US20100002967A1 - Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets - Google Patents

Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets Download PDF

Info

Publication number
US20100002967A1
US20100002967A1 US12/310,146 US31014607A US2010002967A1 US 20100002967 A1 US20100002967 A1 US 20100002967A1 US 31014607 A US31014607 A US 31014607A US 2010002967 A1 US2010002967 A1 US 2010002967A1
Authority
US
United States
Prior art keywords
bearing
channel
plain
seen
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/310,146
Inventor
Diethelm Dettmar
Bernd Lüneburg
Morched Medhioub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DETTMAR, DIETHELM, LUNEBURG, BERND, MEDHIOUB, MORCHED
Publication of US20100002967A1 publication Critical patent/US20100002967A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/08Attachment of brasses, bushes or linings to the bearing housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/04Relieving load on bearings using hydraulic or pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se

Definitions

  • the invention relates to a plain bearing which has a bearing body in which a body to be borne is borne, wherein the bearing body is surrounded by a supporting body.
  • a plain bearing is a bearing in which the body which is rotating and is to be borne slides on sliding surfaces.
  • the sliding surface of the body to be borne slides on the sliding surfaces of the bearing body.
  • the bearing body is designed differently.
  • the bearing body is in the form of a bearing shell which is embedded in a housing and may be subdivided into a plurality of bearing segments.
  • a lubricant film for example an oil film, is provided between the sliding surfaces.
  • the lubricant When rotation starts, the lubricant is drawn into the gap between the sliding surfaces, and the body to be borne moves to an eccentric position in the bearing body. During this process, it passes through the range of mixed friction. As the sliding speed and the movement into the eccentric position increase, a lubricant wedge is formed between the body to be borne and the bearing body, whose pressure results in the body to be borne being lifted off the bearing body. The body to be borne then runs in a stable form in the bearing body, in the case of purely hydrodynamic lubrication without any direct contact between the bearing body and the body to be borne. This effect occurs in a radial plain bearing by a bearing clearance that is provided.
  • a plain bearing in particular a radial plain bearing of the type mentioned initially, can be used, for example, in steam-turbine, generator and gas-turbine construction.
  • the plain bearing bears rotor shafts as the bodies to borne.
  • this bearing is subject to the following additional requirements:
  • the invention is therefore based on the object of improving a plain bearing of the type mentioned initially such that it complies with the requirements mentioned above for example for large-turbine construction, preferably for steam-turbine construction.
  • the object is achieved in that the bearing body is arranged as a multiple-surface bearing with its separating joint at an angle with respect to a horizontal.
  • the bearing body is formed from two half-shells, whose separating joint is arranged at an angle with respect to the horizontal.
  • the separating joint prefferably offset, seen in cross section, in the opposite direction to a rotation direction of the body to be borne or of a rotor shaft.
  • a fixing element for example one or more pins
  • fixing element is arranged in the supporting body and engages, for fixing purposes, in the bearing body, or rests on it for fixing purposes, such that the bearing body is held in its angle position in an adequately rotationally secure manner.
  • the bearing body has a first channel, which is arranged at least in places, in its wall, seen in the circumferential direction, wherein at least one axial hole is arranged in the wall and passes through the first channel. This provides active cooling for the plain bearing and the bearing body.
  • the bearing body has at least one second channel which is at a distance from the first channel, seen in the axial direction, wherein at least one axial hole is arranged in the wall and passes through the first and the second channel, such that these channels are connected to one another via the axial hole.
  • a third or further channels to be provided, wherein the first channel is arranged between the second and third channel, seen in the axial direction, and wherein a plurality of axial holes are provided, which each pass through all three channels.
  • the first channel is advantageously incorporated in a loaded bearing shell of the bearing body and is open toward the supporting body, wherein the first channel is incorporated in a semicircular shape in the wall of the bearing body, seen in the circumferential direction, such that a semicircular groove is effectively formed
  • the first channel advantageously has bearing pockets at its opposite ends, seen in the circumferential direction, in each of which at least one injection element is arranged for injection of liquid lubricant, preferably of lubricating oil, to the body to be borne and to the rotor shaft.
  • liquid lubricant preferably of lubricating oil
  • the bearing body is advantageously in the form of a multiple-surface bearing composed of two half-shells, wherein the first channel is arranged in the loaded half-shell and extends at least at one end somewhat into the unloaded half-shell, wherein a separating joint of the multiple-surface bearing is arranged at an angle with respect to a horizontal, such that one of the bearing pockets is arranged above the horizontal, and the other bearing pocket is arranged below the horizontal, seen in cross section.
  • the bearing pockets are in this case arranged on the one hand in the loaded bearing shell and on the other hand in the unloaded bearing shell.
  • the loaded bearing shell is that shell which absorbs the nominal load, while the role of the unloaded bearing shell is restricted predominantly to guiding the body to be borne in the bearing body.
  • the bearing body is in each case arranged on its opposite bearing pockets, in the circumferential direction, with injection elements which are each arranged in a plurality of rows and spray liquid lubricant on the one hand onto the body to be borne and onto the rotor shaft and on the other hand into an outlet gap.
  • the injection elements are arranged as a plurality of two rows in the respective bearing pockets, wherein the injection elements are screwed into the bearing pockets as nozzles.
  • the injection elements and nozzles are arranged such that the required amount of oil or the required amount of liquid lubricant is sprayed at right angles onto the body to be borne or onto the rotor shaft, and on the other hand obliquely into the outlet gap of the loaded half-shell.
  • the invention preferably relates to radial plain bearings for rotating shafts with hydrodynamic lubrication.
  • the shape of the hole in each bearing can be described by the horizontal displacement of two half-shells (cylindrical or profiled).
  • the direction of the bearing separating joint in the case of split bearings is referred to as the horizontal.
  • the bearing is suitable for only one rotation direction and therefore offers the advantage of the long, very slightly convergent, pulling-in gap, which results in broadening of the hydrodynamic pressure build-up.
  • this provides a better plain bearing which has adjustable injection lubrication (directed lubrication) for a completely surrounded plain bearing, in which case it is possible to dispense with hinged segments according to the prior art.
  • fresh oil or the liquid lubricant is supplied through a hole, which is arranged on one side, through the supporting body (generally the housing) and first of all passes into a half-surrounded channel of the loaded half-shell, and then into the injection elements.
  • a plurality of these are in each case arranged in two rows in the bearing pockets, or in the bearing pockets seen in the circumferential direction, and spray the amount of oil at right angles onto the body to be borne, or onto the rotor shaft, and obliquely into the outlet gap of the loaded half-shell.
  • the obliquely directed nozzles in one of the bearing pockets are active.
  • a channel which is closed in the width direction is arranged centrally and extends over the entire circumference of the unloaded half-shell.
  • Active cooling of the bearing is achieved by means of the preferably three channels that are provided, which extend in the circumferential direction, and by means of a plurality of axial holes in the loaded half-shell, wherein the liquid lubricant which is supplied through the hole, which is arranged at one end, in the supporting body first of all passes into the first channel and is then passed through each of the axial holes which are open to the other channels, as a result of which the loaded half-shell is actively cooled.
  • the channels and axial holes therefore have a dual function. On the one hand, they are used for active cooling with fresh oil. On the other hand, they are used to supply fresh oil to the injection elements.
  • the plain bearing or the bearing body is advantageously turned into the supporting body in the opposite direction to the rotation direction of the body to be borne or the rotor shaft, and is held in an optimized angle position by the fixing element, to be precise the pin or pins.
  • the angle position, to be precise the optimized angle position is in this case different from one application to another, and can be calculated in accordance with the respective application.
  • the plain bearing according to the invention has a low friction power and low losses, and is distinguished by maintenance friendliness, because of the shell structure.
  • the noticeable reduction in the friction power is achieved by the internal ring channel in the unloaded half-shell. It is particularly advantageous
  • the plain bearing can be used by virtue of the modular design in existing bearing housings and in existing installation conditions, with very high reliability.
  • the plain bearing according to the invention can be used in steam turbines, generators and/or for example gas turbines.
  • FIG. 1 shows a cross section through a plain bearing
  • FIG. 2 shows a longitudinal section through the plain bearing shown in FIG. 1 .
  • FIG. 3 shows a graph, in which the (calculated) maximum lubricating film temperature is plotted against the specific bearing load.
  • FIG. 1 shows a plain bearing 1 which, in the illustrated exemplary embodiment, is in the form of a radial plain bearing.
  • the plain bearing 1 has a bearing body 2 in which a body 3 to be borne, which is referred to in the following text as a rotor shaft 3 , is borne.
  • the bearing body is surrounded by a supporting body 4 , which is referred in the following text as a housing 4 .
  • the housing 4 has a horizontal 6 , with the direction of the bearing separating joint in the case of split bearings being referred to as the horizontal 6 .
  • the bearing body 2 is arranged as a multiple-surface bearing with its separating joint 7 at an angle with respect to the horizontal 6 .
  • a hole 8 which is arranged at one end, is incorporated in the supporting body 4 or in the housing 4 . In the exemplary embodiment illustrated in FIG. 1 , this is arranged on the left-hand plane of the drawing, with the hole 8 being bisected by the imaginary horizontal 6 .
  • a fixing element 9 is arranged in the hole 8 such that the bearing body 2 can be fixed in its angular position.
  • the fixing element 9 is, for example, in the form of a pin which engages in a corresponding receptacle in the bearing body 2 , as a result of which this is fixed such that it is sufficiently rotationally secure.
  • FIG. 2 shows two high-pressure screw unions 25 which allow oil to be supplied at high pressure into hydrostatic pockets 29 for raising the rotor shaft.
  • the bearing body 2 is composed of two half-shells 11 , 12 , with the bearing shell 11 being referred to in the following text as the loaded bearing shell 11 , and with the bearing shell 12 being referred to in the following text as the unloaded bearing shell 12 .
  • Three outer channels 13 , 14 , 16 are arranged in the loaded bearing shell 11 and are open toward the housing 4 .
  • a first channel 13 which is illustrated in FIG. 2 , is in each case at a distance, seen in the axial direction, from the adjacent second channel 14 and third channel 16 , with the first channel 13 being arranged between the second and the third channel 14 and 16 , respectively.
  • the first channel 13 is illustrated in FIG. 1 .
  • the first channel 13 is incorporated in the wall 17 of the loaded bearing shell 11 and extends in the rotation direction 18 of the body 3 to be borne, or of the rotor shaft 3 , somewhat beyond the separating joint 7 into the unloaded bearing shell 12 .
  • Bearing pockets 19 and 21 are arranged at the opposite ends of the first channel 13 , seen in the circumferential direction,
  • bearing pocket 19 being arranged in the loaded bearing shell 11
  • bearing pocket 21 being arranged in the unloaded bearing shell 12 .
  • the second channel 14 and the third channel 16 are designed in a corresponding manner to the first channel 13 .
  • Longitudinal holes or axial holes 22 which pass through the three channels 13 , 14 and 16 , are incorporated in the wall 17 in the area of the first channel 13 , and of the second and third channels 14 and 16 respectively.
  • Injection elements 23 , 24 are arranged in the respective bearing pockets 19 and 21 , which are arranged at the end in the respective channels 13 , 14 and 16 , seen in the circumferential direction, which injection elements 23 , 24 in the preferred refinement on the one hand spray liquid lubricant or lubricating oil at right angles (injection element 23 ) onto the body 3 to be borne or onto the rotor shaft 3 , and on the other hand obliquely (injection element 24 ) into an outlet gap 26 of the loaded half-shell 11 and of the unloaded half-shell 12 , respectively.
  • injection elements 23 or nozzles which are directed at right angles in the bearing pocket 21 are not active.
  • the bearing body 2 is shifted with its separating joint 7 out of the horizontal 6 , in the opposite direction to the rotation direction 18 .
  • the bearing body 2 is therefore arranged with its separating joint 7 at an angle with respect to the horizontal 6 , wherein an angle ⁇ may have a different magnitude from one application to another, and can be determined and/or calculated separately for each specific application.
  • Fresh lubricant or oil is supplied through the hole 8 , which is arranged at one end, in the supporting body 4 or in the housing 4 , and is first of all passed into the half-surrounded first channel 13 of the loaded half-shell 11 , and then into the injection elements 23 and 24 , respectively.
  • a plurality of these are in each case arranged in two rows in the
  • All of the injection elements 23 , 24 or nozzles are preferably screwed into the respective bearing pockets 19 or 21 , thus allowing metering of the oil throughput in the inlet.
  • An internal ring channel 31 is arranged approximately centrally in FIG. 2 and is closed in the width direction, extending over the entire circumference of the unloaded half-shell 12 .
  • FIG. 3 shows the (calculated) maximum lubricating film temperature (T max [° C.]) plotted against the specific bearing load (p lat [N/mm 2 ]).
  • T max [° C.]
  • p lat specific bearing load
  • a temperature/load characteristic of a conventional plain bearing reference symbol 27
  • a temperature/load line reference symbol 28
  • the graph in FIG. 3 clearly shows that the plain bearing according to the invention is subject to considerably lower temperatures for the same load.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

A plain bearing with a bearing body in which a body, which is to be stored is arranged, is disclosed. The bearing body is surrounded by a supporting body. The bearing capacity is improved by virtue of the fact that the bearing body has a partial joint arranged at an angle in relation to the horizontal. The plain bearing has an active cooling system and an articulated lubrication system.

Description

  • The invention relates to a plain bearing which has a bearing body in which a body to be borne is borne, wherein the bearing body is surrounded by a supporting body.
  • A plain bearing is a bearing in which the body which is rotating and is to be borne slides on sliding surfaces. In this case, the sliding surface of the body to be borne slides on the sliding surfaces of the bearing body. Depending on the nature of the plain bearing, the bearing body is designed differently. In the case of a radial plain bearing, the bearing body is in the form of a bearing shell which is embedded in a housing and may be subdivided into a plurality of bearing segments.
  • During operation of the plain bearing, the sliding surface of the body to be borne rubs on the sliding surfaces of the bearing body. In order to keep this friction, and therefore the wear of the plain bearing as well, as low as possible, a lubricant film, for example an oil film, is provided between the sliding surfaces.
  • When rotation starts, the lubricant is drawn into the gap between the sliding surfaces, and the body to be borne moves to an eccentric position in the bearing body. During this process, it passes through the range of mixed friction. As the sliding speed and the movement into the eccentric position increase, a lubricant wedge is formed between the body to be borne and the bearing body, whose pressure results in the body to be borne being lifted off the bearing body. The body to be borne then runs in a stable form in the bearing body, in the case of purely hydrodynamic lubrication without any direct contact between the bearing body and the body to be borne. This effect occurs in a radial plain bearing by a bearing clearance that is provided.
  • A plain bearing, in particular a radial plain bearing of the type mentioned initially, can be used, for example, in steam-turbine, generator and gas-turbine construction. In this case, the plain bearing bears rotor shafts as the bodies to borne.
  • The objective of current new developments in steam-turbine construction for electricity generation is to significantly increase the efficiency and to convert the energy efficiently. In this case, high operational reliability must be ensured, and cost savings must be achieved. As a result of this development:
  • a) the rotors are becoming longer, and the bearing separation is becoming greater,
    b) the evaporation cross sections are becoming greater, particularly in the low-pressure area, and
    c) the specific power of the individual turbine elements is increasing.
  • While at the same time maintaining a so-called mono block construction principle, particularly in the low-pressure area of steam turbines, this development is in the end leading to a significant increase in the specific bearing loads. The bearings and their maximum load-bearing capacity are therefore becoming limiting factors for turbine development, particularly in the low-pressure area. A similar development can also be observed in the case of generators and gas turbines. The load-bearing capacity of the plain bearings is limited by the maximum temperature, the maximum specific bearing load and the minimum lubricating film thickness.
  • In addition to the significant increase in the load-bearing capacity, this bearing is subject to the following additional requirements:
      • high stability for all load ranges, and good rotor-dynamic characteristics,
      • maintenance friendliness,
      • very high operating availability/low-wear operation,
      • raising of the rotors by high-pressure oil during rotation
      • high reliability (integrity of the turbine set with high unbalance levels),
      • use in the existing bearing housing, and
      • retrofit capability.
  • In order to comply with the abovementioned requirements and in order to significantly increase the load-bearing capacity of the plain bearings, the following measures, for example, are known:
      • reduction of the rotor weight,
      • use of high-viscosity oils,
      • greater bearing widths and/or bearing journal diameters,
      • lower oil supply temperature, and
      • directional (directed) lubrication (in the case of tilting pad bearings).
  • These standard measures to increase the load-bearing capacity have been proven in practice, but are reaching their limits ever more frequently.
  • The invention is therefore based on the object of improving a plain bearing of the type mentioned initially such that it complies with the requirements mentioned above for example for large-turbine construction, preferably for steam-turbine construction.
  • According to the invention, the object is achieved in that the bearing body is arranged as a multiple-surface bearing with its separating joint at an angle with respect to a horizontal.
  • For the purposes of the invention, it is advantageous for the bearing body to be formed from two half-shells, whose separating joint is arranged at an angle with respect to the horizontal.
  • It is expedient for the purposes of the invention for the separating joint to be offset, seen in cross section, in the opposite direction to a rotation direction of the body to be borne or of a rotor shaft.
  • It is advantageous for the bearing body to be fixed with its separating joint in the angle position arranged with respect to the horizontal, wherein a fixing element, for example one or more pins, can be used for fixing, which fixing element is arranged in the supporting body and engages, for fixing purposes, in the bearing body, or rests on it for fixing purposes, such that the bearing body is held in its angle position in an adequately rotationally secure manner.
  • In a further advantageous refinement to the invention, the bearing body has a first channel, which is arranged at least in places, in its wall, seen in the circumferential direction, wherein at least one axial hole is arranged in the wall and passes through the first channel. This provides active cooling for the plain bearing and the bearing body.
  • In this case, it is expedient for the purposes of the invention if the bearing body has at least one second channel which is at a distance from the first channel, seen in the axial direction, wherein at least one axial hole is arranged in the wall and passes through the first and the second channel, such that these channels are connected to one another via the axial hole. It is, of course, also possible to provide for a third or further channels to be provided, wherein the first channel is arranged between the second and third channel, seen in the axial direction, and wherein a plurality of axial holes are provided, which each pass through all three channels.
  • The first channel is advantageously incorporated in a loaded bearing shell of the bearing body and is open toward the supporting body, wherein the first channel is incorporated in a semicircular shape in the wall of the bearing body, seen in the circumferential direction, such that a semicircular groove is effectively formed
  • which extends somewhat into the wall of an unloaded bearing shell, that is to say the second half-shell.
  • The first channel advantageously has bearing pockets at its opposite ends, seen in the circumferential direction, in each of which at least one injection element is arranged for injection of liquid lubricant, preferably of lubricating oil, to the body to be borne and to the rotor shaft.
  • The bearing body is advantageously in the form of a multiple-surface bearing composed of two half-shells, wherein the first channel is arranged in the loaded half-shell and extends at least at one end somewhat into the unloaded half-shell, wherein a separating joint of the multiple-surface bearing is arranged at an angle with respect to a horizontal, such that one of the bearing pockets is arranged above the horizontal, and the other bearing pocket is arranged below the horizontal, seen in cross section. By virtue of the configuration of at least the first channel, the bearing pockets are in this case arranged on the one hand in the loaded bearing shell and on the other hand in the unloaded bearing shell. For the purposes of the invention, the loaded bearing shell is that shell which absorbs the nominal load, while the role of the unloaded bearing shell is restricted predominantly to guiding the body to be borne in the bearing body.
  • In a further advantageous refinement to the invention, the bearing body is in each case arranged on its opposite bearing pockets, in the circumferential direction, with injection elements which are each arranged in a plurality of rows and spray liquid lubricant on the one hand onto the body to be borne and onto the rotor shaft and on the other hand into an outlet gap.
  • It is advantageous for the purpose of the invention if the injection elements are arranged as a plurality of two rows in the respective bearing pockets, wherein the injection elements are screwed into the bearing pockets as nozzles.
  • In one preferred refinement, the injection elements and nozzles are arranged such that the required amount of oil or the required amount of liquid lubricant is sprayed at right angles onto the body to be borne or onto the rotor shaft, and on the other hand obliquely into the outlet gap of the loaded half-shell.
  • Overall, the invention preferably relates to radial plain bearings for rotating shafts with hydrodynamic lubrication. The shape of the hole in each bearing can be described by the horizontal displacement of two half-shells (cylindrical or profiled). In this case, the direction of the bearing separating joint in the case of split bearings is referred to as the horizontal. The bearing is suitable for only one rotation direction and therefore offers the advantage of the long, very slightly convergent, pulling-in gap, which results in broadening of the hydrodynamic pressure build-up.
  • Overall, this provides a better plain bearing which has adjustable injection lubrication (directed lubrication) for a completely surrounded plain bearing, in which case it is possible to dispense with hinged segments according to the prior art. In this case, fresh oil or the liquid lubricant is supplied through a hole, which is arranged on one side, through the supporting body (generally the housing) and first of all passes into a half-surrounded channel of the loaded half-shell, and then into the injection elements. A plurality of these are in each case arranged in two rows in the bearing pockets, or in the bearing pockets seen in the circumferential direction, and spray the amount of oil at right angles onto the body to be borne, or onto the rotor shaft, and obliquely into the outlet gap of the loaded half-shell. In this case, only the obliquely directed nozzles in one of the bearing pockets are active. This is preferably the bearing pocket which is arranged under the horizontal when the bearing body is in the fixed state. All the nozzles are screwed in, thus allowing metering of the oil throughput in the inlet.
  • Inlet wear and uncontrolled wear during operation are advantageously prevented by means of a supporting mirror. A channel (internal ring channel) which is closed in the width direction is arranged centrally and extends over the entire circumference of the unloaded half-shell.
  • Active cooling of the bearing is achieved by means of the preferably three channels that are provided, which extend in the circumferential direction, and by means of a plurality of axial holes in the loaded half-shell, wherein the liquid lubricant which is supplied through the hole, which is arranged at one end, in the supporting body first of all passes into the first channel and is then passed through each of the axial holes which are open to the other channels, as a result of which the loaded half-shell is actively cooled. The channels and axial holes therefore have a dual function. On the one hand, they are used for active cooling with fresh oil. On the other hand, they are used to supply fresh oil to the injection elements.
  • The plain bearing or the bearing body is advantageously turned into the supporting body in the opposite direction to the rotation direction of the body to be borne or the rotor shaft, and is held in an optimized angle position by the fixing element, to be precise the pin or pins. The angle position, to be precise the optimized angle position, is in this case different from one application to another, and can be calculated in accordance with the respective application.
  • This results in a plain bearing which has high stability over a wide load range and very good rotor-dynamic characteristics, with a very high load-carrying capacity as well, and at high circumferential speeds. Furthermore the plain bearing according to the invention has a low friction power and low losses, and is distinguished by maintenance friendliness, because of the shell structure. In particular, the noticeable reduction in the friction power is achieved by the internal ring channel in the unloaded half-shell. It is particularly advantageous
  • that the plain bearing can be used by virtue of the modular design in existing bearing housings and in existing installation conditions, with very high reliability. The plain bearing according to the invention can be used in steam turbines, generators and/or for example gas turbines.
  • Further advantageous refinements are disclosed in the dependent claims and in the following descriptions of the figures, in which:
  • FIG. 1 shows a cross section through a plain bearing,
  • FIG. 2 shows a longitudinal section through the plain bearing shown in FIG. 1, and
  • FIG. 3 shows a graph, in which the (calculated) maximum lubricating film temperature is plotted against the specific bearing load.
  • Identical parts are always provided with the same reference symbols in the various figures, as a result of which they are generally also described only once.
  • FIG. 1 shows a plain bearing 1 which, in the illustrated exemplary embodiment, is in the form of a radial plain bearing. The plain bearing 1 has a bearing body 2 in which a body 3 to be borne, which is referred to in the following text as a rotor shaft 3, is borne. The bearing body is surrounded by a supporting body 4, which is referred in the following text as a housing 4.
  • The housing 4 has a horizontal 6, with the direction of the bearing separating joint in the case of split bearings being referred to as the horizontal 6.
  • The bearing body 2 is arranged as a multiple-surface bearing with its separating joint 7 at an angle with respect to the horizontal 6.
  • A hole 8, which is arranged at one end, is incorporated in the supporting body 4 or in the housing 4. In the exemplary embodiment illustrated in FIG. 1, this is arranged on the left-hand plane of the drawing, with the hole 8 being bisected by the imaginary horizontal 6.
  • A fixing element 9 is arranged in the hole 8 such that the bearing body 2 can be fixed in its angular position. The fixing element 9 is, for example, in the form of a pin which engages in a corresponding receptacle in the bearing body 2, as a result of which this is fixed such that it is sufficiently rotationally secure. FIG. 2 shows two high-pressure screw unions 25 which allow oil to be supplied at high pressure into hydrostatic pockets 29 for raising the rotor shaft.
  • In the illustrated exemplary embodiment, the bearing body 2 is composed of two half- shells 11, 12, with the bearing shell 11 being referred to in the following text as the loaded bearing shell 11, and with the bearing shell 12 being referred to in the following text as the unloaded bearing shell 12.
  • Three outer channels 13, 14, 16 (FIG. 2) are arranged in the loaded bearing shell 11 and are open toward the housing 4. A first channel 13, which is illustrated in FIG. 2, is in each case at a distance, seen in the axial direction, from the adjacent second channel 14 and third channel 16, with the first channel 13 being arranged between the second and the third channel 14 and 16, respectively.
  • Because of the chosen cross section, only the first channel 13 is illustrated in FIG. 1. The first channel 13 is incorporated in the wall 17 of the loaded bearing shell 11 and extends in the rotation direction 18 of the body 3 to be borne, or of the rotor shaft 3, somewhat beyond the separating joint 7 into the unloaded bearing shell 12.
  • Bearing pockets 19 and 21 are arranged at the opposite ends of the first channel 13, seen in the circumferential direction,
  • with the bearing pocket 19 being arranged in the loaded bearing shell 11, and the bearing pocket 21 being arranged in the unloaded bearing shell 12.
  • The second channel 14 and the third channel 16 are designed in a corresponding manner to the first channel 13.
  • Longitudinal holes or axial holes 22, which pass through the three channels 13, 14 and 16, are incorporated in the wall 17 in the area of the first channel 13, and of the second and third channels 14 and 16 respectively.
  • Injection elements 23, 24, preferably nozzles, are arranged in the respective bearing pockets 19 and 21, which are arranged at the end in the respective channels 13, 14 and 16, seen in the circumferential direction, which injection elements 23, 24 in the preferred refinement on the one hand spray liquid lubricant or lubricating oil at right angles (injection element 23) onto the body 3 to be borne or onto the rotor shaft 3, and on the other hand obliquely (injection element 24) into an outlet gap 26 of the loaded half-shell 11 and of the unloaded half-shell 12, respectively. In this case, only the injection elements 23 or nozzles which are directed at right angles in the bearing pocket 21 are not active.
  • In the exemplary embodiment illustrated in FIG. 1, the bearing body 2 is shifted with its separating joint 7 out of the horizontal 6, in the opposite direction to the rotation direction 18. The bearing body 2 is therefore arranged with its separating joint 7 at an angle with respect to the horizontal 6, wherein an angle α may have a different magnitude from one application to another, and can be determined and/or calculated separately for each specific application.
  • Fresh lubricant or oil is supplied through the hole 8, which is arranged at one end, in the supporting body 4 or in the housing 4, and is first of all passed into the half-surrounded first channel 13 of the loaded half-shell 11, and then into the injection elements 23 and 24, respectively. A plurality of these are in each case arranged in two rows in the
  • respective bearing pockets 19 and 21, and spray the required amount of oil at right angles onto the rotor shaft 3 and obliquely into the outlet gap 26 of the loaded half-shell 11. All of the injection elements 23, 24 or nozzles are preferably screwed into the respective bearing pockets 19 or 21, thus allowing metering of the oil throughput in the inlet.
  • An internal ring channel 31 is arranged approximately centrally in FIG. 2 and is closed in the width direction, extending over the entire circumference of the unloaded half-shell 12.
  • By way of example, FIG. 3 shows the (calculated) maximum lubricating film temperature (Tmax[° C.]) plotted against the specific bearing load (plat [N/mm2]). In this case, a temperature/load characteristic of a conventional plain bearing (reference symbol 27) is illustrated in comparison to a temperature/load line (reference symbol 28) of the plain bearing designed according to the invention, or radial plain bearing with hydrodynamic lubrication. The graph in FIG. 3 clearly shows that the plain bearing according to the invention is subject to considerably lower temperatures for the same load.

Claims (21)

1.-12. (canceled)
13. A plain bearing, comprising:
a bearing body in which a body is borne, wherein the bearing body is arranged as a multiple-surface bearing with a separating joint at an angle with respect to a horizontal; and
a supporting body surrounding the bearing body.
14. The plain bearing as claimed in claim 13, wherein the bearing body is formed from two half-shells and the separating joint is arranged at an angle with respect to the horizontal.
15. The plain bearing as claimed in claim 13, wherein the separating joint is offset, seen in cross section, in the opposite direction to a rotation direction of the borne body.
16. The plain bearing as claimed in claim 14, wherein the separating joint is offset, seen in cross section, in the opposite direction to a rotation direction of the borne body.
17. The plain bearing as claimed in claim 13, wherein the bearing body is fixed in its angle position arranged with respect to the horizontal.
18. A plain bearing, comprising:
a bearing body in which a body is borne, the bearing body having, seen in circumferential direction, a first channel arranged in a wall of the bearing body at least in places, wherein at least one axial hole is arranged in the wall and passes through the first channel; and
a supporting body surrounding the bearing body.
19. The plain bearing as claimed in claim 18, wherein the bearing body has a second channel and at least one axial hole is arranged in the wall and passes through the first and the second channel.
20. The plain bearing as claimed in claim 19, wherein the second channel is at a distance from the first channel seen in axial direction.
21. The plain bearing as claimed in claim 18, wherein the first channel is incorporated in a loaded bearing shell of the bearing body and is open toward the supporting body, and wherein the first channel, seen in the circumferential direction, is incorporated in a semicircular shape in the wall such that a semicircular groove is effectively formed which extends into an unloaded bearing shell.
22. The plain bearing as claimed in claim 19, wherein the first channel is incorporated in a loaded bearing shell of the bearing body and is open toward the supporting body, and wherein the first channel, seen in the circumferential direction, is incorporated in a semicircular shape in the wall such that a semicircular groove is effectively formed which extends into an unloaded bearing shell.
23. The plain bearing as claimed in claim 18, wherein the first channel has, seen in circumferential direction, bearing pockets at its opposite ends in which at least one injection element is arranged for injection of liquid lubricant to the borne body.
24. The plain bearing as claimed in claim 21, wherein the first channel has, seen in circumferential direction, bearing pockets at its opposite ends in which at least one injection element is arranged for injection of liquid lubricant to the borne body.
25. The plain bearing as claimed in claim 18, wherein the bearing body is in the form of a multiple-surface bearing composed of two half-shells, wherein the first channel is arranged in the loaded half-shell, and wherein a separating joint is arranged at an angle with respect to a horizontal such that one of the bearing pockets is arranged above the horizontal and the other bearing pocket is arranged below the horizontal, seen in cross section.
26. The plain bearing as claimed in claim 23, wherein the bearing body is in the form of a multiple-surface bearing composed of two half-shells, wherein the first channel is arranged in the loaded half-shell, and wherein a separating joint is arranged at an angle with respect to a horizontal such that one of the bearing pockets is arranged above the horizontal and the other bearing pocket is arranged below the horizontal, seen in cross section.
27. A plain bearing, comprising:
a bearing body in which a body is borne, the bearing body having, seen in circumferential direction, opposite bearing pockets, wherein injection elements are each arranged in a plurality of rows on the opposite bearing pockets, and wherein the injection elements spray liquid lubricant onto the borne body and into an outlet gap; and
a supporting body surrounding the bearing body.
28. The plain bearing as claimed in claim 27, wherein the injection elements are arranged as a plurality of two rows in the respective bearing pockets, and wherein the injection elements are screwed into the bearing pockets as nozzles.
29. The plain bearing as claimed in claim 27, wherein the injection elements are arranged such that the liquid lubricant is sprayed at right angles onto the borne body, wherein the injection elements are arranged such that the liquid lubricant is sprayed obliquely into an outlet gap of the loaded half-shell, and wherein only the obliquely directed injection elements in one of the bearing pockets are active.
30. The plain bearing as claimed in claim 28, wherein the injection elements are arranged such that the liquid lubricant is sprayed at right angles onto the borne body, wherein the injection elements are arranged such that the liquid lubricant is sprayed obliquely into an outlet gap of the loaded half-shell, and wherein only the obliquely directed injection elements in one of the bearing pockets are active.
31. The plain bearing as claimed in claim 29, wherein the injection elements of the bearing pocket, which is, seen in cross section, arranged under the horizontal when the bearing body is in the fixed state, are active.
32. The plain bearing as claimed in claim 30, wherein the injection elements of the bearing pocket, which is, seen in cross section, arranged under the horizontal when the bearing body is in the fixed state, are active.
US12/310,146 2006-08-16 2007-08-02 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets Abandoned US20100002967A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06017047.9 2006-08-16
EP06017047A EP1890045A1 (en) 2006-08-16 2006-08-16 hydrodynamic journal bearings for large turbo sets
PCT/EP2007/057999 WO2008019947A2 (en) 2006-08-16 2007-08-02 Hydrodynamic radial plain bearing for large turbo-generators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057999 A-371-Of-International WO2008019947A2 (en) 2006-08-16 2007-08-02 Hydrodynamic radial plain bearing for large turbo-generators

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/432,035 Division US8876387B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets
US13/432,001 Division US8851754B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets

Publications (1)

Publication Number Publication Date
US20100002967A1 true US20100002967A1 (en) 2010-01-07

Family

ID=37649552

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/310,146 Abandoned US20100002967A1 (en) 2006-08-16 2007-08-02 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets
US13/432,001 Active 2027-09-04 US8851754B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets
US13/432,035 Active 2027-08-10 US8876387B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/432,001 Active 2027-09-04 US8851754B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets
US13/432,035 Active 2027-08-10 US8876387B2 (en) 2006-08-16 2012-03-28 Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets

Country Status (5)

Country Link
US (3) US20100002967A1 (en)
EP (4) EP1890045A1 (en)
JP (1) JP5052611B2 (en)
CN (1) CN101563547B (en)
WO (1) WO2008019947A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297770A1 (en) * 2009-08-27 2012-11-29 Thomas Figler Exhaust-gas power-recovery turbine for a turbo compound system
US8616777B1 (en) 2012-11-16 2013-12-31 Pratt & Whitney Canada Corp. Bearing assembly with inner ring
DE102015205223A1 (en) 2015-03-23 2016-09-29 Zf Friedrichshafen Ag Active plain bearing

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1890045A1 (en) 2006-08-16 2008-02-20 Siemens Aktiengesellschaft hydrodynamic journal bearings for large turbo sets
ES2395350B1 (en) * 2011-02-02 2014-09-09 Fagor, S. Coop. Mechanical press adapted to forming processes, in particular hot forming processes
CN103216537A (en) * 2013-03-04 2013-07-24 哈尔滨电机厂有限责任公司 Large-scale pump storage group generator motor two-way pump tile structure
CN103343773B (en) * 2013-07-10 2016-05-04 中国电建集团上海能源装备有限公司 The sliding bearing that a kind of bearing shell is floating type
DE102014200593A1 (en) * 2014-01-15 2015-07-16 Voith Patent Gmbh Hydrodynamic plain bearing
WO2015107046A2 (en) * 2014-01-15 2015-07-23 Voith Patent Gmbh Hydrodynamic plain bearing
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US9488173B2 (en) 2014-07-31 2016-11-08 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US9726221B2 (en) 2014-07-31 2017-08-08 Hamilton Sundstrand Corporation Gear pump bearings with hybrid pads
US9890813B2 (en) 2014-11-03 2018-02-13 Hamilton Sundstrand Corporation Gear pump bearings with hybrid pads
FR3028903B1 (en) 2014-11-20 2017-05-05 Snecma SELF-CENTER SMOOTH BEARING
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
JP5936725B1 (en) * 2015-01-30 2016-06-22 三菱日立パワーシステムズ株式会社 Journal bearing device and rotating machine
CN104863971B (en) * 2015-04-27 2017-05-10 张永斌 Concentric micro centering slide bearing formed by physical absorption
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
DE102017216563A1 (en) * 2017-09-19 2019-03-21 Siemens Aktiengesellschaft Turbomachine and method for operating a turbomachine in rotary operation
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1717873A (en) * 1924-01-07 1929-06-18 Alanson P Brush Journal bearing
US2163586A (en) * 1936-10-19 1939-06-27 Gilbert R Coleman Journal bearing
US2940802A (en) * 1957-01-31 1960-06-14 Glacier Co Ltd Journal bearings
US3350145A (en) * 1964-10-06 1967-10-31 Commissariat Energie Atomique Fluid-bearing
US6053636A (en) * 1998-11-10 2000-04-25 United Technologies Corporation Hydrostatic bearing with compensatory fluid injection

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE156243C (en) *
DE556052C (en) * 1927-04-08 1932-08-02 Escher Wyss Maschf Ag Support bearing for shafts with pressure oil lubrication
US1789092A (en) * 1928-06-06 1931-01-13 Charles H Apps Journal box for railroad vehicles
US3011838A (en) * 1958-03-19 1961-12-05 Glacier Co Ltd Plain bearings
GB877233A (en) * 1958-03-19 1961-09-13 Glacier Co Ltd Plain bearings
US3029111A (en) * 1958-06-09 1962-04-10 Glacier Co Ltd Valve apparatus for controlling an oil supply to a plain bearing
GB993842A (en) * 1960-10-10 1965-06-02 Glacier Co Ltd Plain bearing assembly
GB919480A (en) * 1960-10-10 1963-02-27 Glacier Co Ltd Improvements in and relating to plain bearing assemblies
CH446822A (en) * 1965-12-17 1967-11-15 Statni Vyzkumny Ustav Pro Stav Hydrostatic or aerostatic bearing
GB1192422A (en) * 1966-02-23 1970-05-20 English Electric Co Ltd Liquid Lubricated Plain Bearing Assemblies
JPS5217915B1 (en) * 1970-08-05 1977-05-18
DE2103239A1 (en) * 1971-01-25 1972-08-10 Kraftwerk Union Ag Radial plain bearings, designed as three-part bearings, preferably for turbo machines
US3743367A (en) * 1971-10-08 1973-07-03 Westinghouse Electric Corp Journal bearing
DE2629359C2 (en) * 1976-06-30 1986-09-11 Klöckner-Humboldt-Deutz AG, 5000 Köln Split housing plain bearing
DE7729292U1 (en) * 1977-09-02 1979-07-12 Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) Dynamically gas-lubricated radial bearing
DE3231133A1 (en) * 1982-08-21 1984-02-23 Zahnräderfabrik Renk AG, 8900 Augsburg HYDRODYNAMIC BEARING ARRANGEMENT
US4568204A (en) * 1984-09-04 1986-02-04 Kingsbury, Inc. Journal bearing
DE3617289A1 (en) * 1986-05-23 1987-11-26 Braunschweiger Huettenwerk HYDRODYNAMIC RADIAL SLIDING BEARING
US4772137A (en) * 1987-03-30 1988-09-20 Morgan Construction Company Oil film bearing and bushing
US5743654A (en) * 1987-05-29 1998-04-28 Kmc, Inc. Hydrostatic and active control movable pad bearing
US5288153A (en) * 1993-01-04 1994-02-22 Delaware Capital Formation, Inc. Tilting pad journal bearing using directed lubrication
US5433528A (en) * 1994-02-28 1995-07-18 Rockwell International Corporation Two pad axially grooved hydrostatic bearing
US5702186A (en) * 1996-08-02 1997-12-30 Westinghouse Electric Corporation Journal bearing with leading edge groove vent
US5769545A (en) * 1996-12-04 1998-06-23 Bently Nevada Corporation Hydrostatic bearing for supporting rotating equipment, a fluid handling system associated therewith, a control system therefore, method and apparatus
US6966700B2 (en) * 2000-06-23 2005-11-22 Gleitlagertechnik Weissbacher Gmbh Hydrodynamic plain bearing and method of lubricating and cooling the bearing
DE10030698A1 (en) * 2000-06-23 2002-01-10 Gleitlagertechnik Weissbacher Process for lubricating and cooling a hydrodynamic plain bearing and device for carrying out this process
EP1890045A1 (en) 2006-08-16 2008-02-20 Siemens Aktiengesellschaft hydrodynamic journal bearings for large turbo sets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1717873A (en) * 1924-01-07 1929-06-18 Alanson P Brush Journal bearing
US2163586A (en) * 1936-10-19 1939-06-27 Gilbert R Coleman Journal bearing
US2940802A (en) * 1957-01-31 1960-06-14 Glacier Co Ltd Journal bearings
US3350145A (en) * 1964-10-06 1967-10-31 Commissariat Energie Atomique Fluid-bearing
US6053636A (en) * 1998-11-10 2000-04-25 United Technologies Corporation Hydrostatic bearing with compensatory fluid injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297770A1 (en) * 2009-08-27 2012-11-29 Thomas Figler Exhaust-gas power-recovery turbine for a turbo compound system
US8616777B1 (en) 2012-11-16 2013-12-31 Pratt & Whitney Canada Corp. Bearing assembly with inner ring
DE102015205223A1 (en) 2015-03-23 2016-09-29 Zf Friedrichshafen Ag Active plain bearing

Also Published As

Publication number Publication date
CN101563547A (en) 2009-10-21
US8851754B2 (en) 2014-10-07
WO2008019947A3 (en) 2009-05-22
US20120183244A1 (en) 2012-07-19
EP1890045A1 (en) 2008-02-20
WO2008019947A2 (en) 2008-02-21
JP5052611B2 (en) 2012-10-17
CN101563547B (en) 2012-11-14
EP2052165A2 (en) 2009-04-29
JP2010500520A (en) 2010-01-07
EP2787226B1 (en) 2020-12-09
EP2787228A1 (en) 2014-10-08
US20120183245A1 (en) 2012-07-19
US8876387B2 (en) 2014-11-04
EP2787226A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
US8851754B2 (en) Hydrodynamic radial plain bearing with a very high load-bearing capacity of large turbine sets
CN107816370B (en) Hydrodynamic plain bearing and turbocharger
US9797378B2 (en) Direct-drive wind turbine
US8147145B2 (en) Journal bearing device
US20060165325A1 (en) Axial friction bearing
DK2816226T3 (en) Wind turbine with a slip bearing
US20140193264A1 (en) Direct-drive wind turbine
Bang et al. Comparison of power loss and pad temperature for leading edge groove tilting pad journal bearings and conventional tilting pad journal bearings
KR20130093498A (en) Bearing element
US10948071B2 (en) Bearing arrangement for a planet gear of a planetary gear set
Martsinkovsky et al. Designing thrust sliding bearings of high bearing capacity
JP2008082355A (en) Slide bearing
KR20180011054A (en) Turbocharger
US9234542B2 (en) Bearing system
JP2008057346A (en) Bearing for compressor
JP2014202268A (en) Bearing device and rotating machine
US20180202489A1 (en) Double-row self-aligning roller bearing
US9377051B2 (en) Duplex bearing device
Nicholas Tilting Pad Journal Bearings With Spray-Bar Blockers And By-Pass Cooling For High Speed, High Load Applications.
RU2619408C1 (en) Supportsegmental sliding bearing
CN108700115A (en) The bearing of journals and rotating machinery
RU2489615C1 (en) Combined radial-axial gas-dynamic leaf-type plain bearing
JP2024517343A (en) Nacelle for wind turbine
CN113565708B (en) Fluid film bearing and wind turbine
Brockwell et al. Measured temperature characteristics of 152 mm diameter pivoted shoe journal bearings with flooded lubrication

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DETTMAR, DIETHELM;LUNEBURG, BERND;MEDHIOUB, MORCHED;REEL/FRAME:022286/0914;SIGNING DATES FROM 20090130 TO 20090204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION