US20090128984A1 - Maintenance-free static eliminator - Google Patents

Maintenance-free static eliminator Download PDF

Info

Publication number
US20090128984A1
US20090128984A1 US12/354,658 US35465809A US2009128984A1 US 20090128984 A1 US20090128984 A1 US 20090128984A1 US 35465809 A US35465809 A US 35465809A US 2009128984 A1 US2009128984 A1 US 2009128984A1
Authority
US
United States
Prior art keywords
cleaning
static eliminator
fan
discharge
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/354,658
Inventor
Makoto Takayanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20090128984A1 publication Critical patent/US20090128984A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • This invention generally relates to a static eliminator, and more particularly, to a maintenance-free static eliminator.
  • a static eliminator which comprises at least one discharge needle for generating ions to eliminate static charge, a first hollow cylinder including at least one opening for ions generated by said discharge needle to be emitted outside and provided with brushes for cleaning said discharge needle, a second hollow cylinder provided with said discharge needle and rotatably disposed inside of said first hollow cylinder, a discharge needle rotating mechanism for causing to rotate said second hollow cylinder around the axis thereof to clean said discharge needle by wiping said discharge needle with said brushes
  • a static eliminator which comprises at least one discharge needle for generating ions to eliminate static charge, a box type of housing provided with said discharge needle inside of said housing and openings for emitting outside ions generated from said discharge needle, a brush driver attached to said housing for swinging brushes to wipe the dust attached to the discharge needle with the brushes, and a first fan with a filter for sucking air in from outside the box through the opening and discharge clean air after removing the floating dust wiped away from said discharge needle by the brushes.
  • a static eliminator which includes discharge needles for static elimination and means for cleaning the discharge needles periodically comprising means for calculating cleaning date on the basis of periodic data for cleaning the discharge needles, means for comparing calendar date and the date calculated by said calculating means to determine the cleaning date, means for comparing the time data and clock time to determine the commencement of cleaning when the cleaning date comes, and means for carrying out the cleaning by actuating the cleaning means in accordance with the indication of commencement, the external indication from the outside or the indication of dust sensor.
  • FIG. 1 is a front view for explanation of a static eliminator according to first embodiment of the present invention when ions are emitted,
  • FIG. 2 is a front view for explanation of a static eliminator according to first embodiment of the present invention when discharge needles are cleaned
  • FIG. 3 is a cross sectional view for explanation of a static eliminator according to the first embodiment of the present invention when discharge needles are cleaned
  • FIG. 4 is a cross sectional view for explanation of the ion emission when ions are emitted and the suction of outside air when discharge needles are cleaned
  • FIG. 4 a is an enlarged cross sectional view taken along line 4 ( a )- 4 ( a ) of FIG. 1
  • FIG. 4 b is a an enlarged cross sectional view taken along line 4 ( b )- 4 ( b ) of FIG. 2
  • FIG. 4 c is a an enlarged cross sectional view taken along line 4 ( c )- 4 ( c ) of FIG. 3
  • FIG. 4 a is an enlarged cross sectional view taken along line 4 ( a )- 4 ( a ) of FIG. 1
  • FIG. 4 b is a an enlarged cross sectional view taken along line 4 ( b )- 4 ( b ) of FIG. 2
  • FIG. 4 c is a an enlarged cross sectional view taken along line 4 ( c )- 4 ( c ) of FIG
  • FIG. 5 is a cross sectional view for explanation of a static eliminator according to the second embodiment of the present invention when discharge needles are cleaned
  • FIG. 6 is a cross sectional view for explanation of a static eliminator according to the third embodiment of the present invention when discharge needles are cleaned
  • FIG. 7 is a view for explanation of the timing of control of elimination operation and cleaning operation
  • FIG. 8 is a flow chart for explanation of cleaning operation in accordance with the present invention.
  • FIG. 9 is a view for explanation of a box type of calm static eliminator according to the 4th embodiment of the present invention
  • FIG. 9 a is a front view of the static eliminator
  • FIG. 9 b is a cross sectional view of the static eliminator
  • FIG. 10 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 5th embodiment of the present invention.
  • FIG. 11 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 6th embodiment of the present invention
  • FIG. 11 a shows the state inside the static eliminator at the time of cleaning
  • FIG. 11 b shows the state inside the static eliminator at the time of discharging
  • FIG. 12 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 7th embodiment of the present invention
  • FIG. 12 a shows the state inside of the static eliminator at the time of cleaning
  • FIG. 12 b shows the state inside of the static eliminator at the time of discharging.
  • FIG. 1 is a front view for explanation of a static eliminator according to first embodiment of the present invention when ions are emitted
  • FIG. 2 is a front view for explanation of a static eliminator according to first embodiment of the present invention when discharge needles are cleaned
  • FIG. 3 is a cross sectional view for explanation of a static eliminator according to the first embodiment of the present invention when discharge needles are cleaned
  • FIG. 4 is a cross sectional view for explanation of the ion emission when ions are emitted and the suction of outside air when discharge needles are cleaned
  • FIG. 4 a is an enlarged cross sectional view taken along line 4 ( a )- 4 ( a ) of FIG. 1
  • FIG. 4 b is a an enlarged cross sectional view taken along line 4 ( b )- 4 ( b ) of FIG. 2
  • FIG. 4 c is a an enlarged cross sectional view taken along line 4 ( c )- 4 ( c ) of FIG. 3 .
  • a static eliminator 10 has a fixed hollow cylindrical housing such as a first cylinder 12 and an inside hollow cylinder or a second cylinder 14 which is rotatably positioned inside of the first cylinder 12 to clean discharge needles 16 .
  • Each of these cylinders 12 and 14 is closed by a cover 26 at its one end, and a driver 18 which is provided with a drive body 18 a for rotationally driving the second cylinder 14 , power supply 20 provided with a power supply body 20 a and a fan with filter 24 are disposed at the other end.
  • the discharge needles are provided with a dust sensor, not shown, to indicate the time of cleaning of discharge needles, if necessary.
  • the first cylinder 12 is formed with openings 12 a in a line along the first cylinder 12 .
  • the first cylinder 12 is provided with brushes 12 b to remove the dust from the discharge needles 16 by wiping them, see FIGS. 4 b and 4 c.
  • the second cylinder 14 is formed with ion discharging openings 14 c which are in alignment with the openings 12 a of the first cylinder 12 at the rotational position of the second cylinder 14 in which ions are generated. Consequently ions 28 which are generated by discharge needles 16 provided inside of the second cylinder 14 are emitted or discharged through the openings 14 c and the openings 12 a .
  • the second cylinder 14 is provided with a portion 14 b which closes the other openings 12 a except one opening 12 a of the first cylinder 12 at the rotational position in which the discharge needles are cleaned. Furthermore, as shown in FIG.
  • the second cylinder 14 is formed with one outside air sucking opening 14 a which is in alignment with one of the openings such as the opening of the first cylinder adjacent the cover 26 in the first embodiment. Consequently the outside air is sucked in the second cylinder 14 though the openings.
  • the outside air is sucked in the second cylinder 14 only through the opening 12 a of the first cylinder 12 and the outside air sucking opening 14 a of the second cylinder 14 and then inside the second cylinder 14 the floating dust is carried toward the filter 24 together with the outside air thus sucked.
  • the filter 24 gathers the dust and only clean air is discharged outside.
  • FIG. 5 is a cross sectional view for explanation of a static eliminator according to the second embodiment of the present invention when discharge needles are cleaned.
  • the fan 22 with filter is provided on the first cylinder 12 and the second cylinder 14 at the opposite side of the driver 18 and the power supply 20 .
  • the discharging operation and the cleaning operation are similar to those of the first embodiment.
  • FIG. 6 is a cross sectional view for explanation of a static eliminator according to the third embodiment of the present invention when discharge needles are cleaned.
  • the fan 22 with filter is provided adjacent the driver 18 .
  • the discharging operation and the cleaning operation are similar to those of the first embodiment.
  • the housing of the static eliminator is of a bar type
  • the housing of the static eliminator is of a box type.
  • the box type of static eliminator includes a type of calm static eliminator in which emission or discharge of ions is made by coulombic repulsion not using air blow by the fan and the other type of static eliminator with fan in which emission or discharge of ions is made using air blow by the fan, and therefore these types of static eliminator will be explained individually.
  • FIG. 9 is a view for explanation of a box type of calm static eliminator according to the 4th embodiment of the present invention
  • FIG. 9 a is a front view of the static eliminator
  • FIG. 9 b is a cross sectional view of the static eliminator.
  • the static eliminator 50 has a box type of housing 52 .
  • the housing 52 is formed with circular openings 52 a at its front portion to emit outwardly ions which are generated from the discharge needles 54 disposed inside the housing 52 .
  • a plurality of discharge needles, 6 discharge needles in this embodiment, are disposed circumferentially.
  • the discharge needles are provided with dust sensor, not shown, to sense dirtiness of the discharge needle and indicate the time when the discharge needles should be cleaned in response of extent of dirtiness.
  • a brush 56 is disposed to wipe each of discharged needles 54 .
  • the brushes 56 are provided on arms 58 at their ends, and each arm 58 is attached to an arm swing mechanism or brush driver 60 which is attached to the front portion 52 b of the housing at the center position of discharge needles.
  • the brush driver 60 swings the arms 58 within a predetermined region as indicated by arrows to wipe away the dust attached to the discharge needles 54 therefrom.
  • a suction fan 64 with suction filter 62 is attached to the rear portion 52 c of the housing 52 .
  • the arm 58 is brought to the position as in shown in FIG. 9 a and ions are generated by power supplied from the power supply, not shown, to the discharge needles to carry out static elimination.
  • the brush driver 60 is actuated to wipe away the dust attached to the discharge needles therefrom and to float the dust.
  • the fan 64 with suction filter 64 is actuated to suck the floating dust in by outside air as indicated by the dotted arrows and to transfer the dust toward the suction fan 64 . Finally the clean air in which the dust is removed is discharged outside of the housing 52 .
  • FIG. 10 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 5th embodiment of the present invention.
  • the brush, the arm, and the brush driver as shown in FIG. 9 are omitted.
  • an air blow fan 68 with filter 66 is attached to the rear portion 52 c of the housing 52 .
  • the air blow fan 68 with filter 66 is actuated to suck the clean air in from the outside as shown in arrows, to send the clean air toward the discharge needles and to fly away the ions thus emitted.
  • the air blow fan 68 is turned down and a shutter 69 is closed to shut off the air blow.
  • only the suction fan 64 is actuated to remove the dust from the discharge needles.
  • FIG. 11 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 6th embodiment of the present invention
  • FIG. 11 a shows the state inside the static eliminator at the time of cleaning
  • FIG. 11 b shows the state inside the static eliminator at the time of discharging.
  • the brush, the arm, and the brush driver as shown in FIG. 9 are omitted.
  • the suction fan and the air blow fan instead of the suction fan and the air blow fan as provided in the 5th embodiment one fan 72 with filter 70 is provided inside of rear portion 52 of the housing 52 .
  • the fan is used as a suction and air blow one.
  • valves 74 and 76 are respectively brought to the upper positions and therefore the fan works as a suction one.
  • outside air is sucked in through the openings 52 a of the housing 52 , and is passed through the filter 70 and the fan 72 , and discharged through the opening 52 e .
  • the valves 72 and 74 are respectively brought to the lower positions.
  • the fan 72 works as an air blow one.
  • the outside air is sucked in through the opening 52 d of the housing 52 , passed through the filter 70 and the fan 72 , sent toward the discharge needles 54 , and finally discharged through the openings 52 a.
  • FIG. 12 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 7th embodiment of the present invention
  • FIG. 12 a shows the state inside the static eliminator at the time of cleaning
  • FIG. 12 b shows the state inside the static eliminator at the time of discharging.
  • the brush, the arm, and the brush driver as shown in FIG. 9 are omitted.
  • a suction and air blow fan is used as is the case with the 6th embodiment.
  • the fan is mounted on the housing 52 between the rear portion 52 c and the partition wall 52 f so that the fan is rotatable around an axis of rotation 72 a.
  • the fan 72 is caused to rotate about the axis 72 a in order to change over the directions of air blow from the fan 72 . That is, at the time of cleaning as shown in FIG. 12 a the filter 70 is positioned above the fan 72 and sends the air downwardly.
  • the fan 72 works as a suction one. As shown in dotted arrows, outside air is sucked in through the openings 52 a of the housing 52 , and is passed through the filter 70 and the fan 72 , and discharged through the opening 52 e . Meanwhile at the time of static elimination as shown in FIG. 12 b , the fan 72 is positioned above the filter 70 .
  • the fan 72 works as an air blow one. As shown in solid arrows, the outside air is sucked in through the opening 52 e of the housing 52 , passed through the filter 70 and the fan 72 , sent toward the discharge needles 54 , and finally discharged through the openings 52 a.
  • the static eliminator described in 1 to 7 embodiments is provided with a controller, not shown, which actuates the above-mentioned discharge needles rotating mechanism or the arm swing mechanism and the fan with filter, that is, an air blow fan or a suction and air blow fan to carry out the cleaning operation.
  • the cleaning operation may be made by the external order signal or the signal from the outside or from the dust sensors of the discharge needles.
  • FIG. 7 is a view for explanation of the timing of control of elimination operation and cleaning operation.
  • the static eliminator usually eliminates static charge.
  • a first cleaning is made to clean the discharge needles on the basis of control by the controller.
  • cycle data and time data are input and compared with actual date and time.
  • the cleaning is restarted, and after that time the cleaning will be carried out periodically.
  • FIG. 8 is a flow chart for explanation of cleaning operation in accordance with the present invention.
  • a first cleaning is carried out (step S 10 ).
  • Cycle data is input and the date for cleaning is calculated (step S 12 ).
  • the date for cleaning and date input from the calendar are compared to judge as whether today is the cleaning date or not, and the cleaning date is waited for (step S 14 ).
  • the input time indicating data and the time input from the clock are compared and the time coincidence is waited for (step S 16 ).
  • step S 18 cleaning is carried out (step S 18 ). Thereafter the step returns to S 12 and the cleaning will be repeatedly carried out periodically.
  • the cleaning is also carried out by the external order signal or the signal from the dust sensor.
  • the program is interrupted in.
  • the dust sensor senses the dust or contamination at the time of static elimination between the periodic cleanings and judges that the cleaning time comes, the program is also interrupted in. Then the cleaning operation is carried out.

Abstract

A static eliminator comprises at least one discharge needle for generating ions to eliminate static charge. A first hollow cylinder includes at least one opening for ions generated by the discharge needle to be emitted outside and provided with brushes for cleaning the discharge needle. A second hollow cylinder is provided with the discharge needle and rotatably disposed inside the first hollow cylinder. A discharge needle rotating mechanism is provided for causing to rotate the second hollow cylinder around the axis thereof to clean the discharge needle by wiping the discharge needle with the brushes.

Description

    TECHNICAL FIELD
  • This invention generally relates to a static eliminator, and more particularly, to a maintenance-free static eliminator.
  • BACKGROUND OF INVENTION
  • Conventional static eliminators in which discharge needles or discharge electrodes are manually cleaned have been popular or mainline. In the case of manually cleaning, the system in which a vacuum sweeper is connected to the static eliminator and then discharge needles are manually cleaned while the swept dust is sucked in has been proposed. Although there was an automatically cleaning type of static eliminator using a motor, the swept dust could not be recovered or collected.
  • As mentioned above, there has been no maintenance-free static eliminator in which the discharge needles are automatically cleaned completely and at the same time the flied dust is collected automatically.
  • The users in fact are reluctant to carry out the operation of maintenance because of bother although the static eliminator is required to be maintained periodically, and thus in many cases the performance of static eliminator could not be brought out.
  • Therefore, it is an object of the present invention to provide a maintenance-free static eliminator.
  • SUMMARY OF INVENTION
  • To accomplish the object, there is provided a static eliminator which comprises at least one discharge needle for generating ions to eliminate static charge, a first hollow cylinder including at least one opening for ions generated by said discharge needle to be emitted outside and provided with brushes for cleaning said discharge needle, a second hollow cylinder provided with said discharge needle and rotatably disposed inside of said first hollow cylinder, a discharge needle rotating mechanism for causing to rotate said second hollow cylinder around the axis thereof to clean said discharge needle by wiping said discharge needle with said brushes
  • To accomplish the object, there is also provided a static eliminator which comprises at least one discharge needle for generating ions to eliminate static charge, a box type of housing provided with said discharge needle inside of said housing and openings for emitting outside ions generated from said discharge needle, a brush driver attached to said housing for swinging brushes to wipe the dust attached to the discharge needle with the brushes, and a first fan with a filter for sucking air in from outside the box through the opening and discharge clean air after removing the floating dust wiped away from said discharge needle by the brushes.
  • To accomplish the object, there is also provided a static eliminator which includes discharge needles for static elimination and means for cleaning the discharge needles periodically comprising means for calculating cleaning date on the basis of periodic data for cleaning the discharge needles, means for comparing calendar date and the date calculated by said calculating means to determine the cleaning date, means for comparing the time data and clock time to determine the commencement of cleaning when the cleaning date comes, and means for carrying out the cleaning by actuating the cleaning means in accordance with the indication of commencement, the external indication from the outside or the indication of dust sensor.
  • Other objects, features, and advantages of the present invention will be explained in the following detailed description of the invention having reference to the appended drawings:
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a front view for explanation of a static eliminator according to first embodiment of the present invention when ions are emitted,
  • FIG. 2 is a front view for explanation of a static eliminator according to first embodiment of the present invention when discharge needles are cleaned,
  • FIG. 3 is a cross sectional view for explanation of a static eliminator according to the first embodiment of the present invention when discharge needles are cleaned,
  • FIG. 4 is a cross sectional view for explanation of the ion emission when ions are emitted and the suction of outside air when discharge needles are cleaned, FIG. 4 a is an enlarged cross sectional view taken along line 4(a)-4(a) of FIG. 1, FIG. 4 b is a an enlarged cross sectional view taken along line 4(b)-4(b) of FIG. 2, and FIG. 4 c is a an enlarged cross sectional view taken along line 4(c)-4(c) of FIG. 3,
  • FIG. 5 is a cross sectional view for explanation of a static eliminator according to the second embodiment of the present invention when discharge needles are cleaned,
  • FIG. 6 is a cross sectional view for explanation of a static eliminator according to the third embodiment of the present invention when discharge needles are cleaned,
  • FIG. 7 is a view for explanation of the timing of control of elimination operation and cleaning operation,
  • FIG. 8 is a flow chart for explanation of cleaning operation in accordance with the present invention,
  • FIG. 9 is a view for explanation of a box type of calm static eliminator according to the 4th embodiment of the present invention, FIG. 9 a is a front view of the static eliminator, and FIG. 9 b is a cross sectional view of the static eliminator,
  • FIG. 10 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 5th embodiment of the present invention,
  • FIG. 11 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 6th embodiment of the present invention, FIG. 11 a shows the state inside the static eliminator at the time of cleaning, and FIG. 11 b shows the state inside the static eliminator at the time of discharging, and
  • FIG. 12 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 7th embodiment of the present invention, FIG. 12 a shows the state inside of the static eliminator at the time of cleaning, and FIG. 12 b shows the state inside of the static eliminator at the time of discharging.
  • DETAILED DESCRIPTION OF THE INVENTION First Embodiment
  • FIG. 1 is a front view for explanation of a static eliminator according to first embodiment of the present invention when ions are emitted, FIG. 2 is a front view for explanation of a static eliminator according to first embodiment of the present invention when discharge needles are cleaned, FIG. 3 is a cross sectional view for explanation of a static eliminator according to the first embodiment of the present invention when discharge needles are cleaned, FIG. 4 is a cross sectional view for explanation of the ion emission when ions are emitted and the suction of outside air when discharge needles are cleaned, FIG. 4 a is an enlarged cross sectional view taken along line 4(a)-4(a) of FIG. 1, FIG. 4 b is a an enlarged cross sectional view taken along line 4(b)-4(b) of FIG. 2, and FIG. 4 c is a an enlarged cross sectional view taken along line 4(c)-4(c) of FIG. 3.
  • In FIGS. 1 to 4, a static eliminator 10 has a fixed hollow cylindrical housing such as a first cylinder 12 and an inside hollow cylinder or a second cylinder 14 which is rotatably positioned inside of the first cylinder 12 to clean discharge needles 16. Each of these cylinders 12 and 14 is closed by a cover 26 at its one end, and a driver 18 which is provided with a drive body 18 a for rotationally driving the second cylinder 14, power supply 20 provided with a power supply body 20 a and a fan with filter 24 are disposed at the other end. Furthermore, the discharge needles are provided with a dust sensor, not shown, to indicate the time of cleaning of discharge needles, if necessary.
  • The first cylinder 12 is formed with openings 12 a in a line along the first cylinder 12. The first cylinder 12 is provided with brushes 12 b to remove the dust from the discharge needles 16 by wiping them, see FIGS. 4 b and 4 c.
  • As shown in FIG. 4 a, the second cylinder 14 is formed with ion discharging openings 14 c which are in alignment with the openings 12 a of the first cylinder 12 at the rotational position of the second cylinder 14 in which ions are generated. Consequently ions 28 which are generated by discharge needles 16 provided inside of the second cylinder 14 are emitted or discharged through the openings 14 c and the openings 12 a. As shown in FIG. 4 b, the second cylinder 14 is provided with a portion 14 b which closes the other openings 12 a except one opening 12 a of the first cylinder 12 at the rotational position in which the discharge needles are cleaned. Furthermore, as shown in FIG. 4 c, the second cylinder 14 is formed with one outside air sucking opening 14 a which is in alignment with one of the openings such as the opening of the first cylinder adjacent the cover 26 in the first embodiment. Consequently the outside air is sucked in the second cylinder 14 though the openings.
  • Now an explanation on static eliminating operation by discharge needles and cleaning operation of the discharge needles will be made. At the time of static elimination, the discharge needles and the second cylinder 14 are brought to the rotational position as shown in FIG. 4 a by the driver of discharge needle rotating mechanism 18. In the state, electric power is supplied to the discharge needles 16 from the power supply 20 and thus the discharge needles 16 generate ions 28.
  • In the case of cleaning operation of the discharge needles 16, by the discharge needle rotating mechanism 18 the second cylinder 14 is brought to the rotational position as shown in FIGS. 4 b and 4 c in which the discharge needles are cleaned from the rotational position as shown in FIG. 4 a in which static elimination is carried out. At that time, the dust 30 attached to the discharge needles 16 is wiped away by the brush 12 b to float in the air. When the dust is in the floating state, electric power is supplied from the power supply 20 to the fan 22 with filter. As a result, the outside air is sucked in the second cylinder 14 only through the opening 12 a of the first cylinder 12 and the outside air sucking opening 14 a of the second cylinder 14 and then inside the second cylinder 14 the floating dust is carried toward the filter 24 together with the outside air thus sucked. The filter 24 gathers the dust and only clean air is discharged outside.
  • Second Embodiment
  • FIG. 5 is a cross sectional view for explanation of a static eliminator according to the second embodiment of the present invention when discharge needles are cleaned. In the second embodiment, the fan 22 with filter is provided on the first cylinder 12 and the second cylinder 14 at the opposite side of the driver 18 and the power supply 20. The discharging operation and the cleaning operation are similar to those of the first embodiment.
  • Third Embodiment
  • FIG. 6 is a cross sectional view for explanation of a static eliminator according to the third embodiment of the present invention when discharge needles are cleaned. In the third embodiment, the fan 22 with filter is provided adjacent the driver 18. The discharging operation and the cleaning operation are similar to those of the first embodiment.
  • 4th Embodiment
  • Although in the above-mentioned first to third embodiments the housing of the static eliminator is of a bar type, in the embodiment described hereinafter the housing of the static eliminator is of a box type. Furthermore, the box type of static eliminator includes a type of calm static eliminator in which emission or discharge of ions is made by coulombic repulsion not using air blow by the fan and the other type of static eliminator with fan in which emission or discharge of ions is made using air blow by the fan, and therefore these types of static eliminator will be explained individually.
  • FIG. 9 is a view for explanation of a box type of calm static eliminator according to the 4th embodiment of the present invention, FIG. 9 a is a front view of the static eliminator, and FIG. 9 b is a cross sectional view of the static eliminator. In FIG. 9 the static eliminator 50 has a box type of housing 52. the housing 52 is formed with circular openings 52 a at its front portion to emit outwardly ions which are generated from the discharge needles 54 disposed inside the housing 52. A plurality of discharge needles, 6 discharge needles in this embodiment, are disposed circumferentially. Furthermore, the discharge needles are provided with dust sensor, not shown, to sense dirtiness of the discharge needle and indicate the time when the discharge needles should be cleaned in response of extent of dirtiness.
  • A brush 56 is disposed to wipe each of discharged needles 54. The brushes 56 are provided on arms 58 at their ends, and each arm 58 is attached to an arm swing mechanism or brush driver 60 which is attached to the front portion 52 b of the housing at the center position of discharge needles. The brush driver 60 swings the arms 58 within a predetermined region as indicated by arrows to wipe away the dust attached to the discharge needles 54 therefrom. Meanwhile a suction fan 64 with suction filter 62 is attached to the rear portion 52 c of the housing 52.
  • At the time of static elimination, the arm 58 is brought to the position as in shown in FIG. 9 a and ions are generated by power supplied from the power supply, not shown, to the discharge needles to carry out static elimination. At the time of cleaning, the brush driver 60 is actuated to wipe away the dust attached to the discharge needles therefrom and to float the dust. At the same time of actuation of brush driver 60, the fan 64 with suction filter 64 is actuated to suck the floating dust in by outside air as indicated by the dotted arrows and to transfer the dust toward the suction fan 64. Finally the clean air in which the dust is removed is discharged outside of the housing 52.
  • 5th Embodiment
  • FIG. 10 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 5th embodiment of the present invention. In FIG. 10, for convenience of drawing, the brush, the arm, and the brush driver as shown in FIG. 9 are omitted. In FIG. 10, in addition to the suction fan 64 with filter 62, an air blow fan 68 with filter 66 is attached to the rear portion 52 c of the housing 52.
  • At the time of static elimination, while ions are emitted from the discharge needles the air blow fan 68 with filter 66 is actuated to suck the clean air in from the outside as shown in arrows, to send the clean air toward the discharge needles and to fly away the ions thus emitted. At the time of cleaning, the air blow fan 68 is turned down and a shutter 69 is closed to shut off the air blow. As is the case with the 4th embodiment, only the suction fan 64 is actuated to remove the dust from the discharge needles.
  • 6th Embodiment
  • FIG. 11 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 6th embodiment of the present invention, FIG. 11 a shows the state inside the static eliminator at the time of cleaning, and FIG. 11 b shows the state inside the static eliminator at the time of discharging. In FIG. 11, for convenience of drawing, the brush, the arm, and the brush driver as shown in FIG. 9 are omitted. In FIG. 11, instead of the suction fan and the air blow fan as provided in the 5th embodiment one fan 72 with filter 70 is provided inside of rear portion 52 of the housing 52. The fan is used as a suction and air blow one.
  • In order to use the fan as a suction and air blow one, at the time of static elimination and at the time of cleaning, flow paths of air to fan are changed over. That is, at the time of cleaning as shown in FIG. 11 a, valves 74 and 76 are respectively brought to the upper positions and therefore the fan works as a suction one. As shown in dotted arrows, outside air is sucked in through the openings 52 a of the housing 52, and is passed through the filter 70 and the fan 72, and discharged through the opening 52 e. Meanwhile at the time of static elimination as shown in FIG. 11 b the valves 72 and 74 are respectively brought to the lower positions. The fan 72 works as an air blow one. As shown in solid arrows, the outside air is sucked in through the opening 52 d of the housing 52, passed through the filter 70 and the fan 72, sent toward the discharge needles 54, and finally discharged through the openings 52 a.
  • 7th Embodiment
  • FIG. 12 is a cross sectional view for explanation of a box type of static eliminator with a fan according to the 7th embodiment of the present invention, FIG. 12 a shows the state inside the static eliminator at the time of cleaning, and FIG. 12 b shows the state inside the static eliminator at the time of discharging. In FIG. 12, for convenience of drawing, the brush, the arm, and the brush driver as shown in FIG. 9 are omitted. In FIG. 12 a suction and air blow fan is used as is the case with the 6th embodiment. The fan is mounted on the housing 52 between the rear portion 52 c and the partition wall 52 f so that the fan is rotatable around an axis of rotation 72 a.
  • In the embodiment, the fan 72 is caused to rotate about the axis 72 a in order to change over the directions of air blow from the fan 72. That is, at the time of cleaning as shown in FIG. 12 a the filter 70 is positioned above the fan 72 and sends the air downwardly. The fan 72 works as a suction one. As shown in dotted arrows, outside air is sucked in through the openings 52 a of the housing 52, and is passed through the filter 70 and the fan 72, and discharged through the opening 52 e. Meanwhile at the time of static elimination as shown in FIG. 12 b, the fan 72 is positioned above the filter 70. The fan 72 works as an air blow one. As shown in solid arrows, the outside air is sucked in through the opening 52 e of the housing 52, passed through the filter 70 and the fan 72, sent toward the discharge needles 54, and finally discharged through the openings 52 a.
  • 8th Embodiments
  • The static eliminator described in 1 to 7 embodiments is provided with a controller, not shown, which actuates the above-mentioned discharge needles rotating mechanism or the arm swing mechanism and the fan with filter, that is, an air blow fan or a suction and air blow fan to carry out the cleaning operation. Alternatively the cleaning operation may be made by the external order signal or the signal from the outside or from the dust sensors of the discharge needles.
  • FIG. 7 is a view for explanation of the timing of control of elimination operation and cleaning operation. In FIG. 7, the static eliminator usually eliminates static charge. A first cleaning is made to clean the discharge needles on the basis of control by the controller. At that time, cycle data and time data are input and compared with actual date and time. When it comes to the input time, the cleaning is restarted, and after that time the cleaning will be carried out periodically.
  • FIG. 8 is a flow chart for explanation of cleaning operation in accordance with the present invention. At the beginning a first cleaning is carried out (step S10). Cycle data is input and the date for cleaning is calculated (step S12). Thereafter the date for cleaning and date input from the calendar are compared to judge as whether today is the cleaning date or not, and the cleaning date is waited for (step S14). When the cleaning date comes, the input time indicating data and the time input from the clock are compared and the time coincidence is waited for (step S16). When the time coincidence occurs, cleaning is carried out (step S18). Thereafter the step returns to S12 and the cleaning will be repeatedly carried out periodically.
  • Furthermore, the cleaning (step S18) is also carried out by the external order signal or the signal from the dust sensor. For example, when the cleaning operation is carried out periodically in accordance with the program, in case that the controller receives the external order signal, the program is interrupted in. In the case that the dust sensor senses the dust or contamination at the time of static elimination between the periodic cleanings and judges that the cleaning time comes, the program is also interrupted in. Then the cleaning operation is carried out.
  • Thereafter, a long time have passed and when the time of overhaul comes alarm may be issued to notify the user.

Claims (9)

1-10. (canceled)
11. A static eliminator which comprises:
at least one discharge needle for generating ions to eliminate static charge,
a box type of housing provided with said discharge needle inside of said housing and openings for emitting outside ions generated from said discharge needle,
a brush driver attached to said housing for swinging brushes to wipe the dust attached to the discharge needle by the brushes, and
a first fan with a filter for sucking air in from outside the box through the openings and discharging clean air after removing the floating dust wiped away from said discharge needle by the brushes.
12. A static eliminator according to claim 11 which comprises a second fan with a filter for sucking air in the housing from the outside and sending clean air toward the discharge needle after removing the dust.
13. A static eliminator according to claim 11 which comprises a suction and air blow fan with a filter in which the direction of air blow is changed over so that clean air is sucked in the housing from the outside and is sent toward the discharge needles after removing the dust at the time of static elimination and the air is sucked in from the outside and is discharged outside the box after removing the floating dust wiped away from the discharge needles by the brushes at the time of cleaning.
14. A static eliminator according to claim 13 in which said change over of the direction of air blow is made by changing over passage of air within the housing.
15. A static eliminator according to claim 13 in which said change over of the direction of air blow is made by changing over the orientation of said suction and air blow fan within the housing.
16. A static eliminator according to claim 11 in which the cleaning of said discharge needles is carried out in accordance with one mode of the group consisting of: a predetermined program, external order, and indication of dust sensor for the discharge needle.
17. (canceled)
18. A static eliminator according to claim 16 in which said predetermined program comprises:
means for calculating a cleaning date on the basis of periodic data for cleaning the discharge needles,
means for comparing a calendar date and the date calculated by said calculating means to determine the cleaning date,
means for comparing the time data and clock time to determine the commencement of cleaning when the cleaning date comes, and
means for carrying out the cleaning by actuating the cleaning means in accordance with the indication of commencement, the indication from the external indication or the indication of dust sensor.
US12/354,658 2006-04-05 2009-01-15 Maintenance-free static eliminator Abandoned US20090128984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-103793 2006-04-05
JP2006103793A JP2007280701A (en) 2006-04-05 2006-04-05 Charge neutralizer

Publications (1)

Publication Number Publication Date
US20090128984A1 true US20090128984A1 (en) 2009-05-21

Family

ID=38171320

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/688,784 Active US7492568B2 (en) 2006-04-05 2007-03-20 Maintenance-free static eliminator
US12/354,658 Abandoned US20090128984A1 (en) 2006-04-05 2009-01-15 Maintenance-free static eliminator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/688,784 Active US7492568B2 (en) 2006-04-05 2007-03-20 Maintenance-free static eliminator

Country Status (4)

Country Link
US (2) US7492568B2 (en)
EP (1) EP1843438B1 (en)
JP (1) JP2007280701A (en)
CN (1) CN101052263B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512137B1 (en) * 2004-08-13 2005-09-02 (주)선재하이테크 A bar type corona discharged electrostatic eliminator equipped with air vessel using pulsed AC high voltage power source
JP5322666B2 (en) * 2008-11-27 2013-10-23 株式会社Trinc Ozone-less static eliminator
US20120068082A1 (en) * 2009-06-05 2012-03-22 Yoshiyuki Noda Ion generation apparatus and electric equipment
CN101835332B (en) * 2010-05-14 2014-10-29 无锡市中联电子设备有限公司 Integrated static electricity eliminator
JP2012128990A (en) * 2010-12-14 2012-07-05 Sharp Corp Ion generator
CN102711352A (en) * 2012-01-06 2012-10-03 无锡市中联电子设备有限公司 Discharging needle
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
BR112020016320A2 (en) 2018-02-12 2020-12-15 Global Plasma Solutions, Inc. SELF-CLEANING ION GENERATING DEVICE
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
CN112934767A (en) * 2021-01-26 2021-06-11 上海稳巢信息科技有限公司 Clean control system of range formula discharge needle
CN112956943A (en) * 2021-01-26 2021-06-15 上海稳巢信息科技有限公司 Hand-held type antistatic dust collector
CN114992763A (en) 2022-04-25 2022-09-02 北京小米移动软件有限公司 Anion generating device and air purifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464754B1 (en) * 1999-10-07 2002-10-15 Kairos, L.L.C. Self-cleaning air purification system and process
US7006923B1 (en) * 2004-05-19 2006-02-28 The United States Of America As Represented By The Secretary Of The Navy Distributed biohazard surveillance system and apparatus for adaptive collection and particulate sampling
US20060045559A1 (en) * 2004-08-31 2006-03-02 Xerox Corporation Method of actuating a cleaning system and a printing machine including the same
US7191367B2 (en) * 2002-03-29 2007-03-13 Fujitsu Limited Storage unit, condition monitoring program product, and condition monitoring program storage medium
US7658891B1 (en) * 1997-11-21 2010-02-09 Barnes Ronald L Air purification and decontamination for hazmat suits

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292971A (en) * 1985-10-19 1987-04-28 Ricoh Co Ltd Method and device for preventing variance of electrification due to corona discharge
US4734580A (en) * 1986-06-16 1988-03-29 The Simco Company, Inc. Built-in ionizing electrode cleaning apparatus
JPH0386599A (en) * 1989-08-31 1991-04-11 Koufu Nippon Denki Kk Page turning-over mechanism for passbook
JPH08171254A (en) * 1994-12-15 1996-07-02 Konica Corp Electrifying device
US5768087A (en) * 1996-11-05 1998-06-16 Ion Systems, Inc. Method and apparatus for automatically cleaning ionizing electrodes
US6419171B1 (en) * 1999-02-24 2002-07-16 Takayanagi Research Inc. Static eliminator
AUPR160500A0 (en) * 2000-11-21 2000-12-14 Indigo Technologies Group Pty Ltd Electrostatic filter
JP4614569B2 (en) * 2001-04-06 2011-01-19 一雄 岡野 Suction type ionizer
JP4738674B2 (en) * 2001-09-12 2011-08-03 株式会社Trinc Explosion-proof bar type static eliminator
JP4262488B2 (en) * 2003-01-29 2009-05-13 シシド静電気株式会社 Air blowing type ion generator
KR101111468B1 (en) * 2003-06-05 2012-02-21 시시도 세이덴기 가부시키가이샤 Ion generator
JP4358008B2 (en) * 2004-03-24 2009-11-04 トヨタ自動車株式会社 Bar type static eliminator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658891B1 (en) * 1997-11-21 2010-02-09 Barnes Ronald L Air purification and decontamination for hazmat suits
US6464754B1 (en) * 1999-10-07 2002-10-15 Kairos, L.L.C. Self-cleaning air purification system and process
US7191367B2 (en) * 2002-03-29 2007-03-13 Fujitsu Limited Storage unit, condition monitoring program product, and condition monitoring program storage medium
US7006923B1 (en) * 2004-05-19 2006-02-28 The United States Of America As Represented By The Secretary Of The Navy Distributed biohazard surveillance system and apparatus for adaptive collection and particulate sampling
US20060045559A1 (en) * 2004-08-31 2006-03-02 Xerox Corporation Method of actuating a cleaning system and a printing machine including the same

Also Published As

Publication number Publication date
US20070258183A1 (en) 2007-11-08
CN101052263A (en) 2007-10-10
US7492568B2 (en) 2009-02-17
CN101052263B (en) 2010-12-08
EP1843438A3 (en) 2012-06-20
EP1843438B1 (en) 2014-03-12
JP2007280701A (en) 2007-10-25
EP1843438A2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US7492568B2 (en) Maintenance-free static eliminator
KR100975573B1 (en) Air conditioner, method for cleaning filter thereof and filter cleaning device
KR101524170B1 (en) Industrial vacuum cleaner having dust removal device
JP4896636B2 (en) Air conditioner cleaning device and air conditioner
JP2007125294A (en) Dust collector and vacuum cleaner including the same
KR100913231B1 (en) Electric blackboard eraser
JP2002065570A (en) Drawer type dishwasher
KR100750724B1 (en) Suction brush of vacuum cleaner
JP5852890B2 (en) Rotating brush mounting structure and vacuum cleaner provided with the same
JP2007190305A (en) Automatic window cleaning system and window cleaning automation method
JP2015112204A (en) Vacuum cleaner
JP4592584B2 (en) Wet vacuum cleaner
CN113842081A (en) Dust collector and control method
KR100565254B1 (en) Sensor window cleaning apparatus of robot cleaner
CN100367899C (en) Electric dust collector
CN110116209A (en) The real-time dust-extraction unit of magnesium alloy 3D printing
CN217312389U (en) Industrial atmosphere pollution bag dust remover with high dust removal efficiency
CN111842218A (en) Dust cleaning device for color sorter, color sorter with dust cleaning device and cleaning assembly of color sorter
CN115752615B (en) Water meter detection device
KR102482042B1 (en) Wet mop robot vacuum cleaner
JP2002147820A (en) Air conditioner
JP2002186816A (en) Air cleaner
CN209077246U (en) A kind of computer motherboard cleaner
JP2008206739A (en) Vacuum cleaner
KR20070016543A (en) Suction Unit for Cleaner

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION