US20100029896A1 - Novel Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst - Google Patents
Novel Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst Download PDFInfo
- Publication number
- US20100029896A1 US20100029896A1 US12/458,998 US45899809A US2010029896A1 US 20100029896 A1 US20100029896 A1 US 20100029896A1 US 45899809 A US45899809 A US 45899809A US 2010029896 A1 US2010029896 A1 US 2010029896A1
- Authority
- US
- United States
- Prior art keywords
- anion
- alkyl
- complex
- independently represent
- chemical formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 124
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 50
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 47
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 44
- 238000007334 copolymerization reaction Methods 0.000 title claims abstract description 25
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 20
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 20
- 150000002118 epoxides Chemical class 0.000 title abstract description 30
- 230000008569 process Effects 0.000 title description 11
- -1 epoxide compound Chemical class 0.000 claims abstract description 176
- 239000003446 ligand Substances 0.000 claims abstract description 120
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 229920001577 copolymer Polymers 0.000 claims abstract description 36
- 239000000126 substance Substances 0.000 claims description 123
- 150000001875 compounds Chemical class 0.000 claims description 119
- 150000001450 anions Chemical class 0.000 claims description 110
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 99
- 238000006243 chemical reaction Methods 0.000 claims description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 58
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 56
- 229910052760 oxygen Inorganic materials 0.000 claims description 56
- 239000002184 metal Substances 0.000 claims description 51
- 150000003839 salts Chemical class 0.000 claims description 50
- 229910052717 sulfur Inorganic materials 0.000 claims description 48
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 44
- 239000001301 oxygen Substances 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims description 42
- 125000002947 alkylene group Chemical group 0.000 claims description 41
- 239000007787 solid Substances 0.000 claims description 40
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 229910052736 halogen Inorganic materials 0.000 claims description 32
- 150000002367 halogens Chemical class 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 30
- 125000004437 phosphorous atom Chemical group 0.000 claims description 28
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 claims description 27
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 239000011593 sulfur Substances 0.000 claims description 26
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 23
- 239000002861 polymer material Substances 0.000 claims description 23
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 23
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 claims description 22
- 125000004450 alkenylene group Chemical group 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 22
- 125000004419 alkynylene group Chemical group 0.000 claims description 22
- 125000000732 arylene group Chemical group 0.000 claims description 22
- 229910001914 chlorine tetroxide Inorganic materials 0.000 claims description 19
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 19
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 19
- 229910010272 inorganic material Inorganic materials 0.000 claims description 17
- 239000011147 inorganic material Substances 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 15
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 125000001424 substituent group Chemical group 0.000 claims description 15
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 14
- 125000005842 heteroatom Chemical group 0.000 claims description 12
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 12
- 150000003254 radicals Chemical class 0.000 claims description 12
- UFBJCMHMOXMLKC-UHFFFAOYSA-M 2,4-dinitrophenol(1-) Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-M 0.000 claims description 11
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical group Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 11
- 239000000460 chlorine Substances 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- 125000005843 halogen group Chemical group 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 claims description 10
- JAWGVVJVYSANRY-UHFFFAOYSA-N cobalt(3+) Chemical group [Co+3] JAWGVVJVYSANRY-UHFFFAOYSA-N 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 10
- 229910052752 metalloid Inorganic materials 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 9
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 9
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 9
- 125000004434 sulfur atom Chemical group 0.000 claims description 9
- 125000000524 functional group Chemical group 0.000 claims description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 8
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 7
- 239000003377 acid catalyst Substances 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 230000005595 deprotonation Effects 0.000 claims description 6
- 238000010537 deprotonation reaction Methods 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- 238000005649 metathesis reaction Methods 0.000 claims description 6
- 125000002030 1,2-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 238000010669 acid-base reaction Methods 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 150000002989 phenols Chemical class 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 239000011973 solid acid Substances 0.000 claims description 4
- 125000006651 (C3-C20) cycloalkyl group Chemical group 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 3
- 125000003158 alcohol group Chemical group 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- NPDLYUOYAGBHFB-WDSKDSINSA-N Asn-Arg Chemical compound NC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CCCN=C(N)N NPDLYUOYAGBHFB-WDSKDSINSA-N 0.000 claims description 2
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical group C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 claims description 2
- 125000003172 aldehyde group Chemical group 0.000 claims description 2
- 238000007866 imination reaction Methods 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims 5
- 125000002843 carboxylic acid group Chemical group 0.000 claims 1
- 125000000542 sulfonic acid group Chemical group 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 28
- 150000003863 ammonium salts Chemical class 0.000 abstract description 5
- 238000010960 commercial process Methods 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 123
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 93
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 82
- 239000002904 solvent Substances 0.000 description 74
- 239000000243 solution Substances 0.000 description 57
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 46
- 238000005160 1H NMR spectroscopy Methods 0.000 description 44
- 0 *C1=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=CC2=C1O[Co]13(C)OC4=C(C=C(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C4*)C([H])=N1[C@H]1CCCC[C@@H]1N3=C2 Chemical compound *C1=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=CC2=C1O[Co]13(C)OC4=C(C=C(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C4*)C([H])=N1[C@H]1CCCC[C@@H]1N3=C2 0.000 description 41
- 238000002360 preparation method Methods 0.000 description 39
- 238000006116 polymerization reaction Methods 0.000 description 38
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- 150000002466 imines Chemical class 0.000 description 28
- 239000011541 reaction mixture Substances 0.000 description 27
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 26
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 238000004009 13C{1H}-NMR spectroscopy Methods 0.000 description 22
- 229910017052 cobalt Inorganic materials 0.000 description 22
- 239000012299 nitrogen atmosphere Substances 0.000 description 21
- 239000010941 cobalt Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 238000005481 NMR spectroscopy Methods 0.000 description 17
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 239000012044 organic layer Substances 0.000 description 15
- WYURNTSHIVDZCO-SVYQBANQSA-N oxolane-d8 Chemical compound [2H]C1([2H])OC([2H])([2H])C([2H])([2H])C1([2H])[2H] WYURNTSHIVDZCO-SVYQBANQSA-N 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 230000009467 reduction Effects 0.000 description 13
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 12
- VEUMANXWQDHAJV-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCN=CC1=CC=CC=C1O VEUMANXWQDHAJV-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 229940126543 compound 14 Drugs 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 230000006698 induction Effects 0.000 description 11
- 230000010354 integration Effects 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 10
- WBLIXGSTEMXDSM-UHFFFAOYSA-N chloromethane Chemical compound Cl[CH2] WBLIXGSTEMXDSM-UHFFFAOYSA-N 0.000 description 10
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 10
- 238000002204 nitrogen-15 nuclear magnetic resonance spectrum Methods 0.000 description 10
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011369 resultant mixture Substances 0.000 description 9
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 9
- 230000006399 behavior Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 238000003775 Density Functional Theory Methods 0.000 description 7
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 238000004440 column chromatography Methods 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000037048 polymerization activity Effects 0.000 description 6
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- JMOHQJVXBQAVNW-UHFFFAOYSA-M sodium;2,4-dinitrophenolate Chemical compound [Na+].[O-]C1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O JMOHQJVXBQAVNW-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000002484 cyclic voltammetry Methods 0.000 description 5
- 238000002329 infrared spectrum Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- SMQUZDBALVYZAC-UHFFFAOYSA-N ortho-hydroxybenzaldehyde Natural products OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000004834 15N NMR spectroscopy Methods 0.000 description 4
- 239000002262 Schiff base Substances 0.000 description 4
- 150000004753 Schiff bases Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- VZHHNBNSMNNUAD-UHFFFAOYSA-N cobalt 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol Chemical compound [Co].OC1=CC=CC=C1C=NCCN=CC1=CC=CC=C1O VZHHNBNSMNNUAD-UHFFFAOYSA-N 0.000 description 4
- 229940125773 compound 10 Drugs 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000003480 eluent Substances 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 229910001494 silver tetrafluoroborate Inorganic materials 0.000 description 4
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 4
- 230000007306 turnover Effects 0.000 description 4
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 3
- ITOFPJRDSCGOSA-KZLRUDJFSA-N (2s)-2-[[(4r)-4-[(3r,5r,8r,9s,10s,13r,14s,17r)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H](CC[C@]13C)[C@@H]2[C@@H]3CC[C@@H]1[C@H](C)CCC(=O)N[C@H](C(O)=O)CC1=CNC2=CC=CC=C12 ITOFPJRDSCGOSA-KZLRUDJFSA-N 0.000 description 3
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 3
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 3
- 238000004293 19F NMR spectroscopy Methods 0.000 description 3
- 238000001026 1H--1H correlation spectroscopy Methods 0.000 description 3
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 3
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 3
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 3
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 3
- 229940126657 Compound 17 Drugs 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 3
- 238000005349 anion exchange Methods 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 3
- 150000001868 cobalt Chemical class 0.000 description 3
- 150000001869 cobalt compounds Chemical class 0.000 description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical class [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 3
- 229940125758 compound 15 Drugs 0.000 description 3
- 229940125810 compound 20 Drugs 0.000 description 3
- 229940126208 compound 22 Drugs 0.000 description 3
- 229940125833 compound 23 Drugs 0.000 description 3
- 229940125961 compound 24 Drugs 0.000 description 3
- 229940125846 compound 25 Drugs 0.000 description 3
- 229940125851 compound 27 Drugs 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 229940006461 iodide ion Drugs 0.000 description 3
- 235000011147 magnesium chloride Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000009518 sodium iodide Nutrition 0.000 description 3
- 238000012916 structural analysis Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 3
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 2
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 2
- JXOSPTBRSOYXGC-UHFFFAOYSA-N 1-Chloro-4-iodobutane Chemical compound ClCCCCI JXOSPTBRSOYXGC-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 241000349731 Afzelia bipindensis Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical group [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229940126086 compound 21 Drugs 0.000 description 2
- 229940127204 compound 29 Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- DZGCGKFAPXFTNM-UHFFFAOYSA-N ethanol;hydron;chloride Chemical compound Cl.CCO DZGCGKFAPXFTNM-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- RBBOWEDMXHTEPA-UHFFFAOYSA-N hexane;toluene Chemical compound CCCCCC.CC1=CC=CC=C1 RBBOWEDMXHTEPA-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000007517 lewis acids Chemical group 0.000 description 2
- IHLVCKWPAMTVTG-UHFFFAOYSA-N lithium;carbanide Chemical compound [Li+].[CH3-] IHLVCKWPAMTVTG-UHFFFAOYSA-N 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- CCEFMUBVSUDRLG-KXUCPTDWSA-N (4R)-limonene 1,2-epoxide Natural products C1[C@H](C(=C)C)CC[C@@]2(C)O[C@H]21 CCEFMUBVSUDRLG-KXUCPTDWSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- DSZTYVZOIUIIGA-UHFFFAOYSA-N 1,2-Epoxyhexadecane Chemical compound CCCCCCCCCCCCCCC1CO1 DSZTYVZOIUIIGA-UHFFFAOYSA-N 0.000 description 1
- LYJQMHVYFFZQGY-UHFFFAOYSA-N 1,5-dichloropentan-3-one Chemical compound ClCCC(=O)CCCl LYJQMHVYFFZQGY-UHFFFAOYSA-N 0.000 description 1
- OSUBIRGWIAYFGJ-UHFFFAOYSA-N 1,7-dichloro-4-methylheptan-4-ol Chemical compound ClCCCC(O)(C)CCCCl OSUBIRGWIAYFGJ-UHFFFAOYSA-N 0.000 description 1
- SCKUIKDAPAUGBE-UHFFFAOYSA-N 1,7-dichloroheptan-4-one Chemical compound ClCCCC(=O)CCCCl SCKUIKDAPAUGBE-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- ULNZLZBPJIXIJL-UHFFFAOYSA-N 1-(3-ethoxypropoxy)-2-methoxybenzene Chemical compound CCOCCCOC1=CC=CC=C1OC ULNZLZBPJIXIJL-UHFFFAOYSA-N 0.000 description 1
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VLJLXEKIAALSJE-UHFFFAOYSA-N 13-oxabicyclo[10.1.0]tridecane Chemical compound C1CCCCCCCCCC2OC21 VLJLXEKIAALSJE-UHFFFAOYSA-N 0.000 description 1
- DNVRNYPAJDCXBO-UHFFFAOYSA-N 2,3-dichloro-2,3-diphenyloxirane Chemical compound C=1C=CC=CC=1C1(Cl)OC1(Cl)C1=CC=CC=C1 DNVRNYPAJDCXBO-UHFFFAOYSA-N 0.000 description 1
- CGCVLTOGUMLHNP-UHFFFAOYSA-N 2,3-dimethylbutane-2,3-diamine Chemical compound CC(C)(N)C(C)(C)N CGCVLTOGUMLHNP-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- RGARPKICQJCXPW-UHFFFAOYSA-N 2-(2-chlorophenyl)-3-phenyloxirane Chemical compound ClC1=CC=CC=C1C1C(C=2C=CC=CC=2)O1 RGARPKICQJCXPW-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- OIFAHDAXIUURLN-UHFFFAOYSA-N 2-(fluoromethyl)oxirane Chemical compound FCC1CO1 OIFAHDAXIUURLN-UHFFFAOYSA-N 0.000 description 1
- QYYCPWLLBSSFBW-UHFFFAOYSA-N 2-(naphthalen-1-yloxymethyl)oxirane Chemical compound C=1C=CC2=CC=CC=C2C=1OCC1CO1 QYYCPWLLBSSFBW-UHFFFAOYSA-N 0.000 description 1
- QNYBOILAKBSWFG-UHFFFAOYSA-N 2-(phenylmethoxymethyl)oxirane Chemical compound C1OC1COCC1=CC=CC=C1 QNYBOILAKBSWFG-UHFFFAOYSA-N 0.000 description 1
- NWLUZGJDEZBBRH-UHFFFAOYSA-N 2-(propan-2-yloxymethyl)oxirane Chemical compound CC(C)OCC1CO1 NWLUZGJDEZBBRH-UHFFFAOYSA-N 0.000 description 1
- SFJRUJUEMVAZLM-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxymethyl]oxirane Chemical compound CC(C)(C)OCC1CO1 SFJRUJUEMVAZLM-UHFFFAOYSA-N 0.000 description 1
- NCVAIOUPUUSEOK-UHFFFAOYSA-N 2-[[2-methyl-3-[2-methyl-3-(oxiran-2-ylmethyl)phenoxy]phenyl]methyl]oxirane Chemical compound C1=CC=C(OC=2C(=C(CC3OC3)C=CC=2)C)C(C)=C1CC1CO1 NCVAIOUPUUSEOK-UHFFFAOYSA-N 0.000 description 1
- JFDMLXYWGLECEY-UHFFFAOYSA-N 2-benzyloxirane Chemical compound C=1C=CC=CC=1CC1CO1 JFDMLXYWGLECEY-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- BSPCSKHALVHRSR-UHFFFAOYSA-N 2-chlorobutane Chemical compound CCC(C)Cl BSPCSKHALVHRSR-UHFFFAOYSA-N 0.000 description 1
- NJWSNNWLBMSXQR-UHFFFAOYSA-N 2-hexyloxirane Chemical compound CCCCCCC1CO1 NJWSNNWLBMSXQR-UHFFFAOYSA-N 0.000 description 1
- AAMHBRRZYSORSH-UHFFFAOYSA-N 2-octyloxirane Chemical compound CCCCCCCCC1CO1 AAMHBRRZYSORSH-UHFFFAOYSA-N 0.000 description 1
- SYURNNNQIFDVCA-UHFFFAOYSA-N 2-propyloxirane Chemical compound CCCC1CO1 SYURNNNQIFDVCA-UHFFFAOYSA-N 0.000 description 1
- GJEZBVHHZQAEDB-UHFFFAOYSA-N 6-oxabicyclo[3.1.0]hexane Chemical compound C1CCC2OC21 GJEZBVHHZQAEDB-UHFFFAOYSA-N 0.000 description 1
- MELPJGOMEMRMPL-UHFFFAOYSA-N 9-oxabicyclo[6.1.0]nonane Chemical compound C1CCCCCC2OC21 MELPJGOMEMRMPL-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- WEYWEEKAJWDWHQ-WYGYHCFUSA-N CC(O)(CCCCl)CCCCl.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCI)CCCI)=C2)=C1O.CCCCC(C)(CCCC)C1=CC(C=O)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1 Chemical compound CC(O)(CCCCl)CCCCl.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCI)CCCI)=C2)=C1O.CCCCC(C)(CCCC)C1=CC(C=O)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1 WEYWEEKAJWDWHQ-WYGYHCFUSA-N 0.000 description 1
- JLIJBXQJTJAVAN-UHFFFAOYSA-N CC(O)(CCCCl)CCCCl.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC=CC=C1O.O=C(CCCCl)CCCCl.[Li]C Chemical compound CC(O)(CCCCl)CCCCl.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC=CC=C1O.O=C(CCCCl)CCCCl.[Li]C JLIJBXQJTJAVAN-UHFFFAOYSA-N 0.000 description 1
- BUDBHJVMFPJBMT-WYGYHCFUSA-N CC1=CC(C(C)(CCCCl)CCCCl)=CC(C=O)=C1O.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCI)CCCI)=C2)=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(C=O)=C1O.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1 Chemical compound CC1=CC(C(C)(CCCCl)CCCCl)=CC(C=O)=C1O.CC1=CC(C(C)(CCCCl)CCCCl)=CC=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCI)CCCI)=C2)=C1O.CC1=CC(C(C)(CCCI)CCCI)=CC(C=O)=C1O.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1 BUDBHJVMFPJBMT-WYGYHCFUSA-N 0.000 description 1
- DDXZFEURWSBMRZ-AOAVVZPWSA-N CC1=CC(C(CCCCl)(CCCCl)CCCCCl)=CC=C1O.CCCCCC(CCCC)(CCCC)C1=CC(C=O)=C(O)C(C)=C1.CCCCCC(CCCI)(CCCI)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(CCCI)(CCCI)CCCCI)=C2)=C(O)C(C)=C1.CCCCCC(O)(CCCC)CCCC.CCCCN(CCCC)(CCCC)CCCCC(CCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(CCCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCCC(CCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(OCOC3=C(C=C(C(CCCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1 Chemical compound CC1=CC(C(CCCCl)(CCCCl)CCCCCl)=CC=C1O.CCCCCC(CCCC)(CCCC)C1=CC(C=O)=C(O)C(C)=C1.CCCCCC(CCCI)(CCCI)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(CCCI)(CCCI)CCCCI)=C2)=C(O)C(C)=C1.CCCCCC(O)(CCCC)CCCC.CCCCN(CCCC)(CCCC)CCCCC(CCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(CCCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCCC(CCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(OCOC3=C(C=C(C(CCCCN(CCCC)(CCCC)CCCC)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1 DDXZFEURWSBMRZ-AOAVVZPWSA-N 0.000 description 1
- XDUQZKSIYDYTTJ-UHFFFAOYSA-N CC1CO1.CC1COC(=O)O1.CCC(C)OC(=O)OC.O=C=O Chemical compound CC1CO1.CC1COC(=O)O1.CCC(C)OC(=O)OC.O=C=O XDUQZKSIYDYTTJ-UHFFFAOYSA-N 0.000 description 1
- RNMMNNCDRWHAJC-UHFFFAOYSA-G CC1CO1[Co-](C)(C)(C)(O)O.CCOC(=O)O.CCOC(=O)O[Co](C)(C)(C)(O)O.CO[Co](C)(C)(C)(O)O.O=C=O.O=P.[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+] Chemical compound CC1CO1[Co-](C)(C)(C)(O)O.CCOC(=O)O.CCOC(=O)O[Co](C)(C)(C)(O)O.CO[Co](C)(C)(C)(O)O.O=C=O.O=P.[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+].[CH2+]C[CH2+] RNMMNNCDRWHAJC-UHFFFAOYSA-G 0.000 description 1
- AGBZVPXEBYWECZ-UHFFFAOYSA-N CC1COC(=O)O1.CCC(C)OC(=O)OCC(C)[O-] Chemical compound CC1COC(=O)O1.CCC(C)OC(=O)OCC(C)[O-] AGBZVPXEBYWECZ-UHFFFAOYSA-N 0.000 description 1
- AXQBSLBHVIMIJB-BWORUOEJSA-L CC1CO[C@]2(CCC([N+](=O)[O-])CC2[N+](=O)[O-])O1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(OCOC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1 Chemical compound CC1CO[C@]2(CCC([N+](=O)[O-])CC2[N+](=O)[O-])O1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(OCOC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1 AXQBSLBHVIMIJB-BWORUOEJSA-L 0.000 description 1
- FEHNMOPIVXJSTD-UHFFFAOYSA-J CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC(CC2=C(O)C(C)=CC(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)C=C3C)C2)C(C)=C1.CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)OC3=C(C=C(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)C=C3C)C2)C(C)=C1 Chemical compound CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC(CC2=C(O)C(C)=CC(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)C=C3C)C2)C(C)=C1.CCCCN(CCCC)(CCCC)CCC(CCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)OC3=C(C=C(C(CCN(CCCC)(CCCC)CCCC)CCN(CCCC)(CCCC)CCCC)C=C3C)C2)C(C)=C1 FEHNMOPIVXJSTD-UHFFFAOYSA-J 0.000 description 1
- GFBPFGKBQBQESP-VZMNCPPLSA-K CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co-3](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.FB(F)F.[F-] Chemical compound CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC(/C=N/[C@H]2CCCC[C@@H]2/N=C/C2=C(O)C(C)=CC(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C2)=C(O)C(C)=C1.CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co-3](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.FB(F)F.[F-] GFBPFGKBQBQESP-VZMNCPPLSA-K 0.000 description 1
- KGXXGZOTLSVHSP-AHLGEGTQSA-L CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.FB(F)(F)F Chemical compound CCCCN(CCCC)(CCCC)CCCC(C)(CCCN(CCCC)(CCCC)CCCC)C1=CC2=C(O[Co](C)(C)(C)(C)OC3=C(C=C(C(C)(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)C=C3C)/C=N/[C@H]3CCCC[C@@H]3/N=C/2)C(C)=C1.FB(F)(F)F KGXXGZOTLSVHSP-AHLGEGTQSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910004039 HBF4 Inorganic materials 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- CCEFMUBVSUDRLG-XNWIYYODSA-N Limonene-1,2-epoxide Chemical compound C1[C@H](C(=C)C)CCC2(C)OC21 CCEFMUBVSUDRLG-XNWIYYODSA-N 0.000 description 1
- 229910012226 MBF4 Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical class [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- DXULCNMXMCVDCP-FRWCRWKOSA-J [H]/C(=N\[C@H]1CCCC[C@@H]1/N=C/C1=C(O)C(C(C)(C)C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1)C1=C(O)C(C(C)(C)C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1.[I-].[I-].[I-].[I-] Chemical compound [H]/C(=N\[C@H]1CCCC[C@@H]1/N=C/C1=C(O)C(C(C)(C)C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1)C1=C(O)C(C(C)(C)C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1.[I-].[I-].[I-].[I-] DXULCNMXMCVDCP-FRWCRWKOSA-J 0.000 description 1
- ADQQRYFSUXVTFC-VJHCSZAYSA-J [H]/C(=N\[C@H]1CCCC[C@@H]1/N=C/C1=C(O)C(C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1)C1=C(O)C(C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1.[I-].[I-].[I-].[I-] Chemical compound [H]/C(=N\[C@H]1CCCC[C@@H]1/N=C/C1=C(O)C(C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1)C1=C(O)C(C)=CC(C(CCCN(CCCC)(CCCC)CCCC)CCCN(CCCC)(CCCC)CCCC)=C1.[I-].[I-].[I-].[I-] ADQQRYFSUXVTFC-VJHCSZAYSA-J 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- NQFUSWIGRKFAHK-BDNRQGISSA-N alpha-Pinene epoxide Natural products C([C@@H]1O[C@@]11C)[C@@H]2C(C)(C)[C@H]1C2 NQFUSWIGRKFAHK-BDNRQGISSA-N 0.000 description 1
- 229930006723 alpha-pinene oxide Natural products 0.000 description 1
- 125000003425 alpha-pinene oxide group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 150000004700 cobalt complex Chemical class 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- DFBKLUNHFCTMDC-PICURKEMSA-N dieldrin Chemical compound C([C@H]1[C@H]2[C@@]3(Cl)C(Cl)=C([C@]([C@H]22)(Cl)C3(Cl)Cl)Cl)[C@H]2[C@@H]2[C@H]1O2 DFBKLUNHFCTMDC-PICURKEMSA-N 0.000 description 1
- 229950006824 dieldrin Drugs 0.000 description 1
- NGPMUTDCEIKKFM-UHFFFAOYSA-N dieldrin Natural products CC1=C(Cl)C2(Cl)C3C4CC(C5OC45)C3C1(Cl)C2(Cl)Cl NGPMUTDCEIKKFM-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- YVPJCJLMRRTDMQ-UHFFFAOYSA-N ethyl diazoacetate Chemical compound CCOC(=O)C=[N+]=[N-] YVPJCJLMRRTDMQ-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- QTBFPMKWQKYFLR-UHFFFAOYSA-N isobutyl chloride Chemical compound CC(C)CCl QTBFPMKWQKYFLR-UHFFFAOYSA-N 0.000 description 1
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- UCAOGXRUJFKQAP-UHFFFAOYSA-N n,n-dimethyl-5-nitropyridin-2-amine Chemical compound CN(C)C1=CC=C([N+]([O-])=O)C=N1 UCAOGXRUJFKQAP-UHFFFAOYSA-N 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004983 proton decoupled 13C NMR spectroscopy Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- ARCJQKUWGAZPFX-UHFFFAOYSA-N stilbene oxide Chemical compound O1C(C=2C=CC=CC=2)C1C1=CC=CC=C1 ARCJQKUWGAZPFX-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- LVBXEMGDVWVTGY-UHFFFAOYSA-N trans-2-octenal Natural products CCCCCC=CC=O LVBXEMGDVWVTGY-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/32—General preparatory processes using carbon dioxide
- C08G64/34—General preparatory processes using carbon dioxide and cyclic ethers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C249/00—Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C249/02—Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/02—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
- C07C251/24—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/16—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/24—Halogenated derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/63—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/06—Cobalt compounds
- C07F15/065—Cobalt compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to a novel catalyst for use in preparing polycarbonate from an epoxide compound and carbon dioxide and a method for preparing polycarbonate using the same. More particularly, the present invention relates to a catalyst for preparing the above polymer, which includes a complex having such an equilibrium structural formula that the metal center of the complex takes a negative charge of 2 or higher, as well as to a method for preparing polycarbonate via copolymerization of carbon dioxide and epoxide using the same complex as a catalyst. In addition, the present invention relates to a method including carrying out polymerization using the above catalyst, and separately recovering the catalyst from the solution in which the resultant copolymer and the catalyst are dissolved.
- Aliphatic polycarbonate is an easily biodegradable polymer and is useful for packaging or coating materials, etc. Processes for preparing polycarbonate from an epoxide compound and carbon dioxide is highly eco-friendly in that they use no harmful compound, phosgene, and adopt easily available and inexpensive carbon dioxide.
- the catalyst includes a complex having an onium salt and a metal center with a Lewis acid group in one molecule.
- Use of the catalyst allows the growth point of the polymer chain to be positioned always in the vicinity of the metal in the polymerization medium for carrying out epoxide/carbon dioxide copolymerization, regardless of the concentration of the catalyst. In this manner, the catalyst shows high activity even under a high ratio of monomer/catalyst, exhibits high cost-efficiency by virtue of a decrease in catalyst need, and provides polycarbonate with a high molecular weight.
- the catalyst realizes polymerization activity even at high temperature to increase the conversion, permits easy removal of the polymerization reaction heat, and thus is easily applicable to commercial processes [see, Korean Patent Application No.10-2007-0043417 (May 4, 2007, Title: COORDINATION COMPLEXS CONTAINING TWO COMPONENTS IN A MOLECULE AND PROCESS OF PRODUCING POLYCARBONATE BY COPOLYMERIZATION OF CARBON DIOXIDE AND EPOXIDE USING THE SAME); International Patent Application No. PCT/KR2008/002453; Eun Kyung Noh, Sung Jae Na, Sujith S, Sang-Wook Kim, and Bun Yeoul Lee* J. Am. Chem. Soc.
- the complex is a tetradentate (or quadradendate) cobalt compound-based complex in which trivalent cobalt atom is coordinated with two nitrogen imine ligands and two phenolate ligands at the same time:
- the complex may be referred to as a tetradentate (or quadradendate) Schiff base complex, and may be prepared according to the following reaction scheme:
- the complex shows significantly different activities and selectivities depending on the R group.
- R is a sterically hindered group such as t-butyl
- the compound shows commonly expectable activity and selectivity.
- R has decreased steric hindrance, or R is a radical such as methyl
- the complex provides an activity (TOF, turnover frequency) of 26000 h ⁇ 1 , which is about 20 times higher than the activity (1300 h ⁇ 1 ) of the corresponding t-butyl group-containing complex.
- the methyl group-containing complex provides an increase in selectivity from 84% to 99% or higher.
- an object of the present invention is to provide a method for copolymerizing carbon dioxide and epoxide using a complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group rather than the existing tetradentate (or quadradentate) complex.
- Another object of the present invention is to provide a method for the formation of a copolymer using the above complex as a catalyst, and for the separation and recovery of the catalyst from the mixed solution of the resultant copolymer and the catalyst.
- Still another object of the present invention is to provide the above-described novel complex.
- the present invention provides a novel complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group, and a method for preparing a carbon dioxide/epoxide copolymer using the same complex as a catalyst.
- the present invention provides a novel complex as a catalyst for preparing a carbon dioxide/epoxide copolymer.
- the complex is coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group.
- the complex is represented by Chemical Formula 1:
- M represents a metal element
- L represents a L-type or X-type ligand
- a represents 1, 2 or 3, wherein when a is 1, L includes at least two protonated groups, and when a is 2 or 3, L(s) are the same or different, and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand, with the proviso that at least one L includes at least one protonated group and the total number of protonated groups contained in L(s) is 2 or more;
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
- Meisenheimer salt is a compound having the following structural formula:
- R represents methyl or H
- R′ is selected from H and nitro (—NO 2 ), with the proviso that at least one of the five R′ radicals represents nitro (—NO 2 ).
- L-type and X-type ligands are described in detail in [Gray L. Spessard and Gary L. Miessler, Organometallic Chemistry, published by Prentice Hall, p. 46].
- L-type ligands mean neutral ligands and particularly include non-paired electron pair donors, such as phosphine, pi-bond donors, such as ethylene, or sigma-bond donors, such as hydrogen.
- L-type ligands are bound to the metal by donating non-paired electron pairs, and binding of the L-type ligands has no effect on the oxidation number of the metal.
- X-type ligands include anionic ligands, such as chlorine or methyl. Binding of such X-type ligands is regarded as binding between X ⁇ anion and M + cation, and affects the oxidation number of the metal.
- the complex used as a carbon dioxide/epoxide copolymerization catalyst herein is a complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group (i.e. complex represented by Chemical Formula 1), and having such an equilibrium structural formula that the metal center takes a negative charge of 2 or higher.
- the carbon dioxide/epoxide copolymerization catalysts developed to date are tetradentate (or quadradentate) Schiff-base complexes wherein “four groups are bound to one metal atom”, and thus are clearly different from the complex disclosed herein.
- G represents a nitrogen or phosphorus atom
- R 11 , R 12 , R 13 , R 21 , R 22 , R 23 , R 24 and R 25 independently represent a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R 11 , R 12 and R 3 , or two of R 21 , R 22 , R 23 , R 24 and R 25 may be linked to each other to form a ring;
- R 31 , R 32 and R 33 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R 31 , R 32 and R 33 may be linked to each other to form a ring;
- X′ represents an oxygen atom, sulfur atom or N—R (wherein R represents a hydrogen radical; or a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
- alkyl of the alkyl, alkenyl, alkylaryl or aralkyl radicals may be linear or branched.
- a complex represented by Chemical Formula 1 wherein L represents a ligand represented by Chemical Formula 3, a represents 2 or 3, and M represents cobalt (III) or chromium (III):
- A represents an oxygen or sulfur atom
- R 1 through R 5 independently represent a hydrogen radical; linear or branched (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein the alkyl or alkenyl of R 3 may be further substituted by a (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl, two of R 1 through R 5 may be linked to each other to form a ring, and at least one of R 1 through R 5 include at least one of Chemical Formulas 2a to 2c;
- a 2 or 3
- L(s) are the same or different and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand.
- B 1 through B 4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
- R 26 represents primary or secondary (C1-C20)alkyl
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other
- the alkylene or alkyl may be linear or branched.
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
- B 1 through B 4 independently represent propylene
- R 26 and R 27 independently represent methyl
- R 28 and R 29 independently represent butyl
- Q represents trans-1,2-cyclohexylene
- the ligand represented by Chemical Formula 4 may be formed from a phenol derivative represented by Chemical Formula 14, which is prepared from the reaction between a phenol compound represented by Chemical Formula 15 and substituted by an alkyl group at the C2 position and a tertiary alcohol compound represented by Chemical Formula 16 in the presence of an acid catalyst:
- B 9 and B 10 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably propylene.
- R 26 represents primary or secondary (C1-C20)alkyl.
- R 26 is a tertiary alkyl, the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts.
- cobalt complexes obtained from such a tertiary alkyl-containing phenol compound have a different structure and low activity.
- primary or secondary (C1-C20)alkyl is preferred. More particularly, R 26 represents primary or secondary (C1-C7)alkyl.
- primary alkyl includes normal alkyl, neo-alkyl or iso-alkyl.
- secondary alkyl and ‘tertiary alkyl’ are also referred to as ‘sec-alkyl’ and ‘tert-alkyl’, respectively.
- R 27 is selected from (C1-C20)alkyl and (C6-C30)aryl, more particularly (C1-C7)alkyl, and preferably methyl.
- alkyl includes a linear or branched alkyl group.
- X 3 and X 4 is independently selected from Cl, Br and I.
- aryl includes an aromatic ring, such as phenyl, naphthyl, anthracenyl or biphenyl, wherein a carbon atom in the aromatic ring may be substituted by a hetero atom, such as N, O and S.
- AlCl 3 or an inorganic acid such as phosphoric acid or sulfuric acid
- a solid acid catalyst may be used to permit recycle of the catalyst after the reaction.
- the solid acid catalyst include Nafion NR50, Amberlyst-15, H-ZSM5, H-Beta, HNbMoO 6 , or the like (see, Kazunari Domen et. al, J. AM. CHEM. SOC. 2008, 130, 7230-7231).
- the tertiary alcohol compound represented by Chemical Formula 16 may be prepared by various organic reactions.
- the tertiary alcohol compound may be obtained according to Reaction Scheme 7:
- X 3 , X 4 and R 27 are the same as defined in Chemical Formula 16 .
- the present invention also provides a ligand compound represented by Chemical Formula 17 prepared from a phenol derivative represented by Chemical Formula 14:
- B 1 through B 4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably propylene.
- the alkylene may be linear or branched.
- R 26 represents primary or secondary (C1-C20)alkyl.
- R 26 is tertiary alkyl
- the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts.
- cobalt complexes obtained from such a tertiary alkyl-containing phenol compound have a different structure and low activity.
- primary or secondary (C1-C20)alkyl is preferred.
- R 26 represents primary or secondary (C1-C7)alkyl.
- R 26 represents methyl.
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups. More particularly, R 27 through R 29 are independently selected from (C1-C7)alkyl groups. Preferably, R 27 represents methyl and R 28 and R 29 independently represent butyl.
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other.
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. More particularly, Q is selected from ethylene, trans-1,2-cyclohexylene and 1,2-phenylene.
- Z ⁇ (s) are independently selected from halide ions, BF 4 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , and PF 6 ⁇ , more particularly iodide ion and BF 4 ⁇ .
- the ligand compound represented by Chemical Formula 17 may be a ligand compound represented by Chemical Formula 18:
- n and n independently represent an integer from 1 to 19, preferably from 1 to 5, and more preferably 2.
- R 26 represents primary or secondary (C1-C20)alkyl.
- R 26 is a tertiary alkyl
- the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts.
- cobalt complexes obtained from such a tertiary alkyl-containing compound have a different structure and low activity.
- primary or secondary (C1-C20)alkyl is preferred.
- R 26 represents primary or secondary (C1-C7)alkyl.
- R 26 represents methyl.
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups. More particularly, R 27 through R 29 are independently selected from (C1-C7)alkyl groups. Preferably, R 27 represents methyl and R 28 and R 29 independently represent butyl.
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other.
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. More particularly, Q is selected from ethylene, trans-1,2-cyclohexylene and 1,2-phenylene.
- Z ⁇ (s) are independently or simultaneously selected from halide ions, BF 4 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , and PF 6 ⁇ , more particularly iodide ion and BF 4 ⁇ .
- a method for preparing the compound represented by Chemical Formula 17 or 18 includes:
- B 1 through B 4 , B 9 and B 10 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably (C2-C6)alkylene, more preferably propylene;
- R 26 represents primary or secondary (C1-C20)alkyl, preferably primary or secondary (C1-C7)alkyl, more preferably methyl;
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups, preferably (C1-C7)alkyl groups. More preferably, R 27 represents methyl and R 28 and R 29 independently represent butyl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other, preferably Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N, and more preferably, Q represents trans-1,2-cyclohexylene;
- Z ⁇ (s) are independently selected from halide ions, BF 4 ⁇ , ClO 4 ⁇ , NO 3 ⁇ and PF 6 ⁇ , more particularly iodide ion and BF 4 ⁇ ;
- X 3 and X 4 are independently selected from Cl, Br and I.
- the compound represented by Chemical Formula 20 may be prepared by reacting the compound represented Chemical Formula 15 with the compound represented by Chemical Formula 16 in the presence of an acid catalyst to form the compound represented by Chemical Formula 14, and by attaching an aldehyde group at the compound represented by Chemical Formula 14.
- the acid catalyst may be selected from AlCl 3 , inorganic acids and solid acid catalysts.
- a 1 and A 2 independently represent an oxygen or sulfur atom
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R 41 , R 42 , R 43 , R 44 , R 45 and R 46 are independently selected from H, tert-butyl, methyl, ethyl, isopropyl and ⁇ [YR 51 3-m ⁇ (CR 52 R 53 ) n N + R 54 R 55 R 56 ⁇ m ], with the proviso that at least one of R 4 , R 42 , R 43 , R 44 , R 45 and R 46 represents ⁇ [YR 51 3-m ⁇ (CR 52 R 53 ) n N+R 54 R 55 R 56 ⁇ m ] (wherein Y represents a carbon or silicon atom, R 51 , R 52 , R 53 , R 54 , R 55 and R 56 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20) aryl or (C6-C20)ar(C1-C15)alkyl radical with or
- b+c ⁇ 1 represents an integer that equals to the sum of m values of the total ⁇ [YR 51 3-m ⁇ (CR 52 R 53 ) n N + R 54 R 55 R 56 ⁇ m ] radicals contained in the complex represented by Chemical Formula 5.
- R 41 , R 43 , R 44 and R 45 are independently selected from tert-butyl, methyl, ethyl and isopropyl;
- R 42 and R 46 independently represent —[CH ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ] or —[CMe ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ]; and
- b+c represents 5.
- a 1 and A 2 independently represent an oxygen or sulfur atom
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R 62 and R 64 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen, and R 61 and R 63 independently represent ⁇ [YR 51 3-m ⁇ (CR 52 R 53 ) n N+R 54 R 55 R 56 ⁇ m] (wherein Y represents a carbon or silicon atom, R 51 , R 52 , R 53 , R 54 , R 55 and R 56 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C 1 -C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R 54 , R 55 and R 56 may be linked to each other to form a ring
- b+c ⁇ 1 represents an integer that equals to 2 ⁇ m
- a 3 represents a chemical bond or divalent organic bridge group for linking the two benzene rings.
- a 3 represents a chemical bond, (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, or —Si(R 87 )(R 88 )—, —CH ⁇ N-Q- ⁇ CH— or the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N, wherein R 87 and R 88 independently represent (C1-C20)alkyl, (C3-C20)cycloalkyl, (C1-C15)alkyl
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
- R 61 and R 63 independently represent —[CH ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ] or —[CMe ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ],
- Q in the formula of —CH ⁇ N-Q-N ⁇ CH— represents trans-1,2-cyclohexylene or ethylene, and
- X(s) independently represent 2,4-dinitrophenolate or BF 4 ⁇ .
- a 1 and A 2 independently represent an oxygen or sulfur atom
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R 72 and R 74 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen;
- R 71 and R 73 independently represent ⁇ [CH ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ] or —[CMe ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ];
- a 4 represents a carbon or silicon atom
- a 1 and A 2 independently represent O or S;
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R 82 and R 84 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen;
- R 81 and R 83 independently represent —[CH ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ] or —[CMe ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ];
- R 85 and R 86 independently represent (C1-C20)alkyl, (C3-C20)cycloalkyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl;
- X(s) independently represent a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R 92 and R 94 are independently selected from methyl, ethyl, isopropyl and hydrogen, preferably methyl;
- R 91 and R 93 independently represent —[CH ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ] or —[CMe ⁇ (CH 2 ) 3 N + Bu 3 ⁇ 2 ];
- Q represents a divalent organic bridge group for linking the two nitrogen atoms
- alkyl in the alkylcarboxy anion, alkoxy anion, alkylcarbonate anion, alkylsulfonate anion, alkylamide anion and alkylcarbamate anion may be linear or branched.
- Q represents trans-1,2-cyclohexylene or ethylene
- X(s) independently represent 2,4-dinitrophenolate or BF 4 ⁇
- One of the five X radicals represents BF 4 ⁇ , two of them represent 2,4-dinitrophenolate, and the remaining two X radicals represent anions represented by Chemical Formula 10:
- R represents methyl or H.
- B 1 through B 4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
- R 26 represents primary or secondary (C1-C20)alkyl
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent bridge group for linking the two nitrogen atoms
- Z 1 through Z 5 are independently selected from a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; and a (C6-C30)aryloxy anion; (C1-C20)carboxylic acid anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms, wherein a part of Z 1 through Z 4 coordinated at the cobalt atom may be de-coordinated; and
- alkylene and alkyl may be linear or branched.
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
- B 1 through B 4 independently represent (C2-C6)alkylene, preferably propylene;
- R 26 represents (C1-C7)alkyl;
- R 27 through R 29 independently represent (C1-C7)alkyl, preferably R 26 and R 27 independently represent methyl, and
- R 28 and R 29 independently represent butyl;
- Q represents ethylene, trans-1,2-cyclohexylene or 1,2-phenylene, and more preferably trans-1,2-cyclohexylene;
- Z 1 through Z 5 are independently selected from 2,4-dinitrophenolate and BF 4 ⁇ .
- p and q independently represent an integer from 1 to 19;
- R 26 represents primary or secondary (C1-C20)alkyl
- R 27 through R 29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms
- Z 1 through Z 5 are independently selected from a halide ion; BF 4 ⁇ ; ClO 4 ⁇ ; NO 3 ⁇ ; PF 6 ⁇ ; HCO 3 ⁇ ; and a (C6-C30)aryloxy anion; (C1-C20)carboxylic acid anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms, wherein a part of Z 1 through Z 4 coordinated at the cobalt atom may be de-coordinated.
- Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
- Q represents ethylene, trans-1,2-cyclohexylene or 1,2-phenylene, and more preferably trans-1,2-cyclohexylene.
- p and q independently represent an integer from 1 to 5, preferably 2;
- R 26 represents primary or secondary (C1-C7)alkyl;
- R 27 through R 29 independently represent (C1-C7)alkyl, preferably R 26 and R 27 independently represent methyl, and R 28 and R 29 independently represent butyl;
- Z 1 through Z 5 are independently selected from 2,4-dinitrophenolate and BF 4 ⁇ .
- the present invention provides a method for preparing polycarbonate, including: carrying out copolymerization of carbon dioxide and an epoxide compound selected from the group consisting of C2-C20 alkylene oxide substituted or unsubstituted by halogen or alkoxy; C4-C20 cycloalkene oxide substituted or unsubstituted by halogen or alkoxy; and C8-C20 styrene oxide substituted or unsubstituted by halogen, alkoxy or alkyl, in the presence of a complex selected from the complexes represented by Chemical Formulas 1, 5, 6, 7, 8, 9, 10 and 11 and the complexes containing ligands selected from Chemical Formulas 2a, 2b, 2c, 3 and 4, as a catalyst.
- an epoxide compound selected from the group consisting of C2-C20 alkylene oxide substituted or unsubstituted by halogen or alkoxy; C4-C20 cycloalkene oxide substituted or unsubstitute
- Cobalt (III) complexes obtained from Salen-type ligands containing four quaternary ammonium salts may have different structures depending on the structures of the ligands. Such a different coordination structure is distinguished from a general structure coordinated with the four ligands in that it is not coordinated with imine. Instead of imine, the counter anion of the quaternary ammonium salt is coordinated. This has been demonstrated herein through 1 H, 13 C, 15 N N NMR spectrometry, IR spectrometry, DFT calculation, and cyclic voltammetry (CV).
- Such a different coordination structure is formed when the metal coordination portion of the Salen ligand is less sterically hindered as a whole, for example, when the substituent at 3-position of salicylaldehyde as a component of the Salen ligand is less sterically hindered (e.g. methyl), and when ethylene diamine as another component of the Salen ligand is not substituted, or when only one or two hydrogen atoms attached to the four carbon atoms are substituted (e.g. cyclohexane diamine).
- the metal coordination portion of the Salen ligand is highly sterically hindered as a whole, for example, when a bulky substituent, such as tert-butyl, is attached to 3-position of salicylaldehyde, or when all of the hydrogen atoms attached to the four carbon atoms of ethylene diamine are substituted with methyl groups, a conventionally available imine-coordinated tetradentate compound is obtained.
- the compounds (5, 7 and 10) with a different coordination system having no coordination with imine unexpectedly show high activity in copolymerizing carbon dioxide/epoxide.
- the conventional imine-coordinated tetradentate compounds (6, 8 and 11) have no activity or show low activity. It has been demonstrated through NMR and CV studies that the conventional imine-coordinated tetradentate compounds are more easily reduced into cobalt (II) compounds, as compared to the compounds with a different coordination system having no coordination with imine. Such cobalt (II) compounds having no activity in carbon dioxide/epoxide copolymerization.
- the anion coordination state is related with the temperature, solvent and ligand structure. Particularly, the anion coordination state has been demonstrated through NMR spectrometry in THF-d 8 similar to the polymerization medium.
- X 2,4-dinitrophenolate
- two DNP ligands are always coordinated to cobalt and the remaining two DNP ligands continuously undergo conversion/reversion between the coordinated state and the non-coordinated state.
- diamagnetic hexa-coordinated cobalt (III) compounds are not active in ligand substitution (Becker, C. A.
- cobalt is negatively charged so that negatively charged ligands may be de-coordinated.
- the de-coordinated negatively charged ligands are bound to the cation of the quaternary ammonium salt, and thus may not be released away from cobalt.
- non-coordinated anions are thermodynamically unstable species and tend to form coordination bonds back to cobalt. The combination of the above two types of tendencies contributes to the phenomenon in which two DNP ligands continuously undergo conversion/reversion between the coordinated state and the non-coordinated state.
- the ratio of [water]/[catalyst] in the polymerization system plays an important role in realizing the catalytic activity. Even when water is removed by purifying epoxide and carbon dioxide thoroughly, the ratio of [water]/[catalyst] may be significantly high under such a polymerization condition that a relatively small amount of catalyst is added (i.e. under a ratio of [epoxide]/[catalyst] of 100,000 or 150,000).
- Compound 14 in the above reaction scheme is used as a catalyst, the above problem is partially solved.
- Compound 14 may be obtained under a condition of very low [propylene oxide]/[catalyst] ratio (1,000 or lower). In this case, the amount of water remaining in propylene oxide is not significantly higher than the amount of catalyst. In other words, compound 14 is consistently obtained by controlling the [water]/[catalyst] ratio at a very low level.
- Compound 14 may be stored to be used as a catalyst.
- compound 14 In the case of compound 14, the anion undergoing continuous conversion/reversion between the coordinated state and the de-coordinated state has already been reacted with propylene oxide. Thus, compound 14 has reduced sensitivity to water and the polymerization is realized under a consistent induction time (1-2 hours). In addition, compound 14 shows polymerization activity (TOF, 80,000 h ⁇ 1 ) in a short induction time (70 minutes) even under a high [epoxide]/[catalyst] ratio of 150,000, and thus provides a higher TON (20,000). In the case of compound 10, it is not capable of realizing polymerization activity under a [epoxide]/[catalyst] ratio of 150,000.
- the compound with a different coordination system having no coordination with imine disclosed herein allows production of a compound (e.g. compound 14) having a structure in which the two DNP ligands are converted into the anions of the Meisenheimer salt by reacting with propylene oxide.
- a compound e.g. compound 14
- two DNP ligands are strongly coordinated to cobalt and the remaining two DNP ligands undergo continuous conversion/reversion between the coordinated state and the de-coordinated state. Therefore, the latter two DNP ligands may be reacted rapidly with propylene oxide to provide compound 14 after 1 hour.
- reaction with propylene oxide does not provide a compound (e.g. compound 14), in which only two DNP ligands are converted into the anions of Meisenheimer salt, but causes further conversion of the remaining DNP ligands into the anions of Meisenheimer salt.
- compound 14 in which only two DNP ligands are converted into the anions of Meisenheimer salt, but causes further conversion of the remaining DNP ligands into the anions of Meisenheimer salt.
- reduction into a cobalt (II) compound may also significantly occur as mentioned above. As a result, it is not possible to obtain a compound (e.g.
- compound 14 in which two DNP ligands are maintained and the remaining two DNP ligands are converted into the anions of Meisenheimer salt.
- compound 14 may be prepared by the following anion substitution reaction.
- anion substitution reaction it is a specific feature that one of the substituted anions of Meisenheimer salt is converted into DNP.
- an imine-coordinated tetradentate Salen-Co (III) compound e.g. compound 6, 8 or 11
- cobalt reduction becomes a main reaction.
- epoxide compound that may be used herein include ethylene oxide, propylene oxide, butene oxide, pentene oxide, hexene oxide, octene oxide, decene oxide, dodecene oxide, tetradecene oxide, hexadecene oxide, octadecene oxide, butadiene monoxide, 1,2-epoxide-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclohexene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-ep
- the epoxide compound may be used in the polymerization using an organic solvent as a reaction medium.
- the solvent that may be used herein include aliphatic hydrocarbons, such as pentane, octane, decane and cyclohexane, aromatic hydrocarbons, such as benzene, toluene and xylene, and halogenated hydrocarbons, such as chloromethane, methylene chloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, ethyl chloride, trichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, chlorobenzene and bromobenzene.
- Such solvents may be used alone or in combination. More preferably, bulk polymerization using the monomer itself as a solvent may be
- the molar ratio of the epoxide compound to the catalyst i.e., epoxide compound: catalyst molar ratio may be 1,000-1,000,000, preferably 50,000-200,000.
- the catalyst may realize a conversion ratio (i.e., moles of the epoxide compound consumed per mole of cobalt per hour) of 500 turnover/hr or higher.
- Carbon dioxide may be used at a pressure ranging from ambient pressure to 100 atm, preferably from 5 atm to 30 atm.
- the polymerization temperature may be 20° C.-120° C., suitably 50° C.-90° C.
- batch polymerization may be performed for 1-24 hours, preferably 1.54 hours.
- a continuous polymerization process may also be performed for an average catalyst retention time of 1.5-4 hours.
- polycarbonate having a number average molecular weight (M n ) of 5,000-1,000,000 and a polydispersity (M w /M n ) of 1.054.0.
- Mn means a number average molecular weight as measured by GPC with calibration using single-molecular weight distribution polystyrene standards.
- the polydispersity (M w /M n ) means a ratio of a weight average molecular weight to a number average molecular weight as measured by GPC in the same manner as described above.
- the resultant polycarbonate polymer includes at least 80% of carbonate bonds, sometimes at least 95% carbonate bonds.
- the carbonate material is easily degradable polymer leaving no residue and soot upon the combustion, and is useful as a packaging, heat insulating, coating material, etc.
- the present invention provides a method for separately recovering a catalyst from a solution containing a copolymer and the catalyst, including:
- solution containing the copolymer and the catalyst may be a solution obtained after the polymerization and still containing unreacted carbon dioxide and epoxide, a solution obtained after removing carbon dioxide only, or a solution obtained after removing both carbon dioxide and epoxide and further introducing another solvent thereto for the post-treatment.
- Preferred solvents that may be used for the post-treatment include methylene chloride, THF, etc.
- the solid inorganic material, polymer material or a mixture thereof may be added to the solution containing the copolymer and the catalyst, followed by filtration, or the solution containing the copolymer and the catalyst may be passed through a column packed with the solid inorganic material, polymer material or a mixture thereof.
- the solid inorganic material may be surface-modified or non-modified silica or alumina.
- the solid polymer material may be a polymer material having a functional group capable of inducing deprotonation by alkoxy anion. More particularly, the functional group capable of inducing deprotonation by alkoxy anion may be a sulfonic acid, carboxylic acid, phenol or alcohol group.
- the solid polymer material may have a number average molecular weight of 500-10,000,000 and is preferably crosslinked.
- non-crosslinked polymers may be used as long as they are not dissolved in the solution containing the copolymer and the catalyst.
- Particular examples of the “solid polymer material having a functional group capable of inducing deprotonation by alkoxy anion” include a homopolymer or copolymer containing a constitutional unit represented by any one of Chemical Formulas 13a to 13e in its polymer chain.
- Such a polymer material functioning as a support may be non-crosslinked as long as it is not dissolved in the above-mentioned solution.
- the polymer material is suitably crosslinked to provide decreased solubility.
- the present invention also provides a method for separately recovering a catalyst from a solution containing a copolymer and the catalyst, including:
- the acid may be 2,4-dinitrophenol
- the metal salt of a non-reactive anion may be MBF 4 (wherein M represents Li, Na or K).
- Reaction Scheme 1 shows a mechanism of separation and recovery of the catalyst.
- the anion of the ammonium salt nucleophililically attacks the activated epoxide coordinated to the metal, thereby initiating the polymerization reaction.
- the alkoxy anion formed by the nucleophilic attack reacts with carbon dioxide to form a carbonate anion, which, in turn, attacks nucleophilically the epoxide coordinated to the metal to form a carbonate anion.
- a polymer chain is formed.
- the anions of the ammonium salts contained in the catalyst are partially or totally converted into the carbonate anion or alkoxide anion containing the polymer chain.
- the carbonate anions are converted into alkoxide anions.
- the solution containing the catalyst and the copolymer is allowed to be in contact with the “polymer material having a functional group capable of inducing deprotonation by alkoxy anion” or a solid material (e.g. silica, alumina) having a surface hydroxyl group on the surface.
- the polymer chain receives protons through an acid-base reaction as shown in Reaction Scheme 1 so that it is maintained in the solution, while the catalyst forms a complex with the solid inorganic material or polymer material. Since the complex is insoluble in the solution, it may be easily separated from the solution via filtering.
- the catalyst may be recovered and recycled from the complex of the solid inorganic material or polymer material with the catalyst.
- the complex of the solid inorganic material or polymer material with the catalyst is not dissolved in general solvents.
- the catalyst when the recovered complex is treated with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving the inorganic material or polymer material, the catalyst may be dissolved into the medium via an acid-base reaction or salt metathesis.
- the resultant mixture may be filtered to allow the catalyst to be isolated from the solid inorganic material or polymer material, and then the catalyst may be separated and recovered.
- the acid used for the above treatment has a pKa value equal to or lower than the pKa value of the anion formed on the support.
- the acid may be one whose conjugate base shows excellent activity in the polymerization in view of the reutilization.
- Particular examples of such acids include HCl and 2,4-dinitrophenol. Chloride anions and 2,4-dinitrophenolate anions are known to have high activity and high selectivity in the polymerization.
- Particular examples of the salt of a non-reactive anion include DBF 4 or DClO 4 (wherein D represents Li, Na or K).
- the non-reactive anion may be replaced by the chloride anion and 2,4-dinitrophenolate anion having high activity and high selectivity via salt metathesis.
- Recovery of the catalyst may be carried out in a suitable solvent in which the catalyst is dissolved but the inorganic material or polymer material is not dissolved.
- suitable solvents include methylene chloride, ethanol or methanol.
- the present invention also provides a copolymer separated from the solution containing the copolymer and the catalyst and having a metal content of 15 ppm or lower. If the catalyst is not removed from the resin in the above manner, the resin may still contain a metal compound that causes coloration. This is not favorable to commercialization. In addition, most transition metals are toxic. Thus, when the metal is not removed from the resin, the resin is significantly limited in its application.
- the polymer solution when the polymer solution is not treated in the above manner so that the polymer chain has no proton at the end thereof, the polymer may be easily converted into single molecules via the so-called backbite reaction as shown in Reaction Scheme 2, under the condition of a slightly increased temperature or long-term storage. This may cause a severe problem when processing the resin and result in a significant degradation in the durability of the resin. Under these circumstances, the resin is not commercially acceptable.
- the polymer chain is provided with proton at the end thereof, and the alkoxide anion is converted into an alcohol group, which has weaker nucleophilic reactivity than alkoxide anion. Therefore, the backbite reaction of Reaction Scheme 2 does not occur so that the resin may provide good processability and durability.
- the complex disclosed herein may be prepared by providing an ammonium salt-containing ligand and coordinating the ligand to cobalt as shown in Reaction Scheme 3.
- a typical method for attaching the ligand to the metal include reacting cobalt acetate [Co(OAc) 2 ] with the ligand to de-coordinate the acetate ligand and to remove acetic acid, thereby providing a cobalt (II) compound, and then oxidizing the cobalt (II) compound with oxygen as an oxidizing agent in the presence of a suitable acid (HX, wherein X is the same as X in Chemical Formula 1) to obtain a cobalt (III) compound.
- HX suitable acid
- ammonium salt-containing ligand may be prepared according to the known method developed by the present inventors ( J. Am. Chem. Soc. 2007, 129, 8082; Angew Chem. Int. Ed., 2008, 47, 7306-7309).
- the complex disclosed herein is prepared from a ligand containing a protonated group so that it takes a negative divalently or higher valently charged form.
- the complex may be used in carbon dioxide/epoxide copolymerization as a catalyst to realize high activity and high selectivity consistently.
- the catalyst having protonated ligands is separated and recovered after the copolymerization so that it may be recycled. In this manner, it is possible to reduce the cost required for the catalyst and to realize high cost efficiency when preparing the copolymer.
- FIG. 1 shows 1 H NMR spectra of compounds 7 and 8 in DMSO-d 6 as a solvent, wherein the signals labeled with X correspond to DNP signals and the 2D spectrum in the box is 1 H- 1 H COSY NMR spectrum of compound 7 at 20° T.
- FIG. 2 shows 13 C NMR spectra of compounds 7 and 8 in DMSO-d 6 as a solvent.
- FIG. 3 shows 15 N NMR spectra of compounds 7 and 8 in DMSO-d 6 as a solvent.
- FIG. 4 shows 1 H NMR spectra of compounds 7 and 8 in THF-d 8 and CD 2 Cl 2 as a solvent.
- FIG. 5 shows IR spectra of compounds 7 and 8.
- FIG. 6 shows the most stable conformation of compound 7 obtained by DFT calculation, wherein only the oxygen atoms of DNP ligands coordinated to the metal are shown for the purpose of simplicity.
- FIG. 8 shows VT 1 H NMR spectrum of compound 7 in THF-d 8 .
- FIG. 9 is 1 H NMR spectrum illustrating the reaction between compound 10 or 8 and propylene oxide, wherein the signals marked with “*” correspond to new signals derived from the anion of Meisenheimer salt.
- the title compound is prepared by hydrolyzing the ligand represented by Chemical Formula 19a.
- the compound represented by Chemical Formula 19a is obtained by the known method developed by the present inventors ( Angew. Chem. Int. Ed., 2008, 47, 7306-7309).
- the compound represented by Chemical Formula 19a (0.500 g, 0.279 mmol) was dissolved in methylene chloride (4 mL), and then aqueous Hl solution (2N, 2.5 mL) was added thereto and the resultant mixture was agitated for 3 hours at 70° C. The aqueous layer was removed, the methylene chloride layer was washed with water and dried with anhydrous magnesium chloride, and the solvents were removed under reduced pressure.
- the resultant product was purified by silica gel column chromatography eluting with methylene chloride/ethanol (10:1) to obtain 0.462 g of 3-methyl-5-[ ⁇ I ⁇ Bu 3 N + (CH 2 ) 3 ⁇ 2 CH ⁇ ]-salicylaldehyde (yield 95%).
- the compound was dissolved in ethanol (6 mL), and AgBF 4 (0.225 g, 1.16 mmol) was added thereto, andthe resultant mixture was stirred f filteration.
- the title compound is prepared from the compound represented by Chemical Formula 19b in the same manner as described in Example 1.
- the compound represented by Chemical Formula 19a is also obtained by the known method developed by the present inventors ( Angew. Chem. Int. Ed., 2008, 47, 7306-7309).
- Reaction Scheme 4 schematically illustrates one embodiment of the method for preparing the complex disclosed herein.
- Ethylene diamine dihydrochloride (10 mg, 0.074 mmol), sodium t-butoxide (14 mg) and 3-methyl-5-[ ⁇ BF 4 ⁇ Bu 3 N + (CH 2 ) 3 ⁇ 2 CH ⁇ ]-salicylaldehyde compound (115 mg) obtained from Example 1 are weighed with vials in a dry box, and ethanol (2 mL) was added thereto, followed by stirring at room temperature for overnight. The reaction mixture was filtered and solvent were removed under reduced pressure. The resultant product was redissolved into methylene chloride and filtered once again. The solvents were removed under reduced pressure, and Co(OAc) 2 (13 mg, 0.074 mmol) and ethanol (2 mL) are added thereto.
- the reaction mixture was stirred for 3 hours at room temperature and then the solvents were removed under reduced pressure.
- the resultant compound was washed with diethyl ether (2 mL) twice to obtain a solid compound.
- the solid compound was dissolved into methylene chloride (2 mL) and 2,4-dinitrophenol (14 mg, 0.074 mmol) was added thereto, and the resultant mixture was stirred for 3 hours in the presence of oxygen. Then, sodium 2,4-dinitrophenolate (92 mg, 0.44 mmol) was added to the reaction mixture and the stirring continued for overnight at room temperature.
- the reaction mixture was filtered over a pad of Celite and the solvents were removed to obtain the product as a dark brown solid compound (149 mg, yield 100%).
- 1-chloro-4-iodobutane (1.00 g, 4.57 mmol) was dissolved into a mixture solvent of diethyl ether/pentane (2:3) to obtain a concentration of 0.10 M, the resultant mixture was cooled to ⁇ 78° C.
- t-butyl lithium (3.690 g, 9.610 mmol, 1.7M solution in pentane) was added gradually to the cooled solution of 1-chloro-4-iodobutane and stirred for 2 hours.
- 1,5-dichloropentane-3-one (838 mg, 4.580 mmol) dissolved in diethyl ether (8 mL) was added gradually to the reaction mixture.
- 1,7-dichloroheptan-4-one (17.40 g, 95.04 mmol) was dissolved into diethyl ether (285 mL) under nitrogen atmosphere.
- the reaction mixture was cooled to ⁇ 78° C.
- MeLi 1.5 M solution in diethyl ether 80.97 g, 142.56 mmol
- the reaction mixture was stirred for 2 hours at ⁇ 78° C. water (170 mL) was added at ⁇ 78° C. to quench the reaction.
- the product was extracted using diethyl ether.
- the aqueous layer was repeatedly extracted with diethyl ether (2 times).
- the aqueous layer was further extracted three times with methylene chloride (300 mL) and combined organic layers, dried over anhydrous magnesium sulfate and filtered, the solvents were removed by a rotary evaporator under reduced pressure to obtain an oily compound. The remaining trace amount of triethylamine is removed by a vacuum pump.
- the resultant compound has high purity as determined by NMR analysis and can be used for the subsequent reaction without further purification. In this manner, 26.75 g of compound 26 was obtained (yield 96%).
- the reaction mixture was agitated for 24 hours under light-shielded atmosphere, and the resultant Agl was removed by filteration over a pad of celite. The solvents were removed under vacuum. Then, the resultant compound was dissolved in methylene chloride (6 mL), and further filtered through a Celite pad to remove floating materials. The resultant product was purified by column chromatography using silica, eluting with mthylene chloride-ethanol (5:1) as eluent to obtain the purified compound (1.23 g, yield 90%).
- o-cresol (78.17 g, 722.82 mmol), 1,7-dichloro-4-methylheptane4-ol (17.99 g, 90.35 mmol) and AlCl 3 (13.25 g, 99.39 mmol) were mixed in a round bottom flask and stirred overnight.
- diethyl ether 500 mL
- water 300 mL
- the organic layers were collected, and the aqueous layer was further extracted three times with diethyl ether (300 mL). Combined the organic phases and dried over anhydrous magnesium sulfate, followed by filtration, and the solvents were removed by a rotary evaporator under reduced pressure.
- the aqueous layer was further extracted three times with methylene chloride (300 mL) and combined organic layers, dried over anhydrous magnesium sulfate and filtered, the solvents were removed by a rotary evaporator under reduced pressure to obtain an oily compound. The remaining trace amount of triethylamine is removed by a vacuum pump. The resultant compound has high purity as determined by NMR analysis and can be used for the subsequent reaction without further purification. In this manner 26.75 g of complex 36a was obtained (yield 96%).
- the reaction mixture was agitated for 24 hours under light-shielded atmosphere, and the resultant Agl was removed by filteration over a pad of celite. The solvents were removed under vacuum. Then, the resultant compound was dissolved in methylene chloride (6 mL), and further filtered through a Celite pad to remove floating materials. The resultant product was purified by column chromatography using silica, eluting with mthylene chloride-ethanol (5:1) as eluent to obtain the 39a (1.23 g, yield 90%).
- FIGS. 1 , 2 , 3 , 4 and 5 show 1 H NMR spectrum, 13 C NMR spectrum and 15 N NMR spectrum of compounds 7 and 8 in DMSO-d 6 as a solvent, and 1 H NMR spectra of compounds 7 and 8 in THF-d 8 and CD 2 Cl 2 as solvents. It can be seen that the two compounds show clearly different behaviors. In the case of complex 8 prepared from a ligand wherein R is t-butyl, sharp signals appear in both 1 H NMR spectrum and 13 C NMR spectrum. This is a typical behavior of tetradentate Salen-Co (III) compound. In the 15 N NMR spectrum, only one signal appears at ⁇ 163.43 ppm regardless of temperature.
- Complexes 7 and 8 show significantly different behaviors as determined by 1 H NMR spectrometry in THF-d 8 or CD 2 Cl 2 ( FIG. 4 ).
- 1 H NMR spectrum of complex 8 a set of Salen-unit signals appears and a very broad DNP signal appears. Especially, some signals appear at an abnormal range, ⁇ 2 to 0 ppm. This suggests that some paramagnetic compounds are present.
- 1 H NMR spectrum of complex 7 only one set of Salen-unit signals appears, which has a significantly different chemical shift from complex 8. Broad DNP signals are observed at 7.88, 8.01 and 8.59 ppm.
- the two complexes show clearly different signals in a range of 1200-1400 cm ⁇ 1 corresponding to the symmetric vibration of —NO 2 in IR spectra.
- complex 8 has a structure of a general Salen ligand-containing cobalt complex in which all of the four ligands of Salen are coordinated to cobalt, when observed by the 1 H, 13 C, and 15 N NMR spectra.
- ICP-AES elemental analysis and 19 F NMR spectrometry, it is found that one equivalent of NaBF 4 is inserted into the complex.
- a broad DNP signal is observed, which suggests that the DNP ligand undergoes continuous conversion/reversion between the coordinated state and the de-coordinated state.
- a square-pyramidal cobalt compound may be present transiently and the square-pyrimidal compound is known to be a paramagnetic compound [(a) Konig, E.; Kremer, S.; Schnakig, R.; Kanellakopulos, B. Chem. Phys. 1978, 34, 79. (b) Kemper,S.; Hrobarik, P.; Kaupp, M.; Schlörer, N. E. J. Am. Chem. Soc. 2009, 131, 4172.]. Therefore, an abnormal signal is always observed at ⁇ 2 to 0 ppm in the 1 H NMR spectrum of complex 8.
- the analytic data may be understood.
- the structure is demonstrated through the following DFT calculation and electrochemical experiments.
- the structure is characterized in that four DNP ions, which are conjugate anions of quaternary ammonium salt, are coordinated instead of imine.
- the last operation of the catalyst preparation includes reaction with 5 equivalents of NaDNP suspended in CH 2 Cl 2 to perform a change of [BF4] ⁇ into DNP anion.
- [DNP]/[Salen-unit] integration ratio is 4.0 and this is not significantly changed even when using a more excessive amount of NaDNP (10 equivalents) or when increasing the reaction time. In other words, one among the four BF 4 remains unsubstituted.
- BF 4 anion is present as a conjugate anion of quaternary ammonium salt.
- a catalyst with ligands having more quaternary ammonium salt units like complex 9 only the compound having four DNP ligands are observed even in the presence of a significantly excessive amount of NaDNP and even after a longer time. It is thought that an octahedral coordination compound having two Salen-phenoxy ligands and four DNP ligands is obtained in methylene chloride as a solvent, and formation of the octahedral compound causes the anion exchange.
- Cobalt (III) metal is classified into hard acid, and the hard acid prefers DNP to imine-base, resulting in the compound with such a different structure. In the case of complex 8, steric hindrance of t-butyl hinders formation of such a compound.
- the octahedral cobalt (III) compound in which cobalt has a charge of ⁇ 3 is previously known [(a) Yagi, T.; Hanai, H.; Komorita, T.; Suzuki T.; Kaizaki S. J. Chem. Soc., Dalton Trans. 2002, 1126. (b) Fujita, M.; Gillards, R. D. i Polyhedron 1988, 7, 2731.]
- Complexes 5, 9 and 10 provide 1 H and 13 C NMR spectrum and IR spectrum behaviors similar to complex 7, and thus may be regarded as a complex with a different coordination system having no imine coordination.
- complex 5 has been regarded as a general Salen-compound structure having imine coordination like complex 8 in the previously known publication of the present inventors ( Angew. Chem. Int. Ed., 2008, 47, 7306-7309) and patent applications [Korean Patent Application No. 10-2008-0015454 (2008. 02.
- Complexes 6 and 11 provide 1 H and 13 C NMR spectrum and IR spectrum behaviors similar to complex 8, and thus may be regarded as a general Salen-compound structure having imine coordination.
- FIG. 6 shows the most stable conformation of complex 7 obtained from the calculation.
- complex 7 with a different structure having no imine coordination as disclosed herein has a more stable energy level than the general imine-coordinated structure by 132 kcal/mol. Such a difference in energy levels is significant.
- FIG. 7 is a reaction scheme illustrating a change in the state of DNP at room temperature depending on the solvent, in the case of a compound with a different coordination system having no coordination with imine.
- the complex obtained from the last anion exchange reaction has an octahedral coordination structure having two Salen-phenoxy ligands and four DNP ligands conforms to the structure adopted from the DFT calculation.
- the new signal may be regarded as DNP remaining in the de-coordinated state for a long time.
- four DNP ligands are observed as one set of broad signals at 9.3, 9.0 and 7.8 ppm. This is similar to the chemical shift of the coordinated DNP signal, and it is thought that all of the four DNP ligands remain in the coordinated state for a long time. In other words, as the temperature increases, DNP ligands may be more adjacent to the cobalt center.
- the de-coordinated DNP ligands are surrounded with solvent molecules, resulting in a decrease in entropy. Such de-coordination accompanied with a decrease in entropy is preferred at low temperature.
- FIG. 8 shows VT 1 H NMR spectrum of compound 7 in THF-d 8 .
- the signals of two DNP ligands remaining mainly in the de-coordinated state as observed in complexes 9 and 10 are broader than the corresponding signals in complex 5. This suggests that the two DNP ligands in complexes 9 and 10 remain in the de-coordinated state for a shorter time as compared to complex 5. As a result, the degree of retention (binding affinity to cobalt) of the two DNP ligands remaining mainly in the de-coordinated state is in order of 7>9 and 10>5.
- DNP signals are observed at 8.5, 8.1 and 7.8 ppm along with a set of signals of DNP ligands remaining mainly in the de-coordinated state with an integration ratio of 1:3.
- the less observed DNP signals have similar chemical shift values as compared to the chemical shift values of the coordinated DNP ligands observed in THF and methylene chloride.
- the signals may correspond to coordinated DNP ligands.
- one DMP remains mainly in the coordinated state and the other three DMP ligands remain in the de-coordinated state. It is thought that DMSO is coordinated at the vacant site generated by de-coordination of DNP. DMSO is coordinated well to hard acid such as cobalt (III) metal.
- the complicated 1 H, 13 C and 15 N N NMR spectra of complex 7 observed in DMSO-d 6 may be understood through the above-described non-imine coordinated structure and the state of DNP.
- two phenoxy ligands contained in one Salen-unit are subjected to different situations.
- One phenoxy ligand is at trans-position to DMSO, and the other is at trans-position to DNP. Therefore, two signals are observed in 15 N NMR spectrum ( FIG. 3 ), and a part of aromatic signals is divided at a ratio of 1:1 in 1 H and 13C NMR ( FIGS. 1 and 2 ).
- NCH 2 CH 2 N signal is divided into three signals at 4.3, 4.15 and 4.1 ppm with a ratio of 1:1:2.
- 3 signals are derived from one NCH 2 CH 2 N-unit ( FIG. 1 ).
- complex 7 shows a conformation of ⁇ NCH 2 CH 2 N ⁇ unit and is similar to the structure as illustrated in FIG. 6 .
- complex 7 may not be converted into a structural isomer of the cobalt octahedral structure.
- the structure having three DMSO coordinations and one DNP coordination is chiral.
- complexes 12 and 13 having no DNP ligands have the same general imine-coordinated structure regardless of methyl or t-butyl substitution in a non-coordinatable solvent such as methylene chloride.
- a non-coordinatable solvent such as methylene chloride.
- the two complexes show the same reduction potential (0.63 V vs. SCE).
- the above difference in reduction potentials suggests that the two complexes have different coordination systems.
- the solvent is changed from CH 2 Cl 2 to DMSO, the reduction potential difference appears again.
- the reduction potentials of complexes 12 and 13 observed in DMSO are similar to the reduction potentials of complexes 5 and 6 observed in DMSO ( ⁇ 0.076 and ⁇ 0.013 V vs. SCE). Since DMSO is coordinated well to cobalt (III) metal, in DMSO as a solvent, complex 12 is converted into a complex with a different coordination system, such as complex 5 having no imine coordination, while four DMSO ligands are coordinated to complex 12 having a methyl substituent.
- FIG. 9 is 1 H NMR spectrum illustrating the reaction between complex 10 or 8 and propylene oxide.
- the signal marked with ‘*’ is a newly generated signal that corresponds to the anion of Meisenheimer salt shown in complex 14.
- the oxygen atom of alkoxide obtained by the attack to propylene oxide coordinated with DNP further attacks ipso-position of the benzene ring, so that the anion of Meisenheimer salt is formed.
- Complicated aromatic signals of Salen are observed at 7.0-7.4 ppm. However, this is not caused by the breakage of the Salen-unit. When an excessive amount of acetic acid is added to the compound prepared after the reaction with propylene oxide, simple three Salen aromatic signals are observed.
- the anion of Meisenheimer salt is stopped at a [Meisenheimer anion]/[DNP] integration ratio of 1:1. During the first one hour, DNP is converted rapidly into the anion of Meisenheimer salt so that the [Meisenheimer anion]/[DNP] integration ratio reaches 1:1. However, the conversion does not proceed any longer, and thus the integration ratio is unchanged even after 2 hours.
- the anion of Meisenheimer salt is a previously known compound [(a)Fendler, E. J.; Fendler, J. H.; Byrne, W. E.; Griff, C. E. J. Org. Chem. 1968, 33, 4141.
- the reactivity of the general imine-coordinated complex 8 with propylene oxide is different from that of the non-imine coordinated complex 10.
- the [Meisenheimer anion]/[DNP] integration ratio is not stopped at 1.0 but gradually increases over time (0.96 after 1 hour; 1.4 after 2 hours; 1.8 after 7 hours; and 2.0 after 20 hours).
- complex 8 shows a relatively large amount of broad signals between ⁇ 1 ppm and 0.5 ppm. This suggests that reduction into a paramagnetic cobalt (II) compound occurs. The broad signal gradually increases over time.
- the cobalt (II) compound has no catalytic activity.
- any one complex obtained from Examples 3-10 (used in an amount calculated according to a ratio of monomer/catalyst of 7.58) and propylene oxide (10.0 g, 172 mmol) are introduced in a dry box and the reactor is assembled.
- carbon dioxide is introduced under a pressure of 18 bar
- the reactor is introduced into an oil bath controlled previously to a temperature of 80° C. and agitation is initiated. The time at which carbon dioxide pressure starts to be decreased is measured and recorded. After that, the reaction is carried out for 1 hour, and then carbon dioxide gas is depressurized to terminate the reaction.
- monomers (10 g) are further introduced to reduce the viscosity.
- the resultant solution is passed through a silica gel column [400 mg, Merck, 0.040-0.063 mm particle diameter (230-400 mesh)] to obtain a colorless solution.
- the monomers are removed by depressurization under reduced pressure to obtain a white solid.
- the weight of the resultant polymer is measured to calculate turnover number (TON).
- the polymer is subjected to 1 H NMR spectrometry to calculate selectivity.
- the molecular weight of the resultant polymer is measured by GPC with calibration using polystyrene standards.
- the reactor is introduced into an oil bath controlled previously to a temperature of 80° C. and is agitated for about 15 minutes so that the reactor temperature is in equilibrium with the bath temperature.
- carbon dioxide is added under 20 bars. After 30 minutes, it is observed that carbon dioxide is depressurized while the reaction proceeds. Carbon dioxide is further injected continuously for 1 hour under 20 bars.
- monomers (10 g) are further introduced to reduce the viscosity.
- the resultant solution is passed through a silica gel column [400 mg, Merck, 0.040-0.063 mm particle diameter (230-400 mesh)] to obtain a colorless solution.
- the monomers are removed by depressurization under reduced pressure to obtain 2.15 g of a white solid.
- the catalytic activity of the complex used in this Example corresponds to a TON of 6100 and a turnover frequency (TOF) of 9200 h ⁇ 1 .
- the resultant polymer has a molecular weight (M n ) of 89000 and a polydispersity (Mw/Mn) of 1.21 as measured by GPC.
- the polymer formation selectivity is 96% as determined by 1 H NMR.
- the following process is used to recover catalysts.
- the colored portion containing a cobalt catalyst component at the top of the silica column in Example 12 is collected, and dispersed into methanol solution saturated with NaBF 4 to obtain a red colored solution.
- the red solution is filtered, washed twice with methanol solution saturated with NaBF 4 until the silica becomes colorless, the resultant solution is collected, and the solvent is removed by depressurization under reduced pressure.
- methylene chloride is added to the resultant solid. In this manner, the brown colored cobalt compound is dissolved into methylene chloride, while the unsoluble white NaBF 4 solid may be separated.
- Table 1 shows the polymerization reactivity of each catalyst.
- the general compounds having imine coordination i.e. complexes 6, 8 and 11 has little or no polymerization activity.
- the complexes with a different structure having no imine coordination according to the present invention have high polymerization activity.
- complex 9 with a different structure having no imine coordination but containing six ammonium units has no activity.
- Complexes 5, 7 and 10 have higher activity in order of 5>10>7, which is the converse of order of Co-binding affinity of weak bound DNP undergoing continuous conversion/reversion between the Co-coordinated state and the de-coordinated state.
- the present application contains subject matter related to Korean Patent Application Nos. 10-2008-0074435, 10-2008-0126170, 10-2009-0054481 and 10-2009-0054569 filed in the Korean Intellectual Property Office on Jul. 30, 2008, Dec. 11, 2008, Jun. 18, 2009, and Jun. 18, 2009, the entire contents of which are incorporated herein by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Polyesters Or Polycarbonates (AREA)
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided are a complex prepared from ammonium salt-containing ligands and having such an equilibrium structural formula that the metal center takes a negative charge of 2 or higher, and a method for preparing polycarbonate via copolymerization of an epoxide compound and carbon dioxide using the complex as a catalyst. When the complex is used as a catalyst for copolymerizing an epoxide compound and carbon dioxide, it shows high activity and high selectivity and provides high-molecular weight polycarbonate, and thus easily applicable to commercial processes. In addition, after forming polycarbonate via carbon dioxide/epoxide copolymerization using the complex as a catalyst, the catalyst may be separately recovered from the copolymer.
Description
- The present invention relates to a novel catalyst for use in preparing polycarbonate from an epoxide compound and carbon dioxide and a method for preparing polycarbonate using the same. More particularly, the present invention relates to a catalyst for preparing the above polymer, which includes a complex having such an equilibrium structural formula that the metal center of the complex takes a negative charge of 2 or higher, as well as to a method for preparing polycarbonate via copolymerization of carbon dioxide and epoxide using the same complex as a catalyst. In addition, the present invention relates to a method including carrying out polymerization using the above catalyst, and separately recovering the catalyst from the solution in which the resultant copolymer and the catalyst are dissolved.
- Aliphatic polycarbonate is an easily biodegradable polymer and is useful for packaging or coating materials, etc. Processes for preparing polycarbonate from an epoxide compound and carbon dioxide is highly eco-friendly in that they use no harmful compound, phosgene, and adopt easily available and inexpensive carbon dioxide.
- Since 1960's, many researchers have developed various types of catalysts to prepare polycarbonate from an epoxide compound and carbon dioxide. Recently, we have developed a catalyst for carrying out carbon dioxide/epoxide copolymerization. The catalyst includes a complex having an onium salt and a metal center with a Lewis acid group in one molecule. Use of the catalyst allows the growth point of the polymer chain to be positioned always in the vicinity of the metal in the polymerization medium for carrying out epoxide/carbon dioxide copolymerization, regardless of the concentration of the catalyst. In this manner, the catalyst shows high activity even under a high ratio of monomer/catalyst, exhibits high cost-efficiency by virtue of a decrease in catalyst need, and provides polycarbonate with a high molecular weight. Moreover, the catalyst realizes polymerization activity even at high temperature to increase the conversion, permits easy removal of the polymerization reaction heat, and thus is easily applicable to commercial processes [see, Korean Patent Application No.10-2007-0043417 (May 4, 2007, Title: COORDINATION COMPLEXS CONTAINING TWO COMPONENTS IN A MOLECULE AND PROCESS OF PRODUCING POLYCARBONATE BY COPOLYMERIZATION OF CARBON DIOXIDE AND EPOXIDE USING THE SAME); International Patent Application No. PCT/KR2008/002453; Eun Kyung Noh, Sung Jae Na, Sujith S, Sang-Wook Kim, and Bun Yeoul Lee* J. Am. Chem. Soc. 2007, 129, 8082-8083 (Apr. 7, 2007)]. Further, when the complex having an onium salt and a metal center with a Lewis acid group in one molecule is used as a catalyst for carbon dioxide/epoxide copolymerization, the catalyst is easily separated and reutilized from the copolymer after the polymerization. Thus, such a method for separately recovering the catalyst has been described in a patent application and a journal [Korean Patent Application No. 10-2008-0015454 (Feb. 20, 2008, Title: METHOD FOR RECOVERING CATALYST FROM PROCESS FOR PREPARING COPOLYMER); Bun Yeol Lee, Sujith S, Eun Kyung Noh, Jae Ki Min, “A PROCESS PRODUCING POLYCARBONATE AND A COORDINATION COMPLEXES USED THEREFOR” PCT/KR2008/002453 (Apr. 30, 2008); Sujith S, Jae Ki Min, Jong Eon Seong, Sung Jea Na, and Bun Yeoul Lee* “A HIGHLY ACTIVE AND RECYCLABLE CATALYTIC SYSTEM FOR CO2/(PROPYLENE OXIDE) COPOLYMERIZATION” Angew. Chem. Int Ed., 2008, 47, 7306-7309].
- The complex of the above studies mainly includes Salen-cobalt compound ([H2Salen=N,N′-bis(3,5-dialkylsalicylidene)-1,2-cyclohexanediamine]) (see the following chemical formula), obtained from a Schiff base ligand of a salicylaldehyde compound and a diamine compound. The complex is a tetradentate (or quadradendate) cobalt compound-based complex in which trivalent cobalt atom is coordinated with two nitrogen imine ligands and two phenolate ligands at the same time:
- The complex may be referred to as a tetradentate (or quadradendate) Schiff base complex, and may be prepared according to the following reaction scheme:
- The above tetradentate (or quadradentate) Schiff-base cobalt or chrome complex has been developed intensively as a carbon dioxide/epoxide copolymerization catalyst. (Cobalt-based catalyst: (a) Lu, X.-B.; Shi, L.; Wang, Y.-M.; Zhang, R.; Zhang, Y.-J.; Peng, X.-J.; Zhang, Z.-C.; Li, B. J Am. Chem. Soc. 2006, 128,1664. (b) Cohen, C. T. Thomas, C. M. Peretti, K. L. Lobkovsky, E. B. Coates, G. W. Dalton Trans. 2006, 237. (c) Paddock, R. L. Nguyen, S. T. Macromolecules 2005, 38, 6251. Chrome-based catalyst: (a) Darensbourg, D. J.; Phelps, A. L.; Gall, N. L.; Jia, L. Acc. Chem. Res. 2004, 37, 836. (b) Darensbourg, D. J.; Mackiewicz, R. M. J. Am. Chem. Soc. 2005, 127,14026.).
- We have studied about the characteristics and structures of the tetradentate (or quadradentate) complex having the above described structure and unexpectedly found that the complex shows significantly different activities and selectivities depending on the R group. In order word, when R is a sterically hindered group such as t-butyl, the compound shows commonly expectable activity and selectivity. However, when R has decreased steric hindrance, or R is a radical such as methyl, the complex provides an activity (TOF, turnover frequency) of 26000 h−1, which is about 20 times higher than the activity (1300 h−1) of the corresponding t-butyl group-containing complex. In addition, the methyl group-containing complex provides an increase in selectivity from 84% to 99% or higher. Based on these findings, we have conducted several types of structural analysis including 1H MNR, 13C MNR, 15N MNR, 19F NMR, IR, IAP-AES, elemental analysis, electrochemical analysis, etc. As a result, we have found that when R is a less sterically hindered radical, such as methyl, another complex (i.e. bidentate complex) having a different structure in which the metal is not coordinated with the adjacent nitrogen is obtained, and the complex has high activity and selectivity.
- Therefore, an object of the present invention is to provide a method for copolymerizing carbon dioxide and epoxide using a complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group rather than the existing tetradentate (or quadradentate) complex.
- Another object of the present invention is to provide a method for the formation of a copolymer using the above complex as a catalyst, and for the separation and recovery of the catalyst from the mixed solution of the resultant copolymer and the catalyst.
- Still another object of the present invention is to provide the above-described novel complex.
- To achieve the object of the present invention, the present invention provides a novel complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group, and a method for preparing a carbon dioxide/epoxide copolymer using the same complex as a catalyst.
- Hereinafter, the present invention will be explained in more detail.
- The present invention provides a novel complex as a catalyst for preparing a carbon dioxide/epoxide copolymer. The complex is coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group. The complex is represented by Chemical Formula 1:
-
[LaMXb]Xc [Chemical Formula 1] - wherein
- M represents a metal element;
- L represents a L-type or X-type ligand;
- a represents 1, 2 or 3, wherein when a is 1, L includes at least two protonated groups, and when a is 2 or 3, L(s) are the same or different, and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand, with the proviso that at least one L includes at least one protonated group and the total number of protonated groups contained in L(s) is 2 or more;
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
- b and c satisfy the condition of “(b+c)=(total number of protonated groups contained in L)+[(oxidation number of metal)−(number of X-type ligands in L)]”.
- The anion of Meisenheimer salt is a compound having the following structural formula:
- wherein
- R represents methyl or H; and
- R′ is selected from H and nitro (—NO2), with the proviso that at least one of the five R′ radicals represents nitro (—NO2).
- In
Chemical Formula 1, L-type and X-type ligands are described in detail in [Gray L. Spessard and Gary L. Miessler, Organometallic Chemistry, published by Prentice Hall, p. 46]. L-type ligands mean neutral ligands and particularly include non-paired electron pair donors, such as phosphine, pi-bond donors, such as ethylene, or sigma-bond donors, such as hydrogen. L-type ligands are bound to the metal by donating non-paired electron pairs, and binding of the L-type ligands has no effect on the oxidation number of the metal. X-type ligands include anionic ligands, such as chlorine or methyl. Binding of such X-type ligands is regarded as binding between X− anion and M+ cation, and affects the oxidation number of the metal. - The complex used as a carbon dioxide/epoxide copolymerization catalyst herein is a complex coordinated with monodentate, bidentate or tridentate ligands having at least one protonated group (i.e. complex represented by Chemical Formula 1), and having such an equilibrium structural formula that the metal center takes a negative charge of 2 or higher. The carbon dioxide/epoxide copolymerization catalysts developed to date are tetradentate (or quadradentate) Schiff-base complexes wherein “four groups are bound to one metal atom”, and thus are clearly different from the complex disclosed herein.
- According to one embodiment of the present invention, there is provided a complex represented by
Chemical Formula 1, wherein the protonated group contained in L represents a functional group represented by Chemical Formula 2a, 2b or 2c, and M represents cobalt (III) or chromium (III): - wherein
- G represents a nitrogen or phosphorus atom;
- R11, R12, R13, R21, R22, R23, R24 and R25 independently represent a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R11, R12 and R3, or two of R21, R22, R23, R24 and R25 may be linked to each other to form a ring;
- R31, R32 and R33 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R31, R32 and R33 may be linked to each other to form a ring;
- X′ represents an oxygen atom, sulfur atom or N—R (wherein R represents a hydrogen radical; or a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
- the alkyl of the alkyl, alkenyl, alkylaryl or aralkyl radicals may be linear or branched.
- According to another embodiment of the present invention, there is provided a complex represented by
Chemical Formula 1, wherein L represents a ligand represented by Chemical Formula 3, a represents 2 or 3, and M represents cobalt (III) or chromium (III): - wherein
- A represents an oxygen or sulfur atom;
- R1 through R5 independently represent a hydrogen radical; linear or branched (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein the alkyl or alkenyl of R3 may be further substituted by a (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl, two of R1 through R5 may be linked to each other to form a ring, and at least one of R1 through R5 include at least one of Chemical Formulas 2a to 2c;
- a represents 2 or 3; and
- L(s) are the same or different and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand.
- According to still another embodiment of the present invention, there is provided a complex having two ligands L represented by Chemical Formula 4:
- wherein
- B1 through B4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
- R26 represents primary or secondary (C1-C20)alkyl;
- R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other; and
- the alkylene or alkyl may be linear or branched.
- More particularly, in
Chemical Formula 4, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. - Preferably, in
Chemical Formula 4, B1 through B4 independently represent propylene, R26 and R27 independently represent methyl, R28 and R29 independently represent butyl, and Q represents trans-1,2-cyclohexylene. - The ligand represented by
Chemical Formula 4 may be formed from a phenol derivative represented by Chemical Formula 14, which is prepared from the reaction between a phenol compound represented by Chemical Formula 15 and substituted by an alkyl group at the C2 position and a tertiary alcohol compound represented by Chemical Formula 16 in the presence of an acid catalyst: - In Chemical Formulas 14 to 16, B9 and B10 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably propylene. R26 represents primary or secondary (C1-C20)alkyl. When R26 is a tertiary alkyl, the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts. In addition, cobalt complexes obtained from such a tertiary alkyl-containing phenol compound have a different structure and low activity. Thus, primary or secondary (C1-C20)alkyl is preferred. More particularly, R26 represents primary or secondary (C1-C7)alkyl. Herein, the term ‘primary alkyl’ includes normal alkyl, neo-alkyl or iso-alkyl. The terms ‘secondary alkyl’ and ‘tertiary alkyl’ are also referred to as ‘sec-alkyl’ and ‘tert-alkyl’, respectively.
- R27 is selected from (C1-C20)alkyl and (C6-C30)aryl, more particularly (C1-C7)alkyl, and preferably methyl. The term ‘alkyl’ includes a linear or branched alkyl group.
- X3 and X4 is independently selected from Cl, Br and I.
- Herein, the term ‘aryl’ includes an aromatic ring, such as phenyl, naphthyl, anthracenyl or biphenyl, wherein a carbon atom in the aromatic ring may be substituted by a hetero atom, such as N, O and S.
- As the acid catalyst, AlCl3 or an inorganic acid, such as phosphoric acid or sulfuric acid, may be used. A solid acid catalyst may be used to permit recycle of the catalyst after the reaction. Particular examples of the solid acid catalyst include Nafion NR50, Amberlyst-15, H-ZSM5, H-Beta, HNbMoO6, or the like (see, Kazunari Domen et. al, J. AM. CHEM. SOC. 2008, 130, 7230-7231).
- The tertiary alcohol compound represented by Chemical Formula 16 may be prepared by various organic reactions. For example, the tertiary alcohol compound may be obtained according to Reaction Scheme 7:
- wherein
- X3, X4 and R27 are the same as defined in Chemical Formula 16.
- The present invention also provides a ligand compound represented by Chemical Formula 17 prepared from a phenol derivative represented by Chemical Formula 14:
- In Chemical Formula 17, B1 through B4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably propylene. The alkylene may be linear or branched.
- In Chemical Formula 17, R26 represents primary or secondary (C1-C20)alkyl. When R26 is tertiary alkyl, the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts. In addition, cobalt complexes obtained from such a tertiary alkyl-containing phenol compound have a different structure and low activity. Thus, primary or secondary (C1-C20)alkyl is preferred. More particularly, R26 represents primary or secondary (C1-C7)alkyl. Most preferably, R26 represents methyl.
- In Chemical Formula 17, R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups. More particularly, R27 through R29 are independently selected from (C1-C7)alkyl groups. Preferably, R27 represents methyl and R28 and R29 independently represent butyl.
- In Chemical Formula 17, Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other. Particularly, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. More particularly, Q is selected from ethylene, trans-1,2-cyclohexylene and 1,2-phenylene.
- In Chemical Formula 17, Z−(s) are independently selected from halide ions, BF4 −, ClO4 −, NO3 −, and PF6 −, more particularly iodide ion and BF4 −.
- More preferably, the ligand compound represented by Chemical Formula 17 may be a ligand compound represented by Chemical Formula 18:
- In Chemical Formula 18, m and n independently represent an integer from 1 to 19, preferably from 1 to 5, and more preferably 2.
- In Chemical Formula 18, R26 represents primary or secondary (C1-C20)alkyl. When R26 is a tertiary alkyl, the reaction provides a low yield due to the production of byproducts caused by various side reactions, and thus requires a purification process for removing the byproducts. In addition, cobalt complexes obtained from such a tertiary alkyl-containing compound have a different structure and low activity. Thus, primary or secondary (C1-C20)alkyl is preferred. More particularly, R26 represents primary or secondary (C1-C7)alkyl. Most preferably, R26 represents methyl.
- In Chemical Formula 18, R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups. More particularly, R27 through R29 are independently selected from (C1-C7)alkyl groups. Preferably, R27 represents methyl and R28 and R29 independently represent butyl.
- In Chemical Formula 18, Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other. Particularly, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. More particularly, Q is selected from ethylene, trans-1,2-cyclohexylene and 1,2-phenylene.
- In Chemical Formula 18, Z−(s) are independently or simultaneously selected from halide ions, BF4 −, ClO4 −, NO3 −, and PF6 −, more particularly iodide ion and BF4 −.
- A method for preparing the compound represented by Chemical Formula 17 or 18 includes:
- adding a diamine compound to a compound represented by Chemical Formula 20 to perform imination and to produce a compound represented by Chemical Formula 21; and
- adding a tertiary amine compound thereto to produce a compound represented by Chemical Formula 17:
- In Chemical Formulas 17, 20 and 21, B1 through B4, B9 and B10 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene, preferably (C2-C6)alkylene, more preferably propylene;
- R26 represents primary or secondary (C1-C20)alkyl, preferably primary or secondary (C1-C7)alkyl, more preferably methyl;
- R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl groups, preferably (C1-C7)alkyl groups. More preferably, R27 represents methyl and R28 and R29 independently represent butyl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms with each other, preferably Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N, and more preferably, Q represents trans-1,2-cyclohexylene;
- Z−(s) are independently selected from halide ions, BF4 −, ClO4 −, NO3 − and PF6 −, more particularly iodide ion and BF4 −; and
- X3 and X4 are independently selected from Cl, Br and I.
- The compound represented by Chemical Formula 20 may be prepared by reacting the compound represented Chemical Formula 15 with the compound represented by Chemical Formula 16 in the presence of an acid catalyst to form the compound represented by Chemical Formula 14, and by attaching an aldehyde group at the compound represented by Chemical Formula 14. The acid catalyst may be selected from AlCl3, inorganic acids and solid acid catalysts.
- According to one embodiment of the complex represented by
Chemical Formula 1, there is provided a complex represented by Chemical Formula 5: - wherein
- A1 and A2 independently represent an oxygen or sulfur atom;
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R41, R42, R43, R44, R45 and R46 are independently selected from H, tert-butyl, methyl, ethyl, isopropyl and −[YR51 3-m{(CR52R53)nN+R54R55R56}m], with the proviso that at least one of R4 , R42, R43, R44, R45 and R46 represents −[YR51 3-m{(CR52R53)nN+R54R55R56}m] (wherein Y represents a carbon or silicon atom, R51, R52, R53, R54, R55 and R56 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20) aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R54, R55 and R56 may be linked to each other to form a ring; m represents an integer from 1 to 3; and n represents an integer from 1 to 20); and
- b+c−1 represents an integer that equals to the sum of m values of the total−[YR51 3-m{(CR52R53)nN+R54R55R56}m] radicals contained in the complex represented by
Chemical Formula 5. - Preferably, in the complex represented by
Chemical Formula 5, R41, R43, R44 and R45 are independently selected from tert-butyl, methyl, ethyl and isopropyl; R42 and R46 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe}(CH2)3N+Bu3}2]; and b+c represents 5. - According to another embodiment of the complex represented by
Chemical Formula 1, there is provided a complex represented by Chemical Formula 6: - wherein
- A1 and A2 independently represent an oxygen or sulfur atom;
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R62 and R64 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen, and R61 and R63 independently represent −[YR51 3-m{(CR52R53)nN+R54R55R56}m] (wherein Y represents a carbon or silicon atom, R51, R52, R53, R54, R55 and R56 independently represent a hydrogen radical; (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R54, R55 and R56 may be linked to each other to form a ring; m represents an integer from 1 to 3; and n represents an integer from 1 to 20);
- b+c−1 represents an integer that equals to 2×m; and
- A3 represents a chemical bond or divalent organic bridge group for linking the two benzene rings.
- More particularly, A3 represents a chemical bond, (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, or —Si(R87)(R88)—, —CH═N-Q-═CH— or the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N, wherein R87 and R88 independently represent (C1-C20)alkyl, (C3-C20)cycloalkyl, (C1-C15)alkyl(C6-C20)aryl, or (C6-C20)ar(C1-C15)alkyl, and Q includes a divalent organic bridge group for linking the two nitrogen atoms. Particularly, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. Preferably, R61 and R63 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2], Q in the formula of —CH═N-Q-N═CH— represents trans-1,2-cyclohexylene or ethylene, and X(s) independently represent 2,4-dinitrophenolate or BF4 −.
- According to one embodiment of the complex represented by
Chemical Formula 6, there is provided a complex represented by Chemical Formula 7: - wherein
- A1 and A2 independently represent an oxygen or sulfur atom;
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R72 and R74 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen;
- R71 and R73 independently represent −[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2]; and
- b+c represents 5.
- According to another embodiment of the complex represented by
Chemical Formula 6, there is provided a complex represented by Chemical Formula 8: - wherein
- A4 represents a carbon or silicon atom;
- A1 and A2 independently represent O or S;
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R82 and R84 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen;
- R81 and R83 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2];R85 and R86 independently represent (C1-C20)alkyl, (C3-C20)cycloalkyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl; and
- b+c represents 5.
- According to still another embodiment of the complex represented by
Chemical Formula 6, there is provided a complex represented by Chemical Formula 9: - wherein
- X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
- R92 and R94 are independently selected from methyl, ethyl, isopropyl and hydrogen, preferably methyl;
- R91 and R93 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2];
- Q represents a divalent organic bridge group for linking the two nitrogen atoms;
- b+c represents 5; and
- the alkyl in the alkylcarboxy anion, alkoxy anion, alkylcarbonate anion, alkylsulfonate anion, alkylamide anion and alkylcarbamate anion may be linear or branched.
- Preferably, in the complex represented by
Chemical Formula 9, Q represents trans-1,2-cyclohexylene or ethylene, and X(s) independently represent 2,4-dinitrophenolate or BF4 −. One of the five X radicals represents BF4 −, two of them represent 2,4-dinitrophenolate, and the remaining two X radicals represent anions represented by Chemical Formula 10: - wherein
- R represents methyl or H.
- According to one embodiment of the complex represented by
Chemical Formula 9, there is provided a complex represented by Chemical Formula 11: - wherein
- B1 through B4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
- R26 represents primary or secondary (C1-C20)alkyl;
- R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent bridge group for linking the two nitrogen atoms;
- Z1 through Z5 are independently selected from a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; and a (C6-C30)aryloxy anion; (C1-C20)carboxylic acid anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms, wherein a part of Z1 through Z4 coordinated at the cobalt atom may be de-coordinated; and
- the alkylene and alkyl may be linear or branched.
- Preferably, in Chemical Formula 11, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
- Particularly, in Chemical Formula 11, B1 through B4 independently represent (C2-C6)alkylene, preferably propylene; R26 represents (C1-C7)alkyl; R27 through R29 independently represent (C1-C7)alkyl, preferably R26 and R27 independently represent methyl, and R28 and R29 independently represent butyl; Q represents ethylene, trans-1,2-cyclohexylene or 1,2-phenylene, and more preferably trans-1,2-cyclohexylene; and Z1 through Z5 are independently selected from 2,4-dinitrophenolate and BF4 −.
- According to one embodiment of the complex represented by Chemical Formula 11, there is provided a complex represented by Chemical Formula 12:
- wherein
- p and q independently represent an integer from 1 to 19;
- R26 represents primary or secondary (C1-C20)alkyl;
- R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
- Q represents a divalent organic bridge group for linking the two nitrogen atoms; and
- Z1 through Z5 are independently selected from a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; and a (C6-C30)aryloxy anion; (C1-C20)carboxylic acid anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms, wherein a part of Z1 through Z4 coordinated at the cobalt atom may be de-coordinated.
- Particularly, in Chemical Formula 12, Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N. Preferably, Q represents ethylene, trans-1,2-cyclohexylene or 1,2-phenylene, and more preferably trans-1,2-cyclohexylene.
- Particularly, in Chemical Formula 12, p and q independently represent an integer from 1 to 5, preferably 2; R26 represents primary or secondary (C1-C7)alkyl; R27 through R29 independently represent (C1-C7)alkyl, preferably R26 and R27 independently represent methyl, and R28 and R29 independently represent butyl; and Z1 through Z5 are independently selected from 2,4-dinitrophenolate and BF4 −.
- In another aspect, the present invention provides a method for preparing polycarbonate, including: carrying out copolymerization of carbon dioxide and an epoxide compound selected from the group consisting of C2-C20 alkylene oxide substituted or unsubstituted by halogen or alkoxy; C4-C20 cycloalkene oxide substituted or unsubstituted by halogen or alkoxy; and C8-C20 styrene oxide substituted or unsubstituted by halogen, alkoxy or alkyl, in the presence of a complex selected from the complexes represented by
Chemical Formulas Chemical Formulas 2a, 2b, 2c, 3 and 4, as a catalyst. - Cobalt (III) complexes obtained from Salen-type ligands containing four quaternary ammonium salts may have different structures depending on the structures of the ligands. Such a different coordination structure is distinguished from a general structure coordinated with the four ligands in that it is not coordinated with imine. Instead of imine, the counter anion of the quaternary ammonium salt is coordinated. This has been demonstrated herein through 1H, 13C, 15N NMR spectrometry, IR spectrometry, DFT calculation, and cyclic voltammetry (CV). Such a different coordination structure is formed when the metal coordination portion of the Salen ligand is less sterically hindered as a whole, for example, when the substituent at 3-position of salicylaldehyde as a component of the Salen ligand is less sterically hindered (e.g. methyl), and when ethylene diamine as another component of the Salen ligand is not substituted, or when only one or two hydrogen atoms attached to the four carbon atoms are substituted (e.g. cyclohexane diamine). On the other hand, when the metal coordination portion of the Salen ligand is highly sterically hindered as a whole, for example, when a bulky substituent, such as tert-butyl, is attached to 3-position of salicylaldehyde, or when all of the hydrogen atoms attached to the four carbon atoms of ethylene diamine are substituted with methyl groups, a conventionally available imine-coordinated tetradentate compound is obtained.
- The following Reaction Scheme illustrates different coordination systems depending on the structures of Salen ligands:
- The compounds (5, 7 and 10) with a different coordination system having no coordination with imine unexpectedly show high activity in copolymerizing carbon dioxide/epoxide. On the contrary, the conventional imine-coordinated tetradentate compounds (6, 8 and 11) have no activity or show low activity. It has been demonstrated through NMR and CV studies that the conventional imine-coordinated tetradentate compounds are more easily reduced into cobalt (II) compounds, as compared to the compounds with a different coordination system having no coordination with imine. Such cobalt (II) compounds having no activity in carbon dioxide/epoxide copolymerization.
- In the compounds with a different coordination system having no coordination with imine, the anion coordination state is related with the temperature, solvent and ligand structure. Particularly, the anion coordination state has been demonstrated through NMR spectrometry in THF-d8 similar to the polymerization medium. In the compounds [5, 7 and 10 wherein X=2,4-dinitrophenolate (also referred to as DNP)], two DNP ligands are always coordinated to cobalt and the remaining two DNP ligands continuously undergo conversion/reversion between the coordinated state and the non-coordinated state. In general, it is known that diamagnetic hexa-coordinated cobalt (III) compounds are not active in ligand substitution (Becker, C. A. L.; Motladiile, S. Synth. React Inorg. Met-Org. Chem. 2001, 31, 1545.). However, in the compounds with a different coordination system having no coordination with imine disclosed herein, cobalt is negatively charged so that negatively charged ligands may be de-coordinated. The de-coordinated negatively charged ligands are bound to the cation of the quaternary ammonium salt, and thus may not be released away from cobalt. Basically, non-coordinated anions are thermodynamically unstable species and tend to form coordination bonds back to cobalt. The combination of the above two types of tendencies contributes to the phenomenon in which two DNP ligands continuously undergo conversion/reversion between the coordinated state and the non-coordinated state. Several species of tetra-coordinated cobalt (III) compounds having negatively charged cobalt have been reported [(a) Collins, T. J.; Richmond, T. G.; Santarsiero, B. D.; Treco B. G. R. T. J. Am. Chem. Soc. 1986, 108, 2088. (b) Gray, H. B.; Billig, E. J. Am. Chem. Soc. 1963, 85, 2019.]. It has been also reported that addition of anionic or neutral ligands to such compounds causes easy conversion among the tetra-coordinated system, penta-coordinated system and hexa-coordinated system [(a) Langford, C. H.; Billig, E.; Shupack, S. I.; Gray, H. B. J. Am. Chem. Soc. 1964, 86, 2958; (b) Park, J.; Lang, K.; Abboud, K. A.; Hong, S. J. Am. Chem. Soc. 2008, 130, 16484.]. It may be stated that such unexpectedly high activity of the compounds with a different coordination system having no coordination with imine disclosed herein results from the fact that the two anionic ligands continuously undergo conversion/reversion between the coordinated state and the non-coordinated state. The following Reaction Scheme illustrates the mechanism of the growth of a polymer chain in carbon dioxide/epoxide copolymerization. In this mechanism, it is important that the carbonate anion formed at the end of the chain attacks the coordinated epoxide from the rear side. The above-mentioned continuous conversion/reversion between the coordinated state and the non-coordinated state allows a way of attacking the carbonate anion-coordinated epoxide from the rear side. In general, a nucleophilic attack occurs by an attack on a leaving group from the rear side. Thus, it is thought that difference in activities depends on how easily the anion, undergoing continuous conversion/reversion between the coordinated state and the non-coordinated state, can be de-coordinated from cobalt. According to NMR spectrometric analysis, binding affinities of the anions undergoing continuous conversion/reversion between the coordinated state and the non-coordinated state are in order of 5>10>7. Activities thereof are in reverse order.
- In the carbon dioxide/epoxide copolymerization reaction catalyzed with the compound with a different coordination system having no coordination with imine, the ratio of [water]/[catalyst] in the polymerization system plays an important role in realizing the catalytic activity. Even when water is removed by purifying epoxide and carbon dioxide thoroughly, the ratio of [water]/[catalyst] may be significantly high under such a polymerization condition that a relatively small amount of catalyst is added (i.e. under a ratio of [epoxide]/[catalyst] of 100,000 or 150,000). To obtain high activity (TON), it is required to realize the polymerization under a high [epoxide]/[catalyst] ratio, such as 100,000 or 150,000. Therefore, it is required for the catalyst to have low sensitivity to water so as to provide a commercially useful catalyst. In the case of a catalyst having a structure of 5, 7 or 10, induction time varies greatly depending on the degree of dewatering in the polymerization system. In other words, when the polymerization is carried out in the dry winter season, it is initiated after about 1-3 hours. However, when the polymerization is carried out in the wet and hot summer season, it is initiated sometimes after 12 hours. Once the polymerization is initiated, similar catalytic activities (TOF) are provided in the winter and summer seasons. In 1H NMR spectrometric study, it is observed that DNP contained in the compound attacks propylene oxide and the reaction rate rapidly decreases in the presence of a certain amount of water. It is estimated that such a decrease in the reaction rate results from the hydrogen bonding of water with the anion that undergoes continuous conversion/reversion between the coordinated state and the de-coordinated state, followed by degradation of the nucleophilic attacking capability.
- Such a great variation in the induction time depending on a degree of dewatering loads a difficulty on commercialization because of the requirement of optimization in the dewatering degree. When compound 14 in the above reaction scheme is used as a catalyst, the above problem is partially solved. Compound 14 may be obtained under a condition of very low [propylene oxide]/[catalyst] ratio (1,000 or lower). In this case, the amount of water remaining in propylene oxide is not significantly higher than the amount of catalyst. In other words, compound 14 is consistently obtained by controlling the [water]/[catalyst] ratio at a very low level. Compound 14 may be stored to be used as a catalyst. In the case of compound 14, the anion undergoing continuous conversion/reversion between the coordinated state and the de-coordinated state has already been reacted with propylene oxide. Thus, compound 14 has reduced sensitivity to water and the polymerization is realized under a consistent induction time (1-2 hours). In addition, compound 14 shows polymerization activity (TOF, 80,000 h−1) in a short induction time (70 minutes) even under a high [epoxide]/[catalyst] ratio of 150,000, and thus provides a higher TON (20,000). In the case of
compound 10, it is not capable of realizing polymerization activity under a [epoxide]/[catalyst] ratio of 150,000. - The compound with a different coordination system having no coordination with imine disclosed herein allows production of a compound (e.g. compound 14) having a structure in which the two DNP ligands are converted into the anions of the Meisenheimer salt by reacting with propylene oxide. In the case of the compound with a different coordination structure having no coordination with imine disclosed herein, two DNP ligands are strongly coordinated to cobalt and the remaining two DNP ligands undergo continuous conversion/reversion between the coordinated state and the de-coordinated state. Therefore, the latter two DNP ligands may be reacted rapidly with propylene oxide to provide compound 14 after 1 hour. On the other hand, in the case of an imine-coordinated tetradentate Salen-Co(III) compound (
compound e.g. compound - Particular examples of the epoxide compound that may be used herein include ethylene oxide, propylene oxide, butene oxide, pentene oxide, hexene oxide, octene oxide, decene oxide, dodecene oxide, tetradecene oxide, hexadecene oxide, octadecene oxide, butadiene monoxide, 1,2-epoxide-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclohexene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-epoxide norbornene, limonene oxide, dieldrin, 2,3-epoxidepropyl benzene, styrene oxide, phenylpropylene oxide, stilben oxide, chlorostilben oxide, dichlorostilben oxide, 1,2-epoxide-3-phenoxypropane, benzyloxymethyl oxirane, glycidyl-methylphenyl ether, chlorophenyl-2,3-epoxidepropyl ether, ethoxypropyl methoxyphenyl ether, biphenyl glycidyl ether, glycidyl naphthyl ether, or the like. The epoxide compounds may be used alone or in combination of 24 kinds of compounds to perform copolymerization with carbon dioxide.
- The epoxide compound may be used in the polymerization using an organic solvent as a reaction medium. Particular examples of the solvent that may be used herein include aliphatic hydrocarbons, such as pentane, octane, decane and cyclohexane, aromatic hydrocarbons, such as benzene, toluene and xylene, and halogenated hydrocarbons, such as chloromethane, methylene chloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, ethyl chloride, trichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, chlorobenzene and bromobenzene. Such solvents may be used alone or in combination. More preferably, bulk polymerization using the monomer itself as a solvent may be performed.
- The molar ratio of the epoxide compound to the catalyst, i.e., epoxide compound: catalyst molar ratio may be 1,000-1,000,000, preferably 50,000-200,000. Herein, the catalyst may realize a conversion ratio (i.e., moles of the epoxide compound consumed per mole of cobalt per hour) of 500 turnover/hr or higher. Carbon dioxide may be used at a pressure ranging from ambient pressure to 100 atm, preferably from 5 atm to 30 atm. The polymerization temperature may be 20° C.-120° C., suitably 50° C.-90° C.
- To perform polymerization of polycarbonate, batch polymerization, semi-batch polymerization, or continuous polymerization may be used. When using a batch or semi-batch polymerization process, polymerization may be performed for 1-24 hours, preferably 1.54 hours. A continuous polymerization process may also be performed for an average catalyst retention time of 1.5-4 hours.
- According to one embodiment of the present invention, it is possible to obtain polycarbonate having a number average molecular weight (Mn) of 5,000-1,000,000 and a polydispersity (Mw/Mn) of 1.054.0. Herein, Mn means a number average molecular weight as measured by GPC with calibration using single-molecular weight distribution polystyrene standards. The polydispersity (Mw/Mn) means a ratio of a weight average molecular weight to a number average molecular weight as measured by GPC in the same manner as described above.
- The resultant polycarbonate polymer includes at least 80% of carbonate bonds, sometimes at least 95% carbonate bonds. The carbonate material is easily degradable polymer leaving no residue and soot upon the combustion, and is useful as a packaging, heat insulating, coating material, etc.
- The present invention provides a method for separately recovering a catalyst from a solution containing a copolymer and the catalyst, including:
- contacting a solution containing the copolymer and the catalyst obtained from the above method with a solid inorganic material, polymer material or a mixture thereof non-soluble in the solution to form a complex of the solid inorganic material or polymer material and the catalyst and to separate the copolymer therefrom; and
- treating the complex of the solid inorganic material or polymer material and the catalyst with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving the solid inorganic material or polymer material to allow the catalyst to be dissolved into the medium and to separately recover the catalyst.
- The expression “solution containing the copolymer and the catalyst” may be a solution obtained after the polymerization and still containing unreacted carbon dioxide and epoxide, a solution obtained after removing carbon dioxide only, or a solution obtained after removing both carbon dioxide and epoxide and further introducing another solvent thereto for the post-treatment. Preferred solvents that may be used for the post-treatment include methylene chloride, THF, etc.
- To contact the solution containing the copolymer and the catalyst with the solid inorganic material, polymer material or a mixture thereof, the solid inorganic material, polymer material or a mixture thereof may be added to the solution containing the copolymer and the catalyst, followed by filtration, or the solution containing the copolymer and the catalyst may be passed through a column packed with the solid inorganic material, polymer material or a mixture thereof. The solid inorganic material may be surface-modified or non-modified silica or alumina. The solid polymer material may be a polymer material having a functional group capable of inducing deprotonation by alkoxy anion. More particularly, the functional group capable of inducing deprotonation by alkoxy anion may be a sulfonic acid, carboxylic acid, phenol or alcohol group.
- The solid polymer material may have a number average molecular weight of 500-10,000,000 and is preferably crosslinked. However, non-crosslinked polymers may be used as long as they are not dissolved in the solution containing the copolymer and the catalyst. Particular examples of the “solid polymer material having a functional group capable of inducing deprotonation by alkoxy anion” include a homopolymer or copolymer containing a constitutional unit represented by any one of Chemical Formulas 13a to 13e in its polymer chain. Such a polymer material functioning as a support may be non-crosslinked as long as it is not dissolved in the above-mentioned solution. Preferably, the polymer material is suitably crosslinked to provide decreased solubility.
- The present invention also provides a method for separately recovering a catalyst from a solution containing a copolymer and the catalyst, including:
- contacting a solution containing the copolymer and the catalyst obtained from a carbon dioxide/epoxide copolymerization process using the above catalyst with silica to form a silica-catalyst complex and to separate the copolymer therefrom; and
- treating the silica-catalyst complex with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving silica to allow the catalyst to be dissolved into the medium and to separately recover the catalyst. The acid may be 2,4-dinitrophenol, and the metal salt of a non-reactive anion may be MBF4 (wherein M represents Li, Na or K).
-
Reaction Scheme 1 shows a mechanism of separation and recovery of the catalyst. When polymerizing epoxide with carbon dioxide in the presence of the complex as a catalyst, the anion of the ammonium salt nucleophililically attacks the activated epoxide coordinated to the metal, thereby initiating the polymerization reaction. The alkoxy anion formed by the nucleophilic attack reacts with carbon dioxide to form a carbonate anion, which, in turn, attacks nucleophilically the epoxide coordinated to the metal to form a carbonate anion. As a result of the repetition of the above process, a polymer chain is formed. In this case, the anions of the ammonium salts contained in the catalyst are partially or totally converted into the carbonate anion or alkoxide anion containing the polymer chain. When removing carbon dioxide after the polymerization, the carbonate anions are converted into alkoxide anions. Then, the solution containing the catalyst and the copolymer is allowed to be in contact with the “polymer material having a functional group capable of inducing deprotonation by alkoxy anion” or a solid material (e.g. silica, alumina) having a surface hydroxyl group on the surface. As a result, the polymer chain receives protons through an acid-base reaction as shown inReaction Scheme 1 so that it is maintained in the solution, while the catalyst forms a complex with the solid inorganic material or polymer material. Since the complex is insoluble in the solution, it may be easily separated from the solution via filtering. - After the separation via filtering, the catalyst may be recovered and recycled from the complex of the solid inorganic material or polymer material with the catalyst. The complex of the solid inorganic material or polymer material with the catalyst is not dissolved in general solvents. However, when the recovered complex is treated with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving the inorganic material or polymer material, the catalyst may be dissolved into the medium via an acid-base reaction or salt metathesis. The resultant mixture may be filtered to allow the catalyst to be isolated from the solid inorganic material or polymer material, and then the catalyst may be separated and recovered. Herein, the acid used for the above treatment has a pKa value equal to or lower than the pKa value of the anion formed on the support. Preferably, the acid may be one whose conjugate base shows excellent activity in the polymerization in view of the reutilization. Particular examples of such acids include HCl and 2,4-dinitrophenol. Chloride anions and 2,4-dinitrophenolate anions are known to have high activity and high selectivity in the polymerization. Particular examples of the salt of a non-reactive anion include DBF4 or DClO4 (wherein D represents Li, Na or K). Upon the treatment with the salt of a non-reactive anion, a compound containing the non-reactive anion is dissolved out. The non-reactive anion may be replaced by the chloride anion and 2,4-dinitrophenolate anion having high activity and high selectivity via salt metathesis. Recovery of the catalyst may be carried out in a suitable solvent in which the catalyst is dissolved but the inorganic material or polymer material is not dissolved. Particular examples of such solvents include methylene chloride, ethanol or methanol.
- It is possible to reduce the metal content of the resin to 15 ppm or lower by removing the catalyst through the above method after the polymerization. Therefore, the present invention also provides a copolymer separated from the solution containing the copolymer and the catalyst and having a metal content of 15 ppm or lower. If the catalyst is not removed from the resin in the above manner, the resin may still contain a metal compound that causes coloration. This is not favorable to commercialization. In addition, most transition metals are toxic. Thus, when the metal is not removed from the resin, the resin is significantly limited in its application. Further, when the polymer solution is not treated in the above manner so that the polymer chain has no proton at the end thereof, the polymer may be easily converted into single molecules via the so-called backbite reaction as shown in
Reaction Scheme 2, under the condition of a slightly increased temperature or long-term storage. This may cause a severe problem when processing the resin and result in a significant degradation in the durability of the resin. Under these circumstances, the resin is not commercially acceptable. However, when treating the polymer solution in the above manner after the polymerizaiton, the polymer chain is provided with proton at the end thereof, and the alkoxide anion is converted into an alcohol group, which has weaker nucleophilic reactivity than alkoxide anion. Therefore, the backbite reaction ofReaction Scheme 2 does not occur so that the resin may provide good processability and durability. - The complex disclosed herein may be prepared by providing an ammonium salt-containing ligand and coordinating the ligand to cobalt as shown in Reaction Scheme 3. A typical method for attaching the ligand to the metal include reacting cobalt acetate [Co(OAc)2] with the ligand to de-coordinate the acetate ligand and to remove acetic acid, thereby providing a cobalt (II) compound, and then oxidizing the cobalt (II) compound with oxygen as an oxidizing agent in the presence of a suitable acid (HX, wherein X is the same as X in Chemical Formula 1) to obtain a cobalt (III) compound. The ammonium salt-containing ligand may be prepared according to the known method developed by the present inventors (J. Am. Chem. Soc. 2007, 129, 8082; Angew Chem. Int. Ed., 2008, 47, 7306-7309).
- The complex disclosed herein is prepared from a ligand containing a protonated group so that it takes a negative divalently or higher valently charged form. The complex may be used in carbon dioxide/epoxide copolymerization as a catalyst to realize high activity and high selectivity consistently. In addition, when carrying out carbon dioxide/epoxide copolymerization using the complex disclosed herein as a catalyst, the catalyst having protonated ligands is separated and recovered after the copolymerization so that it may be recycled. In this manner, it is possible to reduce the cost required for the catalyst and to realize high cost efficiency when preparing the copolymer. It is also possible to obtain a high-purity copolymer by removing the catalyst, i.e., metal compound from the copolymer. Therefore, it is possible to extend applications of the copolymer and to enhance the durability and processability of the copolymer.
- The above and other objects, features and advantages of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
-
FIG. 1 shows 1H NMR spectra ofcompounds compound 7 at 20° T. -
FIG. 2 shows 13C NMR spectra ofcompounds -
FIG. 3 shows 15N NMR spectra ofcompounds -
FIG. 4 shows 1H NMR spectra ofcompounds -
FIG. 5 shows IR spectra ofcompounds -
FIG. 6 shows the most stable conformation ofcompound 7 obtained by DFT calculation, wherein only the oxygen atoms of DNP ligands coordinated to the metal are shown for the purpose of simplicity. -
FIG. 7 is a reaction scheme illustrating a change in the state of DNP at room temperature depending on the solvent, in the case of a compound with a different coordination system having no coordination with imine (X=DNP). -
FIG. 8 shows VT 1H NMR spectrum ofcompound 7 in THF-d8. -
FIG. 9 is 1H NMR spectrum illustrating the reaction betweencompound - Hereinafter, the embodiments of the present invention will be described in detail with reference to examples. However, the following examples are for illustrative purposes only and not intended to limit the scope of this disclosure.
- The title compound is prepared by hydrolyzing the ligand represented by Chemical Formula 19a. The compound represented by Chemical Formula 19a is obtained by the known method developed by the present inventors (Angew. Chem. Int. Ed., 2008, 47, 7306-7309).
- The compound represented by Chemical Formula 19a (0.500 g, 0.279 mmol) was dissolved in methylene chloride (4 mL), and then aqueous Hl solution (2N, 2.5 mL) was added thereto and the resultant mixture was agitated for 3 hours at 70° C. The aqueous layer was removed, the methylene chloride layer was washed with water and dried with anhydrous magnesium chloride, and the solvents were removed under reduced pressure. The resultant product was purified by silica gel column chromatography eluting with methylene chloride/ethanol (10:1) to obtain 0.462 g of 3-methyl-5-[{I−Bu3N+(CH2)3}2CH}]-salicylaldehyde (yield 95%). The compound was dissolved in ethanol (6 mL), and AgBF4 (0.225 g, 1.16 mmol) was added thereto, andthe resultant mixture was stirred f filteration. The solvents were removed under reduced pressure and the resultant product was purified by silica gel column chromatography eluting with methylene chloride/ethanol (10:1) to obtain 0.410 g of 3-methyl-5-[{BF4 −Bu3N+(CH2)3}2CH}]-salicylaldehyde compound (yield 100%).
- 1H NMR (CDCl3): δ 11.19 (s, 1H, OH), 9.89 (s, 1H, CHO), 7.48 (s, 1H, m-H), 7.29 (s, 1H, m-H), 3.32-3.26 (m, 4H, —NCH2), 3.10-3.06 (m, 12H, —NCH2), 2.77 (septet, J=6.8 Hz, 1H, —CH—), 2.24 (s, 3H, —CH3), 1.76-1.64 (m, 8H, —CH2), 1.58-1.44 (m, 16H, —CH2), 1.34-1.29 (m, 8H, —CH2), 0.90 (t, J=7.6 Hz, 18H, CH3) ppm. 13C {1} NMR (CDCl3): δ 197.29, 158.40, 136.63, 133.48, 130.51, 127.12, 119.74, 58.23, 40.91, 32.51, 23.58, 19.48, 18.82, 15.10, 13.45 ppm.
- The title compound is prepared from the compound represented by Chemical Formula 19b in the same manner as described in Example 1. The compound represented by Chemical Formula 19a is also obtained by the known method developed by the present inventors (Angew. Chem. Int. Ed., 2008, 47, 7306-7309).
- 1H NMR (CDCl3): δ 11.76 (s, 1H, OH), 9.92 (s, 1H, CHO), 7.53 (s, 1H, m-H), 7.35 (s, 1H, m-H), 3.36-3.22 (m, 16H, —NCH2), 2.82 (br, 1H, —CH—), 1.78-1.70 (m, 4H, —CH2), 1.66-1.46 (m, 16H, —CH2), 1.42 (s, 9H, —C(CH3)3), 1.38-1.32 (m, 12H, butyl —CH2), 0.93 (t, J=7.6 Hz, 18H, CH3) ppm. 13C {1H} NMR (CDCl3): δ 197.76, 138.70, 133.50, 132.63, 131.10, 120.40, 58.55, 41.45, 34.99, 32.28, 29.31, 23.72, 19.59, 19.00,13.54 ppm.
-
Reaction Scheme 4 schematically illustrates one embodiment of the method for preparing the complex disclosed herein. - Ethylene diamine dihydrochloride (10 mg, 0.074 mmol), sodium t-butoxide (14 mg) and 3-methyl-5-[{BF4 −Bu3N+(CH2)3}2CH}]-salicylaldehyde compound (115 mg) obtained from Example 1 are weighed with vials in a dry box, and ethanol (2 mL) was added thereto, followed by stirring at room temperature for overnight. The reaction mixture was filtered and solvent were removed under reduced pressure. The resultant product was redissolved into methylene chloride and filtered once again. The solvents were removed under reduced pressure, and Co(OAc)2 (13 mg, 0.074 mmol) and ethanol (2 mL) are added thereto. The reaction mixture was stirred for 3 hours at room temperature and then the solvents were removed under reduced pressure. The resultant compound was washed with diethyl ether (2 mL) twice to obtain a solid compound. The solid compound was dissolved into methylene chloride (2 mL) and 2,4-dinitrophenol (14 mg, 0.074 mmol) was added thereto, and the resultant mixture was stirred for 3 hours in the presence of oxygen. Then,
sodium 2,4-dinitrophenolate (92 mg, 0.44 mmol) was added to the reaction mixture and the stirring continued for overnight at room temperature. The reaction mixture was filtered over a pad of Celite and the solvents were removed to obtain the product as a dark brown solid compound (149 mg, yield 100%). - 1H NMR (DMSO-d6, 40° C.): δ 8.84 (br, 2H, (NO2)2C6H3O), 8.09 (br, 2H, (NO2)2C6H3O), 8.04 (s, 1H, CH═N), 7.12 (s, 2H, m-H), 6.66 (br, 2H, (NO2)2C6H3O), 4.21 (br, 2H, ethylene-CH2), 3.35-2.90 (br, 16H, NCH2), 2.62 (s, 3H, CH3), 1.91 (s, 1H, CH), 1.68-1.42 (br, 20H, CH2), 1.19 (br, 12H, CH2), 0.83 (br, 18H, CH3) ppm. 1H NMR (THF-d8, 20° C.): δ 8.59 (br, 1H, (NO2)2C6H3O), 8.10 (br, 1H, (NO2)2C6H3O), 7.93 (s, 1H, CH═N), 7.88 (br, 1H, (NO2)2C6H3O), 7.05 (s, 1H, m-H), 6.90 (s, 1H, m-H), 4.51 (s, 2H, ethylene-CH2), 3.20-2.90 (br, 16H, NCH2), 2.69 (s, 3H, CH3), 1.73 (s, 1H, CH), 1.68-1.38 (br, 20H, CH2), 1.21 (m, 12H, CH2), 0.84 (t, J=6.8 Hz, 18H, CH3) ppm. 1H NMR (CD2Cl2, 20° C.): δ 8.43 (br, 1H, (NO2)2C6H3O), 8.15 (br, 1H, (NO2)2C6H3O), 7.92 (br, 1H, (NO2)2C6H3O), 7.79 (s, 1H, CH═N), 6.87 (s, 1H, m-H), 6.86 (s, 1H, m-H), 4.45 (s, 2H, ethylene-CH2), 3.26 (br, 2H, NCH2), 3.0-2.86 (br, 14H, NCH2), 2.65 (s, 3H, CH3), 2.49 (br, 1H, CH), 1.61-1.32 (br, 20H, CH2), 1.31-1.18 (m, 12H, CH2), 0.86 (t, J=6.8 Hz, 18H, CH3) ppm. 13C{1H} NMR (DMSO-d6, 40° C.): δ 170.33, 165.12, 160.61, 132.12 (br), 129.70, 128.97, 127.68 (br), 124.51 (br), 116.18 (br), 56.46, 40.85, 31.76, 21.92, 18.04, 16.16, 12.22 ppm. 15N{1H} NMR (DMSO-d6, 20° C.): δ −156.32, −159.21 ppm. 15N{1H} NMR (THF-d8, 20° C.): δ −154.19 ppm. 19F{1H} NMR (DMSO-d6, 20° C.): 67 −50.63, −50.69 ppm.
-
Complex 8 is prepared from 3-t-butyl-5-[{BF4 −Bu3N+(CH2)3}2CH}]-salicylaldehyde obtained from Example 2 in the same manner as described in Example 3. - 1H NMR (DMSO-d6, 40° C.): δ 8.82 (br, 2H, (NO2)2C6H3O), 7.89 (br, 3H, (NO2)2C6H3O, CH═N), 7.21 (s, 1H, m-H), 7.19 (s, 1H, m-H), 6.46 (br, 4H, (NO2)2C6H3O), 4.12 (s, 2H, ethylene-CH2), 3.25-2.96 (br, 16H, NCH2), 1.90 (s, 1H, CH), 1.71 (s , 9H, C(CH3)3), 1.67-1.32 (br, 20H, CH2), 1.32-1.15 (m, 12H, CH2), 0.88 (t, J=7.2 Hz, 18H, CH3) ppm. 1H NMR (THF-d8, 20° C.): δ 7.78 (s, 1H, CH═N), 7.31 (s, 1H, m-H), 7.12 (s, 1H, m-H), 4.19 (br, 2H, ethylene-CH2), 3.43-2.95 (br, 16H, NCH2), 2.48 (br, 1H, CH), 1.81-1.52 (br, 20H, CH2), 1.50 (s, 9H, C(CH3)3), 1.42-1.15 (br, 12H, CH2), 0.89 (t, J=6.8 Hz, 18H, CH3) ppm. 1H NMR (CD2Cl2,20° C): δ 7.47. (s, 1H, CH═N), 7.10 (s, 1H, m-H), 7.07 (s, 1H, m-H), 4.24 (s, 2H, ethylene-CH2), 3.31 (br, 2H, NCH2), 3.09-2.95 (br, 14H, NCH2), 2.64 (br, 1H, CH), 1.68-1.50 (br, 20H, CH2), 1.49 (s, 9H, C(CH3)3), 1.39-1.26 (m, 12H, CH2), 0.93 (t, J=6.8 Hz, 18H, CH3) ppm. 13C{1H} NMR(DMSO-d6, 40° C.): δ 166.57, 166.46, 161.55, 142.16, 129.99, 129.26, 128.39, 128.13, 127.63, 124.18, 118.34, 56.93, 41.64, 34.88, 32.27, 29.63, 22.37, 18.64, 18.51, 12.70 ppm. 15N{1H} NMR (DMSO-d6): −163.43 ppm. 15N{1H} NMR (THF-d8, 20° C.): δ −166.80 ppm. 19F{1H} NMR (DMSO-d6, 20° C.): δ −50.65, −50.70 ppm.
-
Complex 9 is prepared according toReaction scheme 5. - First, 1-chloro-4-iodobutane (1.00 g, 4.57 mmol) was dissolved into a mixture solvent of diethyl ether/pentane (2:3) to obtain a concentration of 0.10 M, the resultant mixture was cooled to −78° C. t-butyl lithium (3.690 g, 9.610 mmol, 1.7M solution in pentane) was added gradually to the cooled solution of 1-chloro-4-iodobutane and stirred for 2 hours. 1,5-dichloropentane-3-one (838 mg, 4.580 mmol) dissolved in diethyl ether (8 mL) was added gradually to the reaction mixture. The reaction mixture was stirred for additional 4 hours at −78° C., and then ice water (50 mL) was added to quench the reaction path, followed by extraction with diethyl ether. The organic layer was collected and dried over anhydrous magnesium sulfate and filtered, the solvents were removed under reduced pressure. The obtained crude product was purified by column chromatography using silica gel (hexane:ethyl acetate=5:1) to obtain 820 mg of compound 17 (yield 65%).
- 1H NMR (CDCl3): δ 3.52 (t, J=6.4 Hz, 6H, CH2Cl), 1.80-1.73 (m, 6H, CH2), 1.56-1.52 (m, 4H, CH2), 1.42 (s, 4H, CH2) ppm. 13C{1H} NMR (CDCl3): δ 73.58, 45.69, 44.95, 38.29, 36.48, 32.94, 26.96, 20.88 ppm.
- Under nitrogen atmosphere, compound 17 (1.122 g, 4,070 mmol), o-cresol (3.521 g, 32.56 mmol), and aluminum trichloride (0.597 g, 4,477 mmol) were added to a round bottom flask and stirred for overnight. Diethyl ether (20 mL) and water (20 mL) were added thereto the reaction flask, and the aqueous phase was repeatedly extracted with diethyl ether (three times). The organic phases are combined and dried over anhydrous magnesium sulfate, filtered and removed the solvents under reduced pressure. The resultant oily product was purified by column chromatography using silica gel (hexane:ethyl acetate=10:1) to obtain 907 mg of compound 18 (yield 61%).
- IR (KBr): 3535 (OH) cm−1. 1H NMR (CDCl3): δ7.02 (d, J=2.0 Hz, 1H, m-H), 6.99 (dd, J=8.8 Hz, 2.0 Hz, 1H, m-H), 6.73 (d, J=8.0 Hz, 1H, o-H), 4.67 (s, 1H, OH), 3.53-3.46 (m, 6H, CH2Cl), 2.27 (s, 3H, CH3), 1.79-1.44 (m, 6H, CH2), 1.67-1.62 (m, 2H, CH2), 1.58-1.53 (m, 4H, CH2), 1.28-1.20 (br, 2H, CH2) ppm. 13C{1H} NMR (CDCl3): δ 151.81, 137.96, 128.89, 124.87, 114.70, 60.83, 46.05, 45.04, 42.09, 36.69, 35.07, 27.26, 21.40, 21.02, 16.54, 14.49 ppm. HRMS (FAB): m/z calcd (M+ C18H27Cl3O) 364.1131, found 365.1206
- Compound 18 (907 mg, 2.48 mmol), paraformaldehyde (298 mg, 9.920 mmol), magnesium dichloride (944 mg, 9.92 mmol) and triethylamine (1.051 g, 10.42 mmol) were introduced into a flask, and tetrahydrofuran (50 mL) was added as the solvent. The reaction mixture was refluxed for 5 hours under nitrogen atmosphere. The reaction mixture was cooled to room temperature, and methylene chloride (50 mL) and water (50 mL) were added thereto to extract the organic layer. The organic layer was collected and dried over anhydrous magnesium sulfate, filtered and removed the solvents. The resultant product was purified by column chromatography using silica gel (hexane:ethyl acetate=20:1) to obtain 540 mg of compound 19 (yield 58%).
- IR (KBr): 2947 (OH), 1650 (C═O) cm−1. 1H NMR (CDCl3): δ 11.05 (s, 1H, OH), 9.78 (s, 1H, CH═O), 7.25 (s. 1H, m-H), 7.19 (s, 1H, m-H), 3.44-3.39 (m, 6H, CH2Cl), 2.19 (s, 3H, CH3), 1.74-1.43 (m, 12H, CH2), 1.20-1.11 (br, 2H, CH2) ppm. 13C{1H} NMR (CDCl3): δ 196.79, 158.07, 136.98, 135.85, 128.95, 126.85, 119.52, 45.77, 44.88, 42.12, 36.50, 34.64, 33.09, 27.07, 20.85, 15.71 ppm. HRMS (FAB): m/z calcd (M+ C19H27Cl3O) 393.1151, found 393.1155
- Compound 19 (520 mg, 1.304 mol) and sodium iodide (2.932 g, 19.56 mmol) were introduced into a flask, and acetonitrile (2 mL) was added as the solvent, followed by refluxing for 12 hours. Then, the solvent is removed under reduced pressure, methylene chloride (5 mL) and water (5 mL) are added thereto to extract the organic layer. The organic layer is dried over anhydrous magnesium sulfate and the solvent is removed under reduced pressure. The resultant product is purified through a column (hexane:ethyl acetate=20:1) to obtain 759 mg of compound 20 (yield 87%).
- IR (KBr): 2936 (OH), 1648 (C═O) cm−1. 1H NMR (CDCl3): δ 11.06 (s, 1H, OH), 9.80 (s, 1H, CH═O), 7.25 (s. 1H, m-H), 7.17 (d, J=2.8 Hz, 1H, m-H), 3.21-3.14 (m, 6H, CH2Cl), 2.27 (s, 3H, CH3), 1.79-1.53 (m, 12H, CH2), 1.28-1.19 (br, 2H, CH2) ppm. 13C{1H} NMR (CDCl3): δ 196.81, 158.20, 137.00, 135.90, 128.90, 126.98, 119.54, 42.17, 38.45, 36.11, 33.93, 27.83, 24.50, 15.84, 7.96, 7.14 ppm.
- Compound 20 (680 mg, 1.018 mmol) and cyclohexyl diamine (58 mg, 0.509 mmol) were dissolved in methylene chloride (5 mL) and the reaction mixture was stirred for 12 hours. The resultant product was purified by passing through a short pad of silica eluting with methylene chloride to obtain the product as a pure yellow solid (560 mg, yield 78%).
- IR (KBr): 2933 (OH), 1629 (C═N) cm−1. 1H NMR (CDCl3): δ 13.45 (s, 2H, OH), 8.34 (s, 2H, CH═N), 7.05 (s, 2H, m-H), 6.941 (d, J=1.6 Hz, 2H, m-H), 3.39-3.36 (m, 2H, cyclohexyl-CH), 3.17-3.09 (m, 12H, CH21), 2.26 (s, 6H, CH3), 1.96-1.89 (m, 4H, cyclohexyl-CH2), 0.96-1.43 (m, 32H, cyclohexyl-CH2 and CH2), 1.18-1.20 (br, 4H, CH2) ppm. 13C{1H} NMR (CDCl3): δ164.97, 157.2, 135.58, 131.25, 127.12, 125.50, 117.65, 72.89, 42.00, 38.71, 36.14, 34.18, 33.73, 27.91, 24.57, 24.50, 16.32, 8.26, 7.18 ppm.
- Compound 21 (364 mg, 0.257 mmol) was dissolved in acetonitrile (5 mL), and added tributylamine (291 mg, 1.57 mmol). The reaction mixture was reflux for 2 days under nitrogen atmosphere. The reaction mixture was cooled to room temperature, the solvents were removed under reduced pressure, and diethyl ether (10 mL) was added. The resultant slurry was stirred for 10 minutes to obtain the product in solid form. Diethyl ether was decanted and the above process was repeated twice. The yellow solid was collected by filtration followed by washing with diethyl ether. The residual solvents were completely by applying vacuum to obtain 579 mg of compound 22 (yield 89%).
- IR (KBr): 2959 (OH), 1627 (C═N) cm−1. 1H NMR (CDCl3): δ. 13.46 (s, 2H, OH), 8.58 (s, 2H, CH═N), 7.18(s, 2H, m-H), 7.07 (s, 2H, m-H), 3.42 (br, 2H, cyclohexyl-CH), 3.32 (br, 16H, NCH2), 3.16 (br, 32H, NCH2), 2.10 (s, 6H, CH3), 1.74-1.20 (br, 108H, cyclohexyl-CH2, CH2), 0.86 (t, 18H, CH3), 0.75 (t, 36H, CH3) ppm. 13C{1H} NMR (CDCl3): δ164.78, 157.27, 134.04, 130.82, 127.22, 125.15, 117.46, 71.01, 9.96, 59.63, 59.00, 58.86, 53.52, 43.03, 34.89, 33.90, 33.68, 24.16, 24.05, 23.07, 22.78, 20.69,19.68, 19.53, 17.64, 15.79, 13.58 ppm.
- Compound 22 (455 mg, 0.180 mmol) and silver tetrafluoro borate (211 mg, 1.08 mmol) were introduced into a flask, and methylene chloride (12 mL) is added as a solvent. The flask was wrapped with aluminum foil and the reaction mixture was stirred at room temperature for 1 day. The reaction mixture was filtered over a pad of celite to remove solid, and the remaining solution was removed under reduced pressure. The product was purified by column chromatography using silica gel (methylene chloride:ethanol=5:1) to obtain 322 mg of yellow compound 23 (yield 78%).
- IR (KBr): 2961 (OH), 1628 (C═N) cm−1. 1H NMR (CDCl3): δ. 13.64 (s, 2H, OH), 8.52 (s, 2H, CH═N), 7.27(s, 2H, m-H), 7.16 (s, 2H, m-H), 3.44 (br, 2H, cyclohexyl-CH), 3.30-3.10 (br, 48H, NCH2), 2.24 (s, 6H, CH3), 1.95-1.29 (br, 108H, cyclohexyl-CH2, CH2), 0.99 (t, 18H, CH3), 0.90 (t, 36H, CH3) ppm.
- Compound 23 (59 mg, 0.026 mmol) and Co(OAc)2 (4.6 mg, 0.026 mmol) were introduced into a vial in a glove box, ethanol (1 mL) was added and the reaction mixture was stirred for 12 hours. The solvent was removed under reduced pressure and the resultant product was washed twice with diethyl ether to obtain a red solid. 2,4-dinitrophenol (5.0 mg, 0.026 mmol) was added to and the reaction mixture and stirred for 3 hours in the presence of oxygen atmosphere.
sodium 2,4-dinitrophenolate (27 mg, 0.13 mmol) was added to the reaction flask and stirred for further 12 hours. The resultant solution was filtered over a pad of celite, removed the solvents under reduced pressure to obtain 73 mg of a dark red solid. - IR (KBr): 2961 (OH), 1607 (C═N) cm−1. 1H NMR (DMSO-d6, 38° C.): δ 8.68 (br, 4H, (NO2)2C6H3O), δ. 8.05 (br, 4H, (NO2)2C6H3O), 7.85 4H, m-H), 6.76 (br, 4H, (NO2)2C6H3O), 3.58 (br , 2H, cyclohexyl-CH), 3.09 (br, 48H. NCH2), 2.63 (s, 6H, CH3), 1.53-1.06 (br, 108H, cyclohexyl-CH2, CH2), 0.93-0.85 (m, 54H, CH3) ppm.
-
Complex 10 is prepared according toReaction Scheme 6. - First, 1,7-dichloroheptan-4-one (17.40 g, 95.04 mmol) was dissolved into diethyl ether (285 mL) under nitrogen atmosphere. The reaction mixture was cooled to −78° C., MeLi (1.5 M solution in diethyl ether 80.97 g, 142.56 mmol) was added drop wise using a syringe under nitrogen atmosphere. The reaction mixture was stirred for 2 hours at −78° C. water (170 mL) was added at −78° C. to quench the reaction. The product was extracted using diethyl ether. The aqueous layer was repeatedly extracted with diethyl ether (2 times). Collected the organic phases and dried over anhydrous magnesium sulfate, followed by filtration and the solvents were removed under reduced pressure to obtain 17.99 g of compound 24 (yield 95%). The resultant product may be used directly for the subsequent reaction without further purification.
- 1H NMR (CDCl3): δ.3.59 (t, J=6.4 Hz, 4H, CH2Cl), 1.90-1.86 (m, 4H, CH2),1.64-1.60 (m, 4H, CH2), 1.23 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.72.32, 45.88, 39.51, 27.60, 27.23 ppm.
- Under nitrogen atmosphere, o-cresol (78.17 g, 722.82 mmol), compound 24 (17.99 g, 90.35 mmol) and AlCl3 (13.25 g, 99.39 mmol) were mixed in a round bottom flask and stirred overnight. Diethyl ether (500 mL) and water (300 mL) were added to quench the reaction. The organic layer was collected and the aqueous layer was further extracted three times with diethyl ether (300 mL) and collected the organic layer. The organic layer was dried over anhydrous magnesium sulfate, followed by filtration, and then the solvent were removed by a rotary evaporator under reduced pressure. The excess o-cresol was removed by vacuum distillation (2 mm Hg) at 85° C. The obtained product can be used for subsequent reaction without further purification. In this manner, 25.40 g of compound 25 was obtained (yield 97%).
- 1H NMR (CDCl3): δ.7.01 (d, J=2.0 Hz, 1H, m-H), 6.97 (dd, J=8.0 Hz, 2.0 Hz, 1H, m-H), 6.72 (d, J=8.0 Hz, 1H, o-H), 4.85 (s, 1H, OH), 3.45 (t, J=6.4 Hz, 4H, CH2Cl), 2.27 (s, 3H, CH3), 1.86-1.44 (m, 8H, CH2), 1.30 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.151.79, 138.67, 129.06, 125.02, 123.45, 114.85, 46.20, 41.12, 39.95, 28.09, 24.22, 16.58 ppm.
- Compound 25 (25.40 g, 87.83 mmol) was dissolved in tetrahydrofuran (650 mL) under nitrogen atmosphere. Paraformaldehyde (10.55 g, 351.32 mmol), magnesium chloride (33.52 g, 351.32 mmol) and triethylamine (37.31 g, 368.89 mmol) were introduced, into a flask under nitrogen atmosphere, and a refluxed for 5 hours under nitrogen atmosphere. The solvent was removed by a rotary evaporator under reduced pressure and methylene chloride (500 mL) and water (300 mL) were added. The resultant mixture was filtered over a pad of Celite to obtain a methylene chloride layer. The aqueous layer was further extracted three times with methylene chloride (300 mL) and combined organic layers, dried over anhydrous magnesium sulfate and filtered, the solvents were removed by a rotary evaporator under reduced pressure to obtain an oily compound. The remaining trace amount of triethylamine is removed by a vacuum pump. The resultant compound has high purity as determined by NMR analysis and can be used for the subsequent reaction without further purification. In this manner, 26.75 g of compound 26 was obtained (yield 96%).
- 1H NMR (CDCl3): δ.11.14 (s, 1H, OH), 9.87 (s, 1H, CH═O), 7.33 (d, J=2.4 Hz, 1H, m-H), 7.26 (d, J═2.4 Hz, 1H, m-H), 3.47 (t, J=6.4 Hz, 4H, CH2Cl), 2.30 (s, 3H, CH3), 1.90-1.40 (m, 8H, CH2), 1.35 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.196.87, 158.22, 137.56, 136.11, 128.91, 119.69, 45.88, 40.67, 39.98, 27.96, 24.06, 15.81 ppm.
- Compound 26 (26.75 g, 84.32 mmol) was dissolved in acetonitrile (107 mL). Sodium iodide (126.39 g, 843.18 mmol) was added and the resulting mixture was refluxed for overnight. After cooling the reaction mixture to room temperature, water (300 mL) was added. The resultant solution was extracted three times with diethyl ether (300 mL) to collect the organic layer. The organic layer was dried over anhydrous magnesium sulfate, followed by filtration; the solvents were removed by a rotary evaporator under reduced pressure. The resultant product was purified through silica gel column chromatography eluting with hexane-toluene (5:1) as eluent to obtain the compound 27 (22.17 g, yield 83%).
- 1H NMR (CDCl3): δ.11.14 (s, 1H, OH), 9.87 (s, 1H, CH═O), 7.33 (d, J=2.4 Hz, 1H, m-H), 7.25 (d, J=2.4 Hz, 1H, m-H), 3.14-3.09 (m, 4H, CH21), 2.30 (s, 3H, CH3). 1.871.43 (m, 8H, CH2), 1.34 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.196.85, 158.20, 137.50, 136.09, 128.85, 126.93, 119.62, 44.28, 39.95, 28.66, 24.16, 15.81, 7.99 ppm.
- Compound 27 (8.56 g, 17.01 mmol) was dissolved in methylene chloride (97 mL) under nitrogen atmosphere. (±)-trans-1,2-diaminocyclohexane (0.97 g, 8.50 mmol) was added and stirred for overnight. Solvents were removed under reduced pressure to obtain the pure compound (9.00 g, yield 98%).
- 1H NMR (CDCl3): δ.13.48 (s, 1H, OH), 8.31 (s, 1H, CH═N), 7.04 (d, J=1.6 Hz, 1H, m-H), 6.91 (d, J=1.6 Hz, 1H, m-H), 3.38-3.35 (m, 1H, cyclohexyl-CH), 3.08-3.03 (m, 4H, CH2l), 2.25 (s, 3H, CH3), 1.96-1.89 (m, 2H, cyclohexyl-CH2), 1.96-1.43 (m, 10H, cyclohexyl-CH2 and CH2), 1.26 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.165.01, 157.31, 136.12, 131.35, 126.93, 125.54, 117.67, 72.94, 44.47, 39.79, 33.73, 28.72, 24.57, 24.32, 16.28, 8.38, 8.26 ppm.
- Compound 28 (0.855 g, 0.79 mmol) was dissolved in acetonitrile (8.5 mL) under nitrogen atmosphere, tributyl amine (1.17 g, 6.32 mmol) was added and the resulting solution was refluxed for 48 hours. Solvents were removed by a rotary evaporator under reduced pressure. Diethyl ether (20 mL) was added to the obatained slurry and titurated for 15 minutes to precipitate the product as solid. The ether layer was decanted and the above process was repeated twice to obtain beige solid compound. The solid compound was added gradually to solution of AgBF4 (0.642 g, 3.30 mmol) in ethanol (40 mL) with stirring. The reaction mixture was agitated for 24 hours under light-shielded atmosphere, and the resultant Agl was removed by filteration over a pad of celite. The solvents were removed under vacuum. Then, the resultant compound was dissolved in methylene chloride (6 mL), and further filtered through a Celite pad to remove floating materials. The resultant product was purified by column chromatography using silica, eluting with mthylene chloride-ethanol (5:1) as eluent to obtain the purified compound (1.23 g, yield 90%).
- 1H NMR (CDCl3): 6.13.55 (s, 1H, OH), 8.42 (s, 1H, CH═N), 7.12 (s, 1H, m-H), 7.08 (s, 1H, m-H), 3.38 (br, 1H, cyclohexyl-CH), 3.06 (br, 16H, NCH2), 2.20 (s, 3H, CH3), 1.88-1.84 (br, 2H, cyclohexyl-CH2), 1.68-1.26 (br, 36H), 0.87-0.86 (br, 18H, CH3) ppm. 13C{1H} NMR (CDCl3): δ.165.23, 157.79, 135.21, 131.17, 127.18, 125.76, 117.91, 72.05, 59.16, 58.63, 40.16, 38.10, 37.71, 26.45, 24.91, 23.90, 20.31, 19.80, 17.30, 16.01, 13.97, 13.80, 13.79 ppm.
- Compound 29 (100 mg, 0.06 mmol) and Co(OAc)2 (10.7 mg, 0.06 mmol) were introduced into a flask and ethanol (3 mL) was added as the solvent. The reaction mixture was stirred at room temperature for 3 hours and removed the solvents under reduced pressure. The obtained product was triturated 2 times with diethyl ether to obtain the red solid compound. The residual solvents were removed completely by applying reduced pressure. Methylene chloride (3 mL) was added to dissolve the compound. Then, 2,4-dinitrophenol (11.1 mg, 0.06 mmol) was introduced and the reaction mixture was stirred for 3 hours under oxygen atmosphere. Under oxygen atmosphere, sodium-2,4-dinitrophenolate (74.5 mg, 0.30 mmol) was introduced and the mixture was stirred for overnight. The resultant solution was filtered over a pad of celite and the solvents were removed under reduced pressure to obtain the complex 10 (137 mg, yield 100%).
- 1H NMR (DMSO-d6, 38□): δ. 8.65 (br, 2H, (NO2)2C6H3O), δ.7.88 (br, 3H, (NO2)2C6H3O, CH═N), 7.31 (br, 2H, m-H), 6.39 (br, 2H, (NO2)2C6H3O), 3.38 (br, 1H, cyclohexyl-CH), 3.08 (br, 16H, NCH2), 2.64 (s, 3H, CH3), 2.06-1.85 (br, 2H, cyclohexyl-CH2), 1.50-1.15 (br, 36H), 0.86 (br, 18H, CH3) ppm.
- 3-methyl-5-[{BF4 −Bu3N+(CH2)3}2CH3C}]-salicylaldehyde compound (493 mg 0.623 mmol) and 2,3-diamino-2,3-dimethylbutane (36 mg, 0.311 mmol) were introduced into a flask. Ethanol (4 mL) was added as the solvent, molecular sieves (180 mg) were introduced and the resultant mixture was subjected to reflux for 12 hours under nitrogen atmosphere. The mixture was filtered through a Celite pad to remove the molecular sieves and removed the solvents under reduced pressure to obtain the product as yellow solid. Co(OAc)2 (55 mg, 0.31 mmol) was added to the flask and ethanol (10 mL) as the solvent. The resulting mixture was stirred for 5 hours at room temperature. Solvents were removed under reduced pressure, and the resulting compound was triturated twice with diethyl ether to obtain the red color compound. 2,4-dinitrophenol (57 mg, 0.311 mmol) was added and the mixture was dissolved in methylene chloride (10 mL) and stirred for 12 hours in the presence of oxygen. Sodium-2,4-dinitrophenolate (320 mg, 1.56 mmol) was added and the resulting reaction mixture was stirred for further 12 hours. The solution was filtered over a pad of celite and the solvents were removed under reduced pressure to obtain 736 mg of a dark red solid product.
- 1H NMR (DMSO-d6, 38° C.): δ 8.62 (br, 4H, (NO2)2C6H3O), 7.87 (br, 4H, (NO2)2C6H3O), 7.72 (br, 2H, CH═N), 7.50 (br, 2H, m-H), 7.35 (br, 2H, m-H) 6.47 (br, 4H, (NO2)2C6H3O), 3.11 (br, 32H, NCH2), 2.70 (s, 6H, CH3), 1.66-1.22 (br, 82H), 0.88 (br, 36H, CH3) ppm. 13C{1H} NMR (DMSO-d6): δ 164.67, 159.42, 132.30, 129.71, 128.86 (br), 128.46 (br), 127.42 (br), 124.05 (br), 118.84, 73.92, 57.74, 57.19, 25.94, 23.33, 22.61, 21.05,18.73, 16.68, 16.43, 12.93 ppm.
- Salen ligand (500 mg, 0.301 mmol) obtained from 3-methyl-5-[{BF4 −Bu3N+(CH2)3}2CH}]-salicylaldehyde compound and Co(OAc)2 (53 mg, 0.30 mmol) were introduced into a flask, and added ethanol (15 mL) as solvent, the resulting solution was stirred for 3 hours under nitrogen atmosphere. The solvent was removed under reduced pressure, and the resultant compound was triturated twice with diethyl ether to obtain red color compound. The compound was dissolved in methylene chloride (10 mL). Then, HBF4 (49 mg, 0.30 mmol) was added to the resultant solution in the presence of oxygen, followed by stirring for additional 3 hours. After that, the solvents were removed under reduced pressure to obtain 520 mg of a pure compound. Complex 12 was prepared according to the known method developed by the present inventors (Angew. Chem. Int. Ed., 2008, 47, 7306-7309).
- Complex 13 was obtained with a Salen ligand obtained from 3-t-butyl-5-[{BF4 −Bu3N+(CH2)3}2CH}]-salicylaldehyde compound in the same manner as described in Example 8.
- 1H NMR (DMSO-d6, 40° C.): δ 7.68 (s, 1H, CH═N), 7.36 (s, 1H, m-H), 7.23 (s, 1H, m-H), 3.61 (br, 1H, NCH), 3.31-2.91 (br, 16H, NCH2), 2.04 (br, 1H, cyclohexyl-CH2), 1.89 (br, 1H, cyclohexyl-CH2), 1.74 (s, 9H, C(CH3)3), 1.68-1.35 (br, 20H, CH2), 1.32-1.18 (br, 12H, CH2), 0.91 (t, J=7.2 Hz, 18H, CH3) ppm. 13C{1H} NMR d6): δ 161.66, 160.42, 140.90, 129.71, 128.38, 127.31, 117.38, 67.40, 55.85, 33.89, 31.11, 28.70, 27.70 (br), 22.58, 21.29, 19.47, 17.45, 15.21, 11.69 ppm.
-
Compound 10 was dissolved in propylene oxide, and the solution was allowed to stand for 1 hour and then removed the solvents under vacuum to obtain the complex 14. - 1H NMR (DMSO-d6): δ 8.59 (s, 1H, (NO2)2C6H3O), 8.42 (s, 1H, spiro-Meisenheimer anion), 7.74 (s, 1H, (NO2)2C6H3O), 7.39-6.98(m, 3H, m-H, CH═N), 6.81 (s, 1H, spiro-Meisenheimer anion), 6.29 (s, (NO2)2C6H3O), 5.35 (s, 1H, spiro-Meisenheimer anion), 4.43-4.29 (m, 1H, spiro-Meisenheimer anion), 4.21-3.99 (m, 2H, spiro-Meisenheimer anion), 3.21 (br, 1H, NCH), 3.09 (br, 16H, NCH2), 2.93 (m, 3H, spiro-Meisenheimer anion), 2.62 (s, 3H, CH3), 1.98 (br, 1H, cyclohexyl-CH2), 1.62-1.39 (br, 20H, CH2), 1.39-1.15 (br, 15H, CH2, CH3), 0.91 (br, 18H, CH3) ppm.
-
- Under nitrogen atmosphere, 1,7-dichloro4-methylheptan4-one (17.40 g, 95.04 mmol) was dissolved in diethyl ether (285 mL). The reaction mixture was cooled to −78° C. and MeLi (1.5 M solution in diethyl ether, 80.97 g, 142.56 mmol) was added dropwise using a syringe under nitrogen atmosphere. The resulting mixture was stirred for 2 hours at −78° C. Water (170 mL) was added at −78° C. to quench the reaction path. The reaction mixture was extracted three times with diethyl ether (300 mL) and collected the organic phases. Combined the organic layers and dried over anhydrous magnesium sulfate, followed by filtration, and the solvents were removed by a rotary evaporator under reduced pressure to obtain 17.99 g (yield 95%) of the title compound, which may be used for the subsequent reaction without further purification.
- 1H NMR (CDCl3): δ. 3.59 (t, J=6.4 Hz, 4H, CH2Cl), 1.90-1.86 (m, 4H, CH2), 1.64-1.60 (m, 4H, CH2), 1.23 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ. 72.32, 45.88, 39.51, 27.60, 27.23.
- Under nitrogen atmosphere, o-cresol (78.17 g, 722.82 mmol), 1,7-dichloro-4-methylheptane4-ol (17.99 g, 90.35 mmol) and AlCl3 (13.25 g, 99.39 mmol) were mixed in a round bottom flask and stirred overnight. Next, diethyl ether (500 mL) and water (300 mL) are introduced thereto to quench the reaction. The organic layers were collected, and the aqueous layer was further extracted three times with diethyl ether (300 mL). Combined the organic phases and dried over anhydrous magnesium sulfate, followed by filtration, and the solvents were removed by a rotary evaporator under reduced pressure. The excess o-cresol was removed by vacuum distillation (2 mmHg) at an oil bath temperature of 85° C. The compound remaining in the flask has a purity sufficient to be used for the subsequent reaction without further purification. In this manner, 25.40 g of complex 35a is obtained (yield 97%).
- 1H NMR (CDCl3): δ. 7.01 (d, J=2.0 Hz, 1H, m-H), 6.97 (dd, J=8.0 Hz, 2.0 Hz, 1H, m-H), 6.72 (d, J=8.0 Hz, 1H, o-H), 4.85 (s, 1H, OH), 3.45 (t, J=6.4 Hz, 4H, CH2Cl), 2.27 (s, 3H, CH3), 1.86-1.44 (m, 8H, CH2), 1.30 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ. 151.79, 138.67, 129.06, 125.02, 123.45, 114.85, 46.20, 41.12, 39.95, 28.09, 24.22, 16.58
-
- Complex 35a (25.40 g, 87.83 mmol) was dissolved in tetrahydrofuran (650 mL) under nitrogen atmosphere. Paraformaldehyde (10.55 g, 351.32 mmol), magnesium chloride (33.52 g, 351.32 mmol) and triethylamine (37.31 g, 368.89 mmol) were introduced, into a flask under nitrogen atmosphere, and a refluxed for 5 hours under nitrogen atmosphere. The solvent was removed by a rotary evaporator under reduced pressure and methylene chloride (500 mL) and water (300 mL) were added. The resultant mixture was filtered over a pad of Celite to obtain a methylene chloride layer. The aqueous layer was further extracted three times with methylene chloride (300 mL) and combined organic layers, dried over anhydrous magnesium sulfate and filtered, the solvents were removed by a rotary evaporator under reduced pressure to obtain an oily compound. The remaining trace amount of triethylamine is removed by a vacuum pump. The resultant compound has high purity as determined by NMR analysis and can be used for the subsequent reaction without further purification. In this manner 26.75 g of complex 36a was obtained (yield 96%).
- 1H NMR (CDCl3): δ. 11.14 (s, 1H, OH), 9.87 (s, 1H, CH═O), 7.33 (d, J=2.4 Hz, 1H, m-H), 7.26 (d, J=2.4 Hz, 1H, m-H), 3.47 (t, J=6.4 Hz, 4H, CH2Cl), 2.30 (s, 3H, CH3), 1.90-1.40 (m, 8H, CH2), 1.35 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3):δ. 196.87, 158.22, 137.56, 136.11, 128.91, 119.69, 45.88, 40.67, 39.98, 27.96, 24.06, 15.81.
- Complex 36a (26.75 g, 84.32 mmol) was dissolved in acetonitrile (107 mL). Sodium iodide (126.39 g, 843.18 mmol) was added to the solution and the resulting solution was refluxed for overnight. After cooling the mixture to room temperature, water (300 mL) was added to quench the reaction path. The resultant solution was extracted three times with diethyl ether (300 mL) and collected the organic layes. The collected organic layer was dried over anhydrous magnesium sulfate, followed by filtration, and the solvents were removed by a rotary evaporator under reduced pressure. The resultant compound was purified by column chromatography using silica gel, eluting with hexane-toluene (5:1) as eluent to obtain pure complex 37a (22.17 g, yield 83%).
- 1H NMR (CDCl3): δ. 11.14 (s, 1H, OH), 9.87 (s, 1H, CH═O), 7.33 (d, J=2.4 Hz, 1H, m-H), 7.25 (d, J=2.4 Hz, 1H, m-H), 3.14-3.09 (m, 4H, CH2l), 2.30 (s, 3H, CH3), 1.87-1.43 (m, 8H, CH2), 1.34 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ. 196.85, 158.20, 137.50, 136.09, 128.85, 126.93, 119.62, 44.28, 39.95, 28.66, 24.16, 15.81, 7.99.
- Complex 37a (8.56 g, 17.01 mmol) was dissolved in methylene chloride (97 mL) under nitrogen atmosphere. (±)-trans-1,2-diaminocyclohexane (0.97 g, 8.50 mmol) was added and stirred for overnight. The solvents were removed under reduced pressure to obtain pure complex 38a (9.00 g, yield 98%).
- 1H NMR (CDCl3): δ. 13.48 (s, 1H, OH), 8.31 (s, 1H, CH═N), 7.04 (d, J=1.6 Hz, 1H, m-H), 6.91 (d, J=1.6 Hz, 1H, m-H), 3.38-3.35 (m, 1H, cyclohexyl-CH), 3.08-3.03 (m, 4H, CH2l), 2.25 (s, 3H, CH3), 1.96-1.89 (m, 2H, cyclohexyl-CH2), 1.96-1.43 (m, 10H, cyclohexyl-CH2 and CH2), 1.26 (s, 3H, CH3) ppm. 13C{1H} NMR (CDCl3): δ. 165.01, 157.31, 136.12, 131.35, 126.93, 125.54, 117.67, 72.94, 44.47, 39.79, 33.73, 28.72, 24.57, 24.32,16.28, 8.38, 8.26.
- Complex 38a (0.855 g, 0.79 mmol) is dissolved into acetonitrile (8.5 mL) under nitrogen atmosphere, tributyl amine (1.17 g, 6.32 mmol) was added and the resulting solution was refluxed for 48 hours. Solvents were removed by a rotary evaporator under reduced pressure. Diethyl ether (20 mL) was added to the obatained slurry and titurated for 15 minutes to precipitate the product as solid. The ether layer was decanted and the above process was repeated twice to obtain beige solid compound. The solid compound was added gradually to solution of AgBF4 (0.642 g, 3.30 mmol) in ethanol (40 mL) with stirring. The reaction mixture was agitated for 24 hours under light-shielded atmosphere, and the resultant Agl was removed by filteration over a pad of celite. The solvents were removed under vacuum. Then, the resultant compound was dissolved in methylene chloride (6 mL), and further filtered through a Celite pad to remove floating materials. The resultant product was purified by column chromatography using silica, eluting with mthylene chloride-ethanol (5:1) as eluent to obtain the 39a (1.23 g, yield 90%).
- 1H NMR (CDCl3): δ. 13.55 (s, 1H, OH), 8.42 (s, 1H, CH═N), 7.12 (s, 1H, m-H), 7.08 (s, 1H, m-H), 3.38 (br, 1H, cyclohexyl-CH), 3.06 (br, 16H, NCH2), 2.20 (s, 3H, CH3), 1.88-1.84 (br, 2H, cyclohexyl-CH2), 1.68-1.26 (br, 36H), 0.87-0.86 (br, 18H, CH3) ppm. 13C{1H} NMR (CDCl3): δ. 165.23, 157.79, 135.21, 131.17, 127.18, 125.76, 117.91, 72.05, 59.16, 58.63, 40.16, 38.10, 37.71, 26.45, 24.91, 23.90, 20.31, 19.80,17.30,16.01, 13.97, 13.80, 13.79
-
- Complex 39a (100 mg, 0.06 mmol) and Co(OAc)2 (10.7 mg, 0.06 mmol) were introduced into a flask and ethanol (3 mL) was added as the solvent. The reaction mixture was stirred at room temperature for 3 hours and removed the solvents under reduced pressure. The obtained product was triturated 2 times with diethyl ether to obtain the red solid compound. The residual solvents were removed completely by applying reduced pressure. Methylene chloride (3 mL) was added to dissolve the compound. Then, 2,4-dinitrophenol (11.1 mg, 0.06 mmol) was introduced and the reaction mixture was stirred for 3 hours under oxygen atmosphere. Under oxygen atmosphere, sodium-2,4-dinitrophenolate (74.5 mg, 0.30 mmol) was introduced and the mixture was stirred for overnight. The resultant solution was filtered over a pad of celite and the solvents were removed under reduced pressure to obtain the complex 40a (138 mg, yield 100%).
- 1H NMR (DMSO-d6, 38° C.): δ. 8.65 (br, 2H, (NO2)2C6H3O), δ. 7.88 (br, 3H, (NO2)2C6H3O, CH═N), 7.31 (br, 2H, m-H), 6.39 (br, 2H, (NO2)2C6H3O), 3.38 (br, 1H, cyclohexyl-CH), 3.08 (br, 16H, NCH2), 2.64 (s, 3H, CH3), 2.06-1.85 (br, 2H, cyclohexyl-CH2), 1.50-1.15 (br, 36H), 0.86 (br, 18H, CH3) ppm.
-
Complexes - (1) 1H, 13C and 15N NMR Spectra and IR Spectrum
-
FIGS. 1 , 2, 3, 4 and 5 show 1H NMR spectrum, 13C NMR spectrum and 15N NMR spectrum ofcompounds compounds - In the 1H NMR spectrum and 13C NMR spectrum of complex 7 (Example 3) prepared from a ligand wherein R is methyl, a very complex and broad signal appears at room temperature, a simple and broad signal is obtained at 40° C., and a sharp signal is obtained at 80° C. The ratio of [DNP]/[Salen-unit] obtained from integration of the 1H NMR spectrum is near 4.0 rather than 5.0 observed in the case of
complex 8. As determined by 15N NMR, two signals appear at −156.32 and −159.21 ppm under room temperature, a broad signal including two fused signals appears at 40° C, and only one sharp signal appears at 80° C. -
Complexes FIG. 4 ). In the 1H NMR spectrum ofcomplex 8, a set of Salen-unit signals appears and a very broad DNP signal appears. Especially, some signals appear at an abnormal range, −2 to 0 ppm. This suggests that some paramagnetic compounds are present. In the case of 1H NMR spectrum ofcomplex 7, only one set of Salen-unit signals appears, which has a significantly different chemical shift fromcomplex 8. Broad DNP signals are observed at 7.88, 8.01 and 8.59 ppm. However, the ratio of [DNP]/[Salen-unit] integration is about 2.0, and only two DNP signals are observed among the four DNP signals observed in DMSO-d6 with the remaining two non-observed. As determined in CD2Cl2, 1H NMR spectrometric behaviors ofcomplexes - In the 15N NMR spectrum in THF-d8, a sharp signal appears at −166.80 ppm (complex 8) or −154.32 ppm (complex 7). It is not reasonable to regard such a difference in chemical shift values of 12.5 ppm as a difference caused merely by the effect of substituents. It is reported that chemical shift values in the 15N NMR spectrum of imine compounds (—N═C—C4H4—X) and hydrazone compounds (N—N═C—C4H4—X) follow the Hammeft type equation with a gradient of about 10. Considering a difference caused by the methyl and t-butyl substituents, the two substituents contribute a difference in chemical shift values of 1 ppm or less (Neuvonen, K.; Fülöp, F.; Neuvonen, H.; Koch, A.; Kleinpeter, E.; Pihlaja, K. J. Org. Chem. 2003, 68, 2151). In addition, in the case of dipyrrolmethene ligand and zinc (II) compounds obtained therefrom, substitution of hydrogen with ethyl provides a difference in chemical shift values of 2 ppm in 15N NMR spectrometry (Wood, T. E.; Berno, B.; Beshara, C. S.; Thompson, Alison, J. Org. Chem. 2006, 71, 2964). In fact, when viewed from the state of ligands used for preparing
complexes complexes - As shown in
FIG. 5 , the two complexes show clearly different signals in a range of 1200-1400 cm−1corresponding to the symmetric vibration of —NO2 in IR spectra. - (2) Suggestion of Structure of Complexes
- It can be said that complex 8 has a structure of a general Salen ligand-containing cobalt complex in which all of the four ligands of Salen are coordinated to cobalt, when observed by the 1H, 13C, and 15N NMR spectra. After carrying out ICP-AES, elemental analysis and 19F NMR spectrometry, it is found that one equivalent of NaBF4 is inserted into the complex. In the 1H NMR spectrum, a broad DNP signal is observed, which suggests that the DNP ligand undergoes continuous conversion/reversion between the coordinated state and the de-coordinated state. As a part of the conversion/reversion, a square-pyramidal cobalt compound may be present transiently and the square-pyrimidal compound is known to be a paramagnetic compound [(a) Konig, E.; Kremer, S.; Schnakig, R.; Kanellakopulos, B. Chem. Phys. 1978, 34, 79. (b) Kemper,S.; Hrobarik, P.; Kaupp, M.; Schlörer, N. E. J. Am. Chem. Soc. 2009, 131, 4172.]. Therefore, an abnormal signal is always observed at −2 to 0 ppm in the 1H NMR spectrum of
complex 8. - When complex 7 has the above-mentioned non-imine coordinated structure, the analytic data may be understood. In addition, the structure is demonstrated through the following DFT calculation and electrochemical experiments. The structure is characterized in that four DNP ions, which are conjugate anions of quaternary ammonium salt, are coordinated instead of imine. The last operation of the catalyst preparation includes reaction with 5 equivalents of NaDNP suspended in CH2Cl2 to perform a change of [BF4]− into DNP anion. [DNP]/[Salen-unit] integration ratio is 4.0 and this is not significantly changed even when using a more excessive amount of NaDNP (10 equivalents) or when increasing the reaction time. In other words, one among the four BF4 remains unsubstituted. Since BF4 signals are observed in 19F NMR but Na+ ion is not observed from ICP-AES analysis unlike complex 8, it can be seen that BF4 anion is present as a conjugate anion of quaternary ammonium salt. Even when preparing a catalyst with ligands having more quaternary ammonium salt units like complex 9, only the compound having four DNP ligands are observed even in the presence of a significantly excessive amount of NaDNP and even after a longer time. It is thought that an octahedral coordination compound having two Salen-phenoxy ligands and four DNP ligands is obtained in methylene chloride as a solvent, and formation of the octahedral compound causes the anion exchange. Cobalt (III) metal is classified into hard acid, and the hard acid prefers DNP to imine-base, resulting in the compound with such a different structure. In the case of complex 8, steric hindrance of t-butyl hinders formation of such a compound. The octahedral cobalt (III) compound in which cobalt has a charge of −3 is previously known [(a) Yagi, T.; Hanai, H.; Komorita, T.; Suzuki T.; Kaizaki S. J. Chem. Soc., Dalton Trans. 2002, 1126. (b) Fujita, M.; Gillards, R. D. i
Polyhedron 1988, 7, 2731.] -
Complexes -
Complexes 6 and 11 provide 1H and 13C NMR spectrum and IR spectrum behaviors similar to complex 8, and thus may be regarded as a general Salen-compound structure having imine coordination. - (3) DFT Calculation
- DFT calculation is carried out to determine the structures and energy levels of complex 7 with a different coordination structure having no imine coordination, and another complex that are an isomer of
complex 7 and have a general imine coordination structure, wherein two DNP ligands are coordinated at the axial site and the remaining two are present in a free state.FIG. 6 shows the most stable conformation of complex 7 obtained from the calculation. As can be seen fromFIG. 6 , complex 7 with a different structure having no imine coordination as disclosed herein has a more stable energy level than the general imine-coordinated structure by 132 kcal/mol. Such a difference in energy levels is significant. - (4) Movability of DNP Ligand
- When observed from 1H NMR in methylene chloride used in the last anion exchange reaction during the preparation of a catalyst,
complexes FIG. 4 ). In other words, only two DNP ligands are observed among the four DNP ligands with the remaining two non-observed. This is because two DNP ligands undergo continuous conversion/reversion between the coordinated state and the non-coordinated state at a level of NMR time. - On the other hand, in the case of complex 5, four DNP signals are observed at the same range. The DNP signals observed herein has a chemical shift greatly different from the chemical shift of [Bu4N]+[DNP]−. Thus, it is though that the observed signals result from DNP coordinated in the complex. In other words, in the case of
complexes FIG. 7 is a reaction scheme illustrating a change in the state of DNP at room temperature depending on the solvent, in the case of a compound with a different coordination system having no coordination with imine. As demonstrate byFIG. 7 , the above statement that the complex obtained from the last anion exchange reaction has an octahedral coordination structure having two Salen-phenoxy ligands and four DNP ligands conforms to the structure adopted from the DFT calculation. - In addition, as observed from 1H NMR spectrum of complex 7 measured in THF-d8 at room temperature, signals corresponding to the two coordinated DNP ligands are observed at 8.6, 8.1 and 7.9 ppm (
FIG. 4 ). When the temperature is reduced to 0° C., the signals become sharper and a signal coupling behavior is observed. The coordinated DNP signals may be more clearly understood by determining 1H-1H COSY NMR spectrum (FIG. 8 ). When the temperature is further reduced to −25° C., a new DNP signal is observed (marked with ‘*’ inFIG. 8 ). The new signal has a similar chemical shift to [Bu4N]+DNP−. Thus, the new signal may be regarded as DNP remaining in the de-coordinated state for a long time. At 70°0 C., four DNP ligands are observed as one set of broad signals at 9.3, 9.0 and 7.8 ppm. This is similar to the chemical shift of the coordinated DNP signal, and it is thought that all of the four DNP ligands remain in the coordinated state for a long time. In other words, as the temperature increases, DNP ligands may be more adjacent to the cobalt center. The de-coordinated DNP ligands are surrounded with solvent molecules, resulting in a decrease in entropy. Such de-coordination accompanied with a decrease in entropy is preferred at low temperature. Thus, de-coordinated signals are observed at reduced temperature, while a shift into the coordinated state is observed at high temperature. Similarly, a transition from a contact ion pair to a solvent separated ion pair at reduced temperature is well known [(a) Streitwieser Jr., A.; Chang, C. J.; Hollyhead, W. B.; Murdoch, J. R. J. Am. Chem. Soc. 1972, 94, 5288. (b) Hogen-Esch, T. E.; Smid, J. J. Am. Chem. Soc. 1966, 88, 307.(c)Lü, J.-M.; Rosokha, S. V.; Lindeman, S. V.; Neretin, I. S.; Kochi, J. K. J. Am. Chem. Soc. 2005, 127, 1797].FIG. 8 shows VT 1H NMR spectrum ofcompound 7 in THF-d8. -
Salen Complex 8 coordinated with imine shows highly different 1H NMR spectrum in THF-d8, as compared tocomplex 7. This demonstrates thatcomplexes complex 7. At −50° C., the two sets of signals become sharper so that two sets of DNP signals may be seen clearly. The DNP signals observed at 8.1, 7.6 and 6.8 ppm may correspond to two DNP ligands coordinated at the axial site of the conventional Salen coordination complex. Another set of signals observed at 8.9, 8.0 and 6.8 ppm may correspond to the de-coordinated state. - The state of DNP in THF at room temperature depending on the structure of ligand is demonstrated via 1H NMR. In the case of complex 7, a set of signals of two coordinated DNP ligands is observed and the remaining two DNP ligands are not observed. This suggests that the two DNP ligands that are not observed herein undergo continuous conversion/reversion between the coordinated state and the de-coordinated state. On the other hand, in the cases of
complexes complexes complex 5. This suggests that the two DNP ligands incomplexes complex 5. As a result, the degree of retention (binding affinity to cobalt) of the two DNP ligands remaining mainly in the de-coordinated state is in order of 7>9 and 10>5. - As determined from 1H NMR spectrum of
complexes FIG. 1 ). The chemical shift values of the signals (8.6, 7.8 and 6.4 ppm) are similar to the chemical shift values of [Bu4N]+DNP− (8.58, 7.80 and 6.35 ppm). Therefore, it can be said that the four DNP ligands remain mainly in the de-coordinated state at 40° C. However, such broad signals also suggest that the ligands undergo continuous conversion/reversion between the coordinated state and the de-coordinated state. At room temperature, another set of DNP signals are observed at 8.5, 8.1 and 7.8 ppm along with a set of signals of DNP ligands remaining mainly in the de-coordinated state with an integration ratio of 1:3. The less observed DNP signals have similar chemical shift values as compared to the chemical shift values of the coordinated DNP ligands observed in THF and methylene chloride. Thus, the signals may correspond to coordinated DNP ligands. In other words, in DMSO at room temperature, one DMP remains mainly in the coordinated state and the other three DMP ligands remain in the de-coordinated state. It is thought that DMSO is coordinated at the vacant site generated by de-coordination of DNP. DMSO is coordinated well to hard acid such as cobalt (III) metal. - (5) Complicated NMR Spectrometric Analysis Observed in DMSO-d6
- The complicated 1H, 13C and 15N NMR spectra of complex 7 observed in DMSO-d6 may be understood through the above-described non-imine coordinated structure and the state of DNP. In the structure and state of complex 7 in DMSO at room temperature as shown in
FIG. 7 , two phenoxy ligands contained in one Salen-unit are subjected to different situations. One phenoxy ligand is at trans-position to DMSO, and the other is at trans-position to DNP. Therefore, two signals are observed in 15N NMR spectrum (FIG. 3 ), and a part of aromatic signals is divided at a ratio of 1:1 in 1H and 13C NMR (FIGS. 1 and 2 ). Especially, NCH2CH2N signal is divided into three signals at 4.3, 4.15 and 4.1 ppm with a ratio of 1:1:2. After the analysis through 1H-1H COSY NMR spectrometry, it can be seen that three signals are derived from one NCH2CH2N-unit (FIG. 1 ). In the structure obtained by the DFT calculation, complex 7 shows a conformation of ═NCH2CH2N═ unit and is similar to the structure as illustrated inFIG. 6 . In the above structure, complex 7 may not be converted into a structural isomer of the cobalt octahedral structure. Thus, the structure having three DMSO coordinations and one DNP coordination is chiral. Due to such chirality, two hydrogen atoms of N—CH2 show NMR shift values at different positions. In the case of a complex with a chiral center, such as complex 5 or 10, 1H and 13C NMR spectra are more complicated. As the temperature increases to 40° C., two coordinated DNP signals disappear and one broad signal appears. In this case, the asymmetric coordination environment is broken and a simple Salen-ligand signal appears. Since the coordination environment around cobalt is symmetric in THF and CH2Cl2 at room temperature as shown inFIG. 7 , a sharp Salen-ligand signal appears in 1H, 13C and 15N NMR. - CV test also indirectly demonstrates that
complexes complexes Complex 5 with a methyl substituent causes reduction at a more negative potential than complex 6. It is observed thatcomplexes - On the other hand, it is expected that complexes 12 and 13 having no DNP ligands have the same general imine-coordinated structure regardless of methyl or t-butyl substitution in a non-coordinatable solvent such as methylene chloride. After carrying out CV study with complexes 12 and 13 in methylene chloride, the two complexes show the same reduction potential (0.63 V vs. SCE). In other words, there is no difference in reduction potentials between methyl substitution and t-butyl substitution under the same structure. Thus, the above difference in reduction potentials suggests that the two complexes have different coordination systems. When the solvent is changed from CH2Cl2 to DMSO, the reduction potential difference appears again. The reduction potentials of complexes 12 and 13 observed in DMSO (−0.074 and −0.011 V vs. SCE) are similar to the reduction potentials of
complexes - (7) Initiation Reaction
-
Complex 10 reacts with propylene oxide.FIG. 9 is 1H NMR spectrum illustrating the reaction between complex 10 or 8 and propylene oxide. The signal marked with ‘*’ is a newly generated signal that corresponds to the anion of Meisenheimer salt shown in complex 14. The oxygen atom of alkoxide obtained by the attack to propylene oxide coordinated with DNP further attacks ipso-position of the benzene ring, so that the anion of Meisenheimer salt is formed. Complicated aromatic signals of Salen are observed at 7.0-7.4 ppm. However, this is not caused by the breakage of the Salen-unit. When an excessive amount of acetic acid is added to the compound prepared after the reaction with propylene oxide, simple three Salen aromatic signals are observed. This suggests that the Salen-unit is not broken. The anion of Meisenheimer salt is stopped at a [Meisenheimer anion]/[DNP] integration ratio of 1:1. During the first one hour, DNP is converted rapidly into the anion of Meisenheimer salt so that the [Meisenheimer anion]/[DNP] integration ratio reaches 1:1. However, the conversion does not proceed any longer, and thus the integration ratio is unchanged even after 2 hours. The anion of Meisenheimer salt is a previously known compound [(a)Fendler, E. J.; Fendler, J. H.; Byrne, W. E.; Griff, C. E. J. Org. Chem. 1968, 33, 4141. (b) Bernasconi, C. F.; Cross, H. S. J. Org. Chem. 1974, 39, 1054)]. Conversion of DNP into the anion of Meisenheimer salt is significantly lowered in the presence of a certain amount of water. When 5 equivalents of water are present per equivalent of cobalt, the conversion rate is not significantly changed. However, introduction of 50 equivalents of water causes a rapid drop in the conversion rate, so that the [Meisenheimer anion]/[DNP] integration ratio becomes 0.47 after 1 hour, becomes 0.53 after 2 hours, and remains at 0.63 even after 4 hours while not providing complex 14 (FIG. 8 ). - The reactivity of the general imine-coordinated complex 8 with propylene oxide is different from that of the non-imine coordinated complex 10. Although the same anion of Meisenheimer salt is observed, the [Meisenheimer anion]/[DNP] integration ratio is not stopped at 1.0 but gradually increases over time (0.96 after 1 hour; 1.4 after 2 hours; 1.8 after 7 hours; and 2.0 after 20 hours). Further, unlike the behavior of complex 10, complex 8 shows a relatively large amount of broad signals between −1 ppm and 0.5 ppm. This suggests that reduction into a paramagnetic cobalt (II) compound occurs. The broad signal gradually increases over time. The cobalt (II) compound has no catalytic activity.
- (a) Copolymerization Using Complexes of Examples 3-10 as Catalyst
- To a 50 mL bomb reactor, any one complex obtained from Examples 3-10 (used in an amount calculated according to a ratio of monomer/catalyst of 7.58) and propylene oxide (10.0 g, 172 mmol) are introduced in a dry box and the reactor is assembled. As soon as the reactor is removed from the dry box, carbon dioxide is introduced under a pressure of 18 bar, the reactor is introduced into an oil bath controlled previously to a temperature of 80° C. and agitation is initiated. The time at which carbon dioxide pressure starts to be decreased is measured and recorded. After that, the reaction is carried out for 1 hour, and then carbon dioxide gas is depressurized to terminate the reaction. To the resultant viscous solution, monomers (10 g) are further introduced to reduce the viscosity. Then, the resultant solution is passed through a silica gel column [400 mg, Merck, 0.040-0.063 mm particle diameter (230-400 mesh)] to obtain a colorless solution. The monomers are removed by depressurization under reduced pressure to obtain a white solid. The weight of the resultant polymer is measured to calculate turnover number (TON). The polymer is subjected to 1H NMR spectrometry to calculate selectivity. The molecular weight of the resultant polymer is measured by GPC with calibration using polystyrene standards.
- (b) Copolymerization Using Complex of Example 13 as Catalyst
- To a 50 mL bomb reactor, complex 40a (6.85 mg, 0.0030 mmol, monomer/catalyst ratio=50,000) obtained from Example 13 and propylene oxide (9.00 g, 155 mmol) are introduced and the reactor is assembled. The reactor is introduced into an oil bath controlled previously to a temperature of 80° C. and is agitated for about 15 minutes so that the reactor temperature is in equilibrium with the bath temperature. Next, carbon dioxide is added under 20 bars. After 30 minutes, it is observed that carbon dioxide is depressurized while the reaction proceeds. Carbon dioxide is further injected continuously for 1 hour under 20 bars. To the resultant viscous solution, monomers (10 g) are further introduced to reduce the viscosity. Then, the resultant solution is passed through a silica gel column [400 mg, Merck, 0.040-0.063 mm particle diameter (230-400 mesh)] to obtain a colorless solution. The monomers are removed by depressurization under reduced pressure to obtain 2.15 g of a white solid. The catalytic activity of the complex used in this Example corresponds to a TON of 6100 and a turnover frequency (TOF) of 9200 h−1. The resultant polymer has a molecular weight (Mn) of 89000 and a polydispersity (Mw/Mn) of 1.21 as measured by GPC. The polymer formation selectivity is 96% as determined by 1H NMR.
- In the cases of
complexes sodium 2,4-dinitrophenolate are introduced per mole of the catalyst, followed by agitation overnight. The resultant mixture is filtered to remove methylene chloride solution and to obtain brown colored powder. After 1H NMR analysis, the resultant compound is shown to be the same as the catalyst compound and to have similar activity in the copolymerization. - Table 1 shows the polymerization reactivity of each catalyst.
-
TABLE 1 Polymerization reactivity of each catalysta Induction Mn d No. Catalyst Time (min) TOFb Selectivityc (10−3) Mw/ M n1 5 60e 13,000 92 210 1.26 2 6 0 1,300 84 38 2.34 3 7 120e 8,300 97 113 1.23 4 8 0 5,000 85 120 1.41 5 9 0 6 10 260e 11,000 96 140 1.17 7 11 0 8 14 30 13,000 99 170 1.21 9 15 0 15,000 99 270 1.26 10f 15 0 16,000 99 300 1.31 aPolymerization condition: PO (10 g, 170 mmol), [PO]/[Cat] = 100,000, CO2 (2.0-1.7 MPa), temperature 70-75° C., reaction time 60 minutes. bcalculated based on the weight of the polymer containing cyclic carbonate. ccalculated by 1H NMR. dmeasured by GPC using polystyrene standards. einduction time of 1-10 hours depending on batch. fpolymerization using 220 g of PO. - As can be seen from Table 1, the general compounds having imine coordination, i.e.
complexes -
Complexes -
Complex 10 is used to perform many experiments. Under a high-temperature high-humidity condition in the summer season, a great change is observed in induction time (1-12 hours). After the induction time, polymerization rate are observed to be nearly constant (TOF, 9,000-11,000 h−1). In the summer season, the amount of water infiltrating into the dry box for a polymerization reactor is not negligible. In this case, the polymerization system absorbs water and the induction time varies with the amount of water. In fact, under a dry low-temperature condition in the winter season, induction time decreases to 1 hour. In this case, when an additional amount of water is added thereto (50 equivalents vs. cobalt), induction time increases to 3 hours (entry 10). Introduction of a significant amount of water (250 equivalents) does not allow polymerization. - When a certain amount of water is present, the rate of polymerization initiation caused by an attack of DNP to propylene oxide is decreased significantly, as determined by NMR (
FIG. 9 ). When using compound 15 obtained from the reaction with propylene oxide as a catalyst, it is possible to solve the problem of such a great change in induction time depending on the amount of water (entry 13). When using compound 15 as a catalyst, water sensitivity decreases to allow polymerization even under a [propylene oxide]/[catalyst] ratio of 150000:1, resulting in further improvement in TON (entry 14). Under such a condition, complex 10 has no polymerization activity even when using thoroughly purified propylene oxide. Compound 15 is obtained by dissolving a high concentration of complex 10 into propylene oxide and by performing a reaction for 1 hour. In this case, it is possible to neglect the ratio of [water remaining in propylene oxide]/[compound 10]. - The present application contains subject matter related to Korean Patent Application Nos. 10-2008-0074435, 10-2008-0126170, 10-2009-0054481 and 10-2009-0054569 filed in the Korean Intellectual Property Office on Jul. 30, 2008, Dec. 11, 2008, Jun. 18, 2009, and Jun. 18, 2009, the entire contents of which are incorporated herein by reference.
- While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims (33)
1. A complex represented by Chemical Formula 1:
[LaMXb]Xc [Chemical Formula 1]
[LaMXb]Xc [Chemical Formula 1]
wherein
M represents a metal element;
L represents a L-type or X-type ligand; p
a represents 1, 2 or 3, wherein when a is 1, L includes at least two protonated groups, and when a is 2 or 3, L(s) are the same or different, and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand, with the proviso that at least one L includes at least one protonated group and the total number of protonated groups contained in L(s) represent 2 or more;
X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
b and c satisfy the condition of “(b+c)=(total number of protonated groups contained in L)+[(oxidation number of metal)−(number of X-type ligands in L)]”, and wherein
the anion of Meisenheimer salt is a compound having the following structural formula:
2. The complex according to claim 1 , wherein the protonated group contained in L represents a functional group represented by Chemical Formula 2a, 2b or 2c, and M represents cobalt (III) or chrome (III):
wherein
G represents a nitrogen or phosphorus atom;
R1, R12, R13, R21, R22, R23, R24 and R25 independently represent a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20) aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R11, R12 and R13, or two of R21, R22, R23, R24 and R25 may be linked to each other to form a ring;
R31, R32 and R33 independently represent a hydrogen radical; a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R31, R32 and R33 may be linked to each other to form a ring;
X′ represents an oxygen atom, sulfur atom or N—R (wherein R represents a hydrogen radical; or a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)ar(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms.
3. The complex according to claim 2 , wherein L represents a ligand represented by Chemical Formula 3, a represents 2 or 3, and M represents cobalt (III) or chrome (III):
wherein
A represents an oxygen or sulfur atom;
R1 through R5 independently represent a hydrogen radical; a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein the alkyl or alkenyl of R3 may be further substituted by (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl, two of R1 through R5 may be linked to each other to form a ring, and at least one of R1 through R5 includes at least one of Chemical Formulas 2a to 2c; and
L(s) are the same or different and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand.
4. The complex according to claim 3 , which is a complex represented by Chemical Formula 5:
wherein
A1 and A2 independently represent an oxygen or sulfur atom;
X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
R41, R42, R43, R44, R45 and R46 are independently selected from hydrogen, tert-butyl, methyl, ethyl, isopropyl and —[YR51 3-m{(CR52R53)nN+R54R55R56}m], with the proviso that at least one of R41, R42, R43, R44, R45 and R46 represents —[YR51 3-m{(CR52R53)nN+R54R55R56}m] (wherein Y represents a carbon or silicon atom, R51, R52, R53, R54, R55 and R56 independently represent a hydrogen radical; a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20)aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R54, R55 and R56 may be linked to each other to form a ring; m represents an integer from 1 to 3; and n represents an integer from 1 to 20); and
b+c−1 represents an integer that equals to the sum of m values of the total —[YR51 3-m{(CR52R53)nN+R54R55R56}m] radicals contained in the complex represented by Chemical Formula 5.
5. The complex according to claim 4 , wherein R41, R43, R44 and R45 are independently selected from the group consisting of tert-butyl, methyl, ethyl and isopropyl; R42 and R46 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2]; and b+c represents 5.
6. The complex according to claim 3 , which is a complex represented by Chemical Formula 6:
Wherein
A1 and A2 independently represent an oxygen or sulfur atom;
X(s) independently represent a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms;
R62 and R64 are independently selected from tert-butyl, methyl, ethyl, isopropyl and hydrogen, and R61 and R63 independently represent —[YR51 3-m{(CR52R53)nN+R54R55R56}m] (wherein Y represents a carbon or silicon atom, R51, R52, R53, R54, R55 and R56 independently represent a hydrogen radical; a (C1-C20)alkyl, (C2-C20)alkenyl, (C1-C15)alkyl(C6-C20) aryl or (C6-C20)aryl(C1-C15)alkyl radical with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; or a hydrocarbyl-substituted metalloid radical of a Group 14 metal, wherein two of R54, R55 and R56 may be linked to each other to form a ring; m represents an integer from 1 to 3; and n represents an integer from 1 to 20);
b+c−1 represents an integer that equals to 2×m; and
A3 represents a chemical bond or divalent organic bridge group for linking the two phenyl groups.
7. The complex according to claim 6 , wherein A3 represents a chemical bond, (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, or —Si(R87)(R88—, —CH═N-Q-N═CH—, or the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N, wherein R87 and R88 independently represent (C1-C20)alkyl, (C3-C20)cycloalkyl, (C1-C15)alkyl(C6-C20)aryl, or (C6-C20)aryl(C1-C15)alkyl and Q represents a divalent organic bridge group for linking the two nitrogen atoms.
8. The complex according to claim 7 , wherein Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
9. The complex according to claim 8 , wherein R61 and R63 independently represent —[CH{(CH2)3N+Bu3}2] or —[CMe{(CH2)3N+Bu3}2], Q in the formula of —CH═N-Q-N═CH— represents trans-1,2-cyclohexylene or ethylene, and X independently represents 2,4-dinitrophenolate or BF4 −.
11. The complex according to claim 8 , which is a complex represented by Chemical Formula 11:
wherein
B1 through B4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
R26 represents primary or secondary (C1-C20)alkyl;
R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
Q represents a divalent bridge group for linking the two nitrogen atoms; and
Z1 through Z5 are independently selected from a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; and a (C6-C30)aryloxy anion; (C1-C20)carboxylic acid anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion or anion of Meisenheimer slat with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms, wherein a part of Z1 through Z4 coordinated at the cobalt atom may be de-coordinated.
12. The complex according to claim 11 , wherein B1 through B4 independently represent (C2-C6)alkylene; R26 represents (C1-C7)alkyl; R27 through R29 independently represent (C1-C7)alkyl; Q represents ethylene, trans-1,2-cyclohexylene or 1,2-phenylene; Z1 through Z5 are independently selected from 2,4-dinitrophenolate and BF4 −.
13. The complex according to claim 12 , wherein B1 through B4 independently represent propylene; R26 and R27 independently represent methyl; R28 and R29 independently represent butyl; Q represents trans-1,2-cyclohexylene; and Z1 through Z5 are independently selected from 2,4-dinitrophenolate and BF4 −.
14. A method for preparing polycarbonate, comprising carrying out copolymerization of an epoxide compound with carbon dioxide using the complex according to claim 1 as a catalyst.
15. The method according to claim 14 , wherein the epoxide compound is selected from the group consisting of (C2-C20) alkylene oxide substituted or unsubstituted by a halogen or alkoxy; (C4-C20) cycloalkylene oxide substituted or unsubstituted by a halogen or alkoxy; and (C8-C20) styrene oxide substituted or unsubstituted by a halogen, alkoxy, alkyl or aryl.
16. A method for separately recovering a complex, comprising:
contacting a solution containing the copolymer and the catalyst and obtained by the method for preparing polycarbonate according to claim 14 with a solid phase selected from an inorganic material, polymer material or a mixture thereof non-soluble in the solution to form a complex of the solid phase and the catalyst and to separate the copolymer solution;
treating the complex with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving the solid phase to perform an acid-base reaction or salt metathesis; and
carrying out salt metathesis with a salt containing anion X, wherein X independently represents a halide ion; BF4 −; ClO4 −; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxv anion; (C1-C20)alkvlcarboxv anion; (C1-C20)alkoxv anion; (C1-C20)alkvlcarbonate anion; (C1-C20)alkvlsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkvlcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon. sulfur and phosphorus atoms and the anion of Meisenheimer salt is a compound having the following structural formula:
17. The method according to claim 16 , wherein the complex is separately recovered by adding the solution containing the copolymer and the catalyst to a solution containing a solid phase selected from an inorganic material, polymer material and a mixture thereof, followed by filtration; or by passing the solution containing the copolymer and the catalyst through a column packed with the solid phase.
18. The method according to claim 17 , wherein the solid inorganic material is surface-modified or non-modified silica or alumina, and the solid polymer material has a functional group reactive to deprotonation by alkoxy anion.
19. The method according to claim 18 , wherein the functional group reactive to deprotonation by alkoxy anion is a sulfonic acid group, carboxylic acid group, phenol group or alcohol group.
20. The method according to claim 16 ,
wherein the solution is contacted with silica to form a silica-catalyst complex and to separate the copolymer from the solution;
treating the silica-catalyst complex with an acid or a metal salt of a non-reactive anion in a medium that is not capable of dissolving silica to perform an acid-base reaction or salt metathesis; and
carrying out salt metathesis using a salt containing anion X.
21. The method according to claim 14 , wherein the acid is hydrochloric acid or 2,4-dinitrophenol, and the metal salt of a non-reactive anion is DBF4 or DClO4 (wherein D represents Li, Na or K).
22. The method according to claim 14 , wherein the salt containing anion X is a salt containing Cl anion or 2,4-dinitrophenolate anion.
23. A method for preparing a complex represented by Chemical Formula 1, comprising:
reacting L with a metal salt so that L is bound to the metal; and
adding an acid (HX) thereto after L is bound to the metal element and carrying out a reaction in the presence of oxygen to oxidize the metal element and to allow the anion X to be coordinated at the metal element (wherein L and X are the same as defined in Chemical Formula 1):
[LaMXb]Xc [Chemical Formula 1]
[LaMXb]Xc [Chemical Formula 1]
wherein
M represents a metal element;
L represents a L-type or X-type ligand;
a is 1, 2 or 3, wherein when a is 1, L includes at least two protonated groups, and when a is 2 or 3, L(s) are the same or different, and may be linked to each other to be chelated to the metal as a bidentate or tridentate ligand, with the proviso that at least one L includes at least one protonated group and the total number of protonated groups contained in L(s) is 2 or more;
X(s) independently represent a halide ion; BF4 −; ClO4 31 ; NO3 −; PF6 −; HCO3 −; or a (C6-C20)aryloxy anion; (C1-C20)alkylcarboxy anion; (C1-C20)alkoxy anion; (C1-C20)alkylcarbonate anion; (C1-C20)alkylsulfonate anion; (C1-C20)alkylamide anion; (C1-C20)alkylcarbamate anion; or anion of Meisenheimer salt with or without at least one of halogen, nitrogen, oxygen, silicon, sulfur and phosphorus atoms; and
b and c satisfy the condition of “(b+c)=(total number of protonated groups contained in L)+[(oxidation number of metal)−(number of X-type ligands in L)]”, and wherein
the anion of Meisenheimer is a compound having the following structural formula:
24. A compound represented by Chemical Formula 17:
wherein
B1 through B4 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
R26 represents primary or secondary (C1-C20)alkyl;
R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
Q is a divalent organic bridge group for linking the two nitrogen atoms with each other; and
Z−(s) are independently selected from halide ions, BF4 −, ClO4 −, NO3 −, and PF6 −.
25. The compound according to claim 24 , wherein Q represents (C6-C30)arylene, (C1-C20)alkylene, (C2-C20)alkenylene, (C2-C20)alkynylene, (C3-C20)cycloalkylene or fused (C3-C20)cycloalkylene, wherein the arylene, alkylene, alkenylene, alkynylene, cycloalkylene or fused cycloalkylene may be further substituted by a substituent selected from halogen atoms, (C1-C7)alkyl, (C6-C30)aryl and nitro groups, or may further include at least one hetero atom selected from O, S and N.
26. The compound according to claim 25 , wherein B1 through B4 independently represent propylene; R26 and R27 independently represent methyl, and R28 and R29 independently represent butyl; Q represents trans-1,2-cyclohexylene; and Z−(s) independently represent iodide anion or BF4 −.
27. A method for preparing a compound represented by Chemical Formula 17, comprising:
adding a diamine compound to a compound represented by Chemical Formula 20 to perform imination and to provide a compound represented by Chemical Formula 21; and
adding a tertiary amine compound thereto to produce a compound represented by Chemical Formula 17:
wherein
B1 through B4, B9 and B10 independently represent (C2-C20)alkylene or (C3-C20)cycloalkylene;
R26 is primary or secondary (C1-C20)alkyl;
R27 through R29 are independently selected from (C1-C20)alkyl and (C6-C30)aryl;
Q is a divalent organic bridge group for linking the two nitrogen atoms with each other;
Z−(s) are independently selected from halide ions, BF4 −, ClO4 −, NO3 −, and PF6 −; and
X3 and X4 are independently selected from Cl, Br and I.
28. The method according to claim 27 , wherein the compound represented by Chemical Formula 20 is obtained by reacting a compound represented by Chemical Formula 15 with a compound represented by Chemical Formula 16 in the presence of an acid catalyst to form a compound represented by Chemical Formula 14, and by attaching an aldehyde group to the compound represented by Chemical Formula 14:
29. A phenol derivative represented by Chemical Formula 14:
30. A method for preparing a phenol derivative represented by Chemical Formula 14, comprising:
reacting a phenol compound represented by Chemical Formula 15 with tertiary alcohol compound represented by Chemical Formula 16 in the presence of an acid catalyst:
31. The method according to claim 30 , wherein B9 and B10 independently represent (C2-C6)alkylene; R26 represents primary or secondary (C1-C7)alkyl; and R27 represents (C1-C7)alkyl.
32. The method according to claim 31 , wherein B9 and B10 independently represent propylene; and R26 and R27 independently represent methyl.
33. The method according to claim 30 , wherein the acid catalyst is selected from AlCl3, inorganic acid and solid acid catalysts.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/411,917 US8642721B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same catalyst |
US13/411,829 US8507733B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,713 US8791274B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US14/164,355 US9217057B2 (en) | 2008-07-30 | 2014-01-27 | Coordination complexes for producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US14/941,988 US9771453B2 (en) | 2008-07-30 | 2015-11-16 | Process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20080074435 | 2008-07-30 | ||
KR10-2008-0074435 | 2008-07-30 | ||
KR20080126170 | 2008-12-11 | ||
KR10-2008-0126170 | 2008-12-11 | ||
KR10-2009-0054569 | 2009-06-18 | ||
KR1020090054481A KR101093582B1 (en) | 2008-12-11 | 2009-06-18 | An efficient synthetic route for highly active catalysts for CO2/epoxide copolymerization |
KR1020090054569A KR101120054B1 (en) | 2008-07-30 | 2009-06-18 | Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
KR10-2009-0054481 | 2009-06-18 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/411,917 Division US8642721B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same catalyst |
US13/411,829 Division US8507733B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,713 Continuation US8791274B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100029896A1 true US20100029896A1 (en) | 2010-02-04 |
Family
ID=43535873
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/458,998 Abandoned US20100029896A1 (en) | 2008-07-30 | 2009-07-29 | Novel Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,829 Active US8507733B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,713 Active US8791274B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,917 Active US8642721B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same catalyst |
US14/164,355 Active 2029-08-06 US9217057B2 (en) | 2008-07-30 | 2014-01-27 | Coordination complexes for producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US14/941,988 Active US9771453B2 (en) | 2008-07-30 | 2015-11-16 | Process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/411,829 Active US8507733B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,713 Active US8791274B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US13/411,917 Active US8642721B2 (en) | 2008-07-30 | 2012-03-05 | Coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same catalyst |
US14/164,355 Active 2029-08-06 US9217057B2 (en) | 2008-07-30 | 2014-01-27 | Coordination complexes for producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
US14/941,988 Active US9771453B2 (en) | 2008-07-30 | 2015-11-16 | Process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst |
Country Status (7)
Country | Link |
---|---|
US (6) | US20100029896A1 (en) |
EP (1) | EP2307477A4 (en) |
JP (1) | JP5570509B2 (en) |
CN (3) | CN102076738B (en) |
CA (1) | CA2727959A1 (en) |
TW (2) | TWI448467B (en) |
WO (1) | WO2010013948A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090215486A1 (en) * | 2008-02-25 | 2009-08-27 | Batni Ramachendra P | Dynamic generation of group lists for a communication device using tags |
US20100324260A1 (en) * | 2009-06-18 | 2010-12-23 | Sk Energy Co., Ltd. | Catalytic System for CO2/Epoxide Copolymerization |
US20110152497A1 (en) * | 2008-08-22 | 2011-06-23 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
WO2012040454A2 (en) | 2010-09-22 | 2012-03-29 | Novomer, Inc. | Synthesis of substituted salicylaldehyde derivatives |
EP2539353A2 (en) * | 2010-02-25 | 2013-01-02 | Sk Innovation Co., Ltd. | Catalytic system of nitrate anions for carbon dioxide/epoxide copolymerization |
US8530616B2 (en) | 2010-04-06 | 2013-09-10 | Sk Innovation Co., Ltd. | Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby |
US8637634B2 (en) | 2010-04-13 | 2014-01-28 | Sk Innovation Co., Ltd. | Block and graft copolymers of poly(alkylene carbonate) and various polymers |
EP2691159A2 (en) * | 2011-03-29 | 2014-02-05 | SK Innovation Co., Ltd. | Adsorbents for the recovery of catalyst from block co-polymer process and method for regenerating of the same |
CN109054011A (en) * | 2018-07-16 | 2018-12-21 | 中国科学院长春应用化学研究所 | A kind of preparation method of schiff bases cobalt compound, preparation method and polycarbonate |
US20200239507A1 (en) * | 2017-02-22 | 2020-07-30 | Nanjing Forestry University | Biflavone-cobalt complex, preparation method and application thereof |
US11613606B2 (en) | 2017-10-24 | 2023-03-28 | Econic Technologies Ltd | Method for quenching a polymerisation process |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0911886B1 (en) | 2008-05-09 | 2019-09-24 | Cornell University | Methods of synthesizing a poly (ethylene carbonate) polymer and metal complexes |
WO2010028362A1 (en) | 2008-09-08 | 2010-03-11 | Novomer, Inc. | Polycarbonate polyol compositions and methods |
EP2342258B1 (en) | 2008-09-17 | 2015-11-11 | Novomer, Inc. | Purification of polycarbonates |
WO2010062703A1 (en) | 2008-11-01 | 2010-06-03 | Novomer, Inc. | Polycarbonate block copolymers |
US8642771B2 (en) | 2009-12-24 | 2014-02-04 | Novomer, Inc. | Methods for the synthesis of polycyclic guanidine compounds |
JP2011153186A (en) * | 2010-01-26 | 2011-08-11 | Univ Of Tokyo | Cobalt-ketoiminate complex and method for producing polycarbonate using the complex |
JP5140878B2 (en) * | 2010-03-17 | 2013-02-13 | 国立大学法人 東京大学 | Method for recovering polycarbonate polymerization catalyst |
KR101432506B1 (en) * | 2010-09-09 | 2014-08-21 | 에스케이이노베이션 주식회사 | Preparation of Poly(alkylene cabonate) Containing Crrosslinked High Molecular-Weight Chains |
CN103201034A (en) | 2010-09-14 | 2013-07-10 | 诺沃梅尔公司 | Catalysts and methods for polymer synthesis |
KR101415574B1 (en) | 2011-02-10 | 2014-07-04 | 아주대학교산학협력단 | Flame-ratarding carbon dioxide/epoxide copolymers and preparation thereof |
JP6054950B2 (en) | 2011-05-09 | 2016-12-27 | ノボマー, インコーポレイテッド | Polymer compositions and methods |
US9453100B2 (en) | 2011-07-25 | 2016-09-27 | Novomer, Inc. | Polymer compositions and methods |
EP2557104A1 (en) | 2011-08-12 | 2013-02-13 | Basf Se | Method for producing low molecular weight polyalkylene carbonate |
WO2013030300A1 (en) | 2011-09-02 | 2013-03-07 | Basf Se | Polypropylene carbonate-containing foams |
EP2586818A1 (en) | 2011-10-26 | 2013-05-01 | Basf Se | Method for manufacturing polypropylencarbonate dispersions |
WO2013067460A1 (en) | 2011-11-04 | 2013-05-10 | Novomer, Inc. | Metal complexes for the copolymerization of carbon dioxide and epoxides |
WO2013090276A1 (en) | 2011-12-11 | 2013-06-20 | Novomer, Inc. | Salen complexes with dianionic counterions |
JP6619140B2 (en) * | 2011-12-20 | 2019-12-11 | サウジ アラムコ テクノロジーズ カンパニー | Polymer synthesis method |
KR102110746B1 (en) | 2012-04-16 | 2020-05-14 | 사우디 아람코 테크놀로지스 컴퍼니 | Adhesive compositions and methods |
US9388277B2 (en) | 2012-05-24 | 2016-07-12 | Novomer, Inc. | Polycarbonate polyol compositions and methods |
CN104781268B (en) | 2012-08-24 | 2019-05-21 | 沙特阿美技术公司 | Metal complex |
EP3584267A1 (en) | 2012-11-07 | 2019-12-25 | Saudi Aramco Technologies Company | High strength polyurethane foam compositions and methods |
KR101975036B1 (en) * | 2013-03-21 | 2019-05-03 | 에스케이이노베이션 주식회사 | Preparation of poly(alkylene carbonate) via carbon dioxide/epoxide copolymerization in the presence of novel complex |
TWI634949B (en) | 2013-04-23 | 2018-09-11 | 獨立行政法人產業技術綜合研究所 | Method for producing catalyst for cyclic |
WO2014193144A1 (en) | 2013-05-27 | 2014-12-04 | 주식회사 엘지화학 | Method of manufacturing polyalkylene carbonate |
WO2015014732A1 (en) | 2013-08-02 | 2015-02-05 | Bayer Materialscience Ag | Method for producing polyether carbonate polyols |
EP2865700A1 (en) | 2013-10-23 | 2015-04-29 | Bayer MaterialScience AG | Method for manufacturing polyether carbonate polyols |
EP2886572A1 (en) | 2013-12-17 | 2015-06-24 | Bayer MaterialScience AG | Use of urethane alcohols for producing polyether carbonate polyols |
JP6900194B2 (en) | 2014-04-03 | 2021-07-07 | サウジ アラムコ テクノロジーズ カンパニー | Aliphatic Polycarbonate Polyol Composition |
EP3050907A1 (en) | 2015-01-28 | 2016-08-03 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
EP3067376A1 (en) | 2015-03-11 | 2016-09-14 | Evonik Degussa GmbH | Production of polyurethane systems using polyether polycarbonate polyols |
EP3098250A1 (en) | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
EP3098252A1 (en) | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Use of alcohols containing at least two urethane groups for the production of polyether carbonate polyols |
WO2017093354A1 (en) | 2015-11-30 | 2017-06-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Nmdar antagonists for the treatment of diseases associated with angiogenesis |
EP3219741A1 (en) | 2016-03-18 | 2017-09-20 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
TWI586641B (en) * | 2016-04-13 | 2017-06-11 | 國立中興大學 | Bimetallic lanthanide complex, fabricating method and use thereof, polycarbonate and method of manufacturing polycarbonate |
EP3260483A1 (en) | 2016-06-22 | 2017-12-27 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
CN109890869A (en) | 2016-08-12 | 2019-06-14 | 科思创德国股份有限公司 | The method of preparation polymerization open-loop products |
TWI601571B (en) | 2016-12-07 | 2017-10-11 | 財團法人工業技術研究院 | Catalyst and method for synthesizing cyclic carbonate by the same |
EP3336130A1 (en) | 2016-12-19 | 2018-06-20 | Covestro Deutschland AG | Method for manufacturing polyether thiocarbonate polyols |
JP2020506256A (en) | 2017-01-13 | 2020-02-27 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | Low solvent coating system for textiles |
EP3580269A1 (en) | 2017-02-07 | 2019-12-18 | Repsol, S.A. | Use of a self-healing poly(alkylene carbonate) |
US11640136B2 (en) | 2017-05-09 | 2023-05-02 | Covestro Deutschland Ag | System consisting of two UV-curing dry-transfer coating layers for the protection of a hologram in a photopolymer film composite |
EP3461852A1 (en) | 2017-09-28 | 2019-04-03 | Covestro Deutschland AG | Method for producing a polymer containing multiple bonds as elastomer prestage |
CN107739435A (en) * | 2017-10-30 | 2018-02-27 | 河南理工大学 | A kind of high steric-hindrance amino Schiff base zinc composition catalyst for synthesizing polycyclohexene |
EP3502162A1 (en) | 2017-12-19 | 2019-06-26 | Covestro Deutschland AG | Method for manufacturing polyether ester polyols |
EP3527606A1 (en) | 2018-02-16 | 2019-08-21 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
EP3781609A1 (en) | 2018-04-18 | 2021-02-24 | Saudi Aramco Technologies Company | End-group isomerization of poly(alkylene carbonate) polymers |
EP3581599A1 (en) | 2018-06-15 | 2019-12-18 | Covestro Deutschland AG | Thiocarbonate-containing pur/pir rigid foams and polyurethanes obtained therefrom |
EP3581602A1 (en) | 2018-06-15 | 2019-12-18 | Covestro Deutschland AG | Thiocarbonate-containing prepolymers and polyurethanes obtained therefrom |
EP3587469A1 (en) | 2018-06-22 | 2020-01-01 | Covestro Deutschland AG | Method for the preparation of polyol |
US11180609B2 (en) | 2018-08-02 | 2021-11-23 | Saudi Aramco Technologies Company | Sustainable polymer compositions and methods |
EP3617248A1 (en) | 2018-08-30 | 2020-03-04 | Covestro Deutschland AG | Method for the separation of gaseous components |
MA53727A (en) | 2018-09-24 | 2021-12-29 | Saudi Aramco Tech Co | POLYCARBONATE BLOCK COPOLYMERS AND RELATED METHODS |
EP3628694A1 (en) | 2018-09-26 | 2020-04-01 | Covestro Deutschland AG | Low-solvent coating systems for textiles |
EP3670568A1 (en) | 2018-12-21 | 2020-06-24 | Covestro Deutschland AG | Method for producing a polyester |
EP3670569A1 (en) | 2018-12-21 | 2020-06-24 | Covestro Deutschland AG | Method for producing a polyester |
EP3670571A1 (en) | 2018-12-21 | 2020-06-24 | Covestro Deutschland AG | Method for producing a polyester-polyetherpolyol block copolymer |
EP3670557A1 (en) | 2018-12-21 | 2020-06-24 | Covestro Deutschland AG | Method for producing a polyoxyalkylenpolyesterpolyol |
EP3683251A1 (en) | 2019-01-15 | 2020-07-22 | Covestro Deutschland AG | Process for the preparation of diol |
EP3750940A1 (en) | 2019-06-11 | 2020-12-16 | Covestro Deutschland AG | Method for manufacturing polyether carbonate polyols |
US20220227928A1 (en) | 2019-06-11 | 2022-07-21 | Covestro Intellectual Property Gmbh & Co. Kg | Method for preparing polyether carbonate polyols |
EP3763768A1 (en) | 2019-07-12 | 2021-01-13 | Covestro Deutschland AG | Polyether carbonate polyols having narrow segment length distribution |
EP4004083A1 (en) | 2019-07-31 | 2022-06-01 | Covestro Deutschland AG | Method for producing polyether carbonate polyols |
EP3771724A1 (en) | 2019-07-31 | 2021-02-03 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP3831867A1 (en) | 2019-12-04 | 2021-06-09 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
CN114729114A (en) | 2019-12-04 | 2022-07-08 | 科思创知识产权两合公司 | Method for producing polyether carbonate polyols |
EP3875510A1 (en) | 2020-03-03 | 2021-09-08 | Covestro Deutschland AG | Method for producing an ether estol |
EP3878885A1 (en) | 2020-03-10 | 2021-09-15 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP3882297A1 (en) | 2020-03-17 | 2021-09-22 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP3885390A1 (en) | 2020-03-25 | 2021-09-29 | Covestro Deutschland AG | Method for producing an ether estol |
EP3889204A1 (en) | 2020-04-02 | 2021-10-06 | Covestro Deutschland AG | Method for producing a polyoxyalkylene carbonate polyol |
EP3922660A1 (en) | 2020-06-08 | 2021-12-15 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP3922659A1 (en) | 2020-06-08 | 2021-12-15 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP3922661A1 (en) | 2020-06-12 | 2021-12-15 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polyoxyalkylene copolymers |
TW202210582A (en) | 2020-06-24 | 2022-03-16 | 沙烏地阿拉伯商沙烏地阿美科技公司 | Polyol compositions and methods |
EP3988600A1 (en) | 2020-10-20 | 2022-04-27 | Covestro Deutschland AG | Method for the preparation of polyether carbonate alcohols |
WO2022096390A1 (en) | 2020-11-06 | 2022-05-12 | Covestro Deutschland Ag | Method for producing a polyol mixture |
WO2022175210A1 (en) | 2021-02-16 | 2022-08-25 | Covestro Deutschland Ag | Method for producing polyurethane foam |
EP4043510A1 (en) | 2021-02-16 | 2022-08-17 | Covestro Deutschland AG | Method for producing a polyurethane foam |
WO2022189318A1 (en) | 2021-03-12 | 2022-09-15 | Covestro Deutschland Ag | Process for purifying cyclic carbonates |
WO2022269512A1 (en) | 2021-06-23 | 2022-12-29 | Saudi Aramco Technologies Company | Polyol compositions and methods |
EP4151669A1 (en) | 2021-09-15 | 2023-03-22 | Covestro Deutschland AG | Process for producing polyether carbonate polyols |
EP4397691A1 (en) | 2023-01-06 | 2024-07-10 | Covestro Deutschland AG | Method for producing polyoxyalkylene polyol |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2073995A (en) * | 1934-06-22 | 1937-03-16 | Abbott Lab | Alkyl cresols |
US3281465A (en) * | 1963-11-15 | 1966-10-25 | Herbert C Stecker | Condensation products of a fluoroacetone and phenols having a bridged phenyl group |
JPS6097990A (en) * | 1983-11-04 | 1985-05-31 | Hodogaya Chem Co Ltd | Metal complex salt compound |
CN1022039C (en) * | 1989-02-02 | 1993-09-08 | 中国科学院广州化学研究所 | Process for prepn. of catalyst for synthesizing polycarbonate, polyester and poly ether |
JP3121367B2 (en) * | 1991-03-26 | 2000-12-25 | 株式会社リコー | Image forming method |
JPH06116555A (en) * | 1992-10-09 | 1994-04-26 | Mitsui Toatsu Chem Inc | Bisphenol-based light stabilizer for cyanine dye and optical recording medium containing the same light stabilizer |
US6133402A (en) * | 1998-08-04 | 2000-10-17 | Cornell Research Foundation, Inc. | Polycarbonates made using high activity catalysts |
CN1332717A (en) * | 1998-12-29 | 2002-01-23 | 通用电气公司 | Process for production of aromatic carbonates |
SG101438A1 (en) * | 2000-04-20 | 2004-01-30 | Sumitomo Chemical Co | Method for producing ortho-alkylated phenols |
CN1189246C (en) * | 2002-11-26 | 2005-02-16 | 大连理工大学 | High activity catalyzer utilized to synthesize cyclic carbonate |
CN1182916C (en) * | 2002-12-06 | 2005-01-05 | 大连理工大学 | High-activity catalyst for synthesizing cyclic carbonate in mild condition |
EP1577282B1 (en) * | 2004-02-26 | 2011-06-15 | Telene SAS | Metal complexes for use in olefin metathesis and atom or group transfer reactions |
CN101213170A (en) * | 2005-05-06 | 2008-07-02 | 迈克罗比亚公司 | Process for production of 4-biphenylylazetidin-2-ones |
US7508147B2 (en) | 2005-05-19 | 2009-03-24 | Siemens Energy & Automation, Inc. | Variable-frequency drive with regeneration capability |
CN100362039C (en) * | 2005-06-14 | 2008-01-16 | 河北工业大学 | Catalyst for copolymerizing CO2 and epoxy compound and its preparing method |
CN100410261C (en) * | 2005-07-29 | 2008-08-13 | 南开大学 | Quaternary amines modified water-soluble chiral schiff base metal complex and its synthesis method |
KR100716144B1 (en) | 2005-10-21 | 2007-05-10 | 도레이새한 주식회사 | Diffusing sheet for tft-lcd |
CN100358902C (en) * | 2005-11-16 | 2008-01-02 | 中国科学院上海有机化学研究所 | Synthesis of binuclear metal complex compound and its catalyzed copolymerization and cycloaddition reaction of carbon dioxide and epoxide |
DE102005054770A1 (en) * | 2005-11-17 | 2007-05-24 | Lanxess Deutschland Gmbh | Mixture, useful as a light absorbent compound in the information layer of a recordable optical data carrier, comprises an azometal complex and its ligands |
CN100516115C (en) * | 2007-02-12 | 2009-07-22 | 江苏中科金龙化工股份有限公司 | Continuous production of fatty poly-ester carbonate polyhydric alcohol |
CN100494248C (en) * | 2007-03-21 | 2009-06-03 | 大连理工大学 | Double function catalyst for synthesizing polycarbonate |
ES2517870T3 (en) * | 2007-05-04 | 2014-11-04 | Sk Innovation Co., Ltd. | Polycarbonate production procedure and coordination complex used for it |
-
2009
- 2009-07-29 JP JP2011521024A patent/JP5570509B2/en not_active Expired - Fee Related
- 2009-07-29 WO PCT/KR2009/004232 patent/WO2010013948A2/en active Application Filing
- 2009-07-29 CA CA2727959A patent/CA2727959A1/en not_active Abandoned
- 2009-07-29 CN CN2009801244481A patent/CN102076738B/en active Active
- 2009-07-29 CN CN201210144598.2A patent/CN102701916B/en active Active
- 2009-07-29 CN CN201210144824.7A patent/CN102702022B/en active Active
- 2009-07-29 US US12/458,998 patent/US20100029896A1/en not_active Abandoned
- 2009-07-29 EP EP09803153.7A patent/EP2307477A4/en not_active Withdrawn
- 2009-07-30 TW TW098125659A patent/TWI448467B/en not_active IP Right Cessation
- 2009-07-30 TW TW103107177A patent/TWI452049B/en not_active IP Right Cessation
-
2012
- 2012-03-05 US US13/411,829 patent/US8507733B2/en active Active
- 2012-03-05 US US13/411,713 patent/US8791274B2/en active Active
- 2012-03-05 US US13/411,917 patent/US8642721B2/en active Active
-
2014
- 2014-01-27 US US14/164,355 patent/US9217057B2/en active Active
-
2015
- 2015-11-16 US US14/941,988 patent/US9771453B2/en active Active
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090215486A1 (en) * | 2008-02-25 | 2009-08-27 | Batni Ramachendra P | Dynamic generation of group lists for a communication device using tags |
US8956989B2 (en) | 2008-08-22 | 2015-02-17 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US20110152497A1 (en) * | 2008-08-22 | 2011-06-23 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US8951930B2 (en) | 2008-08-22 | 2015-02-10 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US9505878B2 (en) | 2008-08-22 | 2016-11-29 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US9951096B2 (en) | 2008-08-22 | 2018-04-24 | Saudi Aramco Technologies Company | Catalysts and methods for polymer synthesis |
US10662211B2 (en) | 2008-08-22 | 2020-05-26 | Saurdi Aramco Technologies Company | Catalysts and methods for polymer synthesis |
US8633123B2 (en) | 2008-08-22 | 2014-01-21 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US8946109B2 (en) | 2008-08-22 | 2015-02-03 | Novomer, Inc. | Catalysts and methods for polymer synthesis |
US20150175743A1 (en) * | 2009-06-18 | 2015-06-25 | Sk Innovation Co., Ltd. | Catalytic System for CO2/Epoxide Copolymerization |
US9481762B2 (en) * | 2009-06-18 | 2016-11-01 | Sk Innovation Co., Ltd. | Catalytic system for CO2/epoxide copolymerization |
US8987411B2 (en) * | 2009-06-18 | 2015-03-24 | Sk Innovation Co., Ltd. | Catalytic system for CO2/epoxide copolymerization |
US20130131308A1 (en) * | 2009-06-18 | 2013-05-23 | Sk Innovation Co., Ltd. | Catalytic System for Co2/Epoxide Copolymerization |
US8981043B2 (en) * | 2009-06-18 | 2015-03-17 | Sk Innovation Co., Ltd. | Catalytic system for CO2/epoxide copolymerization |
US20100324260A1 (en) * | 2009-06-18 | 2010-12-23 | Sk Energy Co., Ltd. | Catalytic System for CO2/Epoxide Copolymerization |
EP2539353A4 (en) * | 2010-02-25 | 2014-09-10 | Sk Innovation Co Ltd | Catalytic system of nitrate anions for carbon dioxide/epoxide copolymerization |
EP2539353A2 (en) * | 2010-02-25 | 2013-01-02 | Sk Innovation Co., Ltd. | Catalytic system of nitrate anions for carbon dioxide/epoxide copolymerization |
US9023979B2 (en) | 2010-04-06 | 2015-05-05 | Sk Innovation Co., Ltd. | Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby |
US8530616B2 (en) | 2010-04-06 | 2013-09-10 | Sk Innovation Co., Ltd. | Precise control of molecular weight and chain shape control in carbon dioxide/epoxide alternating copolymerization and preparation of low molecular weight poly(alkylene carbonate) thereby |
US8637634B2 (en) | 2010-04-13 | 2014-01-28 | Sk Innovation Co., Ltd. | Block and graft copolymers of poly(alkylene carbonate) and various polymers |
US10040800B2 (en) | 2010-09-22 | 2018-08-07 | Saudi Aramco Technologies Company | Synthesis of substituted salicylaldehyde derivatives |
US9371334B2 (en) | 2010-09-22 | 2016-06-21 | Novomer, Inc. | Synthesis of substituted salicylaldehyde derivatives |
WO2012040454A2 (en) | 2010-09-22 | 2012-03-29 | Novomer, Inc. | Synthesis of substituted salicylaldehyde derivatives |
US10442816B2 (en) | 2010-09-22 | 2019-10-15 | Saudi Aramco Technologies Company | Synthesis of substituted salicylaldehyde derivatives |
EP2691159A4 (en) * | 2011-03-29 | 2014-11-05 | Sk Innovation Co Ltd | Adsorbents for the recovery of catalyst from block co-polymer process and method for regenerating of the same |
EP2691159A2 (en) * | 2011-03-29 | 2014-02-05 | SK Innovation Co., Ltd. | Adsorbents for the recovery of catalyst from block co-polymer process and method for regenerating of the same |
US20200239507A1 (en) * | 2017-02-22 | 2020-07-30 | Nanjing Forestry University | Biflavone-cobalt complex, preparation method and application thereof |
US10808001B2 (en) * | 2017-02-22 | 2020-10-20 | Nanjing Forestry University | Biflavone-cobalt complex, preparation method and application thereof |
US11613606B2 (en) | 2017-10-24 | 2023-03-28 | Econic Technologies Ltd | Method for quenching a polymerisation process |
CN109054011A (en) * | 2018-07-16 | 2018-12-21 | 中国科学院长春应用化学研究所 | A kind of preparation method of schiff bases cobalt compound, preparation method and polycarbonate |
Also Published As
Publication number | Publication date |
---|---|
WO2010013948A2 (en) | 2010-02-04 |
US20120178899A1 (en) | 2012-07-12 |
EP2307477A2 (en) | 2011-04-13 |
CN102701916A (en) | 2012-10-03 |
JP2011529487A (en) | 2011-12-08 |
US8507733B2 (en) | 2013-08-13 |
CN102076738A (en) | 2011-05-25 |
WO2010013948A3 (en) | 2010-06-03 |
US20120165575A1 (en) | 2012-06-28 |
TWI448467B (en) | 2014-08-11 |
US8642721B2 (en) | 2014-02-04 |
US9217057B2 (en) | 2015-12-22 |
CN102076738B (en) | 2012-08-29 |
TW201008951A (en) | 2010-03-01 |
CN102702022A (en) | 2012-10-03 |
US8791274B2 (en) | 2014-07-29 |
CA2727959A1 (en) | 2010-02-04 |
US20140221605A1 (en) | 2014-08-07 |
TWI452049B (en) | 2014-09-11 |
CN102701916B (en) | 2015-04-08 |
JP5570509B2 (en) | 2014-08-13 |
EP2307477A4 (en) | 2014-12-10 |
US20120165549A1 (en) | 2012-06-28 |
US20160075824A1 (en) | 2016-03-17 |
WO2010013948A9 (en) | 2010-03-04 |
US9771453B2 (en) | 2017-09-26 |
TW201422629A (en) | 2014-06-16 |
CN102702022B (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9771453B2 (en) | Process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst | |
KR101120054B1 (en) | Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst | |
JP5639163B2 (en) | Carbon dioxide / epoxide copolymerization catalyst system | |
KR101093582B1 (en) | An efficient synthetic route for highly active catalysts for CO2/epoxide copolymerization | |
US7244805B2 (en) | Bimetallic zinc complex and process of producing polycarbonate using the same as polymerization catalyst | |
US20110207909A1 (en) | Catalytic System of Nitrate Anions for CO2/ Epoxide Copolymerization | |
Ghosh et al. | Gallium and indium complexes containing the bis (imino) phenoxide ligand: synthesis, structural characterization and polymerization studies | |
Tsai et al. | Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide | |
US10604624B2 (en) | Method for producing poly(alkylene carbonate)polyol | |
Liu et al. | Well-defined, solvent-free cationic barium complexes: Synthetic strategies and catalytic activity in the ring-opening polymerization of lactide | |
Yao et al. | Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone | |
Roy et al. | Mononuclear Zn (ii) compounds supported by iminophenolate proligands binding in the bidentate (N, O) and tridentate (N, O, S) coordination mode: synthesis, characterization and polymerization studies | |
Munoz-Hernandez et al. | Six-coordinate aluminium cations: characterization, catalysis, and theory | |
Hsieh et al. | Indium complexes incorporating bidentate substituted pyrrole ligand: Synthesis, characterization, and ring-opening polymerization of ε-caprolactone | |
Min et al. | Efficient synthesis of a highly active catalyst for CO2/epoxide copolymerization | |
Wasserman et al. | Ethylene oxide polymerization catalyzed by aluminum complexes of sulfur-bridged polyphenols | |
Percec et al. | Synthesis of aromatic polyethers by Scholl reaction. VII. Oxidative polymerization of 2, 2‐bis [4‐(1‐naphthoxy) phenyl] propane and 2, 2‐bis [4‐(1‐naphthyl) phenyl] propane | |
US20230323027A1 (en) | Polymerisation process | |
Górecki et al. | Structures of the products of the reactions of diethylzinc with trihydric phenols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SK ENERGY CO., LTD.,KOREA, DEMOCRATIC PEOPLE'S REP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OK, MYUNGAHN;JEONG, JISU;LEE, BUNYEOUL;AND OTHERS;REEL/FRAME:023076/0458 Effective date: 20090710 |
|
AS | Assignment |
Owner name: SK INNOVATION CO., LTD., KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:SK ENERGY CO., LTD;REEL/FRAME:026932/0203 Effective date: 20110101 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |