US20090313924A1 - Concrete building structures - Google Patents
Concrete building structures Download PDFInfo
- Publication number
- US20090313924A1 US20090313924A1 US12/486,010 US48601009A US2009313924A1 US 20090313924 A1 US20090313924 A1 US 20090313924A1 US 48601009 A US48601009 A US 48601009A US 2009313924 A1 US2009313924 A1 US 2009313924A1
- Authority
- US
- United States
- Prior art keywords
- building structure
- sidewalls
- units
- modules
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H1/00—Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
- E04H1/02—Dwelling houses; Buildings for temporary habitation, e.g. summer houses
- E04H1/04—Apartment houses arranged in two or more levels
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/348—Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
- E04B1/34815—Elements not integrated in a skeleton
- E04B1/34823—Elements not integrated in a skeleton the supporting structure consisting of concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B2001/0053—Buildings characterised by their shape or layout grid
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/348—Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
- E04B2001/34892—Means allowing access to the units, e.g. stairs or cantilevered gangways
Definitions
- the building structures in the form of a concrete unit having a closed trapezoid shape formed of four interconnected sidewalls.
- the concrete unit may be formed of a plurality of interconnected precast concrete sections or cast-in-place sidewalls
- a top deck may be supported in the sidewalls.
- the top deck may include at least one hollow core plank section with one or more support beams extending between the sidewalls.
- Substantially extending vertically extending coiffures may be formed in at least one of the sidewalls. The coiffures open to the interior of the concrete unit.
- a pair of units may be arranged in a side-by-side pair configuration.
- a single common wall may form abutting portions of the pair of units.
- each unit may include a pair of equal length, non-parallel sidewalls interconnected by two substantially parallel sidewalls.
- the pair of first equal length non-parallel sidewalls may be formed by dividing a pair of inner and outer concentric circles into 16 substantially identical volume units, with two intervening, substantially parallel sidewalls.
- First interior angles are formed by one end of each of the pair of non parallel sidewalls and one of the parallel sidewalls.
- Second interior angles are formed between opposed ends of the non-parallel sidewalls at a first equal angle and other parallel sidewalls at a second equal angle.
- a plurality of side-by-side abutting units may be arranged in a continuous unitary structure in the form of a continuous circular ring and a regular shape having opposed, spaced ends, a closed oval configuration in a substantially linearly line having opposed ends.
- At least one hall way having at least one open end may be interposed between two facing sidewalls of two adjacent units.
- An upper deck may be disposed over and closing the hallway.
- a lintel may extend from each space sidewall the two adjacent units into the hallway to support the upper deck.
- a plurality of units may be arranged in at least two stacked or tiered levels. At least one of a stairway or an elevator may be disposed between the at least two stacked levels. Decking may extend between the inner walls of a plurality of units forming a closed configuration.
- a side-by-side arranged units may be arranged in two concentric circles formed of a first inner ring and a radially outward spaced second ring.
- a circular deck may be mounted over a space formed between the first and second rings of units.
- a plurality of stacked levels of units may be formed in at least one or both of the first and second rings.
- a stairway or an elevator may be disposed between at least two levels of units. Decking may extend between the inner walls of the plurality of units forming a closed unit configuration.
- FIG. 1 is a front perspective view of one aspect of a single building module
- FIG. 2 is a rear perspective view of the single building module shown in FIG. 1 ;
- FIG. 3 is a plan elevational view of the single building module shown in FIG. 1 , with the deck removed;
- FIG. 4 is a horizontal cross sectional view through the right rear corner of the single building module shown in FIG. 3 ;
- FIG. 5 is a lateral cross-sectional view of the single building module generally taken through the non-parallel walls of the single building module shown in FIG. 1-3 ;
- FIG. 6 is a transverse cross sectional view generally taken through the parallel walls of the single building module shown in FIG. 1-3 ;
- FIG. 7 is a plan elevational view of a three beam deck support aspect of the single building module shown in FIGS. 1-3 ;
- FIG. 8 is a plan elevational view of another aspect of the single building module having a single deck support beam
- FIG. 9 is a plan elevational view of another aspect of the single building module having a two beam deck support
- FIG. 10 is a plan elevational view, with the upper decks removed, of a two side by side co-joined building module configuration
- FIG. 11 is an enlarged plan view of the circled area 11 in FIG. 10 .
- FIG. 12 is a transverse cross sectional view of another aspect of the building module using a cast in-place wall construction
- FIG. 13 is a plan elevational view showing another aspect of a deck construction used in the building module shown in FIG. 12 ;
- FIG. 14 is a cross-sectional view of one of the deck planking generally along line 14 - 14 in FIG. 13 ;
- FIG. 15 is a plan elevational view of one aspect of a plurality of building modules arranged in side by side circular ring configuration
- FIG. 16 is an enlarged plan elevational view of the circled area 16 in FIG. 15 ;
- FIG. 17 is a cross sectional view generally taken along line 17 - 17 in FIG. 15 ;
- FIG. 18 is a plan elevational view of another aspect of a circular ring configuration of building modules
- FIG. 19 is an enlarged plan elevational view of the circled area 19 in FIG. 18 ;
- FIG. 20 is a cross sectional view generally taken along line 20 - 20 in FIG. 18 ;
- FIG. 21 is a plan elevational view of another aspect of a circular ring configuration of building modules.
- FIG. 22 is an enlarged plan elevational view of the circled area 22 in FIG. 21 ;
- FIG. 23 is a cross sectional view generally taken along lines 23 - 23 in FIG. 21 ;
- FIG. 24 is a plan elevational view of another aspect of the building modules in which the building modules are arranged in concentric rings;
- FIG. 25 is an enlarged, partial, plan elevational view of the circled area 25 in FIG. 24 ;
- FIG. 26 is a cross-sectional view generally taken along line 26 - 26 in FIG. 25 ;
- FIG. 27 is a plan elevational view of another aspect of the double ringed configuration of building modules.
- FIG. 28 is an enlarged, partial, plan elevation view of the area within the circle 28 in FIG. 27 ;
- FIG. 29 is a cross sectional view generally taken along line 29 - 29 in FIG. 28 ;
- FIG. 30 is a cross sectional view generally taken long line 30 - 30 in FIG. 28 ;
- FIG. 31 is a plan elevational view of another aspect of the double ring configuration of building modules.
- FIG. 32 is an enlarged, partial, plan elevational view of the area within the circle 32 in FIG. 31 ;
- FIG. 33 is a side elevational view of a multi-tier, ring arrangement of building modules
- FIG. 34 is a side elevation view of the inner side of the outer ring of multi-tier arrangement of modules shown in FIG. 33 ;
- FIG. 35 is a plan elevational view of the building modules shown in FIGS. 33 and 34 ;
- FIG. 36 is an enlarged, plan elevational view of the circled area 36 in FIG. 35 ;
- FIG. 37 is a cross-sectional view generally taken along line 37 - 37 in FIG. 36 ;
- FIG. 38 is a plan elevational view of another configuration of side wall to side wall joined building modules
- FIG. 39 is a plan elevational view of yet another arrangement of side wall to side wall joined building modules.
- FIG. 40 is a plan elevational view of another arrangement of side wall to side wall joined building modules
- FIG. 41 is a plan elevational view of another aspect of side wall to side wall joined building modules arranged in an oval shape
- FIG. 42 is a side elevational view of the oval configuration of building modules shown in FIG. 41 , but in multi-tier configuration;
- FIG. 43 is a partial side elevational view of the interior wall structure of the multi-tier configured building modules shown in FIG. 42 ;
- FIG. 44 is a partially broken away, lateral, cross-sectional view of the multi-tiered building module configuration shown in FIGS. 42 and 43 .
- FIGS. 1-44 of the drawings depict various aspects of a concrete building structure made of pre-cast and/or cast-in-place concrete sections or cast as a one piece unitary structure which can be used to create uniquely configurable building structures formed of a single building module or unit, sometimes hereafter referred to as a “prime unit,” and for entire building structures including one or multiple levels each having multiple building modules.
- concrete hereafter to form the various building structures will mean any type of commercially available concrete, including any type of concrete composition suitable for building structures, including building structures formed of concrete, or concrete and other non-concrete materials, such as bricks, wood, composites, etc., or concrete with reinforced steel or rebar, or concrete sections, panels or beams which are formed of cast-in-place concrete with or without reinforced steel using pre-made forms, as well as precast concrete sections of any width and shape which are precast to the desired shape, thickness, and strength and then assembled to form the walls, deck, and roof of a building structure, and structured or engineered concrete sections which are precast into the desired shape and also assembled into the complete structure, and combinations of precast concrete sections, cast-in-place concrete sections and structural or engineered sections.
- any type of concrete composition suitable for building structures including building structures formed of concrete, or concrete and other non-concrete materials, such as bricks, wood, composites, etc., or concrete with reinforced steel or rebar, or concrete sections, panels or beams which are formed of cast-
- Trapezoidal as used herein will be understood to mean a quadrilateral shape having two parallel and two non-parallel sides, with a first pair of equal interior angles and a second pair of different equal interior angles as well as shapes having a substantially quadrilateral-like appearance with four sides arranged in a closed shape, where the sides are linear, curved or multi-faceted.
- each building module will be described as having a first pair of non-parallel sidewalls and a second pair of parallel sidewalls, all four sidewalls interconnected at adjacent ends to form a closed building module or unit.
- the module 60 has a plane configuration formed of a first pair of non-parallel sidewalls 62 and 64 and a second pair of parallel sidewalls, also referred to as a first inner wall 66 and a second outer wall 68 .
- the walls 62 , 64 , 66 and 68 are shown as being linear from end to end, it will be understood that any of the walls and, in particular, the two parallel walls 66 and 68 , can have other shapes, such as curved, sinuous or multi-faceted similar to a bay window.
- the sidewalls 62 and 64 while generally linear for abutting interconnection to other modules, as described hereafter, can also have non-linear shapes, particularly for stand-alone module configurations.
- the walls 62 , 64 , 66 and 68 have opposed vertically extending ends which abut or are joined to each other at exterior edges 70 , 72 , 74 and 76 to form a closed periphery for the module 60 .
- a deck 80 is placed over the upper edges of each of the walls 62 , 64 , 66 and 68 to close the interior of the module 60 .
- the module 60 is depicted in the drawing as having a trapezoidal shape, by way of example.
- the interior angles between the ends of the first inner wall 66 and the adjacent sidewalls 62 and 64 are equal.
- the interior angles between the opposed ends of the second outer wall 68 and the adjacent sidewalls 62 and 64 are also equal, but different from the angles between the ends of the walls 62 , 64 , and 66 .
- the trapezoidal shape of the module 60 shown in FIGS. 1-4 is a so-called equilateral trapezoid in that the length of the sidewalls 62 and 64 are equal.
- the ability to interconnect a plurality of modules 60 into a circular ring or other shapes, as described hereafter, as well to provide a stand-alone module 60 , all optimized for maximum interior volume of the module(s) 60 and a minimum exterior outer diameter footprint, results from dividing a circular arrangement of identical modules 60 arranged with the sidewalls 62 and 64 of each module 60 abutting the sidewalls 62 and 64 of adjacent modules 60 , as shown in FIG. 15 into a plurality of segments between eight and twenty four-segments, with sixteen identical volume segments shown by way of example. This results in the equilateral trapezoid shape for the module 60 shown in FIGS. 1-4 with the above specified angles.
- the length of the walls 62 , 64 , 66 , and 68 may be selected to provide a desired interior volume for each module 60 .
- the inner diameter of the ring of module 60 and the outer diameter of the ring of module 60 may be selected to provide a specific interior volume to each of the modules 60 to optimize or minimize the exterior diameter of the circular ring, while maximizing the interior dimensions of each module 60 .
- This enables different inner and outer diameter dimensions to be selected for the circular ring to provide a single circular ring, or concentric inner and outer rings of modules as shown in FIG. 24 and described hereafter.
- FIG. 3 depicts an example of the joinder of the wall sides 62 , 64 , 66 , and 68 together to form the edges 70 , 72 , 74 , and 76 .
- an exemplary interior wall arrangement which can be formed of wood, steel, or other building grade material to form any desirable room arrangement in the module 60 .
- the building module 60 may be provided with any number, shape and type of door or doors 82 and 84 on the first inner wall 66 and the second outer wall 68 as well as one or more types and sizes of the windows, all denoted by reference number 84 , on the first inner wall 66 and second outer wall 68 .
- the doors 82 and 84 can be any size or shape, including single panel doors, double panel doors, sliding doors, etc.
- the windows 84 can be of any size, shape, and type and can be provided in any number on either of the walls 66 and 68 .
- each of the walls 62 , 64 , 66 , and 68 form the joints 70 , 72 , 74 , and 76 between facing ends of each of the walls 62 , 64 , 66 , and 68 , such as the facing ends 90 and 92 of the walls 64 and 68 , and the facing ends 94 and 96 of the walls 64 and 66 , respectively.
- the joints or edges 70 , 72 , 74 , and 76 may be sealed, joined together by fasteners, such as bolts, steel rods, or by other construction techniques to seal and securely join the opposing ends of the walls 62 , 64 , 66 and 68 into a unitary, strong structure.
- one or a plurality of inward opening coffers or recesses are provided in one or all of the sidewalls 62 , 64 , 66 , and 68 of the module 60 .
- the coffers 100 extend from a foot or solid base formed as part of the sidewall and spaced from the bottom edge of each of the walls 62 , 64 , 66 , and 68 up to the top end of each wall or to a closed end spaced from the top edge or surface of each of the walls 62 , 64 , 66 , and 68 .
- Each coffer 100 may have perpendicular or inner tapering side edges extending from the inward surface 102 of each wall, such as wall 68 , to an inner surface 104 .
- the coffers 100 have a depth from the inward surface 102 of each of the walls, such as wall 68 . to the inner surface 104 , to provide an opening suitable for receiving heating and cooling ventilation equipment, wires, pipes, etc., without decreasing the overall strength of the walls.
- FIGS. 5 and 6 depict the construction of one aspect of the deck 80 .
- the deck 80 includes, in one aspect, a multi-T-shaped precast deck section 110 which have a solid upper surface 112 and a plurality of depending ribs or stems 113 .
- the deck sections 110 are supported on one or more beams 114 which are mounted in notches 116 formed in the walls 66 and 68 of the module 60 and extend completely between the walls 66 and 68 .
- the load bearing ends and optionally the outermost stem 113 of the outermost deck sections 110 are supported on ledges 117 formed in the sidewalls 62 , 64 , 66 and 68 .
- An upper portion 111 of the sidewalls 62 , 64 , 66 , or 68 closed off the open ends of the deck sections 110 between the stems 113 .
- FIG. 7 depicts a three-beam 114 aspect of the module 60 .
- Three precast or engineered beams 114 formed of concrete, concrete and rebar, etc., are mounted in the notches in the walls 66 and 68 and support a plurality of pre-cast deck sections, with four deck sections 110 a , 110 b , 110 c and 110 d shown by way of example only.
- a single beam 114 is depicted.
- the beam 114 also supports a plurality of deck sections, with four deck sections 110 a , 110 b , 110 c and 110 d shown by way of example only.
- FIG. 9 depicts another aspect having two beams 114 extending between and supported on the walls 62 and 68 .
- the pair of beams 114 support a plurality of deck sections, with four deck sections 110 a , 110 b , 110 c and 110 d shown by way of example only.
- the deck sections 110 a , 110 b , 110 c and 110 d extend only between the support beams 114 and are not supported on the sidewalls 64 and 68 as in the previous aspects of the deck 80 shown in FIGS. 7 and 8 .
- two additional deck sections 110 E and 110 F having a polygonal shape are supported between the support beams 114 and the walls 62 , 64 , 66 , and 68 .
- Individual deck sections 110 a , 110 b , 110 c etc may be sealed at facing side edges by suitable sealing material.
- the deck sections 110 a , 110 b , etc. can be mechanically joined to each other by means of studs, and/or other concrete fasteners.
- the walls 62 , 64 , 66 , and 68 are supported on a foundation 118 which can be formed in or on the ground 120 .
- the walls 62 , 64 , 66 , and 68 may be supported solely by their weight on the foundation 118 or by means of suitable masonry studs, fasteners, etc.
- a floor 122 which may be a poured concrete floor, is placed on the ground 120 within the foundation 118 and between the walls 62 , 64 , 66 and 68 .
- the walls 62 , 64 , 66 and 68 are cast in place in one or more sections on the building site, directly on the foundation 118 .
- the concrete floor 122 is poured after the walls 62 , 64 , 66 and 68 have solidified.
- the two adjacent, side-by-side, modules will have adjacent, substantially abutting sidewalls 62 and 64 .
- the two adjacent walls 62 and 64 of a pair of side-by-side arranged modules 60 may be replaced by a single common wall 220 as shown in FIGS. 10 and 11 .
- Spaced coffers 100 may be formed along each of the opposed surfaces 102 of the wall 222 facing inward into the adjacent pair of modules 60 .
- the coffers 100 may be provided in any spacing, although a two-foot spacing for commonality of attaching inner wall surfaces, or running pipes, wires, and other building components through the coffers 110 is better suited for construction.
- the coffers 100 may be lengthwise spaced from each other along the respective surfaces 102 of the adjacent modules 60 , or provided in aligned pairs as shown in FIG. 13 .
- the aligned coffers 100 form spaced pier sections 222 which extend the full height and the full thickness of each wall 220 .
- the aligned pair of coffers 100 form reduced thickness wall sections 224 which extend along the wall 220 along the length of the coffers 100 . In this manner, shown in FIG.
- each coffer 100 opens into hollow spaces between the support beams 114 and the T-shaped deck sections 110 or below the planking 126 , and an interior ceiling 135 , shown in phantom, which could be a drop ceiling formed of a wire supported frame and removable panels, for example. Any suitable framing structure, drywall or other panels or materials may also be employed to form the ceiling 135 .
- the interior space between the bottom of support beams 136 or the upper deck 80 , and the ceiling 135 forms a mechanical space for passage of pipes, conduits, wires, heating and ventilation conduits, communication cables, etc., between the walls 62 , 64 , 66 , and 68 .
- FIGS. 12 , 13 and 14 there is depicted another aspect of the building module 60 using a cast-in-place construction for the walls 62 , 64 , 66 and 68 , and a portion of the upper deck 80 .
- each of the walls 62 , 64 , 66 and 68 is cast-in-place on the foundation 118 , with or without the coffers 100 .
- Notches 130 are formed at a position spaced from an upper edge 132 of the at least opposed pair of walls 66 and 68 .
- the notches 130 receive one end of an engineered hollow core planking 136 which spans the space between the walls 66 and 68 .
- a topping surface 138 formed of concrete or other material is placed on top of the planking 138 to form the upper surface of the deck 80 as well as the bottom floor surface of any upper levels, as described hereafter.
- the planking 136 may be formed as structural concrete sections each noted by reference number 140 .
- the concrete sections 140 of planking 136 as shown in FIG. 14 , have a honeycomb configuration with a plurality of longitudinally extending bores 142 extending between opposed ends. Steel rods or studs may be inserted in smaller bores 144 disposed along the side edges of each of the sections 140 for interconnecting the side edges of two adjacent disposed deck sections 140 .
- the building module or prime unit 60 may be employed by itself as a single unit for human occupation as a home residence, office, or as a single storage unit. As shown in FIGS. 15-16 , the trapezoidal shape of the building module 60 facilitates arrangement of a plurality of substantially identical modules 60 into different configurations for use in many different applications.
- the modules 60 can form a circular ring.
- the sidewalls 62 and 64 of each module 60 abut adjacent sidewalls 62 and 64 of the adjacent module 60 and may be disposed in a side-by-side non-connected configuration or joined together by means of studs or other concrete fastening methods.
- the circular ring configuration shown in FIG. 15 forms an interior space 150 which may be used as a courtyard accessible from all of the modules 60 .
- FIGS. 18-20 depict a similar circular ring arrangement of modules 60 .
- modules 60 are arranged in pairs of abutted, side-by-side abutting modules 60 .
- a radially extending hallway 154 is formed between the pairs of side-by-side arranged modules 60 .
- the hallways 154 have sidewalls formed by the sidewalls 62 and 64 of two spaced modules 60 .
- a lintel 158 may be formed or attached to the upper end of the exterior surface of each of the outer walls 62 and 64 of each pair of modules 60 to support a deck 160 which covers the radially extending hallway 154 .
- the deck 160 which is thinner than the deck 80 used in each of the modules 60 , can be formed of a plurality of precast concrete sections or panels, or as hollow core planking.
- the decks 160 interconnect the plurality of modules 60 into a continuous circle or ring which adds continuity, rigidity, and strength to the ring arrangement of modules 60 .
- the hallways 154 facilitate easy access to the interior courtyard 150 as well as to any interior disposed doors of the individual modules 60 .
- FIGS. 21-23 depict a circular ring arrangement of a plurality of modules 60 in which hallways 154 are formed between the sidewalls 62 and 64 of each of the individual modules 60 .
- the same hallway deck 160 is employed to cover the radially extending hallways 154 extending between each module 60 .
- the circular arrangement of a plurality of side-by-side disposed modules 60 may also be provided in concentric rings with two or more concentric rings, such as the inner and outer rings 170 and 172 shown by example in FIGS. 24 - 26 - 28 .
- the inner diameter of the first inner ring 170 may be smaller than the inner diameter of the single ring shown in FIGS. 17-23 .
- the second outer ring 172 has a larger diameter from a center point of the courtyard or interior space 150 than the outer diameter of the single ring configuration shown in FIGS. 17-23 .
- each of the walls 62 , 64 , 66 and 68 forming each of the modules 60 used in the first inner ring 170 and the individual walls 176 , 178 , 180 , and 182 of each of the modules 174 used in the second outer ring 172 may be different than the dimensions of the walls 62 , 64 , 66 and 68 for the module 60 in the single ring configuration shown in FIG. 15 , for example.
- the modules 174 in the second outer ring 172 have a more elongated shape than the modules 60 in the first inner ring 170 .
- the modules 60 of the first inner ring 170 have a smaller length between the sidewalls 62 and 64 than that of the modules 60 shown in FIGS. 1-4 .
- the support beams 114 can extend between the sidewalls 62 and 64 rather than the inner and outer walls 66 and 68 .
- the deck sections 110 will then extend between the inner and outer walls 66 and 68 .
- the hollow core planking 136 is used to form the deck 140 , the hollow cores 142 will extend in a direction spanning the sidewalls 62 and 64 .
- a circumferentially extending and generally circular hallway or space 184 is disposed between the outer walls 68 of the modules 60 in the first inner ring 70 and the inner walls 180 of the modules 174 in the second outer ring 172 .
- the hallway 184 may be open between the decks 80 and 183 of the modules 60 and 174 or may be covered by a deck as described hereafter.
- Each of the rings 170 and 172 may be formed without any radially extending hallways 154 as shown in FIGS. 24 and 25 , or with hallways 154 alternating between each module 173 or 174 in FIGS. 31 and 32 , or between adjacent pairs of modules 173 and 174 as shown in FIGS. 27 and 28 .
- Each of the hallways 154 may be covered by a deck 160 as described above and as also shown in FIG. 23 .
- the circumferential hallway 184 formed between the first and second rings 170 and 172 of modules 173 and 174 may be covered by a plurality of deck sections 186 .
- the deck sections 186 may be similar to the radial hallway decks 160 shown in FIG. 29 and supported by lintels formed in or joined to and extending outward from the sidewalls 68 and 180 of the modules 60 and 174 in the first and second rings 170 and 172 .
- the individual modules 173 or 174 may also be stacked on top of each other to form multiple levels or stories, such as the three levels shown by way of example only in FIGS. 33 , 34 and 42 - 44 .
- the modules 60 can be arranged, for example, in a single circular ring configuration or modules 173 and 174 can be arranged in concentric inner and outer rings 170 and 172 .
- the modules 60 are arranged in stacked levels including a first level 190 , a second or middle layer 192 , and a third or upper layer 194 . As seen in FIGS.
- each level 190 , 192 , 194 are arranged in abutting pairs with radially extending hallways 154 disposed between the outermost sidewalls 62 and 64 of each pair of adjoining modules 60 .
- the individual modules 60 may have any configuration and type of doors and windows.
- the outer walls 68 of the modules 60 in the second and third levels 192 and 194 would not normally include any doors unless an exterior balcony or deck surface is provided or connected to each such module 60 .
- the modules 60 in the first or lower level 190 would be provided with openable closures or doors 84 in the form of hinged doors, sliding doors, French doors, etc., in the walls 66 , respectively, which open to ground level.
- doors would not be provided on the inner walls 66 of modules 60 in the second and third levels 192 and 194 60 unless a balcony or deck is provided.
- the modules 60 in the lower level 190 may have a door 82 on the inner wall 66 opening to the courtyard 150 .
- a door may be provided in the outer wall 182 of each module 174 and a second outer ring 172 opening to ground level.
- Doors may be provided on the inner walls 180 of each of the modules 60 in the second and/or third levels 192 and 194 and in the second outer walls 68 of the modules 60 in the second and/or third levels 192 and 194 of the first inner ring 170 as long as stairways and/or elevators are provided to allow access between the first or ground level and the second and third levels 192 and 194 .
- Stairways 210 are shown by way of example in FIGS. 34-37 as extending between the ground and along the inner wall 180 of one module 174 in the circular hallway 184 between the inner and outer rings 170 and 172 .
- the stairways 210 are supported at an upper end by the deck sections 186 covering the circular hallway 184 between the inner and outer rings 170 and 172 .
- the stairways 210 pass through an opening formed in the deck sections 186 and may be provided in a single location or at spaced circumferential locations as shown in FIGS. 34-37 .
- Other people moving devices such as escalators, can be used in addition to or as a replacement for one or more of the stairways.
- the stairways 210 or other people moving devices may be employed for a single ring, stacked arrangement of modules 60 , as shown in FIG. 34 , by employing a deck along the inner walls 66 , or alternately, along the outer walls 68 , of the second and third levels 192 and 194 .
- the trapezoidal shape of the modules 60 allows rearrangement of the modules 60 into many different configurations.
- a plurality of modules 60 may be arranged in a straight line configuration 230 by inverting the orientation of every other module 60 so that the shorter length inner wall 66 of one module 60 is disposed in line with the longer length second outer wall 68 of the adjacent module 60 .
- This alternating arrangement places the modules 60 in an adjacent disposed arrangement forming the straight line 230 arrangement.
- the arcuate or circular ring structures described previously may be provided in shorter length arcs with shorter length straight line sections to form any irregular shaped configuration 232 , which has a smoothly curved sinuous shape shown in FIG. 39 .
- the irregular shape 232 includes alternating arcuate and straight sections formed of a straight section 234 .
- an adjacent arcuate section 236 where the shorter length inner walls 66 are disposed at the same radial distance from a center point
- an adjacent longer length arcuate section 238 where the orientation of the shorter length inner walls 66 of the modules 60 are reversed from the walls 66 of the module 60 in the adjacent arcuate section 236 to form a reverse arc or curve
- another adjacent arcuate section 240 where the shorter length inner walls 66 are inverted from the shorter length walls 66 of the modules 60 in the arcuate section 238 to form another reverse arc or curve
- another a shorter length arcuate segment 242 having the shorter length inner walls 66 inverted from the walls 66 of the modules 60 in the arcuate section 240
- a straight end section 244 .
- each of the segments 234 , 236 , 238 , 240 , 242 , and 244 may be varied to suit available land surface area, grade conditions, or to provide a predetermined number of modules 60 in the complete structure 232 , etc.
- the alternating or opposed radially facing arcuate segments may also be arranged in a continuous closed, irregularly shaped configuration 250 as shown in FIG. 40 .
- the configuration 250 of adjacent modules 60 have a star shape formed of four radially outward extending nodes 252 , 254 , 256 and 258 which are interconnected by radially extending, inverted valleys 260 , 264 , 266 , etc.
- the modules 60 forming the nodes 252 , 254 , 256 , and 258 have the smaller diameter inner walls 66 arranged at a common radial distance facing inward into the shape 250 .
- the valley segments 260 , 264 , etc. have the smaller diameter walls 66 facing outward of the shape 250 .
- All of the segments 252 - 266 may be arranged in the same arcuate shape. Arcuate length and at the same radius, but with alternating radially extending orientations.
- the modules 60 may be arranged in an oval shape 270 formed of two straight segments 272 , 274 formed by alternately oriented modules 60 , as described previously and shown in FIG. 40 , which are joined at opposite ends by arcuate sections 276 and 278 .
- the oval shape 270 may also provided with three levels, including a first bottom-most level 280 , an intermediate level 282 and a top level 284 , with three levels 280 , 282 , and 284 being shown by way of example only in FIGS. 42-44 .
- a centrally located level access bay 288 formed of one or more sets of stairways and/or elevators are centrally arranged within the interior of the oval shape 270 of modules 60 .
- the access bay 288 may include one or more stairwells 290 , each including stairways and/or escalators extending between the various levels 280 , 282 , and 284 , and one or more elevators 292 , also opening to each of the levels 280 , 282 and 284 of the modules 60 .
- One access bay 288 may be separate from a second access bay 288 to space the stairwell 290 from the elevator 292 .
- each access bay 288 At the opening of each access bay 288 , whether it be from one of the stairwells 290 or from one of the elevators or escalators 292 , decking may be provided between the access bay 288 and the adjacent modules 60 . For example only, decking over the entire interior area 294 between the access bay 288 and the inner walls of the modules 60 in the oval shape 270 shown in FIG. 41 will allow access from doors in the inner walls 66 of each of the modules 60 to the access bay 288 .
- the decking 294 unifies the entire structure and increases the strength and rigidity of the building structure. In addition, the decking 294 increases the number of different uses of the building structure.
- the modules 60 are depicted as being arranged in one of the arcuate end segments 276 or 278 or in a portion of a single circular ring.
- the modules 60 are also illustrated by example only as being arranged along a common wall 220 as a module pair with hallways 154 extending radially between opposed sides of each module pair.
- Three levels 280 , 282 and 284 are depicted by example.
- One of the interior access bays 288 is depicted with only a single elevator 292 and a single stairway 290 for illustration only.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
Abstract
A concrete building structure is formed or a concrete unit having a closed trapezoid shape of four interconnected sidewalls. The unit is formed of interconnected pre cast concrete sections or cast-in-place sidewalls. A pair of units may be arranged in an abutting side-by-side pair configuration. A plurality of units may be arranged in various configurations, inner and outer concentric rings and in a multi level tiered arrangement. Hallways are formed between adjacent units and may be covered by a deck.
Description
- This application claims priority benefit to the Jun. 18, 2008 filing date of co-pending U.S. Provisional Patent Application Ser. No. 61/073,485, in the name of Hubert Gillespie for “Concrete Building Structures”, the contents of which are incorporated herein in its entirety.
- Concrete building structures are disclosed.
- In one aspect, the building structures in the form of a concrete unit having a closed trapezoid shape formed of four interconnected sidewalls. The concrete unit may be formed of a plurality of interconnected precast concrete sections or cast-in-place sidewalls
- A top deck may be supported in the sidewalls. The top deck may include at least one hollow core plank section with one or more support beams extending between the sidewalls. Substantially extending vertically extending coiffures may be formed in at least one of the sidewalls. The coiffures open to the interior of the concrete unit.
- A pair of units may be arranged in a side-by-side pair configuration. A single common wall may form abutting portions of the pair of units.
- The sidewalls of each unit may include a pair of equal length, non-parallel sidewalls interconnected by two substantially parallel sidewalls. The pair of first equal length non-parallel sidewalls may be formed by dividing a pair of inner and outer concentric circles into 16 substantially identical volume units, with two intervening, substantially parallel sidewalls.
- First interior angles are formed by one end of each of the pair of non parallel sidewalls and one of the parallel sidewalls. Second interior angles are formed between opposed ends of the non-parallel sidewalls at a first equal angle and other parallel sidewalls at a second equal angle.
- A plurality of side-by-side abutting units may be arranged in a continuous unitary structure in the form of a continuous circular ring and a regular shape having opposed, spaced ends, a closed oval configuration in a substantially linearly line having opposed ends.
- At least one hall way having at least one open end may be interposed between two facing sidewalls of two adjacent units. An upper deck may be disposed over and closing the hallway. A lintel may extend from each space sidewall the two adjacent units into the hallway to support the upper deck.
- In another aspect, a plurality of units may be arranged in at least two stacked or tiered levels. At least one of a stairway or an elevator may be disposed between the at least two stacked levels. Decking may extend between the inner walls of a plurality of units forming a closed configuration.
- In another aspect, a side-by-side arranged units may be arranged in two concentric circles formed of a first inner ring and a radially outward spaced second ring. A circular deck may be mounted over a space formed between the first and second rings of units. A plurality of stacked levels of units may be formed in at least one or both of the first and second rings. A stairway or an elevator may be disposed between at least two levels of units. Decking may extend between the inner walls of the plurality of units forming a closed unit configuration.
- The various features, advantages and other uses of the concrete building structures described hereafter will become apparent by referring the following detailed description and drawing in which:
-
FIG. 1 is a front perspective view of one aspect of a single building module; -
FIG. 2 is a rear perspective view of the single building module shown inFIG. 1 ; -
FIG. 3 is a plan elevational view of the single building module shown inFIG. 1 , with the deck removed; -
FIG. 4 is a horizontal cross sectional view through the right rear corner of the single building module shown inFIG. 3 ; -
FIG. 5 is a lateral cross-sectional view of the single building module generally taken through the non-parallel walls of the single building module shown inFIG. 1-3 ; -
FIG. 6 is a transverse cross sectional view generally taken through the parallel walls of the single building module shown inFIG. 1-3 ; -
FIG. 7 is a plan elevational view of a three beam deck support aspect of the single building module shown inFIGS. 1-3 ; -
FIG. 8 is a plan elevational view of another aspect of the single building module having a single deck support beam; -
FIG. 9 is a plan elevational view of another aspect of the single building module having a two beam deck support; -
FIG. 10 is a plan elevational view, with the upper decks removed, of a two side by side co-joined building module configuration; -
FIG. 11 is an enlarged plan view of the circledarea 11 inFIG. 10 . -
FIG. 12 is a transverse cross sectional view of another aspect of the building module using a cast in-place wall construction; -
FIG. 13 is a plan elevational view showing another aspect of a deck construction used in the building module shown inFIG. 12 ; -
FIG. 14 is a cross-sectional view of one of the deck planking generally along line 14-14 inFIG. 13 ; -
FIG. 15 is a plan elevational view of one aspect of a plurality of building modules arranged in side by side circular ring configuration; -
FIG. 16 is an enlarged plan elevational view of the circledarea 16 inFIG. 15 ; -
FIG. 17 is a cross sectional view generally taken along line 17-17 inFIG. 15 ; -
FIG. 18 is a plan elevational view of another aspect of a circular ring configuration of building modules; -
FIG. 19 is an enlarged plan elevational view of the circledarea 19 inFIG. 18 ; -
FIG. 20 is a cross sectional view generally taken along line 20-20 inFIG. 18 ; -
FIG. 21 is a plan elevational view of another aspect of a circular ring configuration of building modules; -
FIG. 22 is an enlarged plan elevational view of the circledarea 22 inFIG. 21 ; -
FIG. 23 is a cross sectional view generally taken along lines 23-23 inFIG. 21 ; -
FIG. 24 is a plan elevational view of another aspect of the building modules in which the building modules are arranged in concentric rings; -
FIG. 25 is an enlarged, partial, plan elevational view of the circledarea 25 inFIG. 24 ; -
FIG. 26 is a cross-sectional view generally taken along line 26-26 inFIG. 25 ; -
FIG. 27 is a plan elevational view of another aspect of the double ringed configuration of building modules; -
FIG. 28 is an enlarged, partial, plan elevation view of the area within thecircle 28 inFIG. 27 ; -
FIG. 29 is a cross sectional view generally taken along line 29-29 inFIG. 28 ; -
FIG. 30 is a cross sectional view generally taken long line 30-30 inFIG. 28 ; -
FIG. 31 is a plan elevational view of another aspect of the double ring configuration of building modules; -
FIG. 32 is an enlarged, partial, plan elevational view of the area within thecircle 32 inFIG. 31 ; -
FIG. 33 is a side elevational view of a multi-tier, ring arrangement of building modules; -
FIG. 34 is a side elevation view of the inner side of the outer ring of multi-tier arrangement of modules shown inFIG. 33 ; -
FIG. 35 is a plan elevational view of the building modules shown inFIGS. 33 and 34 ; -
FIG. 36 is an enlarged, plan elevational view of the circledarea 36 inFIG. 35 ; -
FIG. 37 is a cross-sectional view generally taken along line 37-37 inFIG. 36 ; -
FIG. 38 is a plan elevational view of another configuration of side wall to side wall joined building modules; -
FIG. 39 is a plan elevational view of yet another arrangement of side wall to side wall joined building modules; -
FIG. 40 is a plan elevational view of another arrangement of side wall to side wall joined building modules; -
FIG. 41 is a plan elevational view of another aspect of side wall to side wall joined building modules arranged in an oval shape; -
FIG. 42 is a side elevational view of the oval configuration of building modules shown inFIG. 41 , but in multi-tier configuration; -
FIG. 43 is a partial side elevational view of the interior wall structure of the multi-tier configured building modules shown inFIG. 42 ; and -
FIG. 44 is a partially broken away, lateral, cross-sectional view of the multi-tiered building module configuration shown inFIGS. 42 and 43 . -
FIGS. 1-44 of the drawings depict various aspects of a concrete building structure made of pre-cast and/or cast-in-place concrete sections or cast as a one piece unitary structure which can be used to create uniquely configurable building structures formed of a single building module or unit, sometimes hereafter referred to as a “prime unit,” and for entire building structures including one or multiple levels each having multiple building modules. - It will be understood that the use of the term “concrete” hereafter to form the various building structures will mean any type of commercially available concrete, including any type of concrete composition suitable for building structures, including building structures formed of concrete, or concrete and other non-concrete materials, such as bricks, wood, composites, etc., or concrete with reinforced steel or rebar, or concrete sections, panels or beams which are formed of cast-in-place concrete with or without reinforced steel using pre-made forms, as well as precast concrete sections of any width and shape which are precast to the desired shape, thickness, and strength and then assembled to form the walls, deck, and roof of a building structure, and structured or engineered concrete sections which are precast into the desired shape and also assembled into the complete structure, and combinations of precast concrete sections, cast-in-place concrete sections and structural or engineered sections.
- It will also be understood that the following description of a single building module or unit as having a trapezoidal shape will be understood to also cover building structures having trapezoid-like shapes with a closed periphery and four major sides.
- “Trapezoidal” as used herein will be understood to mean a quadrilateral shape having two parallel and two non-parallel sides, with a first pair of equal interior angles and a second pair of different equal interior angles as well as shapes having a substantially quadrilateral-like appearance with four sides arranged in a closed shape, where the sides are linear, curved or multi-faceted.
- The terms “inner, outer, side and top” will be understood to have their normal meaning in the orientation of a building structure and/or building module as described herein. In general, each building module will be described as having a first pair of non-parallel sidewalls and a second pair of parallel sidewalls, all four sidewalls interconnected at adjacent ends to form a closed building module or unit.
- Referring now to
FIGS. 1-3 , there is depicted a single building module orunit 60, sometimes referred to hereafter as a “prime unit.” Themodule 60 has a plane configuration formed of a first pair ofnon-parallel sidewalls inner wall 66 and a secondouter wall 68. - Although the
walls parallel walls - The
sidewalls - The
walls exterior edges module 60. Adeck 80 is placed over the upper edges of each of thewalls module 60. - The
module 60 is depicted in the drawing as having a trapezoidal shape, by way of example. The interior angles between the ends of the firstinner wall 66 and theadjacent sidewalls outer wall 68 and theadjacent sidewalls walls - By way of example, the trapezoidal shape of the
module 60 shown inFIGS. 1-4 is a so-called equilateral trapezoid in that the length of thesidewalls - The ability to interconnect a plurality of
modules 60 into a circular ring or other shapes, as described hereafter, as well to provide a stand-alone module 60, all optimized for maximum interior volume of the module(s) 60 and a minimum exterior outer diameter footprint, results from dividing a circular arrangement ofidentical modules 60 arranged with thesidewalls module 60 abutting thesidewalls adjacent modules 60, as shown inFIG. 15 into a plurality of segments between eight and twenty four-segments, with sixteen identical volume segments shown by way of example. This results in the equilateral trapezoid shape for themodule 60 shown inFIGS. 1-4 with the above specified angles. - At the same time, the length of the
walls module 60. In this manner, the inner diameter of the ring ofmodule 60 and the outer diameter of the ring ofmodule 60 may be selected to provide a specific interior volume to each of themodules 60 to optimize or minimize the exterior diameter of the circular ring, while maximizing the interior dimensions of eachmodule 60. This enables different inner and outer diameter dimensions to be selected for the circular ring to provide a single circular ring, or concentric inner and outer rings of modules as shown inFIG. 24 and described hereafter. - In all of the inner and outer diameter configurations of the
module 60 arranged in circular rings or in adjacent, substantially identical, but spaced shapes formed of a plurality ofadjacent module 60, interior angles between the sidewalls and the inner andouter walls module 60 which is open enough to facilitate full use of the interior corner space without being too small or tight an angle to prevent usage for furniture, etc. - The cross sectional view of
FIG. 3 depicts an example of the joinder of the wall sides 62, 64, 66, and 68 together to form theedges FIG. 3 is an exemplary interior wall arrangement which can be formed of wood, steel, or other building grade material to form any desirable room arrangement in themodule 60. - As shown in
FIGS. 1-3 , thebuilding module 60 may be provided with any number, shape and type of door ordoors inner wall 66 and the secondouter wall 68 as well as one or more types and sizes of the windows, all denoted byreference number 84, on the firstinner wall 66 and secondouter wall 68. - The
doors windows 84 can be of any size, shape, and type and can be provided in any number on either of thewalls - As shown in
FIG. 4 , the vertically extending ends of each of thewalls joints walls walls walls edges walls - As also seen in
FIG. 4 , one or a plurality of inward opening coffers or recesses, all denoted byreference number 100, are provided in one or all of thesidewalls module 60. Thecoffers 100 extend from a foot or solid base formed as part of the sidewall and spaced from the bottom edge of each of thewalls walls coffer 100 may have perpendicular or inner tapering side edges extending from theinward surface 102 of each wall, such aswall 68, to aninner surface 104. Thecoffers 100 have a depth from theinward surface 102 of each of the walls, such aswall 68. to theinner surface 104, to provide an opening suitable for receiving heating and cooling ventilation equipment, wires, pipes, etc., without decreasing the overall strength of the walls. -
FIGS. 5 and 6 depict the construction of one aspect of thedeck 80. As shown inFIG. 5 , which is a lateral cross sectional view of themodule 60 taken non-parallel sidewalls 62 and 64, andFIG. 6 which is a transverse cross section through theparallel walls deck 80 includes, in one aspect, a multi-T-shapedprecast deck section 110 which have a solidupper surface 112 and a plurality of depending ribs or stems 113. Thedeck sections 110 are supported on one ormore beams 114 which are mounted innotches 116 formed in thewalls module 60 and extend completely between thewalls - The load bearing ends and optionally the
outermost stem 113 of theoutermost deck sections 110 are supported onledges 117 formed in thesidewalls upper portion 111 of thesidewalls deck sections 110 between the stems 113. -
FIG. 7 depicts a three-beam 114 aspect of themodule 60. Three precast or engineeredbeams 114 formed of concrete, concrete and rebar, etc., are mounted in the notches in thewalls deck sections - In another aspect shown in
FIG. 8 , asingle beam 114 is depicted. Thebeam 114 also supports a plurality of deck sections, with fourdeck sections -
FIG. 9 depicts another aspect having twobeams 114 extending between and supported on thewalls beams 114 support a plurality of deck sections, with fourdeck sections deck sections sidewalls deck 80 shown inFIGS. 7 and 8 . In this aspect, two additional deck sections 110E and 110F having a polygonal shape are supported between the support beams 114 and thewalls -
Individual deck sections deck sections - Referring back to
FIGS. 5 and 6 , thewalls only wall 64 being shown in cross section inFIG. 5 and only wall 68 being shown inFIG. 6 , are supported on afoundation 118 which can be formed in or on theground 120. Thewalls foundation 118 or by means of suitable masonry studs, fasteners, etc. - A
floor 122, which may be a poured concrete floor, is placed on theground 120 within thefoundation 118 and between thewalls - In the aspect of the
module 60 as shown inFIGS. 10 and 11 , thewalls foundation 118. Theconcrete floor 122 is poured after thewalls - In any of the arrangements of two side-by-
side modules 60 in a single ring or other shaped configurations, inner and outer rings, or stacked, multi-level arrangements, the two adjacent, side-by-side, modules will have adjacent, substantially abuttingsidewalls modules 60, the twoadjacent walls modules 60 may be replaced by a singlecommon wall 220 as shown inFIGS. 10 and 11 . Spacedcoffers 100 may be formed along each of theopposed surfaces 102 of thewall 222 facing inward into the adjacent pair ofmodules 60. Thecoffers 100 may be provided in any spacing, although a two-foot spacing for commonality of attaching inner wall surfaces, or running pipes, wires, and other building components through thecoffers 110 is better suited for construction. - The
coffers 100 may be lengthwise spaced from each other along therespective surfaces 102 of theadjacent modules 60, or provided in aligned pairs as shown inFIG. 13 . In this construction, the alignedcoffers 100 form spacedpier sections 222 which extend the full height and the full thickness of eachwall 220. The aligned pair ofcoffers 100 form reducedthickness wall sections 224 which extend along thewall 220 along the length of thecoffers 100. In this manner, shown inFIG. 12 , the upper end of eachcoffer 100 opens into hollow spaces between the support beams 114 and the T-shapeddeck sections 110 or below theplanking 126, and aninterior ceiling 135, shown in phantom, which could be a drop ceiling formed of a wire supported frame and removable panels, for example. Any suitable framing structure, drywall or other panels or materials may also be employed to form theceiling 135. The interior space between the bottom ofsupport beams 136 or theupper deck 80, and theceiling 135 forms a mechanical space for passage of pipes, conduits, wires, heating and ventilation conduits, communication cables, etc., between thewalls - Referring now to
FIGS. 12 , 13 and 14, there is depicted another aspect of thebuilding module 60 using a cast-in-place construction for thewalls upper deck 80. In this aspect, each of thewalls only wall 62 being shown by example inFIG. 12 is cast-in-place on thefoundation 118, with or without thecoffers 100. -
Notches 130 are formed at a position spaced from anupper edge 132 of the at least opposed pair ofwalls notches 130 receive one end of an engineeredhollow core planking 136 which spans the space between thewalls surface 138 formed of concrete or other material is placed on top of theplanking 138 to form the upper surface of thedeck 80 as well as the bottom floor surface of any upper levels, as described hereafter. - As shown in
FIGS. 13 and 14 , theplanking 136 may be formed as structural concrete sections each noted byreference number 140. Theconcrete sections 140 ofplanking 136, as shown inFIG. 14 , have a honeycomb configuration with a plurality of longitudinally extendingbores 142 extending between opposed ends. Steel rods or studs may be inserted insmaller bores 144 disposed along the side edges of each of thesections 140 for interconnecting the side edges of two adjacentdisposed deck sections 140. - The building module or
prime unit 60 may be employed by itself as a single unit for human occupation as a home residence, office, or as a single storage unit. As shown inFIGS. 15-16 , the trapezoidal shape of thebuilding module 60 facilitates arrangement of a plurality of substantiallyidentical modules 60 into different configurations for use in many different applications. - As shown in
FIGS. 15-17 when a plurality ofmodules 60 are arranged in a side-by-side configuration with the shorter lengthinner wall 66 disposed inward most, themodules 60 can form a circular ring. Thesidewalls module 60 abutadjacent sidewalls adjacent module 60 and may be disposed in a side-by-side non-connected configuration or joined together by means of studs or other concrete fastening methods. The circular ring configuration shown inFIG. 15 forms aninterior space 150 which may be used as a courtyard accessible from all of themodules 60. -
FIGS. 18-20 depict a similar circular ring arrangement ofmodules 60. In this aspect, however,modules 60 are arranged in pairs of abutted, side-by-side abutting modules 60. Aradially extending hallway 154 is formed between the pairs of side-by-side arrangedmodules 60. Thehallways 154 have sidewalls formed by thesidewalls modules 60. Alintel 158 may be formed or attached to the upper end of the exterior surface of each of theouter walls modules 60 to support adeck 160 which covers theradially extending hallway 154. - The
deck 160, which is thinner than thedeck 80 used in each of themodules 60, can be formed of a plurality of precast concrete sections or panels, or as hollow core planking. In addition, thedecks 160 interconnect the plurality ofmodules 60 into a continuous circle or ring which adds continuity, rigidity, and strength to the ring arrangement ofmodules 60. - The
hallways 154 facilitate easy access to theinterior courtyard 150 as well as to any interior disposed doors of theindividual modules 60. -
FIGS. 21-23 depict a circular ring arrangement of a plurality ofmodules 60 in whichhallways 154 are formed between the sidewalls 62 and 64 of each of theindividual modules 60. Thesame hallway deck 160 is employed to cover theradially extending hallways 154 extending between eachmodule 60. - The circular arrangement of a plurality of side-by-side disposed
modules 60 may also be provided in concentric rings with two or more concentric rings, such as the inner andouter rings inner ring 170 may be smaller than the inner diameter of the single ring shown inFIGS. 17-23 . The secondouter ring 172 has a larger diameter from a center point of the courtyard orinterior space 150 than the outer diameter of the single ring configuration shown inFIGS. 17-23 . - The interior volume and the length of each of the
walls modules 60 used in the firstinner ring 170 and theindividual walls modules 174 used in the secondouter ring 172 may be different than the dimensions of thewalls module 60 in the single ring configuration shown inFIG. 15 , for example. As shown inFIGS. 25 and 26 , themodules 174 in the secondouter ring 172 have a more elongated shape than themodules 60 in the firstinner ring 170. - As shown in
FIGS. 24 and 25 , themodules 60 of the firstinner ring 170 have a smaller length between the sidewalls 62 and 64 than that of themodules 60 shown inFIGS. 1-4 . In this aspect, the support beams 114 can extend between the sidewalls 62 and 64 rather than the inner andouter walls deck sections 110 will then extend between the inner andouter walls hollow core planking 136 is used to form thedeck 140, thehollow cores 142 will extend in a direction spanning thesidewalls - A circumferentially extending and generally circular hallway or
space 184 is disposed between theouter walls 68 of themodules 60 in the firstinner ring 70 and theinner walls 180 of themodules 174 in the secondouter ring 172. Thehallway 184 may be open between thedecks modules - Each of the
rings radially extending hallways 154 as shown inFIGS. 24 and 25 , or withhallways 154 alternating between eachmodule FIGS. 31 and 32 , or between adjacent pairs ofmodules FIGS. 27 and 28 . Each of thehallways 154 may be covered by adeck 160 as described above and as also shown inFIG. 23 . - Referring to
FIG. 30 , thecircumferential hallway 184 formed between the first andsecond rings modules deck sections 186. Thedeck sections 186 may be similar to theradial hallway decks 160 shown inFIG. 29 and supported by lintels formed in or joined to and extending outward from thesidewalls modules second rings - The
individual modules FIGS. 33 , 34 and 42-44. In this configuration, themodules 60 can be arranged, for example, in a single circular ring configuration ormodules outer rings modules 60 are arranged in stacked levels including afirst level 190, a second ormiddle layer 192, and a third orupper layer 194. As seen inFIGS. 35-37 , themodules 60 in eachlevel hallways 154 disposed between theoutermost sidewalls modules 60. This is by way of example only, as the ring configuration of eachlevel modules hallways 154 or even without hallways. - The
individual modules 60 may have any configuration and type of doors and windows. Theouter walls 68 of themodules 60 in the second andthird levels such module 60. - The
modules 60 in the first orlower level 190 would be provided with openable closures ordoors 84 in the form of hinged doors, sliding doors, French doors, etc., in thewalls 66, respectively, which open to ground level. - Likewise, doors would not be provided on the
inner walls 66 ofmodules 60 in the second andthird levels modules 60 in thelower level 190 may have adoor 82 on theinner wall 66 opening to thecourtyard 150. Likewise, a door may be provided in theouter wall 182 of eachmodule 174 and a secondouter ring 172 opening to ground level. - Doors may be provided on the
inner walls 180 of each of themodules 60 in the second and/orthird levels outer walls 68 of themodules 60 in the second and/orthird levels inner ring 170 as long as stairways and/or elevators are provided to allow access between the first or ground level and the second andthird levels -
Stairways 210 are shown by way of example inFIGS. 34-37 as extending between the ground and along theinner wall 180 of onemodule 174 in thecircular hallway 184 between the inner andouter rings stairways 210 are supported at an upper end by thedeck sections 186 covering thecircular hallway 184 between the inner andouter rings stairways 210 pass through an opening formed in thedeck sections 186 and may be provided in a single location or at spaced circumferential locations as shown inFIGS. 34-37 . Other people moving devices, such as escalators, can be used in addition to or as a replacement for one or more of the stairways. - The
stairways 210 or other people moving devices may be employed for a single ring, stacked arrangement ofmodules 60, as shown inFIG. 34 , by employing a deck along theinner walls 66, or alternately, along theouter walls 68, of the second andthird levels - As mentioned previously, the trapezoidal shape of the
modules 60 allows rearrangement of themodules 60 into many different configurations. As shown inFIG. 38 a plurality ofmodules 60 may be arranged in astraight line configuration 230 by inverting the orientation of everyother module 60 so that the shorter lengthinner wall 66 of onemodule 60 is disposed in line with the longer length secondouter wall 68 of theadjacent module 60. This alternating arrangement places themodules 60 in an adjacent disposed arrangement forming thestraight line 230 arrangement. - The arcuate or circular ring structures described previously may be provided in shorter length arcs with shorter length straight line sections to form any irregular shaped
configuration 232, which has a smoothly curved sinuous shape shown inFIG. 39 . Theirregular shape 232 includes alternating arcuate and straight sections formed of astraight section 234. Starting from a left end, an adjacentarcuate section 236 where the shorter lengthinner walls 66 are disposed at the same radial distance from a center point, an adjacent longer lengtharcuate section 238 where the orientation of the shorter lengthinner walls 66 of themodules 60 are reversed from thewalls 66 of themodule 60 in the adjacentarcuate section 236 to form a reverse arc or curve, another adjacentarcuate section 240 where the shorter lengthinner walls 66 are inverted from theshorter length walls 66 of themodules 60 in thearcuate section 238 to form another reverse arc or curve, another a shorter lengtharcuate segment 242 having the shorter lengthinner walls 66 inverted from thewalls 66 of themodules 60 in thearcuate section 240, finally, astraight end section 244. It will be understood that the number of modules forming each of thesegments modules 60 in thecomplete structure 232, etc. - The alternating or opposed radially facing arcuate segments may also be arranged in a continuous closed, irregularly shaped
configuration 250 as shown inFIG. 40 . Theconfiguration 250 ofadjacent modules 60 have a star shape formed of four radially outward extendingnodes valleys modules 60 forming thenodes inner walls 66 arranged at a common radial distance facing inward into theshape 250. Conversely, thevalley segments smaller diameter walls 66 facing outward of theshape 250. All of the segments 252-266 may be arranged in the same arcuate shape. Arcuate length and at the same radius, but with alternating radially extending orientations. - As shown in
FIGS. 41-44 , themodules 60 may be arranged in anoval shape 270 formed of twostraight segments modules 60, as described previously and shown inFIG. 40 , which are joined at opposite ends byarcuate sections oval shape 270 may also provided with three levels, including a firstbottom-most level 280, anintermediate level 282 and atop level 284, with threelevels FIGS. 42-44 . A centrally locatedlevel access bay 288 formed of one or more sets of stairways and/or elevators are centrally arranged within the interior of theoval shape 270 ofmodules 60. Theaccess bay 288 may include one ormore stairwells 290, each including stairways and/or escalators extending between thevarious levels more elevators 292, also opening to each of thelevels modules 60. Oneaccess bay 288 may be separate from asecond access bay 288 to space thestairwell 290 from theelevator 292. - At the opening of each
access bay 288, whether it be from one of thestairwells 290 or from one of the elevators orescalators 292, decking may be provided between theaccess bay 288 and theadjacent modules 60. For example only, decking over the entireinterior area 294 between theaccess bay 288 and the inner walls of themodules 60 in theoval shape 270 shown inFIG. 41 will allow access from doors in theinner walls 66 of each of themodules 60 to theaccess bay 288. - The
decking 294 unifies the entire structure and increases the strength and rigidity of the building structure. In addition, thedecking 294 increases the number of different uses of the building structure. - As shown in detail in
FIG. 44 , themodules 60 are depicted as being arranged in one of thearcuate end segments modules 60 are also illustrated by example only as being arranged along acommon wall 220 as a module pair withhallways 154 extending radially between opposed sides of each module pair. Threelevels interior access bays 288 is depicted with only asingle elevator 292 and asingle stairway 290 for illustration only.
Claims (30)
1. A building structure comprising:
a concrete unit having a closed trapezoid shape formed of four interconnected sidewalls.
2. The building structure of claim 1 further comprising:
a top deck supported on the sidewalls.
3. The building structure of claim 2 wherein the top deck comprises:
at least one hollow core plank section.
4. The building structure of claim 2 further comprising:
at least one support beam extending between at least two of the sidewalls.
5. The top deck section of claim 4 further comprising:
at least one deck section supported by the at least one support beam.
6. The building structure of claim 1 wherein the unit comprises:
a plurality of interconnected precast concrete sections.
7. The building structure of claim 1 wherein the unit comprises:
cast-in-place sidewalls.
8. The building structure of claim 1 further comprising:
substantially vertically extending coffers formed in at least one of the sidewalls and opening to an interior of the unit.
9. The building structure of claim 1 further comprising:
a pair of units arranged in a side-by-side pair configuration.
10. The building structure of claim 9 wherein:
a single common wall forms abutting portions of the pair of units.
11. The building structure of claim 10 further comprising:
at least one substantially vertically extending open sided coffer formed in the common wall and facing inward into the interior of each of the pair of units.
12. The building structure of claim 1 wherein the sidewalls of the unit comprises:
a pair of first equal-length non-parallel sidewalls formed by dividing a pair of inner and outer concentric circles into sixteen substantially identical volume units, and two intervening, substantially parallel sidewalls.
13. The building structure of claim 1 wherein the sidewalls of the unit further comprise:
at least two equal length, non-parallel sidewalls interconnected by two substantially parallel sidewalls.
14. The building structure of claim 13 further comprising:
first interior angles formed by one end of each of the pair of non-parallel sidewalls and one of the parallel sidewalls at an equal first angle; and
second interior angles between opposed ends of the pair of non-parallel sidewalls and the other parallel sidewalls at a second equal angle.
15. The building structure of claim 1 further comprising
a plurality of side-by-side abutting units arranged in a continuous unitary structure.
16. The building structure of claim 15 wherein:
the plurality of units are arranged in a continuous circular ring.
17. The building structure of claim 15 wherein:
the plurality of units are arranged in an irregular shape having opposed, spaced ends.
18. The building structure of claim 15 wherein:
the plurality of units are arranged in a closed oval configuration.
19. The building structure of claim 15 wherein:
the plurality of units are arranged in a substantially linear line having opposed ends.
20. The building structure of claim 15 further comprising:
at least one hallway having at least one open end interposed between two facing sidewalls of two adjacent units.
21. The building structure of claim 20 further comprising:
an upper deck disposed over and closing an upper end of the hallway.
22. The building structure of claim 21 further comprising:
a lintel extending from each spaced sidewall of the two adjacent units into the hallway and supporting the upper deck.
23. The building structure of claim 15 further comprising:
the plurality of units arranged in at least two stacked levels.
24. The building structure of claim 23 further comprising:
at least one of a stairway and an elevator disposed between the at least two stacked levels.
25. The building structure of claim 23 further comprising:
decking extending between inner walls of a plurality of units forming a closed configuration.
26. The building structure of claim 15 wherein:
the plurality of side-by-side units are arranged in two concentric rings formed of a first inner ring and a radially outward spaced second ring.
27. The building structure of claim 26 further comprising:
a circular deck disposed over a space formed between the first and second rings.
28. The building structure of claim 26 further comprising:
a plurality of stacked levels of units formed in a concentric first and second rings.
29. The building structure of claim 28 further comprising:
at least one of a stairway and an elevator disposed between at least two levels.
30. The building structure of claim 28 further comprising:
decking extending between inner walls of a plurality of units forming a closed configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/486,010 US20090313924A1 (en) | 2008-06-18 | 2009-06-17 | Concrete building structures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7348508P | 2008-06-18 | 2008-06-18 | |
US12/486,010 US20090313924A1 (en) | 2008-06-18 | 2009-06-17 | Concrete building structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090313924A1 true US20090313924A1 (en) | 2009-12-24 |
Family
ID=41429823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/486,010 Abandoned US20090313924A1 (en) | 2008-06-18 | 2009-06-17 | Concrete building structures |
Country Status (1)
Country | Link |
---|---|
US (1) | US20090313924A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2491144A (en) * | 2011-05-25 | 2012-11-28 | Dainius Simkus | Precast modular building unit |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3724142A (en) * | 1971-01-06 | 1973-04-03 | C Worthington | Modular building structure |
US3798858A (en) * | 1972-03-17 | 1974-03-26 | Advance Concrete Asphalt Co | Dwelling construction |
US4018021A (en) * | 1974-09-13 | 1977-04-19 | Jimmy Dow | Building and method of making same |
US4037371A (en) * | 1974-08-12 | 1977-07-26 | Lande De Calan Yves Jean Olivi | Construction of buildings by assembling prefabricated elements |
US4127971A (en) * | 1977-05-16 | 1978-12-05 | Rojo Jr Agustin | Building constructed of precast L-shaped concrete units |
US4228623A (en) * | 1978-03-03 | 1980-10-21 | Ennio Menosso | Prefabricated self-supporting modular room elements |
US4462191A (en) * | 1982-02-25 | 1984-07-31 | Poirier Jacques B | Prefabricated dwelling of the modular type |
US4723382A (en) * | 1986-08-15 | 1988-02-09 | Haresh Lalvani | Building structures based on polygonal members and icosahedral |
US4759160A (en) * | 1986-04-22 | 1988-07-26 | Versacon Building Systems, Inc. | Prefabricated concrete buildings with monolithic roof, wall, and floor members |
US5081805A (en) * | 1989-08-23 | 1992-01-21 | Jazzar M Omar A | Precast concrete building units and method of manufacture thereof |
US5317854A (en) * | 1991-11-29 | 1994-06-07 | Obayashi Corporation | Precast concrete panel for a composite floor |
US5493836A (en) * | 1993-12-20 | 1996-02-27 | Lopez-Munoz; Humberto | Building system based upon preformed modules |
US5623790A (en) * | 1987-08-24 | 1997-04-29 | Lalvani; Haresh | Building systems with non-regular polyhedra based on subdivisions of zonohedra |
US5761862A (en) * | 1995-10-03 | 1998-06-09 | Hendershot; Gary L. | Precast concrete construction and construction method |
US5771639A (en) * | 1993-04-22 | 1998-06-30 | Wood; Marcus Bennett | Emergency shelter |
US5806273A (en) * | 1906-10-31 | 1998-09-15 | Sci Sitecast International, Inc. | Multi-storey concrete construction system |
US5845441A (en) * | 1996-07-01 | 1998-12-08 | Swartz; Paul D. | Premanufactured portable concrete house |
US5873206A (en) * | 1995-03-06 | 1999-02-23 | Polyceramics, Inc. | Interlocking building block |
US5884437A (en) * | 1996-12-24 | 1999-03-23 | Olsen; Eric R. | Non rectangular building modules |
US5987827A (en) * | 1996-05-29 | 1999-11-23 | Lord; Ray | Concrete building construction and method |
US6173538B1 (en) * | 1997-10-30 | 2001-01-16 | Gregg R. Fleishman | Modular construction system |
US6230465B1 (en) * | 1998-08-04 | 2001-05-15 | Oldcastle Precast, Inc. | Precast concrete structural modules |
US6233891B1 (en) * | 1999-03-11 | 2001-05-22 | Keith A. De Cosse | Prefabricated building system |
US6237297B1 (en) * | 1997-12-30 | 2001-05-29 | Ibi, Inc. | Modular structural members for constructing buildings, and buildings constructed of such members |
US6282849B1 (en) * | 1998-08-04 | 2001-09-04 | Florian Tuczek | Structural system |
US6301851B1 (en) * | 1998-07-29 | 2001-10-16 | Hideo Matsubara | Apparatus and method for forming precast modular units and method for constructing precast modular structure |
US20020005021A1 (en) * | 1995-09-08 | 2002-01-17 | Tian Khoo | Pre-cast concrete panels for construction of a building |
US6463702B1 (en) * | 1999-11-01 | 2002-10-15 | Swa Holding Company, Inc. | Concrete safe room |
US6829870B2 (en) * | 2002-07-25 | 2004-12-14 | Hc Precast System Sdn. Bhd | Building methods |
US6907709B2 (en) * | 2002-02-16 | 2005-06-21 | Randall Byrd | Concrete construction material and method of use |
US6955016B1 (en) * | 1997-06-26 | 2005-10-18 | Lefrak Organization, Inc. | Structure and method for constructing building framework and concrete wall |
US7017316B2 (en) * | 1998-06-09 | 2006-03-28 | Brentmuir Developments (1993) Limited | Concrete panel construction system |
US7147197B2 (en) * | 2002-10-09 | 2006-12-12 | Michael E. Dalton | Concrete home building |
US7204060B2 (en) * | 2000-02-18 | 2007-04-17 | Hunt Christopher M | System for manufacturing structures of cementitious materials |
US7216462B2 (en) * | 2004-10-26 | 2007-05-15 | Fabcon, Inc. | Insulated concrete panel billets |
US20080010943A1 (en) * | 2006-07-13 | 2008-01-17 | Marschke Carl R | Hollow Core Floor and Deck Element |
-
2009
- 2009-06-17 US US12/486,010 patent/US20090313924A1/en not_active Abandoned
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5806273A (en) * | 1906-10-31 | 1998-09-15 | Sci Sitecast International, Inc. | Multi-storey concrete construction system |
US3724142A (en) * | 1971-01-06 | 1973-04-03 | C Worthington | Modular building structure |
US3798858A (en) * | 1972-03-17 | 1974-03-26 | Advance Concrete Asphalt Co | Dwelling construction |
US4037371A (en) * | 1974-08-12 | 1977-07-26 | Lande De Calan Yves Jean Olivi | Construction of buildings by assembling prefabricated elements |
US4018021A (en) * | 1974-09-13 | 1977-04-19 | Jimmy Dow | Building and method of making same |
US4127971A (en) * | 1977-05-16 | 1978-12-05 | Rojo Jr Agustin | Building constructed of precast L-shaped concrete units |
US4228623A (en) * | 1978-03-03 | 1980-10-21 | Ennio Menosso | Prefabricated self-supporting modular room elements |
US4462191A (en) * | 1982-02-25 | 1984-07-31 | Poirier Jacques B | Prefabricated dwelling of the modular type |
US4759160A (en) * | 1986-04-22 | 1988-07-26 | Versacon Building Systems, Inc. | Prefabricated concrete buildings with monolithic roof, wall, and floor members |
US4723382A (en) * | 1986-08-15 | 1988-02-09 | Haresh Lalvani | Building structures based on polygonal members and icosahedral |
US5623790A (en) * | 1987-08-24 | 1997-04-29 | Lalvani; Haresh | Building systems with non-regular polyhedra based on subdivisions of zonohedra |
US5081805A (en) * | 1989-08-23 | 1992-01-21 | Jazzar M Omar A | Precast concrete building units and method of manufacture thereof |
US5317854A (en) * | 1991-11-29 | 1994-06-07 | Obayashi Corporation | Precast concrete panel for a composite floor |
US5771639A (en) * | 1993-04-22 | 1998-06-30 | Wood; Marcus Bennett | Emergency shelter |
US5493836A (en) * | 1993-12-20 | 1996-02-27 | Lopez-Munoz; Humberto | Building system based upon preformed modules |
US5873206A (en) * | 1995-03-06 | 1999-02-23 | Polyceramics, Inc. | Interlocking building block |
US20020005021A1 (en) * | 1995-09-08 | 2002-01-17 | Tian Khoo | Pre-cast concrete panels for construction of a building |
US5761862A (en) * | 1995-10-03 | 1998-06-09 | Hendershot; Gary L. | Precast concrete construction and construction method |
US5987827A (en) * | 1996-05-29 | 1999-11-23 | Lord; Ray | Concrete building construction and method |
US5845441A (en) * | 1996-07-01 | 1998-12-08 | Swartz; Paul D. | Premanufactured portable concrete house |
US5884437A (en) * | 1996-12-24 | 1999-03-23 | Olsen; Eric R. | Non rectangular building modules |
US6955016B1 (en) * | 1997-06-26 | 2005-10-18 | Lefrak Organization, Inc. | Structure and method for constructing building framework and concrete wall |
US6173538B1 (en) * | 1997-10-30 | 2001-01-16 | Gregg R. Fleishman | Modular construction system |
US6237297B1 (en) * | 1997-12-30 | 2001-05-29 | Ibi, Inc. | Modular structural members for constructing buildings, and buildings constructed of such members |
US7017316B2 (en) * | 1998-06-09 | 2006-03-28 | Brentmuir Developments (1993) Limited | Concrete panel construction system |
US6301851B1 (en) * | 1998-07-29 | 2001-10-16 | Hideo Matsubara | Apparatus and method for forming precast modular units and method for constructing precast modular structure |
US6282849B1 (en) * | 1998-08-04 | 2001-09-04 | Florian Tuczek | Structural system |
US6230465B1 (en) * | 1998-08-04 | 2001-05-15 | Oldcastle Precast, Inc. | Precast concrete structural modules |
US6233891B1 (en) * | 1999-03-11 | 2001-05-22 | Keith A. De Cosse | Prefabricated building system |
US6463702B1 (en) * | 1999-11-01 | 2002-10-15 | Swa Holding Company, Inc. | Concrete safe room |
US7204060B2 (en) * | 2000-02-18 | 2007-04-17 | Hunt Christopher M | System for manufacturing structures of cementitious materials |
US6907709B2 (en) * | 2002-02-16 | 2005-06-21 | Randall Byrd | Concrete construction material and method of use |
US6829870B2 (en) * | 2002-07-25 | 2004-12-14 | Hc Precast System Sdn. Bhd | Building methods |
US7147197B2 (en) * | 2002-10-09 | 2006-12-12 | Michael E. Dalton | Concrete home building |
US7216462B2 (en) * | 2004-10-26 | 2007-05-15 | Fabcon, Inc. | Insulated concrete panel billets |
US20080010943A1 (en) * | 2006-07-13 | 2008-01-17 | Marschke Carl R | Hollow Core Floor and Deck Element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2491144A (en) * | 2011-05-25 | 2012-11-28 | Dainius Simkus | Precast modular building unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210198888A1 (en) | Modular building | |
US11987441B2 (en) | Self-storage facility, fabrication, and methodology | |
US7827738B2 (en) | System for modular building construction | |
AU2016206222A1 (en) | Unitised building system | |
AU771008B2 (en) | Elevator hoistway | |
ZA200505336B (en) | Vertical alignment and levelling of modular building units | |
ES2369947B1 (en) | MODULAR CONSTRUCTION SYSTEM. | |
US20090313924A1 (en) | Concrete building structures | |
MX2010008037A (en) | Panelization system and method. | |
NL2004861C2 (en) | Floor, comprising prefab elements with pockets and easy access means to and from said pockets. | |
CN109577486B (en) | Method for forming building and building | |
US3892055A (en) | Method for manufacturing multi-story housing with floor-slabs, bearing walls and partitions cast on the ground level | |
RU2442868C1 (en) | Method for constructing building addition | |
RU63829U1 (en) | MULTI-FUNCTIONAL CONSTRUCTION OBJECT, INCLUDING THE OCEANARIUM AND GROUP OF OBJECTS OF COMMERCIAL AND ENTERTAINMENT PURPOSE | |
RU100117U1 (en) | RECONSTRUCED BUILDING | |
RU2277619C2 (en) | Building panels, foundation structure, three-dimensional building structure, methods for three-dimensional building structure erection and building heat insulation | |
US3975873A (en) | Prefabricated building sections or room units and methods for their use in erecting buildings | |
RU2070255C1 (en) | Method for examining structure base for reliability | |
RU68564U1 (en) | BUILDING MULTIFUNCTIONAL PURPOSE | |
RU89859U1 (en) | FRAME-PANEL BUILDING | |
RU2107791C1 (en) | Construction of multistory garage | |
RU2653146C1 (en) | Multi storey residential building | |
RU2345200C2 (en) | Multi-purpose building | |
RU119003U1 (en) | BLOCK SECTION OF A LARGE-PANEL MULTI-STOREY BUILDING | |
GB2559966A (en) | Modular system for constructing buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |