US20090241814A1 - Method and System for Heating of Water Based on Hot Gases - Google Patents

Method and System for Heating of Water Based on Hot Gases Download PDF

Info

Publication number
US20090241814A1
US20090241814A1 US11/992,508 US99250806A US2009241814A1 US 20090241814 A1 US20090241814 A1 US 20090241814A1 US 99250806 A US99250806 A US 99250806A US 2009241814 A1 US2009241814 A1 US 2009241814A1
Authority
US
United States
Prior art keywords
water
gas
heat exchanger
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/992,508
Inventor
Jens Dall Bentzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dall Energy Holding ApS
Original Assignee
Dall Energy Holding ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dall Energy Holding ApS filed Critical Dall Energy Holding ApS
Assigned to DALL ENERGY HOLDING APS reassignment DALL ENERGY HOLDING APS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENTZEN, JENS DALL
Publication of US20090241814A1 publication Critical patent/US20090241814A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/50Cooling fluid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/70Condensing contaminants with coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/80Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates generally to a method and a system for heat recovery from hot gas, e.g. flue gas, produced in a thermal reactor, or—more precisely—for heating of water by means of the hot gases that are released by thermal conversion (gasification or combustion) of solid fuels e.g. biomass, waste or coal.
  • hot gas e.g. flue gas
  • thermal conversion gasification or combustion
  • Heating of water from hot gases that are released during thermal conversion of fuels is well known.
  • the hot water can be used for heating purposes, e.g. in houses, apartment houses, offices, in industries etc. and for domestic water. Installations for such purposes are produced in very different sizes, approx. 1 kW-250 MW input effect.
  • the water is usually heated in a closed circuit and led to a point of consumption, after which the water is returned to the heat production unit after release of the thermal energy.
  • the water temperature usually is 60-90° C.
  • the temperature of the water returning to the heat-production unit after cooling at the consumer (return) is about 30-50° C.
  • the hot water can be produced close to the required locations or be sent to the consumer via a district heating network.
  • the energy released by thermal conversion of a fuel can be transferred to hot water in stages, e.g.:
  • the gas leaving the thermal unit is usually around 700-1000° C., depending on technology, fuel and operation conditions. It is well known, e.g. at CHP stations, that the temperature in the thermal unit can be adjusted or controlled by water injection in order to protect materials, e.g. the superheater, against a too high temperature.
  • the amount of water injected in order to adjust the temperature in the boiler room is, however, very limited; the temperature of the gas remains high (above 600° C.), and the characteristics of the gas, e.g. the water dew point, are not changed substantially.
  • the energy from the hot gas is transferred to another medium, e.g. water, by using a heat exchanger where the hot gas is flowing at one side while another colder medium (e.g. water) is flowing at the other side.
  • another colder medium e.g. water
  • more heat exchangers are used, e.g. air preheating and/or steam superheating and/or hot water production.
  • heat exchangers are usually of the convection heat exchanger type, as the energy mainly is transferred from the gas via convection.
  • steel pipes are used.
  • the gas contains particles. These particles result in several problems in this heat exchanger: fouling, corrosion, low heat exchange rates etc. and often a device is mounted to keep the gas tubes clean, e.g. soot blowing or mechanical cleaning.
  • the heat exchanger used for transferring energy from the dry hot gas is made of materials matching the qualities of the gas, usually heat-proof steel.
  • the gas is cooled in the “convection part” to around 150° C., as the temperature of the gas then is above the acid dew point and the water dew point. If the gas is cooled to or below the acid or water dew points, severe corrosion may occur in the heat-proof material of the heat exchanger.
  • Ammonia, chlorine, sulphur, particles, salts etc. is often removed from the gas, for instance by a dry or semi-dry cleaning process. In this way, the materials causing problems for the environment or the materials blocking and/or corroding during the subsequent process stages can be removed.
  • the gas can be further cooled, by which vapours, including water vapour in the gas, are condensing.
  • the composition of the gas depends on the fuel conversed and of the conditions in the thermal reactor. With high moisture content in the fuel and a low amount of excess air in the thermal unit, a high water dew point is obtained. Usually, the water dew point in the gas will be approx. 35-60° C., if the gas has atmospheric pressure. If the gas is cooled below the water dew point, water vapour will condense, and condensation energy is released which can be used for further heat production. Depending on the fuel and the conditions in the thermal process, the energy utilization can be increased by up to about 30%.
  • the condensing part is usually made of other materials.
  • the condensing part e.g. glass fibre, plastic material, glass, acid-proof stainless steel, titanium etc. are used.
  • the temperature of the water heated in the condensing unit becomes too low to be used for supply. Therefore, the water from the condensing unit must be further heated.
  • the energy in the gas after the condensing unit can be further utilized, for instance by transferring water vapour and heat to the combustion air that is added to the thermal process, or by means of a heat pump.
  • chilling of hot gases by massive water injection into a “quench” is used.
  • a “quench” is thus wet, as there is a surplus of water.
  • no considerable evaporations will take place of the injected water, as the water amount is very large in order to secure cooling of the gases.
  • no significant change of the gas characteristics e.g. the dew point
  • the nozzles used in a quench are of the type generating large water drops and delivering a large amount of water.
  • the heat capacity approximately 0.16 J/g/° C.
  • chilling of hot gases by water injection into an “evaporative cooler” is used.
  • the cooled gas can be dry and thus dry gas cleaning systems can be used for cleaning the gases, which is necessary due to environmental legislation.
  • dry gas cleaning systems can be used for cleaning the gases, which is necessary due to environmental legislation.
  • cement production plants One example of such plants.
  • the water vapour in the gas from “evaporative coolers” is not condensated and used for production of hot water.
  • the combustion chamber is very compact and followed by an injector which is used as a gas pump.
  • the ejector can then be followed by a heat exchanger where water vapours condensate and energy hereby is be retrieved.
  • a heat exchanger where water vapours condensate and energy hereby is be retrieved.
  • Feeding systems and combustion chambers for solid fuels are very different from feeding systems and combustion chambers for gaseous fuels.
  • the invention provides a method and a plant allowing transfer of energy from hot gases to water or another fluid by means of considerably fewer heat transfer units, as the heat transfer from hot gases can be gathered in a single condensing unit. Moreover, a more simple water circuit is obtained as coupling and control of water circuit for a condensing unit as well as a convection part are avoided.
  • the invention provides a method for heat recovery from hot flue gas, produced in a thermal reactor.
  • water is injected at one or more injection zones in such an amount and in such a way that the flue gas temperature is reduced to below 400° C. and the gas dew point is at least 60° C. due to water evaporation.
  • the gas is led through a condensing heat exchanger unit ( 8 ), where at least some of the water vapour is condensed, and the condensation heat is used for heating a liquid stream, mainly water.
  • the amount of water vapour in the gas is increased, and thus the dew point of the gas is increased.
  • injection of water into a flue gas from combustion of biomass in such an amount that the gas is cooled to 150° C. will increase the dew point for the flue gas to approx. 85° C.
  • the dew point in flue gas is usually 35-60° C. without water injection.
  • the cooled gas containing a large amount of water vapour can then produce the amount of energy in the condensing heat exchanger unit which was previously produced in at least two units, i.e. a dry and hot convection part and a condensing part.
  • the dew point of the flue gas has increased considerably due to the water injection, which means that the condensing heat exchanger unit can heat water or another liquid to a temperature suitable for using the water directly as supply.
  • At least a part of the water injected into the hot gases will atomize in a nozzle, by which the water will evaporate more quickly.
  • Water injection into the hot gas may take place in several injection zones, which may comprise the fuel, the thermal reactor, a gas cleaning unit and/or the condensing heat exchanger unit.
  • the same plant can be used for dry fuels by water injection into the fuel and/or the thermal reactor. Thus, a fuel flexible plant is obtained.
  • NOx-formation can be controlled and reduced, as NOx formation is independent of temperature.
  • the thermal reactor and the gas pipes to the condensing heat exchanger unit may be separated or be built together in one unit, as the thermal conversion then takes place in one zone, whereas water injection may take place in that reactor zone and possible also somewhere else in a subsequent zone.
  • the gas Before and/or after the condensing unit, the gas can be cleaned of undesirable materials such as e.g. ammonia, heavy metals, acids, chlorine, sulphur, particles, salts, etc. This may for instance be done in a bag filter, a cyclone, and electrofilter or in a scrubber, possibly combined with addition of absorbents such as active carbon, lime, bicarbonate etc. As long as the gas temperature is above the water dew point, dry gas cleaning technologies can be used, e.g. bag filter or electrofilter. If the gas is wet, scrubbers and/or wet electrofilters can be used.
  • undesirable materials such as e.g. ammonia, heavy metals, acids, chlorine, sulphur, particles, salts, etc.
  • absorbents such as active carbon, lime, bicarbonate etc.
  • dry gas cleaning technologies can be used, e.g. bag filter or electrofilter. If the gas is wet, scrubbers and/or wet electrofilters can be used.
  • a part of the water injected into the gas can advantageously be injected at great speed in the direction of the gas flow.
  • kinetic energy from the water can be transferred to the gas, and the water injection may then act as a gas pump (ejector).
  • the water heated in the condensing heat exchanger unit can be further heated, e.g. via a water-cooled feeder, a water-cooled grate water-cooled areas in the reactor and/or other cooled surfaces around the thermal conversion area or via another thermal production.
  • a certain energy amount will be left in the gas in the form of heat and water vapour.
  • Some of that energy can be utilized by transfer to the combustion air via an enthalpy exchanger.
  • water vapour and heat are transferred to the combustion air, implying an even higher water vapour amount in the gas and thus a higher efficiency of the condensing unit.
  • Enthalpy exchangers can be designed in different ways, e.g. as rotating units, where combustion air flows on one side and hot gas on the other, or as a system where the gas after the condensing heat exchanger unit changes with cold water, whereby the water is heated. The heated water can then be used for heating and humidifying the combustion air.
  • the hot water can be produced close to the consumption place or be sent to the consumer via a district heating network.
  • Plants designed according to the invention can be built in a very wide spectrum of sizes, approx. 1 kW-250 MW input effect.
  • the thermal unit may have other purposes than only heat production, e.g. production of gas and electricity among others.
  • technologies relevant for the invention can be mentioned: Combustion plants for solid fuel (biomass, waste and coal) for mere heat production as well as CHP production, gas and oil fired boilers, motors, gas turbines, gasification plants etc.
  • thermal unit is of the fluid bed type
  • water injection into the bed can be used for adjusting the temperature in the bed, by which operational (e.g. slag formation) and environmental (e.g. reduction of NOx) advantages can be obtained.
  • Water injection into the bed will further contribute to fluidization of the bed. This kind of temperature adjustment is considerably more robust than the traditional technique in the form of cooling coils which are quickly worn down of the bed material.
  • the condensed water can be cleaned of particles, salts, heavy metals etc. and be adjusted for pH, before it is used or led away.
  • the water injected into the fuel in the thermal unit, in the gases or in the condenser may be condensate, segregated in the condensing unit, or water added from outside.
  • the condensing unit and in the connecting gas duct there may be atmospheric pressure, or pressures above or below the atmosphere.
  • the invention further provides a system for decomposition of fuel and production of hot water, and comprising a thermal reactor, a flue gas duct, one or more water injection devices e.g. in the form of nozzles and a condensing heat exchanger unit connected to the flue gas duct.
  • a thermal reactor e.g. a thermal reactor
  • a flue gas duct e.g. a flue gas duct
  • one or more water injection devices e.g. in the form of nozzles
  • a condensing heat exchanger unit connected to the flue gas duct.
  • the condensation heat is used for heating of a flow of fluid, preferably water, and means for control of the water injection into the flue gas in order that the flue gas temperature is reduced to below 400° C., and the gas dew point becomes at least 60° C. due to the evaporation of water.
  • FIG. 1 schematically depicts a first design of a plant according to the invention
  • FIG. 2 schematically depicts a second design of the plant according to the invention, where solid fuel is burned in a grate-fired boiler, and where particles are removed from the flue gas in a bag filter before condensing;
  • FIG. 3 schematically depicts a third design of the plant according to the invention, where solid fuel is burned in a grate-fired boiler, and where water is added by means of an ejector;
  • FIG. 4 schematically depicts a fifth design of the plant, where fuel is gasified and the heat energy in the gas is utilized;
  • FIG. 5 is a diagram of the flue gas output from cooling, with and without preceding water injection and evaporation.
  • FIG. 6 are two tables with energy calculations, where wet and dry fuel, respectively, are converted. The calculations show results for today's standard technology and for the invention with and without moistening of combustion air.
  • FIG. 1 of the drawings there is shown a unit or reactor 1 , to which fuel is added.
  • the fuel is converted thermally by addition of air (and/or oxygen).
  • a warm gas is produced in the thermal unit 1 .
  • the fuel added to unit 1 is solid e.g. biomass, waste or coal. If the thermal unit 1 is designed for fuels with low calorific power, e.g. wet fuel, and if the added fuel has a higher calorific power, the temperature in the unit or in the generator 1 can be adjusted by adding water to the fuel at 2 and/or by adding water at 3 within the thermal unit 1 .
  • water is injected into the hot gases leaving the thermal unit 1 .
  • the water evaporates and cools the gases considerably, as the evaporation energy from water is very high.
  • the unit in which injection 4 is placed can be built of heat-proof steel, bricks, castings and/or other materials.
  • the amount of water dosed at 4 can be controlled on basis of the gas temperature and/or the dew point by means of adequate control means S, placed in a position after 4 , where the injected water has evaporated.
  • a gas cleaning unit 5 can remove these impurities from the dry gas.
  • the gas Via a gas blower or pump 6 , the gas can be pumped on to a condensing heat exchanger unit 8 , where the heat in the gases, including the condensation heat in the water vapour, can be transferred to the water to be heated.
  • water can also be injected at 7 .
  • the gas sucker 6 can also be placed after the condensing unit 8 , where the gas flow is lower due to the cooling of the gas and the condensing of the water vapours.
  • more impurities can be removed from the gas at 9 and/or from the produced condensate at 12 .
  • some of the energy left in the gas in the form of heat and moist can be transferred, at 10 , to the combustion air which is added to the thermal unit 1 .
  • the humidified air can be further heated in a heat exchanger 11 , before the air is added to the thermal unit 1 , whereby the supply lines are kept dry.
  • This type of plant can be produced in many different sizes, from a few kW (villa boilers) to large plants above 100 MW.
  • FIG. 2 shows a combustion plant for production of district heating, and where the gas is cleaned before condensing and combustion air is moisturized.
  • 1 is a burner for combustion of solid fuel.
  • the plant is brick-lined so that it can burn fuels with a high water content (up to 60% water) or which otherwise have a low calorific value (below 10 MJ/kg). Fuels with a higher calorific value can also burn in such a plant, as water can be added to the fuel at 2 , or in the boiler room at 3 . Further, at 4 water is added to the hot gases leaving the burner 1 . The water evaporates and cools the gases to ca. 150-200° C. Subsequently, the gas is cleaned of particles in a bag filter 5 . If other substances are to be removed from the gas, absorbents can be added before the filter, e.g. lime, active carbon, bicarbonate etc.
  • absorbents can be added before the filter, e.g. lime, active carbon, bicarbonate etc.
  • the flue gas is sucked through the gas sucker or the pump 6 and is cooled in the condensing unit 8 , comprising two cooling towers placed above each other, designated respectively “Kol. 1 ” and “Kol. 2 ”, and a heat exchanger 13 , as the flue gas flows counter-flow with the cooled condensate 7 a .
  • the condensing unit 8 is built of glass fibre, it is important that the gas is cooled to below ca. 150° C., before the inlet. Addition of water in the nozzle in 7 b protects the condenser inlet 14 from becoming too warm. In the cooling tower “Kol. 1 ” cooling water is added at 7 a .
  • the condensate is gathered in a room 15 under the cooling towers and the inlet 14 .
  • the hot condensate is heat exchanged in the heat exchanger 13 by water in a district heating system which is not shown, as the cold district heating water is added via a return pipe, whereas the hot water is led back to the system via a supply pipe.
  • the flue gas dew point is high, e.g. ca. 85° C.
  • the temperature of the produced condensate can be about 85-90° C.
  • the district heating water can be heated from the condensate at one single stage.
  • the combustion air added to the burner 1 can be heated in a humidifier 17 , where hot water is added at 18 , or by means of a heater device 11 , ensuring that the air ducts are kept dry.
  • the water added at 2 - 4 , 7 a , 7 b and 18 may—as shown—be the cooled condensate that leaves the heat exchanger 13 , and any surplus condensate can be led away at 19 .
  • Condensate gathered at the bottom of the humidifier 17 can be used for addition to the cooling tower “Kol. 2 ”.
  • FIG. 3 shows a combustion plant for production of district heating.
  • the gas is led through the plant by means of an ejector pump.
  • 1 is a burner for combustion of solid fuel.
  • water is added to the hot gases leaving the burner 1 .
  • the water evaporates and cools the gases.
  • 7 a water is injected at great speed in the direction of the gas flow through a pipe 20 , the cross section of which is increased in the flow direction.
  • the water injection at 7 a through the pipe 20 acts as an ejector.
  • a condensing heat exchanger 8 heat energy is transferred from the flue gas to the district heating water.
  • the heat exchanger in 8 may be made of glass, plastic or acid-proof stainless steel, but needs not be heat-proof.
  • the exchanger can be cleaned of particles by means of water injected at 7 b , but this needs not be a continuous cleaning.
  • the produced condensate can be cleaned of particles etc. at 12 , before it is used as injection water at 4 a , 4 b and 7 or drained off to a drain at 19 .
  • FIG. 4 shows a preferred design of a gasifier plant 1 , where the produced gas firstly is cooled by being used for preheating of combustion air in a heat exchanger 21 , and then is cooled by water injection at 4 .
  • the drafted gasifier is of the type “staged fixed bed”, but can in principle be other gasifier types, e.g. a fluid bed gasifier.
  • the gas is cleaned of particles (and possibly tars) e.g. in a bag filter and/or an active carbon filter 5 , after which the gas in a heat exchanger 8 is cooled during condensing of water.
  • a gas blower or pump 6 the gas is blown to a conversion unit, here illustrated by an engine, but there could also be other conversion units, e.g. a gas turbine, liquefaction equipment for conversion of the gas to fluid fuel etc.
  • the flue gas energy from the conversion unit can be utilized e.g. for heat production.
  • the invention can be utilized twice.
  • FIG. 5 is a diagram showing the calculation of the output from cooling of flue gas from respectively a traditional boiler and by water injection according to the invention, cf. FIGS. 2 and 3 . Common data for the two calculations are:
  • FIG. 6 shows two tables with key figures for selected calculations for district heating plants. It appears from the key figures that the efficiency by use of wet fuels will be the same for a standard design with condensing operation and with “water injection”.
  • the most important advantage of the concept is that the construction becomes considerably simpler and cheaper than for traditional condensing plants with both a convection part and a condensing unit.
  • a convection boiler and belonging boiler circuit with shunt and heat exchanger can be saved, and the water circuit and the control of the heat productions become much simpler and thus cheaper.
  • the efficiency is increased by lower air consumption, as the flue gas loss becomes smaller.
  • the air consumption can be reduced compared to plants with “boiler operation”, which will give a better efficiency.
  • the efficiency is further increased by 5-15% by moistening of combustion air.
  • Thermal NOx can be reduced by water injection in and around the combustion chamber, especially in case of gas and coal combustion.
  • Particle emissions will be reduced when filters are used e.g. bag filters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chimneys And Flues (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Heat can be recovered from hot gas produced in a thermal reactor (1), by injecting water into the gas at one or more injection zones (4) in such an amount and in such a way that the gas temperature due to water evaporation is reduced to below 400° C., preferably below 300° C., possibly below 150-200° C., and the gas dew point becomes at least 60° C., preferably at least 70° C., possibly 80 or 85° C. The gas can then be led through a condensing heat exchanger unit (8), where at least some of the gas contents of water vapour are condensed, and the condensing heat can be utilized for heating of a stream of fluid, mainly water. Hereby, a method for production of hot water is obtained, which is cheap and simple and has low maintenance costs, and which moreover has a high efficiency degree and good environmental qualities The method can be used for a broad spectrum of fuels and conversion technologies.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to a method and a system for heat recovery from hot gas, e.g. flue gas, produced in a thermal reactor, or—more precisely—for heating of water by means of the hot gases that are released by thermal conversion (gasification or combustion) of solid fuels e.g. biomass, waste or coal.
  • BACKGROUND OF THE INVENTION
  • Heating of water from hot gases that are released during thermal conversion of fuels is well known. The hot water can be used for heating purposes, e.g. in houses, apartment houses, offices, in industries etc. and for domestic water. Installations for such purposes are produced in very different sizes, approx. 1 kW-250 MW input effect.
  • Reference is made to “Varme ståbi”, Nyt teknisk Forlag, 4th ed., 2004, ordering No. 44031-1, ISBN 87-571-2546-5, Ullmann's Encyclopedia of Industrial Chemistry Release 2005, 7th Edition, “User friendly it tool for biomass heating plants” in proceedings of “2nd world conference and technological exhibition on biomass for energy, industry and climate protection” and DE 3544502 A1.
  • The water is usually heated in a closed circuit and led to a point of consumption, after which the water is returned to the heat production unit after release of the thermal energy. When the water leaves the production unit (supply), the water temperature usually is 60-90° C. The temperature of the water returning to the heat-production unit after cooling at the consumer (return) is about 30-50° C.
  • Concurrently with the technological development and the attention to energy savings, there has been a tendency to reduce the supply and return temperatures, as the heat loss from the distribution pipes is reduced in that way.
  • The hot water can be produced close to the required locations or be sent to the consumer via a district heating network.
  • The energy released by thermal conversion of a fuel can be transferred to hot water in stages, e.g.:
  • 1. By cooling of the area around the place where the thermal conversion takes place, e.g. a water-cooled feeder, a water-cooled grate, water-cooled areas in the reactor or other cooled surfaces where the thermal conversion takes place.
  • 2. Cooling of the (dry) hot gases
  • 3. Further cooling of the gases, by which vapours in the gas is condensed.
  • Re 2. Cooling of the (Dry) Hot Gases
  • The gas leaving the thermal unit is usually around 700-1000° C., depending on technology, fuel and operation conditions. It is well known, e.g. at CHP stations, that the temperature in the thermal unit can be adjusted or controlled by water injection in order to protect materials, e.g. the superheater, against a too high temperature. The amount of water injected in order to adjust the temperature in the boiler room is, however, very limited; the temperature of the gas remains high (above 600° C.), and the characteristics of the gas, e.g. the water dew point, are not changed substantially.
  • Usually, the energy from the hot gas is transferred to another medium, e.g. water, by using a heat exchanger where the hot gas is flowing at one side while another colder medium (e.g. water) is flowing at the other side. Thus, the water is heated whereas the gas is cooled. In some plants, more heat exchangers are used, e.g. air preheating and/or steam superheating and/or hot water production.
  • These heat exchangers are usually of the convection heat exchanger type, as the energy mainly is transferred from the gas via convection. Usually, steel pipes are used. When solid fuels are converted, the gas contains particles. These particles result in several problems in this heat exchanger: fouling, corrosion, low heat exchange rates etc. and often a device is mounted to keep the gas tubes clean, e.g. soot blowing or mechanical cleaning.
  • The heat exchanger used for transferring energy from the dry hot gas is made of materials matching the qualities of the gas, usually heat-proof steel.
  • Usually, the gas is cooled in the “convection part” to around 150° C., as the temperature of the gas then is above the acid dew point and the water dew point. If the gas is cooled to or below the acid or water dew points, severe corrosion may occur in the heat-proof material of the heat exchanger.
  • Ammonia, chlorine, sulphur, particles, salts etc. is often removed from the gas, for instance by a dry or semi-dry cleaning process. In this way, the materials causing problems for the environment or the materials blocking and/or corroding during the subsequent process stages can be removed.
  • Re 3. Further Cooling of the Gases by Which Vapour in the Gas is Condensed
  • In order to utilize more of the heat energy, the gas can be further cooled, by which vapours, including water vapour in the gas, are condensing. The composition of the gas depends on the fuel conversed and of the conditions in the thermal reactor. With high moisture content in the fuel and a low amount of excess air in the thermal unit, a high water dew point is obtained. Usually, the water dew point in the gas will be approx. 35-60° C., if the gas has atmospheric pressure. If the gas is cooled below the water dew point, water vapour will condense, and condensation energy is released which can be used for further heat production. Depending on the fuel and the conditions in the thermal process, the energy utilization can be increased by up to about 30%.
  • By condensing of water vapour, other materials are released from the gas too, e.g. ammonia, chlorine, sulphur, particles, salts etc. As some of these substances may spoil, e.g. corrode the materials used for cooling the dry gas (the convection part), the condensing part is usually made of other materials. In the condensing part, e.g. glass fibre, plastic material, glass, acid-proof stainless steel, titanium etc. are used.
  • As the gas which is led to the condensing unit is cooled to e.g. 150° C. and has a water dew point of around 35-60° C., the temperature of the water heated in the condensing unit becomes too low to be used for supply. Therefore, the water from the condensing unit must be further heated.
  • The energy in the gas after the condensing unit can be further utilized, for instance by transferring water vapour and heat to the combustion air that is added to the thermal process, or by means of a heat pump.
  • In some, especially chemical plants, chilling of hot gases by massive water injection into a “quench” is used. A “quench” is thus wet, as there is a surplus of water. In these plants, no considerable evaporations will take place of the injected water, as the water amount is very large in order to secure cooling of the gases. Similarly, no significant change of the gas characteristics (e.g. the dew point) will take place. The nozzles used in a quench are of the type generating large water drops and delivering a large amount of water. Thus, in a quench the heat capacity (approx. 4.16 J/g/° C.) of water is used to cool the gas.
  • In some, especially chemical plants, chilling of hot gases by water injection into an “evaporative cooler” is used. In an “evaporative cooler” the cooled gas can be dry and thus dry gas cleaning systems can be used for cleaning the gases, which is necessary due to environmental legislation. One example of such plants is cement production plants. The water vapour in the gas from “evaporative coolers” is not condensated and used for production of hot water.
  • In some plants, fuelled with gas or oil, the combustion chamber is very compact and followed by an injector which is used as a gas pump. The ejector can then be followed by a heat exchanger where water vapours condensate and energy hereby is be retrieved. However such systems can not be used for several reasons, for example:
  • A. Feeding systems and combustion chambers for solid fuels are very different from feeding systems and combustion chambers for gaseous fuels.
  • The following the condensing heat will corrode and/or block up with particles if solid fuels are used.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • The invention provides a method and a plant allowing transfer of energy from hot gases to water or another fluid by means of considerably fewer heat transfer units, as the heat transfer from hot gases can be gathered in a single condensing unit. Moreover, a more simple water circuit is obtained as coupling and control of water circuit for a condensing unit as well as a convection part are avoided.
  • Thus, the invention provides a method for heat recovery from hot flue gas, produced in a thermal reactor. According to the method, water is injected at one or more injection zones in such an amount and in such a way that the flue gas temperature is reduced to below 400° C. and the gas dew point is at least 60° C. due to water evaporation. Subsequently, the gas is led through a condensing heat exchanger unit (8), where at least some of the water vapour is condensed, and the condensation heat is used for heating a liquid stream, mainly water.
  • In this way, the comprehensive evaporation heat of water (approx. 2.2 MJ/kg) is utilized twice:
  • 1. By injection of water and its evaporation, the amount of water vapour in the gas is increased, and thus the dew point of the gas is increased. As an example could be mentioned that injection of water into a flue gas from combustion of biomass in such an amount that the gas is cooled to 150° C. will increase the dew point for the flue gas to approx. 85° C. The dew point in flue gas is usually 35-60° C. without water injection.
  • 2. The cooled gas containing a large amount of water vapour can then produce the amount of energy in the condensing heat exchanger unit which was previously produced in at least two units, i.e. a dry and hot convection part and a condensing part. Besides, the dew point of the flue gas has increased considerably due to the water injection, which means that the condensing heat exchanger unit can heat water or another liquid to a temperature suitable for using the water directly as supply.
  • At least a part of the water injected into the hot gases will atomize in a nozzle, by which the water will evaporate more quickly.
  • Water injection into the hot gas may take place in several injection zones, which may comprise the fuel, the thermal reactor, a gas cleaning unit and/or the condensing heat exchanger unit. By water injection into fuel and/or the thermal reactor, a number of advantages are obtained:
  • If the plant is designed for wet fuels, the same plant can be used for dry fuels by water injection into the fuel and/or the thermal reactor. Thus, a fuel flexible plant is obtained.
  • NOx-formation can be controlled and reduced, as NOx formation is independent of temperature.
  • The thermal reactor and the gas pipes to the condensing heat exchanger unit may be separated or be built together in one unit, as the thermal conversion then takes place in one zone, whereas water injection may take place in that reactor zone and possible also somewhere else in a subsequent zone.
  • Before and/or after the condensing unit, the gas can be cleaned of undesirable materials such as e.g. ammonia, heavy metals, acids, chlorine, sulphur, particles, salts, etc. This may for instance be done in a bag filter, a cyclone, and electrofilter or in a scrubber, possibly combined with addition of absorbents such as active carbon, lime, bicarbonate etc. As long as the gas temperature is above the water dew point, dry gas cleaning technologies can be used, e.g. bag filter or electrofilter. If the gas is wet, scrubbers and/or wet electrofilters can be used.
  • A part of the water injected into the gas can advantageously be injected at great speed in the direction of the gas flow. By this, kinetic energy from the water can be transferred to the gas, and the water injection may then act as a gas pump (ejector).
  • If an especially high supply temperature is desired, the water heated in the condensing heat exchanger unit can be further heated, e.g. via a water-cooled feeder, a water-cooled grate water-cooled areas in the reactor and/or other cooled surfaces around the thermal conversion area or via another thermal production.
  • After the condensing heat exchanger unit, a certain energy amount will be left in the gas in the form of heat and water vapour. Some of that energy can be utilized by transfer to the combustion air via an enthalpy exchanger. In an enthalpy exchanger, water vapour and heat are transferred to the combustion air, implying an even higher water vapour amount in the gas and thus a higher efficiency of the condensing unit. Enthalpy exchangers can be designed in different ways, e.g. as rotating units, where combustion air flows on one side and hot gas on the other, or as a system where the gas after the condensing heat exchanger unit changes with cold water, whereby the water is heated. The heated water can then be used for heating and humidifying the combustion air.
  • By combustion of solid fuels, e.g. straw or waste sedimentation of particles will often occur on the convection part, as the hot particles are sticky due to a low ash melting point. By water injection and corresponding reduction of the gas temperature, this problem is eliminated.
  • The hot water can be produced close to the consumption place or be sent to the consumer via a district heating network. Plants designed according to the invention can be built in a very wide spectrum of sizes, approx. 1 kW-250 MW input effect.
  • The thermal unit may have other purposes than only heat production, e.g. production of gas and electricity among others. Among technologies relevant for the invention can be mentioned: Combustion plants for solid fuel (biomass, waste and coal) for mere heat production as well as CHP production, gas and oil fired boilers, motors, gas turbines, gasification plants etc.
  • If the thermal unit is of the fluid bed type, water injection into the bed can be used for adjusting the temperature in the bed, by which operational (e.g. slag formation) and environmental (e.g. reduction of NOx) advantages can be obtained. Water injection into the bed will further contribute to fluidization of the bed. This kind of temperature adjustment is considerably more robust than the traditional technique in the form of cooling coils which are quickly worn down of the bed material.
  • The condensed water can be cleaned of particles, salts, heavy metals etc. and be adjusted for pH, before it is used or led away.
  • The water injected into the fuel in the thermal unit, in the gases or in the condenser may be condensate, segregated in the condensing unit, or water added from outside.
  • In the thermal unit, the condensing unit and in the connecting gas duct there may be atmospheric pressure, or pressures above or below the atmosphere.
  • The invention further provides a system for decomposition of fuel and production of hot water, and comprising a thermal reactor, a flue gas duct, one or more water injection devices e.g. in the form of nozzles and a condensing heat exchanger unit connected to the flue gas duct. Here at least some of the water vapour of the gas is condensed, and the condensation heat is used for heating of a flow of fluid, preferably water, and means for control of the water injection into the flue gas in order that the flue gas temperature is reduced to below 400° C., and the gas dew point becomes at least 60° C. due to the evaporation of water.
  • Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically depicts a first design of a plant according to the invention;
  • FIG. 2 schematically depicts a second design of the plant according to the invention, where solid fuel is burned in a grate-fired boiler, and where particles are removed from the flue gas in a bag filter before condensing;
  • FIG. 3 schematically depicts a third design of the plant according to the invention, where solid fuel is burned in a grate-fired boiler, and where water is added by means of an ejector;
  • FIG. 4 schematically depicts a fifth design of the plant, where fuel is gasified and the heat energy in the gas is utilized;
  • FIG. 5 is a diagram of the flue gas output from cooling, with and without preceding water injection and evaporation; and
  • FIG. 6 are two tables with energy calculations, where wet and dry fuel, respectively, are converted. The calculations show results for today's standard technology and for the invention with and without moistening of combustion air.
  • In the following, corresponding parts in the different designs will have the same reference terms.
  • While the invention is susceptible of various modifications and alternative constructions, a certain illustrative embodiment thereof has been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific form disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now more particularly to FIG. 1 of the drawings, there is shown a unit or reactor 1, to which fuel is added. The fuel is converted thermally by addition of air (and/or oxygen). Thus, a warm gas is produced in the thermal unit 1. The fuel added to unit 1 is solid e.g. biomass, waste or coal. If the thermal unit 1 is designed for fuels with low calorific power, e.g. wet fuel, and if the added fuel has a higher calorific power, the temperature in the unit or in the generator 1 can be adjusted by adding water to the fuel at 2 and/or by adding water at 3 within the thermal unit 1.
  • At 4, water is injected into the hot gases leaving the thermal unit 1. The water evaporates and cools the gases considerably, as the evaporation energy from water is very high. The unit in which injection 4 is placed can be built of heat-proof steel, bricks, castings and/or other materials. The amount of water dosed at 4 can be controlled on basis of the gas temperature and/or the dew point by means of adequate control means S, placed in a position after 4, where the injected water has evaporated.
  • If the cooled gas contains impurities, e.g. particles, a gas cleaning unit 5 can remove these impurities from the dry gas. Via a gas blower or pump 6, the gas can be pumped on to a condensing heat exchanger unit 8, where the heat in the gases, including the condensation heat in the water vapour, can be transferred to the water to be heated. In the condensing unit, water can also be injected at 7.
  • The gas sucker 6 can also be placed after the condensing unit 8, where the gas flow is lower due to the cooling of the gas and the condensing of the water vapours.
  • In and/or after the condensing unit 8, more impurities can be removed from the gas at 9 and/or from the produced condensate at 12. After the condensing unit 8, some of the energy left in the gas in the form of heat and moist can be transferred, at 10, to the combustion air which is added to the thermal unit 1. The humidified air can be further heated in a heat exchanger 11, before the air is added to the thermal unit 1, whereby the supply lines are kept dry.
  • This type of plant can be produced in many different sizes, from a few kW (villa boilers) to large plants above 100 MW.
  • FIG. 2 shows a combustion plant for production of district heating, and where the gas is cleaned before condensing and combustion air is moisturized. 1 is a burner for combustion of solid fuel. The plant is brick-lined so that it can burn fuels with a high water content (up to 60% water) or which otherwise have a low calorific value (below 10 MJ/kg). Fuels with a higher calorific value can also burn in such a plant, as water can be added to the fuel at 2, or in the boiler room at 3. Further, at 4 water is added to the hot gases leaving the burner 1. The water evaporates and cools the gases to ca. 150-200° C. Subsequently, the gas is cleaned of particles in a bag filter 5. If other substances are to be removed from the gas, absorbents can be added before the filter, e.g. lime, active carbon, bicarbonate etc.
  • The flue gas is sucked through the gas sucker or the pump 6 and is cooled in the condensing unit 8, comprising two cooling towers placed above each other, designated respectively “Kol. 1” and “Kol. 2”, and a heat exchanger 13, as the flue gas flows counter-flow with the cooled condensate 7 a. As the condensing unit 8 is built of glass fibre, it is important that the gas is cooled to below ca. 150° C., before the inlet. Addition of water in the nozzle in 7 b protects the condenser inlet 14 from becoming too warm. In the cooling tower “Kol. 1” cooling water is added at 7 a. Hereby, steam in the flue gas flow is condensed, and the condensate is gathered in a room 15 under the cooling towers and the inlet 14. The hot condensate is heat exchanged in the heat exchanger 13 by water in a district heating system which is not shown, as the cold district heating water is added via a return pipe, whereas the hot water is led back to the system via a supply pipe. As the flue gas dew point is high, e.g. ca. 85° C., the temperature of the produced condensate can be about 85-90° C. Thus, the district heating water can be heated from the condensate at one single stage.
  • The combustion air added to the burner 1 can be heated in a humidifier 17, where hot water is added at 18, or by means of a heater device 11, ensuring that the air ducts are kept dry. The water added at 2-4, 7 a, 7 b and 18, may—as shown—be the cooled condensate that leaves the heat exchanger 13, and any surplus condensate can be led away at 19. Condensate gathered at the bottom of the humidifier 17 can be used for addition to the cooling tower “Kol. 2”.
  • When the flue gas has been cooled by the condensate in the tower “Kol. 1”, it is led through another section, “Kol. 2”, where the gas is cooled by water having been cooled by the combustion air. The cooling of the flue gas and humidifying of the combustion air together form an enthalpy exchanger 10, which increases the energy efficiency.
  • FIG. 3 shows a combustion plant for production of district heating. The gas is led through the plant by means of an ejector pump. 1 is a burner for combustion of solid fuel. At 4, water is added to the hot gases leaving the burner 1. The water evaporates and cools the gases. At 7 a water is injected at great speed in the direction of the gas flow through a pipe 20, the cross section of which is increased in the flow direction. Thus, the water injection at 7 a through the pipe 20 acts as an ejector.
  • In a condensing heat exchanger 8, heat energy is transferred from the flue gas to the district heating water. The heat exchanger in 8 may be made of glass, plastic or acid-proof stainless steel, but needs not be heat-proof. The exchanger can be cleaned of particles by means of water injected at 7 b, but this needs not be a continuous cleaning. The produced condensate can be cleaned of particles etc. at 12, before it is used as injection water at 4 a, 4 b and 7 or drained off to a drain at 19.
  • FIG. 4 shows a preferred design of a gasifier plant 1, where the produced gas firstly is cooled by being used for preheating of combustion air in a heat exchanger 21, and then is cooled by water injection at 4. The drafted gasifier is of the type “staged fixed bed”, but can in principle be other gasifier types, e.g. a fluid bed gasifier.
  • After water injection at 4, the gas is cleaned of particles (and possibly tars) e.g. in a bag filter and/or an active carbon filter 5, after which the gas in a heat exchanger 8 is cooled during condensing of water. By means of a gas blower or pump 6 the gas is blown to a conversion unit, here illustrated by an engine, but there could also be other conversion units, e.g. a gas turbine, liquefaction equipment for conversion of the gas to fluid fuel etc.
  • The flue gas energy from the conversion unit can be utilized e.g. for heat production. Thus, the invention can be utilized twice.
  • In FIG. 5 is a diagram showing the calculation of the output from cooling of flue gas from respectively a traditional boiler and by water injection according to the invention, cf. FIGS. 2 and 3. Common data for the two calculations are:
  • amount of fuel (waste/wood chip) of 3000 kg/hour
  • humidity content in the fuel is 45%
  • O2 in the flue gas is 5% (dry)
  • the temperature of the flue gas out of boiler/after water injection=150° C.
  • It appears from FIG. 5 that about 1700 kW can be produced in the condensing unit by cooling of the flue gas to ca. 45° C. with standard technology, whereas 8500 kW can be produced by using the invention. The temperatures of the produced water are very different too. With standard technology water can be produced at about 65° C. However, by using the invention, water can be produced at 85-90° C. In most cases, a supply temperature of 85° C. will be satisfactory, but if this is not enough, a radiation section/grate cooling can be incorporated for boosting the temperature. If e.g. 95° C. supply temperature is desired, ca. 10-20% of the energy must be produced in the radiation section/grate cooling.
  • FIG. 6 shows two tables with key figures for selected calculations for district heating plants. It appears from the key figures that the efficiency by use of wet fuels will be the same for a standard design with condensing operation and with “water injection”.
  • The calculations concerning the invention are “conservative”, i.e. the fact that the invention allows for better control of the plant and thus for less surplus of air, giving a higher efficiency degree, has not been taken into account in the calculation.
  • As condensing operation on dry fuels is not standard, the new method gives a higher efficiency degree by use of dry fuels. It should be noted that in case of high return temperature (above 45° C.) and dry fuel, the process will be water consuming, unless moistening of combustion air is used.
  • Further, moistening will be able to increase the efficiency degree considerably, especially at higher return temperatures. Due to water injection, the amount of flue gas is increased during cooling of the flue gas. The condensing unit and belonging pipes must of course be dimensioned for this.
  • Summarization of the most important advantages of the invention:
  • Simpler and Cheaper Plant
  • The most important advantage of the concept is that the construction becomes considerably simpler and cheaper than for traditional condensing plants with both a convection part and a condensing unit. By use of the invention, a convection boiler and belonging boiler circuit with shunt and heat exchanger can be saved, and the water circuit and the control of the heat productions become much simpler and thus cheaper. However, there will be an extra cost of water dosing and a larger condensing plant, but that will be very small compared to the savings.
  • Compact Plant
  • The principles used for transferring heat from gas to water in the concept (evaporation of water in a hot gas and scrubber+plate exchanger/condensing pipe cooler) are very effective (compared to dry convection) and thus compact.
  • As the number of units is reduced, and as the principles for heat transfer are more effective, the total plant becomes more compact.
  • Lower Maintenance Costs
  • Maintenance costs of a water injection system become considerably lower than the present maintenance costs of “boiler operation”.
  • By use of fluid bed and by use of water injection to adjust the bed temperature, savings are also obtained for maintenance, as the traditional cooling pipes, which will be worn out of the bed material, are avoided.
  • Fuel Flexibility
  • Up to now, it has been necessary to construct plants for either wet or dry fuel. Wet fuel necessitates brick lining in the combustion chamber to obtain a good combustion. If dry fuel is used in brick-lined plants, the combustion temperature will be too high. With the water injection concept, the combustion chamber can be used for wet fuel, and in case of combustion of dry fuel, an adequate amount of water will be added in order to keep the temperature down.
  • Higher Efficiency by Better Control of Air
  • The efficiency is increased by lower air consumption, as the flue gas loss becomes smaller. With careful positioning and control of the water nozzles, the air consumption can be reduced compared to plants with “boiler operation”, which will give a better efficiency.
  • Higher Efficiency by Moistening of Combustion Air
  • The efficiency is further increased by 5-15% by moistening of combustion air.
  • Lower Emissions
  • Thermal NOx can be reduced by water injection in and around the combustion chamber, especially in case of gas and coal combustion.
  • Emissions of HCl, SO2, Dioxins etc, will be reduced when the water in the condensing unit is neutralized e.g. with NaOH.
  • Particle emissions will be reduced when filters are used e.g. bag filters.
  • It should be understood that numerous changes and modifications of the embodiments of the invention described above could be made within the scope of the appended claims. Furthermore, the use of solid fuel in the method and system defined by the claims could be replaced by or supplemented by the use of gaseous and/or liquid fuel.

Claims (20)

1-18. (canceled)
19. A method for recovering heat from hot flue gas produced in a thermal reactor fuelled with solid fuel, said method comprising the steps of:
injecting water into in the gas at one or more injection zones in such an amount and such a way that due to evaporation of injected water the flue gas temperature is reduced to below 400° C., and the gas dew point becomes at least 60° C.,
subsequently passing the gas through a condensing heat exchanger, where at least some of the water vapor in the gas is condensed and condensing heat is released, and
utilizing the condensing heat for heating a stream of fluid, such as water, in the heat exchanger.
20. A method according to claim 19, wherein the gas dew point becomes at least 70° C., preferably 80° C. or 85° C.
21. A method according to claim 19, wherein the flue gas temperature is reduced to below 300° C., preferably to 150-200° C.
22. A method according to claim 19, wherein the injection zones are located in one or more of the thermal reactor, zones downstream of the thermal reactor in a gas flow direction, the fuel in the thermal reactor and the heat exchanger.
23. A method according to claim 19, wherein impurities are removed from the gas by means of a bag filter, a cyclone, an electro filter, a scrubber or the like.
24. A method according to claim 19, wherein impurities are removed from the condensed water.
25. A method according to claim 19, wherein pH of the condensed water is adjusted.
26. A method according to claim 19, wherein at least some of the water injected in to the flue gas is vaporized using a nozzle.
27. A method according to claim 19, wherein part of the injected water is injected at a speed above 20 m/s in a gas flow direction.
28. A method according to claim 19, wherein the fluid heated in the heat exchanger is further heated, e.g. by means of a fluid cooled feeder, a fluid cooled grate, fluid cooled surfaces in the reactor or other cooled surfaces around the thermal reactor.
29. A method according to claim 19, wherein water vapor and heat are transferred to combustion air, which is led to the thermal reactor.
30. A method according to claim 19, wherein the thermal reactor is of the fluid bed type, and injection of water into the bed is used to regulate temperature and flow conditions in the bed.
31. A method according to claim 19, wherein condensed water from the heat exchanger is injected in the one or more injection zones.
32. A system for decomposition of solid fuel and for production of hot fluid, said system comprising
a thermal reactor for decomposing the fuel and producing hot flue gas from the fuel,
an evaporative cooler with water injection devices, e.g. in the form of nozzles, for injection of water into the flue gas so that the injected water evaporates,
a control system for controlling the water injection into the gas so that, as a result of evaporation of injected water, the gas temperature is reduced to below 400° C. and the gas dew point becomes at least 60° C., and
a condensing heat exchanger for condensing at least some of the water vapor in the gas and utilizing condensing heat for heating a stream of fluid, such as water.
33. A system according to claim 32 further comprising one or more nozzles for injecting water into one or more of the fuel in the thermal reactor, the thermal reactor and the flue gas in connection with the heat exchanger.
34. A system according to claim 32, further comprising a gas cleaning unit in the form of a bag filter, electro filter, scrubber or the like.
35. A system according to claim 32 including means for leading at least some of the fluid from the heat exchanger to another unit for further heating.
36. A system according to claim 32, further comprising an enthalpy exchanger, where water vapor and heat are transferred to combustion air to be added to the reactor.
37. A system according to claim 32 including a fluid bed reactor with means for injection of water into the bed in order to adjust temperature, emissions (NOx) and flow conditions.
US11/992,508 2005-09-27 2006-09-27 Method and System for Heating of Water Based on Hot Gases Abandoned US20090241814A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200501345 2005-09-27
DKPA200501345 2005-09-27
PCT/DK2006/050049 WO2007036236A1 (en) 2005-09-27 2006-09-27 Method and system for heating of water based on hot gases

Publications (1)

Publication Number Publication Date
US20090241814A1 true US20090241814A1 (en) 2009-10-01

Family

ID=37593709

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/992,508 Abandoned US20090241814A1 (en) 2005-09-27 2006-09-27 Method and System for Heating of Water Based on Hot Gases

Country Status (13)

Country Link
US (1) US20090241814A1 (en)
EP (1) EP1946006B1 (en)
CN (1) CN101273235B (en)
AT (1) ATE440251T1 (en)
BR (1) BRPI0616576A2 (en)
CA (1) CA2623978A1 (en)
DE (1) DE602006008650D1 (en)
DK (1) DK1946006T3 (en)
EA (1) EA011970B1 (en)
ES (1) ES2334262T3 (en)
PL (1) PL1946006T3 (en)
UA (1) UA89279C2 (en)
WO (1) WO2007036236A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523948A (en) * 2009-04-17 2012-10-11 プロターゴ インコーポレーテッド Method and apparatus for gasifying organic waste
JP2015087043A (en) * 2013-10-29 2015-05-07 三浦工業株式会社 Boiler system
US9103560B2 (en) 2010-04-09 2015-08-11 Carrier Corporation Furnace vent with water-permeable inner pipe
EP2870989A4 (en) * 2012-06-15 2016-03-30 Rafik Nailovich Khamidullin Gas purification method
WO2018157947A1 (en) * 2017-03-03 2018-09-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a heat exchanger
IT201800003238A1 (en) * 2018-03-02 2019-09-02 Ambiente E Nutrizione Srl Process and system optimized for the production of a heated fluid by burning a fuel
US11079106B2 (en) 2017-03-03 2021-08-03 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising multi-fuel burner with a muffle cooling system
EP3722669A4 (en) * 2017-12-04 2021-10-27 Tsinghua University Deep recovery system for residual heat of fume
US11384981B2 (en) 2017-06-06 2022-07-12 Kronoplus Limited Apparatus and method for continuously drying bulk goods
US11499778B2 (en) 2017-03-03 2022-11-15 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a solid fired hot gas generator
US11543124B2 (en) 2017-03-03 2023-01-03 Kronoplus Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a hot gas cyclone

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR063267A1 (en) 2006-10-13 2009-01-14 Proterrgo Inc METHOD AND APPLIANCE FOR GASIFICATION BY ORGANIC WASTE LOTS
DK2334762T3 (en) 2008-08-30 2019-01-28 Dall Energy Holding Aps PROCEDURE FOR THE PREPARATION OF A CLEAN HEAT GAS BASED ON SOLID FUELS
ATE543049T1 (en) * 2008-09-07 2012-02-15 Dall Energy Holding Aps METHOD AND SYSTEM FOR COOLING HOT GASES BY WATER INJECTION
US8327779B2 (en) * 2008-09-26 2012-12-11 Air Products And Chemicals, Inc. Combustion system with steam or water injection
AT506701B1 (en) * 2008-12-16 2009-11-15 Froeling Heizkessel Und Behael HEATING BOILERS FOR SOLID FUELS, IN PARTICULAR FROM RENEWABLE RAW MATERIALS
US20120167461A1 (en) * 2009-06-26 2012-07-05 Dall Energy Holding Aps Method and system for cleaning of and heat recovery from hot gases
CN101906321B (en) * 2010-08-12 2012-11-28 中冶京诚(营口)装备技术有限公司 Novel process for treating phenol water from gas station
US9291390B2 (en) 2011-05-11 2016-03-22 Shell Oil Company Process for producing purified synthesis gas
CN102226542B (en) * 2011-06-03 2014-04-23 北京建筑工程学院 Ejector type heat pump heat transfer set
CN102995702A (en) * 2011-09-17 2013-03-27 天华化工机械及自动化研究设计院有限公司 Method for recovering water vapor evaporated by drying coal by utilizing vacuum condensing cooling method and equipment thereof
EP2636951A1 (en) * 2012-03-07 2013-09-11 Flare Industries, LLC Apparatus and method for flaring waste gas
DE102014203039A1 (en) * 2014-02-19 2015-08-20 Siemens Aktiengesellschaft Method and device for separating exhaust gas during the combustion of certain metals
CN107238092A (en) * 2017-06-12 2017-10-10 清华大学 The method and apparatus of coal-burning boiler smoke evacuation ultralow temperature condensing units and air intake humidification
FI128210B (en) 2018-10-04 2019-12-31 Valmet Technologies Oy Method for recovering heat from flue gas of boiler, and arrangement
AT525481B1 (en) 2021-10-04 2024-03-15 Scheuch Man Holding Gmbh Process and system for producing cement clinker
PL442264A1 (en) * 2022-09-13 2024-03-18 Losentech Spółka Z Ograniczoną Odpowiedzialnością Method and system for recovering waste heat from fuel combustion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267890A (en) * 1963-04-19 1966-08-23 Little Inc A Municipal incinerator
US4056068A (en) * 1975-07-04 1977-11-01 Von Roll Ag Process for conditioning flue gases in waste material incineration plants with heat utilization
US4757771A (en) * 1986-01-21 1988-07-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Method and apparatus for stable combustion in a fluidized bed incinerator
US4799941A (en) * 1986-10-23 1989-01-24 Scandiaconsult Ab Method and arrangement for condensing flue gases
US5018457A (en) * 1989-06-16 1991-05-28 Crown Andersen, Inc. Waste treatment system
US5052310A (en) * 1991-01-22 1991-10-01 Air Products And Chemicals, Inc. Solid waste-to-steam incinerator capacity enhancement by combined oxygen enrichment and liquid quench
US6228143B1 (en) * 2000-01-18 2001-05-08 The International Metals Reclamation Company, Inc. Rotary thermal oxidizer for battery recycling and process
US20090053661A1 (en) * 2005-02-17 2009-02-26 Foster Wheeler Energia Oy Fluidized bed boiler plant and method of combusting sulfurous fuel in a fluidized bed boiler plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291635A (en) * 1979-08-20 1981-09-29 The Quaker Oats Company Apparatus for feeding fluidized bed incinerator, and method of autogenic operation of same
CN1068972A (en) * 1991-07-30 1993-02-17 中国天龙实业总公司 Flue gas purifying method that can save energy and device
TW235335B (en) * 1991-11-05 1994-12-01 Mitsubishi Heavy Ind Ltd
CN2372043Y (en) * 1999-05-27 2000-04-05 叶永润 Tail gas waste heat exchange dust removing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267890A (en) * 1963-04-19 1966-08-23 Little Inc A Municipal incinerator
US4056068A (en) * 1975-07-04 1977-11-01 Von Roll Ag Process for conditioning flue gases in waste material incineration plants with heat utilization
US4757771A (en) * 1986-01-21 1988-07-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Method and apparatus for stable combustion in a fluidized bed incinerator
US4799941A (en) * 1986-10-23 1989-01-24 Scandiaconsult Ab Method and arrangement for condensing flue gases
US5018457A (en) * 1989-06-16 1991-05-28 Crown Andersen, Inc. Waste treatment system
US5052310A (en) * 1991-01-22 1991-10-01 Air Products And Chemicals, Inc. Solid waste-to-steam incinerator capacity enhancement by combined oxygen enrichment and liquid quench
US6228143B1 (en) * 2000-01-18 2001-05-08 The International Metals Reclamation Company, Inc. Rotary thermal oxidizer for battery recycling and process
US20090053661A1 (en) * 2005-02-17 2009-02-26 Foster Wheeler Energia Oy Fluidized bed boiler plant and method of combusting sulfurous fuel in a fluidized bed boiler plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523948A (en) * 2009-04-17 2012-10-11 プロターゴ インコーポレーテッド Method and apparatus for gasifying organic waste
US9103560B2 (en) 2010-04-09 2015-08-11 Carrier Corporation Furnace vent with water-permeable inner pipe
EP2870989A4 (en) * 2012-06-15 2016-03-30 Rafik Nailovich Khamidullin Gas purification method
JP2015087043A (en) * 2013-10-29 2015-05-07 三浦工業株式会社 Boiler system
US11248845B2 (en) 2017-03-03 2022-02-15 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a heat exchanger
WO2018157947A1 (en) * 2017-03-03 2018-09-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a heat exchanger
US11543124B2 (en) 2017-03-03 2023-01-03 Kronoplus Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a hot gas cyclone
US11499778B2 (en) 2017-03-03 2022-11-15 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a solid fired hot gas generator
US11079106B2 (en) 2017-03-03 2021-08-03 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising multi-fuel burner with a muffle cooling system
EA038915B1 (en) * 2017-03-03 2021-11-09 Дуглас Текникал Лимитед Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a heat exchanger
US11384981B2 (en) 2017-06-06 2022-07-12 Kronoplus Limited Apparatus and method for continuously drying bulk goods
EP3722669A4 (en) * 2017-12-04 2021-10-27 Tsinghua University Deep recovery system for residual heat of fume
US20210041102A1 (en) * 2018-03-02 2021-02-11 Vomm Impianti E Processi S.P.A. Optimized process and system for the production of a heated fluid by means of combustion of a fuel
WO2019166320A1 (en) * 2018-03-02 2019-09-06 Ambiente E Nutrizione S.R.L. Optimized process and system for the production of a heated fluid by means of combustion of a fuel
IT201800003238A1 (en) * 2018-03-02 2019-09-02 Ambiente E Nutrizione Srl Process and system optimized for the production of a heated fluid by burning a fuel

Also Published As

Publication number Publication date
CN101273235B (en) 2011-07-06
ES2334262T3 (en) 2010-03-08
UA89279C2 (en) 2010-01-11
CA2623978A1 (en) 2007-04-05
DK1946006T3 (en) 2009-12-21
PL1946006T3 (en) 2010-03-31
EA011970B1 (en) 2009-06-30
WO2007036236A1 (en) 2007-04-05
EP1946006B1 (en) 2009-08-19
CN101273235A (en) 2008-09-24
ATE440251T1 (en) 2009-09-15
EA200800912A1 (en) 2008-12-30
BRPI0616576A2 (en) 2011-06-21
DE602006008650D1 (en) 2009-10-01
EP1946006A1 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
EP1946006B1 (en) Method and system for heating of water based on hot gases
US6907845B2 (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
US4799941A (en) Method and arrangement for condensing flue gases
US20100199631A1 (en) Power production process with gas turbine from solid fuel and waste heat and the equipment for the performing of this process
CN104033889B (en) The biomass gasification fired device of heat accumulating type and production technology thereof
EA022238B1 (en) Method and system for production of a clean hot gas based on solid fuels
CN108758651A (en) A kind of circulating fluidized bed boiler suitable for waste incineration
FI128210B (en) Method for recovering heat from flue gas of boiler, and arrangement
CA2765877A1 (en) Method and system for cleaning of and heat recovery from hot gases
CN106765009B (en) Continuous heat accumulating and burning gas heat pipe steam generator and method for comprehensively recovering waste heat of flue gas
CN1814547A (en) Electric furnace method yellow phosphorus tail gas residual heat comprehensive balance utilizing system
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
RU2323384C1 (en) Heat waste recover
CN109059027B (en) System and method for cooling high-temperature biomass gas and utilizing waste heat
CZ2007340A3 (en) Method of producing electricity by solid fuel-burning gas turbine as well as from exhaust heat and apparatus for making the same
CN209276189U (en) A kind of desulfurizing waste water processing device suitable for circulating fluidized bed boiler
CN210568552U (en) Boiler energy-saving and flue gas whitening system
KR100250365B1 (en) Heavy oil emulsion fuel combustion apparatus
CN109336205A (en) A kind of desulfurizing waste water processing device suitable for circulating fluidized bed boiler
Ionkin et al. Application of condensing heat utilizers at heat-power engineering objects
CN112097287B (en) Boiler energy-saving and flue gas whitening system, process and application
KR100948515B1 (en) Boiler NOx reduction method and system with humidifying combustion air
Steinwall Integration of biomass gasification and evaporative gas turbine cycles
Reza et al. Effect of Flue Gas Oxygen Content to Gas-Gas Heater Requirement in Limestone Forced Oxidation Desulfurizer System
CN214172287U (en) Acid flue gas waste heat recycling system

Legal Events

Date Code Title Description
AS Assignment

Owner name: DALL ENERGY HOLDING APS, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENTZEN, JENS DALL;REEL/FRAME:020931/0899

Effective date: 20080505

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION