US20090286951A1 - Low-corrosion epoxy resins and production methods therefor - Google Patents
Low-corrosion epoxy resins and production methods therefor Download PDFInfo
- Publication number
- US20090286951A1 US20090286951A1 US12/511,389 US51138909A US2009286951A1 US 20090286951 A1 US20090286951 A1 US 20090286951A1 US 51138909 A US51138909 A US 51138909A US 2009286951 A1 US2009286951 A1 US 2009286951A1
- Authority
- US
- United States
- Prior art keywords
- test
- chlorine
- corrosion
- epoxy resin
- electronic component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the invention relates to epoxy resins having an extremely low content of chlorine, particularly a low content of organically bound chlorine.
- Epoxy resins have a broad range of applications within electronics and electrical engineering. They are used for molding compounds, glob top materials, printed circuit board materials, adhesives, underfillers, and films and for shielding electronic and optoelectronic components. Bisphenol A diglycidyl ether and bisphenol F diglycidyl ether frequently serve as base materials. As a rule, these are produced by causing the respective bisphenols to react with epichlorohydrin. The ionically bound chloride produced during synthesis can be removed to a low ppm by means of aqueous washing processes. In contrast, organic compounds containing chlorine which develop as byproducts and which cause the epoxy compounds to have a total chlorine content of up to 0.5 percent by weight are not removed by means of aqueous processing. Epoxy resins such as bisphenol A diglycidyl ether or bisphenol F diglycidyl ether with a total chlorine content of less than 100 ppm are hitherto unknown.
- U.S. Pat. No. 3,413,320 discloses the purification of epoxy resins using recrystallization to total chlorine contents of approximately 0.37%. Nevertheless, as expected, this slight reduction in the chlorine content does not show any impact on the corrosive behavior of the epoxy resin.
- the object of the invention is thus to provide an epoxy resin, in particular a bisphenol diglycidyl ether which only has a negligible residual chlorine content.
- the object of the invention is to make available a production method therefore.
- the present invention relates to an epoxy resin with a total chlorine content, said chlorine being present in organically and/or ionically bound form, of less than 100 ppm. Furthermore, the present invention relates to a method for reducing the chlorine content in epoxy resins, which is characterized in that the epoxy resin is extracted in solid form in a solvent.
- the chlorine content can be reduced by extracting the resin in a solvent.
- the resin is present in the form of solid particles.
- the particles which can also be present in crystalline form in parts, are preferably comminuted beforehand.
- the particles can particularly preferably be comminuted by means of suitable reprecipitation.
- the respective resin is dissolved in a suitable solvent, preferably using heat, whereby the finest of droplets form in the solvent (dispersion) during cooling and are then extracted until the chlorine content has reduced correspondingly.
- Extraction here refers to the removal of specific components of a solid mixture of substances using suitable solvents. A diffusion process takes place, which is initiated by the different component solubilities in the solvent.
- an organic solvent such as alcohol, preferably a monovalent alcohol and particularly preferably methanol and/or ethanol
- solvent for extraction, for example in a mixture with water.
- solvents are suitable solvents, particularly a mixture of different alcohols, water and/or solvents.
- solvent always refers to a solvent mixture.
- the resin for extraction is agitated in a solvent, particularly preferably with the aid of a dispersion disk.
- extraction and/or agitation takes place during the course of a temperature increase. It should be ensured that the epoxy resin remains solid at the relevant temperature and that the solvent does not evaporate.
- the resins according to the invention were subjected to an electro-corrosion test on an adhesive formulation on an IPC (Integrated Plastic Circuit) test board, under the following conditions, 85° C. at 85% relative humidity for a period of 1000 hours.
- IPC Integrated Plastic Circuit
- FIG. 1 is a diagram showing how the chlorine content reduces successively during the extraction.
- the invention is described in more detail below with reference to an exemplary production method and a corrosion test carried out on exemplary embodiments of the epoxy resin according to the invention, such as an adhesive, a formulation for a printed circuit board laminate, a cast resin and an underfiller.
- FIG. 1 the diagram shows how the chlorine content reduces successively during the extraction.
- Test specimens 2 IPC test boards coated with adhesive.
- Test conditions The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or ⁇ 10 6 ⁇ between adjacent comb pattern structures is indicated by means of luminescent diodes.
- Electro-Corrosion Test on a Formulation for Printed Circuit Board Laminates on IPC Test Boards Electro-Corrosion Test on a Formulation for Printed Circuit Board Laminates on IPC Test Boards.
- Test specimens 2 IPC test boards coated with a formulation for printed circuit board laminates.
- Test conditions The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or ⁇ 10 6 ⁇ between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in FIG. 1 of example 2.
- composition of the formulation for printed circuit board laminates is a composition of the formulation for printed circuit board laminates:
- Test specimens 2 IPC test boards coated with cast resin
- Test conditions The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or ⁇ 10 6 ⁇ between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in FIG. 1 of example 2.
- Test specimens 2 IPC test boards coated with underfiller
- Test conditions The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or ⁇ 10 6 ⁇ between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in FIG. 1 of example 2.
- the invention enables such use for the first time.
- the invention relates to epoxy resins having an extremely low content of chlorine, particularly a low content of organically bound chorine.
- the invention also relates to a production method during which total chlorine contents of less than 100 ppm in the epoxy resin are achieved by extracting solid epoxy resin particles, optionally after a comminution and/or reprecipitation.
- total chlorine contents of less than 100 ppm in the epoxy resin are achieved by extracting solid epoxy resin particles, optionally after a comminution and/or reprecipitation.
Landscapes
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The invention relates to epoxy resins having an extremely low content of chlorine, particularly a low content of organically bound chlorine. The invention also relates to a production method during which total chlorine contents of less than 100 ppm in the epoxy resin are achieved by extracting solid epoxy resin particles, optionally after a prior comminution and/or reprecipitation. The use of these low-chlorine epoxy resins in the fields of electronics and/or electrical engineering considerably reduces the components' susceptibility to corrosion.
Description
- This application is a division of U.S. patent application Ser. No. 10/506,044 filed Apr. 5, 2005, which is the 35 USC 371 national phase of PCT International Application No. PCT/DE03/00715 filed on Feb. 28, 2003 which claimed priority to German application 10208743.1 filed on Feb. 28, 2002. The entire contents of each of these applications are hereby expressly incorporated by reference.
- The invention relates to epoxy resins having an extremely low content of chlorine, particularly a low content of organically bound chlorine.
- Epoxy resins have a broad range of applications within electronics and electrical engineering. They are used for molding compounds, glob top materials, printed circuit board materials, adhesives, underfillers, and films and for shielding electronic and optoelectronic components. Bisphenol A diglycidyl ether and bisphenol F diglycidyl ether frequently serve as base materials. As a rule, these are produced by causing the respective bisphenols to react with epichlorohydrin. The ionically bound chloride produced during synthesis can be removed to a low ppm by means of aqueous washing processes. In contrast, organic compounds containing chlorine which develop as byproducts and which cause the epoxy compounds to have a total chlorine content of up to 0.5 percent by weight are not removed by means of aqueous processing. Epoxy resins such as bisphenol A diglycidyl ether or bisphenol F diglycidyl ether with a total chlorine content of less than 100 ppm are hitherto unknown.
- U.S. Pat. No. 3,413,320 discloses the purification of epoxy resins using recrystallization to total chlorine contents of approximately 0.37%. Nevertheless, as expected, this slight reduction in the chlorine content does not show any impact on the corrosive behavior of the epoxy resin.
- The general assumption is thus that in air, in particular in the presence of heat and humidity, the organically bound chlorine is at least partially converted to chloride ions. Said ions can cause corrosion with parts coming into contact with them.
- As a result it is necessary to make available epoxy resins with a low residual chlorine content, in particular of organically bound chlorine, which therefore have less of a tendency to cause corrosion.
- The object of the invention is thus to provide an epoxy resin, in particular a bisphenol diglycidyl ether which only has a negligible residual chlorine content. In addition, the object of the invention is to make available a production method therefore.
- The present invention relates to an epoxy resin with a total chlorine content, said chlorine being present in organically and/or ionically bound form, of less than 100 ppm. Furthermore, the present invention relates to a method for reducing the chlorine content in epoxy resins, which is characterized in that the epoxy resin is extracted in solid form in a solvent.
- According to an advantageous embodiment of the invention, the chlorine content can be reduced by extracting the resin in a solvent. In this way the resin is present in the form of solid particles. The particles, which can also be present in crystalline form in parts, are preferably comminuted beforehand. The particles can particularly preferably be comminuted by means of suitable reprecipitation. In addition, the respective resin is dissolved in a suitable solvent, preferably using heat, whereby the finest of droplets form in the solvent (dispersion) during cooling and are then extracted until the chlorine content has reduced correspondingly.
- Extraction here refers to the removal of specific components of a solid mixture of substances using suitable solvents. A diffusion process takes place, which is initiated by the different component solubilities in the solvent.
- According to a preferred embodiment of the invention, an organic solvent, such as alcohol, preferably a monovalent alcohol and particularly preferably methanol and/or ethanol, is used as the solvent for extraction, for example in a mixture with water. However all other solvents are suitable solvents, particularly a mixture of different alcohols, water and/or solvents. Here the term ‘solvent’ always refers to a solvent mixture.
- According to an advantageous embodiment, the resin for extraction is agitated in a solvent, particularly preferably with the aid of a dispersion disk.
- According to one embodiment, extraction and/or agitation takes place during the course of a temperature increase. It should be ensured that the epoxy resin remains solid at the relevant temperature and that the solvent does not evaporate.
- The resins according to the invention were subjected to an electro-corrosion test on an adhesive formulation on an IPC (Integrated Plastic Circuit) test board, under the following conditions, 85° C. at 85% relative humidity for a period of 1000 hours.
-
FIG. 1 is a diagram showing how the chlorine content reduces successively during the extraction. - The invention is described in more detail below with reference to an exemplary production method and a corrosion test carried out on exemplary embodiments of the epoxy resin according to the invention, such as an adhesive, a formulation for a printed circuit board laminate, a cast resin and an underfiller.
- 50 g of crystallized-out bisphenol A diglycidyl ether (Epliox® A-17-04, Leuna-Harze) with a total chlorine content of 800 ppm is suspended in 50 g of ethanol (p.a. Aldrich) and is comminuted with the aid of a rod mixer for a period of 60 seconds. The suspension is agitated in a closed vessel for 17 hours with the aid of a dispersion disk. It should thereby be ensured that the temperature of the suspension does not exceed 40° C. Subsequently, the mixture is filtered off in the water jet vacuum, rewashed with a little solvent and dried in the vacuum cabinet. The total chlorine content is then measures using the carbitol method.
- This process is repeated twice. A 60% yield of bisphenol A diglycidyl ether is achieved with a total chlorine content of 80 ppm (see Diagram 1).
- In
FIG. 1 the diagram shows how the chlorine content reduces successively during the extraction. - Test specimens: 2 IPC test boards coated with adhesive.
- Test specification applied: DIN EN 60068-2-67
- Test: Climate test at 85° C. with 85% relative humidity,
duration 1000 hours. - Test conditions: The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or <106Ω between adjacent comb pattern structures is indicated by means of luminescent diodes.
- 50 g bisphenol A diglycidyl ether, purified total chlorine content 42 ppm
50 g bisphenol F diglycidyl ether, purified total chlorine content 85 ppm
19.9 g tetraethylenediamine
0.5 g 2-methylimiadazole
0.5 g triethoxy epoxy propylsilane - Result after 1000 hour test:
- No visible signs of corrosion are detected.
- No significant changes in the insulation resistance could be determined.
- Measuring the insulation resistance before and after the 1000 hour climatic storage did not show any significant change in the resistance.
- Electro-Corrosion Test on a Formulation for Printed Circuit Board Laminates on IPC Test Boards.
- Test specimens: 2 IPC test boards coated with a formulation for printed circuit board laminates.
- Test specifications applied: DIN EN 60068-2-67
- Test: Climate test at 85° C. with 85% relative humidity,
duration 1000 hours - Test conditions: The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or <106Ω between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in
FIG. 1 of example 2. - Composition of the formulation for printed circuit board laminates:
- 100 g bisphenol A diglycidyl ether, purified
total chlorine content 90 ppm - 10.5 g dicyandiamine
- 0.5 g 2.4 ethyl methylimidazole
- Result after 1000 hour test: no visible signs of corrosion are detected.
- No significant changes in the insulation resistance could be determined.
- Test specimens: 2 IPC test boards coated with cast resin
- Test specification applied: DIN EN 60068-2-67
- Test: Climate test at 85° C. with 85% relative humidity,
duration 1000 hours - Test conditions: The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or <106Ω between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in
FIG. 1 of example 2. - 100 g bisphenol F diglycidyl ether, purified total chlorine content 70 ppm
90 g hexahydrophthalic acid anhydride
0.4 g dimethylbenzylamine
100 g translucent vitreous silica - Result: no visible signs of corrosion are detected.
- No significant changes in the insulation resistance could be determined.
- Test specimens: 2 IPC test boards coated with underfiller
- Test specification applied: DIN EN 60068-2-67
- Test: Climate test at 85° C. with 85% relative humidity,
duration 1000 hours - Test conditions: The test boards were subjected to 100 volts DC during the entire test period. To test for corrosion, the surface resistance below a leakage current of >1 mA or <106Ω between adjacent comb pattern structures is indicated by means of luminescent diodes. The test layout is shown in
FIG. 1 of example 2. - 30 g bisphenol A diglycidyl ether, purified
total chlorine contents 30 ppm
30 g bis-(epoxycyclohexyl)-methylcarboxylate
20 g hexahydrophthalic acid anhydride
80 g translucent vitreous silica (spherical) - Result: no visible signs of corrosion are detected.
- No significant changes in the insulation resistance could be determined.
- By using bisphenol A diglycidyl ether and/or bisphenol F diglycidyl ether with a total chlorine content <100 ppm in molding compounds, glob top materials, printed circuit board materials, adhesives, underfillers, films and to shield electronic and optoelectronic components with a total chlorine content <100 ppm, it was possible for the first time to formulate epoxy functional aromatic systems, having no corrosion according to DIN EN 60068-2-67, even after 1000 hours.
- The invention enables such use for the first time.
- The invention relates to epoxy resins having an extremely low content of chlorine, particularly a low content of organically bound chorine. The invention also relates to a production method during which total chlorine contents of less than 100 ppm in the epoxy resin are achieved by extracting solid epoxy resin particles, optionally after a comminution and/or reprecipitation. The use of these low-chlorine epoxy resins in the fields of electronics and/or electrical engineering considerably reduces the components' susceptibility to corrosion.
Claims (6)
1. An epoxy resin having a total chlorine content of less than 100 ppm, said chlorine being present in at least one of an organically and an ionically bound form.
2. An epoxy resin obtainable by extracting solid epoxy resin in a solvent with a total chlorine content of less than 100 ppm, wherein said chlorine is present in one of an organically and an ionically bound form.
3. An extracted epoxy resin having a total chlorine content of less than 100 ppm, said chlorine being present in at least one of an organically and an ionically bound form.
4. A method of using a low-chlorine resin to produce an electronic component with reduced susceptibility to corrosion, comprising the steps of:
providing an electronic component; and
combining the electronic component with the epoxy resin according to claim 1 .
5. A method of using a low-chlorine resin to produce an electronic component with reduced susceptibility to corrosion, comprising the steps of:
providing an electronic component; and
combining the electronic component with the epoxy resin according to claim 2 .
6. A method of using a low-chlorine resin to produce an electronic component with reduced susceptibility to corrosion, comprising the steps of:
providing an electronic component; and
combining the electronic component with the extracted epoxy resin according to claim 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/511,389 US20090286951A1 (en) | 2002-02-28 | 2009-07-29 | Low-corrosion epoxy resins and production methods therefor |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10208743A DE10208743A1 (en) | 2002-02-28 | 2002-02-28 | Low corrosion epoxy resins and manufacturing processes |
DE10208743.1 | 2002-02-28 | ||
PCT/DE2003/000715 WO2003072627A1 (en) | 2002-02-28 | 2003-02-28 | Low-corrosive epoxy resins and production method therefor |
US10/506,044 US7582706B2 (en) | 2002-02-28 | 2003-02-28 | Low chlorine content epoxy resin |
US12/511,389 US20090286951A1 (en) | 2002-02-28 | 2009-07-29 | Low-corrosion epoxy resins and production methods therefor |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/506,044 Division US7582706B2 (en) | 2002-02-28 | 2003-02-28 | Low chlorine content epoxy resin |
PCT/DE2003/000715 Division WO2003072627A1 (en) | 2002-02-28 | 2003-02-28 | Low-corrosive epoxy resins and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090286951A1 true US20090286951A1 (en) | 2009-11-19 |
Family
ID=27762503
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/506,044 Expired - Fee Related US7582706B2 (en) | 2002-02-28 | 2003-02-28 | Low chlorine content epoxy resin |
US12/511,389 Abandoned US20090286951A1 (en) | 2002-02-28 | 2009-07-29 | Low-corrosion epoxy resins and production methods therefor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/506,044 Expired - Fee Related US7582706B2 (en) | 2002-02-28 | 2003-02-28 | Low chlorine content epoxy resin |
Country Status (6)
Country | Link |
---|---|
US (2) | US7582706B2 (en) |
EP (1) | EP1478674B1 (en) |
JP (1) | JP4571806B2 (en) |
CN (2) | CN1639222A (en) |
DE (2) | DE10208743A1 (en) |
WO (1) | WO2003072627A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015138128A1 (en) | 2014-03-12 | 2015-09-17 | Dow Global Technologies Llc | Epoxy resin compositions |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006042095A1 (en) * | 2006-09-07 | 2008-03-27 | Siemens Ag | Base material for photoimageable resists and dielectrics |
US20090233225A1 (en) * | 2008-03-12 | 2009-09-17 | Johnson Donald W | Low chlorine epoxy resin formulations |
CN102574981A (en) * | 2009-10-07 | 2012-07-11 | 陶氏环球技术有限责任公司 | Reducing impurities in solid epoxy resin |
JP2013507481A (en) * | 2009-10-07 | 2013-03-04 | ダウ グローバル テクノロジーズ エルエルシー | Method for producing solid epoxy resin |
WO2011068643A2 (en) | 2009-12-02 | 2011-06-09 | Dow Global Technologies Inc. | Composite compositions |
WO2011068644A1 (en) | 2009-12-02 | 2011-06-09 | Dow Global Technologies Inc. | Epoxy resin compositions |
JP5871326B2 (en) | 2009-12-02 | 2016-03-01 | ブルー キューブ アイピー エルエルシー | Coating composition |
DE102012205046A1 (en) * | 2012-03-29 | 2013-10-02 | Siemens Aktiengesellschaft | An electrical insulation body for a high-voltage rotary machine and method for producing the electrical insulation body |
DE102016203867A1 (en) | 2016-03-09 | 2017-09-14 | Siemens Aktiengesellschaft | Solid insulation material, use for this purpose and insulation system manufactured therewith |
CN115093542B (en) * | 2022-07-20 | 2023-12-05 | 智仑超纯环氧树脂(西安)有限公司 | Method for reducing total chlorine content of epoxy resin, ultra-high purity epoxy resin and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268619A (en) * | 1962-10-12 | 1966-08-23 | Michigan Chem Corp | Flame retardant epoxy resins |
US4624975A (en) * | 1985-03-21 | 1986-11-25 | The Dow Chemical Company | Process for stabilizing the hydrolyzable chloride content in epoxy resins |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA802231A (en) * | 1968-12-24 | J. Belanger William | Low chlorine content diglycidyl ethers | |
US3413320A (en) * | 1960-03-14 | 1968-11-26 | Shell Oil Co | High purity diepoxide |
US3636051A (en) * | 1969-11-04 | 1972-01-18 | Atlantic Richfield Co | Process for purification of dicyclopentadiene diepoxide |
JPS58173118A (en) | 1982-04-05 | 1983-10-12 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for use in electronic appliance |
JPS58173116A (en) * | 1982-04-05 | 1983-10-12 | Sumitomo Bakelite Co Ltd | Removal of trace halogen contained in epoxy resin |
US4535150A (en) * | 1984-12-04 | 1985-08-13 | Celanese Corporation | Process for preparing epoxy resins having low hydrolyzable chlorine contents |
US4668807A (en) * | 1984-12-21 | 1987-05-26 | Ciba-Geigy Corporation | Process for reducing the content of hydrolyzable chlorine in glycidyl compounds |
JPS61252222A (en) * | 1985-05-01 | 1986-11-10 | Asahi Chiba Kk | Removal of chlorine from epoxy resin |
JPS62235314A (en) * | 1986-04-05 | 1987-10-15 | Toto Kasei Kk | Method for purifying epoxy resin |
JP2558293B2 (en) * | 1987-09-14 | 1996-11-27 | 日東電工株式会社 | Semiconductor device |
JP2551626B2 (en) * | 1988-04-14 | 1996-11-06 | 三井石油化学工業株式会社 | Method for producing trihydric phenol epoxy resin |
JP2579350B2 (en) * | 1988-09-21 | 1997-02-05 | 日東電工株式会社 | Semiconductor device |
JP2741040B2 (en) * | 1988-10-12 | 1998-04-15 | 日本化薬株式会社 | Manufacturing method of epoxy resin |
JPH02123122A (en) * | 1988-10-31 | 1990-05-10 | Mitsui Petrochem Ind Ltd | Reduction in hydrolyzable chlorine |
US5098965A (en) * | 1991-01-31 | 1992-03-24 | Shell Oil Company | Process for preparing low-chlorine epoxy resins |
JP3409915B2 (en) * | 1994-04-18 | 2003-05-26 | 大日本インキ化学工業株式会社 | Continuous purification method of epoxy resin |
JP3539772B2 (en) | 1994-09-09 | 2004-07-07 | 新日鐵化学株式会社 | Crystalline epoxy resin, production method thereof, epoxy resin composition and cured product using the same |
US5646315A (en) * | 1995-06-07 | 1997-07-08 | National Starch And Chemical Investment Holding Corporation | Polyglydicylphenyl ethers of alkyloxy chains for use in microelectronics adhesives |
US5717054A (en) * | 1995-06-07 | 1998-02-10 | National Starch & Chemical Investment Holding Corp. | Epoxy resins consisting of flexible chains terminated with glycidyloxyphenyl groups for use in microelectronics adhesives |
JPH1036484A (en) * | 1996-07-26 | 1998-02-10 | Dainippon Ink & Chem Inc | Method for purifying epoxy resin |
US6015574A (en) * | 1997-06-09 | 2000-01-18 | L'oreal | Lipophilic carrier systems |
JP4846078B2 (en) * | 1998-06-04 | 2011-12-28 | 長春人造樹脂廠股▲分▼有限公司 | Method for producing epoxy resin with low hydrolyzable chlorine content |
JP3889520B2 (en) * | 1999-02-17 | 2007-03-07 | ジャパンエポキシレジン株式会社 | Epoxy compound purification method |
JP3387873B2 (en) * | 1999-12-09 | 2003-03-17 | 三井化学株式会社 | Purification method of (thio) epoxy compound |
US6211389B1 (en) * | 2000-05-23 | 2001-04-03 | Dexter Corporation | Methods of reducing the chloride content of epoxy compounds |
JP2003246782A (en) * | 2001-12-20 | 2003-09-02 | Nippon Steel Chem Co Ltd | Liquid epoxy compound |
JP3821766B2 (en) * | 2002-09-02 | 2006-09-13 | 三井化学株式会社 | Method for producing cured resin |
-
2002
- 2002-02-28 DE DE10208743A patent/DE10208743A1/en not_active Ceased
-
2003
- 2003-02-28 DE DE50303950T patent/DE50303950D1/en not_active Expired - Lifetime
- 2003-02-28 JP JP2003571329A patent/JP4571806B2/en not_active Expired - Fee Related
- 2003-02-28 CN CNA038047195A patent/CN1639222A/en active Pending
- 2003-02-28 WO PCT/DE2003/000715 patent/WO2003072627A1/en active IP Right Grant
- 2003-02-28 CN CN2010101440119A patent/CN101792520B/en not_active Expired - Fee Related
- 2003-02-28 US US10/506,044 patent/US7582706B2/en not_active Expired - Fee Related
- 2003-02-28 EP EP03714684A patent/EP1478674B1/en not_active Expired - Lifetime
-
2009
- 2009-07-29 US US12/511,389 patent/US20090286951A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268619A (en) * | 1962-10-12 | 1966-08-23 | Michigan Chem Corp | Flame retardant epoxy resins |
US4624975A (en) * | 1985-03-21 | 1986-11-25 | The Dow Chemical Company | Process for stabilizing the hydrolyzable chloride content in epoxy resins |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015138128A1 (en) | 2014-03-12 | 2015-09-17 | Dow Global Technologies Llc | Epoxy resin compositions |
Also Published As
Publication number | Publication date |
---|---|
DE10208743A1 (en) | 2003-12-11 |
CN101792520A (en) | 2010-08-04 |
JP4571806B2 (en) | 2010-10-27 |
EP1478674B1 (en) | 2006-06-21 |
EP1478674A1 (en) | 2004-11-24 |
WO2003072627A1 (en) | 2003-09-04 |
CN1639222A (en) | 2005-07-13 |
US20050222381A1 (en) | 2005-10-06 |
CN101792520B (en) | 2012-12-05 |
DE50303950D1 (en) | 2006-08-03 |
JP2005519147A (en) | 2005-06-30 |
US7582706B2 (en) | 2009-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090286951A1 (en) | Low-corrosion epoxy resins and production methods therefor | |
US4729797A (en) | Process for removal of cured epoxy | |
JP2003045228A (en) | Conductive paste | |
KR20100090620A (en) | Heat curable resin composition, dry film and printed wiring board and method for preparing the same | |
JP2010150298A (en) | Biomass-origin epoxy compound and method of manufacturing the same | |
WO2007046262A1 (en) | Epoxy resin, epoxy resin composition, photosensitive resin composition, and cured object obtained therefrom | |
US20090233225A1 (en) | Low chlorine epoxy resin formulations | |
JP2010241855A (en) | Epoxy resin composition | |
CN108419367A (en) | A kind of method for plugging of printed wiring board | |
CN103555434A (en) | Quick circuit board cleaning agent and preparation method thereof | |
KR102506217B1 (en) | Composition for removing acrylic resin | |
CN1697858A (en) | Photo-curable and thermosetting resin composition | |
JP2004047418A (en) | Conductive paste | |
CN106752518B (en) | A kind of anti-humidity oil and preparation method thereof | |
CN103555249B (en) | Adhesive capable of being cured through reflow soldering for reinforcing chip as well as preparation method thereof | |
CN110041868A (en) | A kind of resin composite materials inhibiting Ion transfer and protection film and copper-clad plate | |
CN103540459A (en) | Water-based printed circuit board welding flux cleaning agent and preparation method thereof | |
JP2002164632A (en) | Through hole wiring board | |
GB2261664A (en) | Coating compositions | |
KR101233668B1 (en) | The resin composition for semiconductor package substrate | |
JP3136943B2 (en) | Epoxy resin composition for laminated board | |
JPS6120946A (en) | Composition for peeling photoresist | |
JP2002245852A (en) | Conductive paste | |
JPH11213755A (en) | Conductive paste | |
KR20130063167A (en) | Method for producing modified resin, modified resin produced thereby, photocurable photosensitive resin composition comprising the modified resin, and flexible pcb including solder resist printed by composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROPPEL, PETER;REEL/FRAME:023051/0306 Effective date: 20040830 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |