊化的相變化材料被脲醛樹脂包埋;2 g of urea formaldehyde prepolymer was added dropwise directly to the melt of the natural kapok fiber filled with the phase change material in step (2) (1 g of urea was added to 2 ml of 36% aqueous formaldehyde solution and stirred until completely dissolved, and heated to 60 °C, and kept for 15 minutes), increase the melt temperature to 97~98 ° C, and react for 1 hour. Forming a urea-formaldehyde resin polymer around the kapok fiber to cause phase separation and deposition, so that the microencapsulated phase change material is embedded by the urea-formaldehyde resin;
(4)微膠囊化相變化材料的純化(4) Purification of microencapsulated phase change materials
將步驟(3)中以脲醛樹脂包埋的吸滿了相變化材料的微管撈出,再放入熱水中洗去管間吸附的相變化材料後晾乾,即形成微膠囊化相變化材料。The microtubes filled with the phase change material embedded in the urea resin in the step (3) are removed, and then placed in the hot water to wash away the phase change material adsorbed between the tubes, and then dried to form a microcapsule phase change. material.
相變化材料在迴圈升降溫下的DSC曲線如圖1所示,掃描電子顯微鏡照片如圖2所示。The DSC curve of the phase change material at the temperature of the loop rise and fall is shown in Fig. 1, and the scanning electron microscope photograph is shown in Fig. 2.
由圖1可知相變化微膠囊在迴圈升降溫下具有很好的可迴圈相變化儲能效果。It can be seen from Fig. 1 that the phase change microcapsules have a good energy-recoverable phase change energy storage effect under the temperature of the loop.
由圖2可知裝填了石蠟的膠囊化木棉纖維微管經過脲醛樹脂包埋後形成了膠囊化相變化材料。It can be seen from Fig. 2 that the encapsulated kapok fiber microtube filled with paraffin is embedded in urea-formaldehyde resin to form an encapsulated phase change material.
實施例2、製備以天然乳草纖維包埋季戊四醇並用醋酸纖維素包埋的相變化微膠囊Example 2: Preparation of phase change microcapsules embedding pentaerythritol with natural milk grass fibers and embedding with cellulose acetate
(1)芯材相變化材料的液化(1) Liquefaction of core material phase change materials
將有機相變化材料季戊四醇(PE)溶解於少量乙醇中獲得液態的季戊四醇(PE)溶液相變化材料;Dissolving the organic phase change material pentaerythritol (PE) in a small amount of ethanol to obtain a liquid pentaerythritol (PE) solution phase change material;
(2)以液態相變化材料填充切短的天然微管(2) filling the chopped natural microtubules with a liquid phase change material
將1g長度為0.5-10μm的天然乳草纖維分散於10mL步驟(1)的液態相變化材料中,浸泡使毛細吸收達到平衡,使乳草纖維管內充滿液態的相變化材料;Dispersing 1 g of natural milkweed fiber with a length of 0.5-10 μm in 10 mL of the liquid phase change material of step (1), soaking to balance the capillary absorption, and filling the milk fiber tube with a liquid phase change material;
(3)微膠囊化相變化材料的包埋(3) Encapsulation of microencapsulated phase change materials
將步驟(2)得到的含有乙醇溶劑的相變化材料微膠囊中的乙醇揮發掉,使相變化材料季戊四醇(PE)溶液濃縮固化後浸漬於5mL濃度為5重量%的醋酸纖維素的二氯甲烷溶液中,利用介面沉積反應使微膠囊化的相變化材料被醋酸纖維素包埋;The ethanol in the phase change material microcapsules containing the ethanol solvent obtained in the step (2) is volatilized, and the phase change material pentaerythritol (PE) solution is concentrated and solidified, and then immersed in 5 mL of 5% by weight cellulose acetate in methylene chloride. In the solution, the microencapsulated phase change material is embedded in cellulose acetate by an interface deposition reaction;
(4)微膠囊化相變化材料的純化(4) Purification of microencapsulated phase change materials
將步驟(3)中以醋酸纖維素包埋的填充了相變化材料的乳草纖維,撈起後晾乾,即形成微膠囊化相變化材料。The milkweed fiber filled with the phase change material embedded in cellulose acetate in the step (3) is picked up and dried to form a microencapsulated phase change material.
此方法製備的相變化微膠囊在迴圈升降溫下具有很好的可迴圈相變化儲能效果,並且裝填了季戊四醇(PE)的膠囊化乳草纖維微管經過醋酸纖維素包埋後形成分散性較好的膠囊化相變化材料。The phase change microcapsules prepared by the method have a good energy storage effect of the loopable phase change at the temperature of the loop, and the encapsulated milkweed fiber microtubule filled with pentaerythritol (PE) is formed by embedding cellulose acetate. A well-dispersible encapsulated phase change material.
實施例3、製備以天然竹纖維包埋CaCl2 ‧6H2 O並用醋酸纖維素包埋的相變化微膠囊Example 3, preparing phase change microcapsules embedded with natural bamboo fiber CaCl 2 ‧6H 2 O and embedded with cellulose acetate
(1)芯材相變化材料的液化(1) Liquefaction of core material phase change materials
將1g無機相變化材料CaCl2 ‧6H2 O溶解於10mL去離子水中獲得液態的CaCl2 ‧6H2 O溶液相變化材料;Dissolving 1 g of the inorganic phase change material CaCl 2 ‧6H 2 O in 10 mL of deionized water to obtain a liquid CaCl 2 ‧6H 2 O solution phase change material;
(2)以液態相變化材料填充切短的天然微管(2) filling the chopped natural microtubules with a liquid phase change material
將1g長度為500-1000μm的天然竹纖維分散於10mL步驟(1)的液態相變化材料中,浸泡使毛細吸收達到平衡,使竹纖維管內充滿液態的相變化材料;Dispersing 1 g of natural bamboo fiber having a length of 500-1000 μm in 10 mL of the liquid phase change material of the step (1), soaking to balance the capillary absorption, and filling the bamboo fiber tube with the liquid phase change material;
(3)微膠囊化相變化材料的包埋(3) Encapsulation of microencapsulated phase change materials
將步驟(2)得到的含有去離子水的相變化材料微膠囊中的去離子水揮發掉,使相變化材料CaCl2 ‧6H2 O溶液濃縮固化後浸漬於10mL濃度為5重量%的醋酸纖維素的二氯甲烷溶液中,利用介面沉積反應使微膠囊化的相變化材料被醋酸纖維素包埋;Deionized water in the phase change material microcapsules containing deionized water obtained in the step (2) is volatilized, and the phase change material CaCl 2 ‧6H 2 O solution is concentrated and solidified, and then immersed in 10 mL of 5% by weight cellulose acetate In the methylene chloride solution, the microencapsulated phase change material is embedded in cellulose acetate by an interface deposition reaction;
(4)微膠囊化相變化材料的純化(4) Purification of microencapsulated phase change materials
將步驟(3)中以醋酸纖維素包埋的填充了相變化材料的竹纖維,撈起後晾乾,即形成微膠囊化相變化材料。The bamboo fiber filled with the phase change material embedded in cellulose acetate in the step (3) is picked up and dried to form a microencapsulated phase change material.
此方法製備的相變化微膠囊在迴圈升降溫下具有很好的可迴圈相變化儲能效果,並且裝填了無機相變化材料CaCl2 ‧6H2 O的膠囊化竹纖維微管經過醋酸纖維素包埋後形成分散性較好的膠囊化相變化材料。The phase change microcapsules prepared by the method have good reversible phase change energy storage effect under the loop temperature and the encapsulated bamboo fiber microtubes filled with the inorganic phase change material CaCl 2 ‧6H 2 O through the acetate fiber After embedding, a capsule phase change material with better dispersibility is formed.
實施例4、製備以天然亞麻纖維包埋季戊四醇和Li2 SO4 並用聚丙烯腈包埋的相變化微膠囊Example 4, preparing phase change microcapsules embedding pentaerythritol and Li 2 SO 4 with natural flax fibers and embedding with polyacrylonitrile
(1)芯材相變化材料的液化(1) Liquefaction of core material phase change materials
將10g有機相變化材料季戊四醇(PE)和10g無機相變化材料Li2 SO4 溶解於10mL去離子水和酒精的等體積混合溶液中獲得液態的有機/無機混合相變化材料;Dissolving 10 g of organic phase change material pentaerythritol (PE) and 10 g of inorganic phase change material Li 2 SO 4 in 10 mL of an equal volume mixture of deionized water and alcohol to obtain a liquid organic/inorganic mixed phase change material;
(2)以液態相變化材料填充切短的天然微管(2) filling the chopped natural microtubules with a liquid phase change material
將5g長度為100-500μm的天然亞麻纖維分散於10mL步驟(1)的液態相變化材料中,浸泡使毛細吸收達到平衡,使亞麻纖維管內充滿液態的相變化材料;5g of natural flax fiber having a length of 100-500 μm is dispersed in 10 mL of the liquid phase change material of the step (1), soaked to balance the capillary absorption, and the flax fiber tube is filled with the liquid phase change material;
(3)微膠囊化相變化材料的包埋(3) Encapsulation of microencapsulated phase change materials
將步驟(2)得到的含有去離子水和酒精溶劑的相變化材料微膠囊中的去離子水和酒精揮發掉,使相變化材料季戊四醇(PE)和Li2 SO4 的混合溶液濃縮固化後浸漬於5mL濃度為5重量%的聚丙烯腈的N,N’-二甲基甲醯胺溶液中,利用介面沉積反應,使微膠囊化的相變化材料被聚丙烯腈包埋;Deionized water and alcohol in the phase change material microcapsules containing deionized water and alcohol solvent obtained in the step (2) are volatilized, and the mixed solution of the phase change material pentaerythritol (PE) and Li 2 SO 4 is concentrated and solidified and then impregnated. The microencapsulated phase change material is embedded in polyacrylonitrile by using an interfacial deposition reaction in 5 mL of a 5 wt% polyacrylonitrile solution of N,N'-dimethylformamide;
(4)微膠囊化相變化材料的純化(4) Purification of microencapsulated phase change materials
將步驟(3)中被聚丙烯腈包埋的填充了相變化材料的亞麻纖維,撈起後浸入去離子水中使聚丙烯腈固化,然後晾乾。The flax fiber filled with the phase change material embedded in the polyacrylonitrile in the step (3) is picked up, immersed in deionized water to cure the polyacrylonitrile, and then air-dried.
此方法製備的相變化微膠囊在迴圈升降溫下具有很好的可迴圈相變化儲能效果,並且裝填了相變化材料季戊四醇(PE)和Li2 SO4 的膠囊化天然亞麻纖維微管經過聚丙烯腈包埋後形成分散性較好的膠囊化相變化材料。The phase change microcapsules prepared by the method have a good energy recovery effect of the loopable phase change at the temperature of the loop, and the encapsulated natural flax fiber microtubules filled with the phase change materials pentaerythritol (PE) and Li 2 SO 4 . After being embedded in polyacrylonitrile, a capsule phase change material having good dispersibility is formed.
圖1為實施例1製備的相變化微膠囊在迴圈升降溫下的DSC曲線圖。1 is a DSC graph of phase change microcapsules prepared in Example 1 at a loop temperature.
圖2為實施例1製備的相變化微膠囊掃描電子顯微鏡照片,其中a)切短的天然木棉纖維管;b)和c)裝填了石蠟的膠囊化木棉纖維微管;d)以脲醛樹脂進一步包埋後的膠囊化石蠟填充木棉纖維管。Figure 2 is a scanning electron micrograph of a phase change microcapsule prepared in Example 1, wherein a) a chopped natural kapok fiber tube; b) and c) a paraffin-filled encapsulated kapok fiber microtube; d) a urea resin further The encapsulated paraffin wax is embedded in the kapok fiber tube.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98127860A TWI411464B (en) | 2009-08-19 | 2009-08-19 | Microcapsule of phase change materials encapsulated with natural microtubule and their production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98127860A TWI411464B (en) | 2009-08-19 | 2009-08-19 | Microcapsule of phase change materials encapsulated with natural microtubule and their production |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107031A TW201107031A (en) | 2011-03-01 |
TWI411464B true TWI411464B (en) | 2013-10-11 |
Family
ID=44835120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98127860A TWI411464B (en) | 2009-08-19 | 2009-08-19 | Microcapsule of phase change materials encapsulated with natural microtubule and their production |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI411464B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257839B (en) * | 2016-12-29 | 2019-10-08 | 中微半导体设备(上海)股份有限公司 | A kind of reaction chamber for wafer-process |
GB2578987B (en) | 2017-09-01 | 2023-02-08 | Rogers Corp | Fusible phase-change powders for thermal management, methods of manufacture thereof, and articles containing the powders |
CN113088126B (en) * | 2021-05-24 | 2022-03-22 | 中国科学院宁波材料技术与工程研究所 | Microcapsule, microcapsule scale and/or fiber, and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936169A (en) * | 2006-10-18 | 2007-03-28 | 东华大学 | Bombax cotton phase-change material production method |
CN101328400A (en) * | 2007-06-22 | 2008-12-24 | 中国科学院化学研究所 | Phase-change material of natural kawo fiber pipe encapsulation and encapsulation method thereof |
-
2009
- 2009-08-19 TW TW98127860A patent/TWI411464B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936169A (en) * | 2006-10-18 | 2007-03-28 | 东华大学 | Bombax cotton phase-change material production method |
CN101328400A (en) * | 2007-06-22 | 2008-12-24 | 中国科学院化学研究所 | Phase-change material of natural kawo fiber pipe encapsulation and encapsulation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201107031A (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180171B2 (en) | Phase change materials encapsulated in natural microtubules and their preparation | |
Zhou et al. | Recent advances in organic/composite phase change materials for energy storage | |
Huang et al. | Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review | |
Alehosseini et al. | Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management | |
Zhang et al. | Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: a review | |
Wu et al. | Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management | |
Ghosh et al. | Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect | |
Vakhshouri | Paraffin as phase change material | |
Chang et al. | Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage | |
Zhang et al. | Latent heat thermal energy storage systems with solid–liquid phase change materials: a review | |
Pielichowska et al. | Phase change materials for thermal energy storage | |
CN100593559C (en) | Phase-change material of natural kawo fiber pipe encapsulation and encapsulation method thereof | |
CN102504766B (en) | Phase-change energy-storage microcapsule, and preparation method and application thereof | |
Wang et al. | Review of encapsulated salt hydrate core-shell phase change materials | |
Kim et al. | Recent progress in PEG-based composite phase change materials | |
Yang et al. | Review on organic phase change materials for sustainable energy storage | |
TWI411464B (en) | Microcapsule of phase change materials encapsulated with natural microtubule and their production | |
kumar Dubey et al. | Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: an approach towards net zero | |
CN105838331B (en) | A kind of diatomite base composite phase-change heat accumulation ball, preparation method and purposes | |
CN105754554A (en) | Nano TiO2-containing cellulose-based low-temperature phase change energy storage microcapsule and preparation method thereof | |
Yuan et al. | Review on Thermal Properties with Influence Factors of Solid–Liquid Organic Phase-Change Micro/Nanocapsules | |
Yadav et al. | A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications | |
Chaudhari et al. | A review on microencapsulated phase change materials in building materials | |
CN108360082B (en) | Multi-walled carbon nanotube modified composite phase change material capable of being woven and preparation method thereof | |
Fu et al. | Thermal properties and applications of form‐stable phase change materials for thermal energy storage and thermal management: A review |