US20090247054A1 - Method to prevent slurry caking on cmp conditioner - Google Patents

Method to prevent slurry caking on cmp conditioner Download PDF

Info

Publication number
US20090247054A1
US20090247054A1 US12/415,382 US41538209A US2009247054A1 US 20090247054 A1 US20090247054 A1 US 20090247054A1 US 41538209 A US41538209 A US 41538209A US 2009247054 A1 US2009247054 A1 US 2009247054A1
Authority
US
United States
Prior art keywords
polishing pad
conditioning
polishing
slurry
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/415,382
Inventor
Eugene C. Davis
Joerg Walter Haussmann
Marcus Paul Haecki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Deutschland GmbH
Texas Instruments Inc
Original Assignee
Texas Instruments Deutschland GmbH
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Deutschland GmbH, Texas Instruments Inc filed Critical Texas Instruments Deutschland GmbH
Priority to US12/415,382 priority Critical patent/US20090247054A1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIS, EUGENE C.
Publication of US20090247054A1 publication Critical patent/US20090247054A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor

Definitions

  • the present invention generally relates to a method of planarizing a semiconductor structure. More particularly, the present invention relates to prevention of slurry caking on a chemical mechanical planarization (CMP) conditioner.
  • CMP chemical mechanical planarization
  • CMP chemical mechanical planarization or polishing
  • the wafer is pressed against a polishing pad by a polishing head.
  • the polishing pad has an abrasive surface, which planarizes or flattens the surface of the wafer. This can be necessary before the wafer is subjected to further processes, such as photolithography.
  • a corrosive and abrasive slurry (containing sodium hydroxide, for example) is directed onto the wafer surface, which works in conjunction with the polishing pad to planarize the wafer.
  • the polishing pad is itself conditioned by an abrasive conditioning disk that moves or rotates across the surface of the polishing pad. This removes material from the surface of the polishing pad so that it can planarize the wafer more effectively.
  • Slurry build-up can occur on the conditioning disk as slurry is allowed to dry on the disk.
  • This slurry build-up has a two-fold negative impact on the CMP process. Firstly, as slurry fills the area between diamonds on the conditioning disk, the effectiveness of the disk to condition the polishing pad is reduced. Secondly, dried slurry particles build up on the disk and break loose during processing, resulting in scratches and particles on the wafer. Removing the dried slurry from the disk requires vigorous mechanical cleaning and/or the use of strong chemicals, which can damage the disk in such a way that it cannot be used again.
  • FIGS. 1 and 2 show two different types of CMP conditioning disks 12 after taking part in several CMP processes.
  • the conditioning disk 12 sweeps across the polishing pad during a CMP process, the conditioning disk 12 becomes covered with slurry on its abrasive surface that contacts the polishing pad. This is illustrated in FIGS. 1 and 2 as a dark area in the center of the conditioning disk 12 .
  • slurry that is present on the conditioning disk 12 does not have time to dry, but while the CMP apparatus is not operating, the conditioning disk 12 can dry and the slurry coated thereon can form a hard “cake”.
  • Sodium hydroxide present in the slurry can also crystallize on the abrasive surface of the conditioning disk 12 , which is very difficult to remove. It has been found that such an undesirable slurry build-up on the disk 12 occurs after processing as few as 100 wafers. However, it is generally required to use a single conditioning disk in CMP processing of more than 4000 wafers.
  • the present invention provides a method of planarizing a semiconductor structure.
  • the method comprises moving a conditioning element on a surface of a polishing member, rotating the semiconductor structure relative to the polishing member against the surface of the polishing member, and rinsing the surface of the polishing member and the semiconductor structure.
  • Slurry is directed onto the polishing member at the same time as the conditioning element is moved on the surface of the polishing member and the semiconductor structure is rotated against the surface of the polishing member.
  • the conditioning element is contacted to the surface of the polishing member.
  • the conditioning element is used to condition the surface of the polishing member, or pad, that planarizes or polishes the surface of the semiconductor structure in contact with it.
  • Conditioning of the polishing member takes place by moving a conditioning surface of the conditioning element across its polishing surface.
  • the conditioning surface may be formed of particles of a hard, abrasive substance, for example diamond.
  • slurry is directed onto the surface of the polishing member, which also helps in the planarizing process of the semiconductor structure.
  • the slurry may contain a caustic substance such as sodium hydroxide, for example.
  • the temperature of the conditioning element is reduced by the rinsing step while it is held in contact with the polishing pad during rinsing of the polishing pad and the semiconductor structure. Cooling the conditioning element during the rinsing step also helps to reduce the rate at which slurry may dry, and therefore build up, on its surface.
  • moving the conditioning element on the surface of the polishing member comprises rotating the conditioning element relative to the polishing member.
  • the conditioning element can be mounted so that it is rotatable relative to the surface of the polishing member. This means that during conditioning of the polishing member, the conditioning element can be rotated on the surface of the polishing member, or the conditioning element can remain stationary while the polishing member rotates, or both the conditioning element and the polishing member may rotate simultaneously.
  • the step of rotating may comprise rotating both the semiconductor structure and the polishing member.
  • the semiconductor structure and the polishing member may be rotated in the same direction, for example anticlockwise.
  • the step of contacting may further comprises oscillating the conditioning element against the surface of the polishing member.
  • the conditioning element may be configured so that its surface is oscillated backwards and forwards across the surface of the polishing member while the polishing member is rotating.
  • the step of contacting may further comprise rotating the conditioning element relative to the polishing member. The conditioning surface of the conditioning element may then be rotated against the surface of the polishing member.
  • the method according to the present invention is particularly advantageous when the semiconductor structure is a wafer. This is because wafers are highly susceptible to damage during CMP processing, when slurry that is caked on the conditioning element can break loose and scratch the wafer surface. In the method according to the invention, dried slurry does not build up on the conditioning element in the first place and therefore there are no particles that can break loose from the conditioning element and scratch the wafer.
  • the present invention also provides apparatus for planarizing a semiconductor structure.
  • the apparatus comprises a polishing member having a surface for polishing the semiconductor structure, a conditioning element movable across the surface of the polishing member for conditioning the surface of the polishing member, means for directing slurry onto the surface of the polishing member, and rinsing means for rinsing the surface of polishing member and the semiconductor structure.
  • the apparatus comprises means operable to hold the conditioning element in contact with the surface of the polishing member when the rinsing means is rinsing the surface of the polishing member and the semiconductor structure. The conditioning element then remains in contact with the polishing member while the polishing member is rinsed.
  • the high volume of water delivered during the rinsing process removes the slurry from the conditioning element before it has a chance to solidify. Furthermore, rinsing helps to reduce the temperature of the conditioning element, which means that the slurry does not have a chance to solidify on the conditioning element before it is removed from the surface of the polishing member. In this way, there are no slurry particles that can break loose from the conditioning element during polishing and damage the semiconductor structure. In addition, the conditioning element does not have to be subject to cleaning with harsh chemicals and is thus reusable. Therefore, the planarizing apparatus of the present invention is highly advantageous.
  • the conditioning element is disk-shaped to form a conditioning disk.
  • the polishing member and the conditioning element may be rotatable relative to each other.
  • a surface of the conditioning element adapted to contact the polishing member may be provided with abrasive particles.
  • particles of a hard substance such as diamond may be impregnated into the surface of the conditioning element.
  • FIG. 1 (Prior Art) shows a first type of abrasive conditioning disk for conditioning a polishing surface of a CMP polishing element after taking part in prior art CMP processing;
  • FIG. 2 (Prior Art) shows a second type of abrasive conditioning disk for conditioning a polishing surface of a CMP polishing element after taking part in prior art CMP processing;
  • FIG. 3 is a simplified schematic of a CMP apparatus for carrying out the method according to the invention.
  • FIG. 3 shows a CMP planarizing apparatus for carrying out the method according to the invention.
  • a polishing pad 10 is generally disk-shaped and has an upper surface that is adapted to polish a semiconductor wafer 11 .
  • a conditioning disk 12 is provided for conditioning the polishing pad 10 and is affixed to a support arm 13 , which can move so as to oscillate the disk 12 from the edge to the center of the polishing pad 10 during operation.
  • a slurry arm 14 is adapted to direct slurry onto the upper surface of the polishing pad 10 .
  • the slurry contains a corrosive solution, for example sodium hydroxide.
  • the wafer 11 is pressed against the upper surface of the polishing pad 10 by a polishing head (not shown here), so that the surface of the wafer 11 in contact with the polishing pad 10 is planarized or flattened in the desired manner.
  • the polishing head is rotatable, so as to rotate the wafer 11 against the planarizing surface of the polishing pad 10 .
  • the polishing pad 10 also rotates in the same direction as the wafer 11 , for example anti-clockwise.
  • slurry is directed onto the polishing pad 10 by the slurry arm 14 .
  • the polishing pad 10 may be adapted to rotate eccentrically, depending on the requirements for planarization of the wafer 11 .
  • the conditioning disk 12 rotates to condition the polishing pad 10 and the support arm 13 moves the disk 12 from the edge to the center of the surface of the polishing pad 10 in an oscillating manner so that the entire surface of the polishing pad 10 is conditioned.
  • the surface of the conditioning disk 12 that is in contact with the upper surface of the polishing pad 10 is impregnated with particles of a hard substance, for example diamond, to form an abrasive surface.
  • this abrasive surface acts to condition the polishing pad 10 , so that it can more efficiently planarize the wafer 11 .
  • the disk 12 can also be made to rotate in the same direction as the polishing pad 10 and the wafer 11 .
  • the path of slurry flow from the slurry arm 14 will be in the direction of rotation of the polishing pad 10 , the wafer 11 and the conditioning disk 12 . This is indicated by the large arrow in FIG. 3 .
  • the direction of rotation of the polishing pad 10 , the wafer 11 and the disk 12 , as well as the direction of the slurry flow, is anti-clockwise.
  • Step 1 Step 2 Step 3 Step 4 Polishing pad On On On On rotation Wafer rotation On On On On Wafer pressure Off High Low Low Conditioning On On On Off disk contact to polishing pad Slurry On On Off Off Water Off Off On On
  • Step 1 is the start-up of the apparatus, where the polishing pad 10 , the wafer 11 , and the disk 12 are all set to rotate.
  • Step 2 is the processing step where planarization of the wafer 11 takes place. Rotation of the conditioning pad 10 , the wafer 11 and the disk 12 remains switched on and the disk oscillates from the edge to the center of the conditioning pad 10 .
  • the wafer 11 is pressed against the surface of the polishing pad 10 and the abrasive action of the polishing pad 10 , in conjunction with the corrosive slurry directed onto the wafer 11 from the slurry arm 14 , planarize the surface of the wafer 11 that is in contact with the polishing pad 10 .
  • the conditioning disk 12 acts to condition the polishing pad 10 .
  • the slurry is switched off and water is directed onto the polishing pad 10 so as to rinse the polishing pad 10 , the wafer 11 and the disk 12 .
  • the support arm 13 supporting the disk 12 is adapted to hold the disk 12 in contact with the polishing pad 10 .
  • a high volume of water is delivered to the polishing pad 10 during the rinse step and this removes the slurry from the disk 12 before the slurry solidifies. Furthermore, the water cools the disk 12 .
  • the pressure of the wafer 11 against the surface of the polishing pad 10 is reduced.
  • the disk 12 is removed from the surface of the polishing pad 10 by the support arm 13 so that it is no longer in contact with the polishing pad 10 . Since the water delivered to the disk 12 during the rinsing step cools the disk 12 , in the event that there is any slurry remaining on the disk 12 after step 3 of the process, it will not have an opportunity to dry and build up on the disk 12 during step 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A method of planarizing a semiconductor structure comprises moving a conditioning element on a surface of a polishing member, rotating the semiconductor structure relative to the polishing member against the surface of the polishing member, and rinsing the surface of the polishing member and the semiconductor structure. While the conditioning element is moved over the surface of the polishing member and the semiconductor structure is rotated against the surface of the polishing member, slurry is directed onto the polishing member. The step of rinsing comprises contacting the conditioning element to the surface of the polishing member.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application 61/141,585, the entirety of which is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention generally relates to a method of planarizing a semiconductor structure. More particularly, the present invention relates to prevention of slurry caking on a chemical mechanical planarization (CMP) conditioner.
  • BACKGROUND
  • In chemical mechanical planarization or polishing (CMP) of semiconductor structures, in particular wafers, the wafer is pressed against a polishing pad by a polishing head. The polishing pad has an abrasive surface, which planarizes or flattens the surface of the wafer. This can be necessary before the wafer is subjected to further processes, such as photolithography. At the same time, a corrosive and abrasive slurry (containing sodium hydroxide, for example) is directed onto the wafer surface, which works in conjunction with the polishing pad to planarize the wafer. While the wafer is being polished or planarized, the polishing pad is itself conditioned by an abrasive conditioning disk that moves or rotates across the surface of the polishing pad. This removes material from the surface of the polishing pad so that it can planarize the wafer more effectively.
  • Slurry build-up can occur on the conditioning disk as slurry is allowed to dry on the disk. This slurry build-up has a two-fold negative impact on the CMP process. Firstly, as slurry fills the area between diamonds on the conditioning disk, the effectiveness of the disk to condition the polishing pad is reduced. Secondly, dried slurry particles build up on the disk and break loose during processing, resulting in scratches and particles on the wafer. Removing the dried slurry from the disk requires vigorous mechanical cleaning and/or the use of strong chemicals, which can damage the disk in such a way that it cannot be used again.
  • FIGS. 1 and 2 show two different types of CMP conditioning disks 12 after taking part in several CMP processes. As the conditioning disk 12 sweeps across the polishing pad during a CMP process, the conditioning disk 12 becomes covered with slurry on its abrasive surface that contacts the polishing pad. This is illustrated in FIGS. 1 and 2 as a dark area in the center of the conditioning disk 12. During processing, slurry that is present on the conditioning disk 12 does not have time to dry, but while the CMP apparatus is not operating, the conditioning disk 12 can dry and the slurry coated thereon can form a hard “cake”. Sodium hydroxide present in the slurry can also crystallize on the abrasive surface of the conditioning disk 12, which is very difficult to remove. It has been found that such an undesirable slurry build-up on the disk 12 occurs after processing as few as 100 wafers. However, it is generally required to use a single conditioning disk in CMP processing of more than 4000 wafers.
  • It has been proposed to use a “clean cup,” which keeps the conditioning disk wet between CMP processes so that the slurry does not have a chance to dry on the conditioning disk. However, when the conditioning disk is moved to the clean cup position at the end of a polish cycle, there is a significant time of about 2-8 seconds during which slurry can become dried on the disk. Therefore, use of a clean cup is inadequate for eliminating slurry build-up on the disk.
  • SUMMARY
  • The present invention provides a method of planarizing a semiconductor structure.
  • In one embodiment, the method comprises moving a conditioning element on a surface of a polishing member, rotating the semiconductor structure relative to the polishing member against the surface of the polishing member, and rinsing the surface of the polishing member and the semiconductor structure. Slurry is directed onto the polishing member at the same time as the conditioning element is moved on the surface of the polishing member and the semiconductor structure is rotated against the surface of the polishing member. During rinsing of the surface of the polishing member, the conditioning element is contacted to the surface of the polishing member. The conditioning element is used to condition the surface of the polishing member, or pad, that planarizes or polishes the surface of the semiconductor structure in contact with it. Conditioning of the polishing member takes place by moving a conditioning surface of the conditioning element across its polishing surface. The conditioning surface may be formed of particles of a hard, abrasive substance, for example diamond. At the same time, slurry is directed onto the surface of the polishing member, which also helps in the planarizing process of the semiconductor structure. The slurry may contain a caustic substance such as sodium hydroxide, for example. After the surface of the polishing member is conditioned, it is rinsed to remove slurry and particles removed from it during the conditioning process. While the polishing member is being rinsed, the conditioning element is also held in contact with the surface of the polishing member so that it, too, is rinsed. This means that the slurry is washed away from the surfaces of the conditioning element before it is exposed to air and allowed to dry. Advantageously, the temperature of the conditioning element is reduced by the rinsing step while it is held in contact with the polishing pad during rinsing of the polishing pad and the semiconductor structure. Cooling the conditioning element during the rinsing step also helps to reduce the rate at which slurry may dry, and therefore build up, on its surface.
  • The slurry build-up that occurs on prior art conditioning elements is prevented with the abrasive element in the method of the present invention. Thus, no particles break loose from the conditioning element and the semiconductor structure is not caused to be scratched or damaged. There is also no need to use strong chemicals or vigorous mechanical cleaning to remove dried slurry from the conditioning element and therefore the conditioning element is reusable in further CMP processes. This means that the method according to the present invention is highly advantageous with respect to prior art CMP processes.
  • Preferably, moving the conditioning element on the surface of the polishing member comprises rotating the conditioning element relative to the polishing member. The conditioning element can be mounted so that it is rotatable relative to the surface of the polishing member. This means that during conditioning of the polishing member, the conditioning element can be rotated on the surface of the polishing member, or the conditioning element can remain stationary while the polishing member rotates, or both the conditioning element and the polishing member may rotate simultaneously.
  • The step of rotating may comprise rotating both the semiconductor structure and the polishing member. The semiconductor structure and the polishing member may be rotated in the same direction, for example anticlockwise.
  • The step of contacting may further comprises oscillating the conditioning element against the surface of the polishing member. For example, the conditioning element may be configured so that its surface is oscillated backwards and forwards across the surface of the polishing member while the polishing member is rotating. Alternatively, or in addition, the step of contacting may further comprise rotating the conditioning element relative to the polishing member. The conditioning surface of the conditioning element may then be rotated against the surface of the polishing member.
  • The method according to the present invention is particularly advantageous when the semiconductor structure is a wafer. This is because wafers are highly susceptible to damage during CMP processing, when slurry that is caked on the conditioning element can break loose and scratch the wafer surface. In the method according to the invention, dried slurry does not build up on the conditioning element in the first place and therefore there are no particles that can break loose from the conditioning element and scratch the wafer.
  • The present invention also provides apparatus for planarizing a semiconductor structure. The apparatus comprises a polishing member having a surface for polishing the semiconductor structure, a conditioning element movable across the surface of the polishing member for conditioning the surface of the polishing member, means for directing slurry onto the surface of the polishing member, and rinsing means for rinsing the surface of polishing member and the semiconductor structure. Further, the apparatus comprises means operable to hold the conditioning element in contact with the surface of the polishing member when the rinsing means is rinsing the surface of the polishing member and the semiconductor structure. The conditioning element then remains in contact with the polishing member while the polishing member is rinsed. The high volume of water delivered during the rinsing process removes the slurry from the conditioning element before it has a chance to solidify. Furthermore, rinsing helps to reduce the temperature of the conditioning element, which means that the slurry does not have a chance to solidify on the conditioning element before it is removed from the surface of the polishing member. In this way, there are no slurry particles that can break loose from the conditioning element during polishing and damage the semiconductor structure. In addition, the conditioning element does not have to be subject to cleaning with harsh chemicals and is thus reusable. Therefore, the planarizing apparatus of the present invention is highly advantageous.
  • Preferably, the conditioning element is disk-shaped to form a conditioning disk. The polishing member and the conditioning element may be rotatable relative to each other. A surface of the conditioning element adapted to contact the polishing member may be provided with abrasive particles. For example, particles of a hard substance such as diamond may be impregnated into the surface of the conditioning element.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further advantages and features of the invention will become apparent from the below description of a preferred embodiment, and from the accompanying drawings, in which:
  • FIG. 1 (Prior Art) shows a first type of abrasive conditioning disk for conditioning a polishing surface of a CMP polishing element after taking part in prior art CMP processing;
  • FIG. 2 (Prior Art) shows a second type of abrasive conditioning disk for conditioning a polishing surface of a CMP polishing element after taking part in prior art CMP processing; and
  • FIG. 3 is a simplified schematic of a CMP apparatus for carrying out the method according to the invention.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • FIG. 3 shows a CMP planarizing apparatus for carrying out the method according to the invention. A polishing pad 10 is generally disk-shaped and has an upper surface that is adapted to polish a semiconductor wafer 11. A conditioning disk 12 is provided for conditioning the polishing pad 10 and is affixed to a support arm 13, which can move so as to oscillate the disk 12 from the edge to the center of the polishing pad 10 during operation. A slurry arm 14 is adapted to direct slurry onto the upper surface of the polishing pad 10. The slurry contains a corrosive solution, for example sodium hydroxide.
  • During operation, the wafer 11 is pressed against the upper surface of the polishing pad 10 by a polishing head (not shown here), so that the surface of the wafer 11 in contact with the polishing pad 10 is planarized or flattened in the desired manner. The polishing head is rotatable, so as to rotate the wafer 11 against the planarizing surface of the polishing pad 10. The polishing pad 10 also rotates in the same direction as the wafer 11, for example anti-clockwise. At the same time, slurry is directed onto the polishing pad 10 by the slurry arm 14. The polishing pad 10 may be adapted to rotate eccentrically, depending on the requirements for planarization of the wafer 11.
  • During processing of the wafer 11, the conditioning disk 12 rotates to condition the polishing pad 10 and the support arm 13 moves the disk 12 from the edge to the center of the surface of the polishing pad 10 in an oscillating manner so that the entire surface of the polishing pad 10 is conditioned. The surface of the conditioning disk 12 that is in contact with the upper surface of the polishing pad 10 is impregnated with particles of a hard substance, for example diamond, to form an abrasive surface. As the disk 12 rotates across the surface of the polishing pad 10 and oscillates from the center to the edge of the polishing pad 10, this abrasive surface acts to condition the polishing pad 10, so that it can more efficiently planarize the wafer 11. The disk 12 can also be made to rotate in the same direction as the polishing pad 10 and the wafer 11. In this case, the path of slurry flow from the slurry arm 14 will be in the direction of rotation of the polishing pad 10, the wafer 11 and the conditioning disk 12. This is indicated by the large arrow in FIG. 3. In this example, the direction of rotation of the polishing pad 10, the wafer 11 and the disk 12, as well as the direction of the slurry flow, is anti-clockwise.
  • TABLE 1
    Step 1 Step 2 Step 3 Step 4
    Polishing pad On On On On
    rotation
    Wafer rotation On On On On
    Wafer pressure Off High Low Low
    Conditioning On On On Off
    disk contact to
    polishing pad
    Slurry On On Off Off
    Water Off Off On On
  • The relative states of the components of the apparatus shown in FIG. 3 while it is performing the method of the present invention are shown in Table 1. Step 1 is the start-up of the apparatus, where the polishing pad 10, the wafer 11, and the disk 12 are all set to rotate. Step 2 is the processing step where planarization of the wafer 11 takes place. Rotation of the conditioning pad 10, the wafer 11 and the disk 12 remains switched on and the disk oscillates from the edge to the center of the conditioning pad 10. The wafer 11 is pressed against the surface of the polishing pad 10 and the abrasive action of the polishing pad 10, in conjunction with the corrosive slurry directed onto the wafer 11 from the slurry arm 14, planarize the surface of the wafer 11 that is in contact with the polishing pad 10. At the same time, the conditioning disk 12 acts to condition the polishing pad 10. In step 3 of the method, the slurry is switched off and water is directed onto the polishing pad 10 so as to rinse the polishing pad 10, the wafer 11 and the disk 12. During the time when water is being directed onto the polishing pad 10 in this rinsing step, the support arm 13 supporting the disk 12 is adapted to hold the disk 12 in contact with the polishing pad 10. A high volume of water is delivered to the polishing pad 10 during the rinse step and this removes the slurry from the disk 12 before the slurry solidifies. Furthermore, the water cools the disk 12. During the rinsing step, the pressure of the wafer 11 against the surface of the polishing pad 10 is reduced. In the fourth step of the process, the disk 12 is removed from the surface of the polishing pad 10 by the support arm 13 so that it is no longer in contact with the polishing pad 10. Since the water delivered to the disk 12 during the rinsing step cools the disk 12, in the event that there is any slurry remaining on the disk 12 after step 3 of the process, it will not have an opportunity to dry and build up on the disk 12 during step 4.
  • Although the invention has been described hereinabove with reference to a specific embodiment, it is not limited to this embodiment and no doubt further alternatives will occur to the skilled person that lie within the scope of the invention as claimed.

Claims (13)

1. A method of planarizing a semiconductor structure, the method comprising:
moving a conditioning element on a surface of a polishing pad relative to the surface;
rotating the semiconductor structure relative to the polishing pad against the surface of the polishing pad;
directing slurry onto the polishing pad during the steps of moving and rotating; and
rinsing the surface of the polishing pad and the semiconductor structure, wherein the step of rinsing comprises contacting the conditioning element to the surface of the polishing pad.
2. The method according to claim 1, wherein the step of moving comprises rotating the conditioning element relative to the polishing pad.
3. The method according to claim 1, wherein the step of rotating comprises rotating both the semiconductor structure and the polishing pad.
4. The method according to claim 1, wherein the step of contacting further comprises oscillating the conditioning element against the surface of the polishing pad.
5. The method according to claim 1, wherein the step of contacting further comprises rotating the conditioning element relative to the polishing pad.
6. The method according to claim 1, wherein the semiconductor structure is a wafer.
7. The method according to claim 1, wherein the semiconductor structure is a wafer; the step of moving comprises rotating the conditioning element relative to the polishing pad; the step of rotating comprises rotating both the semiconductor structure and the polishing pad; and the step of contacting further comprises oscillating the conditioning element against the surface of the polishing pad and rotating the conditioning element relative to the polishing pad.
8. A method of planarizing a semiconductor wafer using chemical mechanical polishing (CMP), comprising:
pressing a surface of the wafer against an abrasive surface of a rotating polishing pad and rotating the wafer relative to the polishing pad to planarize the wafer surface;
conditioning the polishing pad by rotating a conditioning surface of a conditioning disk against and relative to the polishing pad abrasive surface to remove material from the polishing pad abrasive surface; the conditioning disk being supported on a support arm that moves the conditioning disk from an edge to a center of the polishing pad as the polishing pad rotates, to move the disk in an oscillating manner relative to the polishing pad abrasive surface;
directing a slurry containing a corrosive solution from a slurry arm onto the abrasive surface of the rotating polishing pad, the slurry flowing from the slurry arm in the direction of rotation of the polishing pad to the conditioning surface and wafer surface;
turning the slurry off and directing water onto the abrasive surface of the polishing pad for rinsing to remove slurry and polishing particles from and to cool the polishing pad abrasive surface, conditioning surface and wafer surface;
while the polishing pad abrasive surface is being rinsed, reducing the pressure of pressing the surface of the wafer against the polishing pad abrasive surface, and holding the conditioning surface in contact with the polishing pad abrasive surface to prevent drying of the conditioning surface; and
after rinsing and cooling the conditioning surface, removing the conditioning disk away from the polishing pad with the support arm.
9. Apparatus for planarizing a semiconductor structure, the apparatus comprising:
a polishing member having a surface for polishing the semiconductor structure;
a conditioning element;
a support arm supporting the conditioning element for movement across the surface of the polishing member for conditioning the surface of the polishing member; and
a slurry arm for directing slurry onto the surface of the polishing member during polishing and for directing water onto the surface of the polishing member for rinsing;
the support arm serving to hold the conditioning element in contact with the surface of the polishing member when thewater is rinsing the surface of the polishing member.
10. The apparatus according to claim 9, wherein the polishing member and the semiconductor structure are rotatable relative to each other.
11. The apparatus according to claim 9, wherein the conditioning element is disk-shaped.
12. The apparatus according to claim 9, wherein a surface of the conditioning element in contact with the surface of the polishing member comprises abrasive particles.
13. The apparatus according to claim 9, wherein the polishing member and the semiconductor structure are rotatable relative to each other; the conditioning element is disk-shaped; and a surface of the conditioning element in contact with the surface of the polishing member comprises abrasive particles.
US12/415,382 2008-03-31 2009-03-31 Method to prevent slurry caking on cmp conditioner Abandoned US20090247054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/415,382 US20090247054A1 (en) 2008-03-31 2009-03-31 Method to prevent slurry caking on cmp conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008016463A DE102008016463A1 (en) 2008-03-31 2008-03-31 Method for planarizing a semiconductor structure
DE102008016463.1 2008-03-31
US14185208P 2008-12-31 2008-12-31
US12/415,382 US20090247054A1 (en) 2008-03-31 2009-03-31 Method to prevent slurry caking on cmp conditioner

Publications (1)

Publication Number Publication Date
US20090247054A1 true US20090247054A1 (en) 2009-10-01

Family

ID=41011210

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/415,382 Abandoned US20090247054A1 (en) 2008-03-31 2009-03-31 Method to prevent slurry caking on cmp conditioner

Country Status (2)

Country Link
US (1) US20090247054A1 (en)
DE (1) DE102008016463A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120354A (en) * 1997-06-09 2000-09-19 Micron Technology, Inc. Method of chemical mechanical polishing
US20010024939A1 (en) * 2000-03-23 2001-09-27 Takao Inaba Wafer polishing apparatus
US20010029155A1 (en) * 2000-01-31 2001-10-11 Applied Materials, Inc. Multi-step conditioning process
US6409580B1 (en) * 2001-03-26 2002-06-25 Speedfam-Ipec Corporation Rigid polishing pad conditioner for chemical mechanical polishing tool
US6572453B1 (en) * 1998-09-29 2003-06-03 Applied Materials, Inc. Multi-fluid polishing process
US20030134580A1 (en) * 2002-01-15 2003-07-17 Kunihiko Sakurai Polishing apparatus
US6602119B1 (en) * 1999-06-08 2003-08-05 Ebara Corporation Dressing apparatus
US20070298692A1 (en) * 2006-06-27 2007-12-27 Applied Materials, Inc. Pad cleaning method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921856A (en) * 1997-07-10 1999-07-13 Sp3, Inc. CVD diamond coated substrate for polishing pad conditioning head and method for making same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120354A (en) * 1997-06-09 2000-09-19 Micron Technology, Inc. Method of chemical mechanical polishing
US6572453B1 (en) * 1998-09-29 2003-06-03 Applied Materials, Inc. Multi-fluid polishing process
US6602119B1 (en) * 1999-06-08 2003-08-05 Ebara Corporation Dressing apparatus
US20010029155A1 (en) * 2000-01-31 2001-10-11 Applied Materials, Inc. Multi-step conditioning process
US20010024939A1 (en) * 2000-03-23 2001-09-27 Takao Inaba Wafer polishing apparatus
US6409580B1 (en) * 2001-03-26 2002-06-25 Speedfam-Ipec Corporation Rigid polishing pad conditioner for chemical mechanical polishing tool
US20030134580A1 (en) * 2002-01-15 2003-07-17 Kunihiko Sakurai Polishing apparatus
US20070298692A1 (en) * 2006-06-27 2007-12-27 Applied Materials, Inc. Pad cleaning method

Also Published As

Publication number Publication date
DE102008016463A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4813185B2 (en) Wafer cleaning apparatus and cleaning method
EP1181134B1 (en) Method for cleaning a chemical mechanical polishing pad
JP3797861B2 (en) Polishing device
JPH0929635A (en) Dressing method and dressing device
KR102229920B1 (en) Systems, methods and apparatus for post-chemical mechanical planarization substrate buff pre-cleaning
KR100225275B1 (en) Apparatus for polishing wafers
JP6468037B2 (en) Polishing equipment
JP3761311B2 (en) Chemical mechanical polishing (CMP) apparatus and chemical mechanical polishing method using the same
JP2000280165A (en) Polishing device
KR100397415B1 (en) Method for chemical mechanical polishing of semiconductor wafer
US6878045B2 (en) Ultrasonic conditioning device cleaner for chemical mechanical polishing systems
US20230278165A1 (en) Pad conditioner cleaning system
US20200198090A1 (en) Cmp apparatus and method of performing ceria-based cmp process
JP2007180309A (en) Polishing device and method therefor
JP3708740B2 (en) Polishing apparatus and polishing method
US20090247054A1 (en) Method to prevent slurry caking on cmp conditioner
US20150158143A1 (en) Apparatus and method for chemically mechanically polishing
KR100744222B1 (en) Chemical-mechanical polishing system
JP2004335648A (en) Cmp system, method for initializing cmp polishing pad and semiconductor device
KR100628226B1 (en) Apparatus and Method for Chemical Mechanical Polishing of Semiconductor Device
JPH11277418A (en) Thin plate polishing method and thin plate holding plate
KR100687425B1 (en) Polisher/cleaning apparatus and method for semiconductor wafer
JP2001127022A (en) Polishing method and polishing device
KR100744221B1 (en) Chemical mechanical polisher and process for the same
US20050079811A1 (en) Defect reduction using pad conditioner cleaning

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAVIS, EUGENE C.;REEL/FRAME:022564/0960

Effective date: 20090331

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION