US20090107120A1 - Method and device for treating the exhaust gas of an internal combustion engine - Google Patents

Method and device for treating the exhaust gas of an internal combustion engine Download PDF

Info

Publication number
US20090107120A1
US20090107120A1 US12/272,359 US27235908A US2009107120A1 US 20090107120 A1 US20090107120 A1 US 20090107120A1 US 27235908 A US27235908 A US 27235908A US 2009107120 A1 US2009107120 A1 US 2009107120A1
Authority
US
United States
Prior art keywords
line
catalytic converter
reducing agent
metering
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/272,359
Other languages
English (en)
Inventor
Rolf Bruck
Marc Brugger
Thomas Harig
Peter Hirth
Ulf Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of US20090107120A1 publication Critical patent/US20090107120A1/en
Assigned to EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH reassignment EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLEIN, ULF, BRUGGER, MARC, HAERIG, THOMAS, HIRTH, PETER, BRUECK, ROLF
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method and a device for treating the exhaust gas of an internal combustion engine, in which the content of nitrogen oxides in the exhaust gas of the internal combustion engine is reduced through selective catalytic reduction.
  • SCR selective catalytic reduction
  • a selective reduction of the nitrogen oxides to form molecular nitrogen (N 2 ) takes place by using a selectively acting reducing agent.
  • One possible reducing agent is ammonia (NH 3 ).
  • ammonia is often stored not in the form of ammonia but instead, an ammonia precursor is stored, which is converted to ammonia when required.
  • Possible ammonia precursors are, for example, urea ((NH 2 ) 2 CO), ammonium carbamate, isocyanic acid (HCNO), cyanuric acid and the like.
  • Urea in particular, has proven to be simple to store. Urea is preferably stored in the form of a urea/water solution. Urea and, in particular, urea/water solution is hygienically harmless, simple to distribute and to store. A urea/water solution of that type is already marketed under the trademark “AdBlue”.
  • German Published, Non-Prosecuted Patent Application DE 199 13 462 A1 discloses a method in which a urea/water solution is dosed, upstream of a hydrolysis catalytic converter, into a partial flow of the exhaust gas of an internal combustion engine.
  • the dosing-in process takes place in that case in the form of droplets.
  • hydrolysis and thermolysis of the urea takes place to form ammonia, which is used as a reducing agent in an SCR catalytic converter situated downstream.
  • the method described therein has the disadvantage that the hydrolysis catalytic converter is cooled by the evaporation of the urea/water solution.
  • a device for treating exhaust gas of an internal combustion engine passing through an exhaust line comprises a reducing agent solution evaporator which is disposed outside the exhaust line and is to be connected to the exhaust line.
  • the reducing agent solution evaporator includes an evaporator unit configured for evaporating an aqueous solution which includes at least one reducing agent precursor and configured for providing a gaseous substance mixture including at least one of the following substances:
  • a hydrolysis catalytic converter is connected to the reducing agent solution evaporator for the hydrolysis, in particular, of urea to form ammonia, is disposed outside the exhaust line and is to be connected to the exhaust line.
  • An SCR catalytic converter is disposed in the exhaust line for selective catalytic reduction of nitrogen oxides.
  • a particulate filter can be provided upstream of the SCR catalytic converter.
  • the particulate filter during operation, can likewise be traversed by the reducing-agent-containing gas flow from the hydrolysis catalytic converter.
  • the SCR catalytic converter is regularly traversed by exhaust gas, while this is not normally the case for the hydrolysis catalytic converter and the reducing agent solution evaporator.
  • the latter are embodied in such a way that they can be connected to the exhaust line in such a way that a gaseous substance mixture which includes a reducing agent can be introduced into the exhaust line, but at most small quantities of exhaust gas can penetrate into the hydrolysis catalytic converter and/or the reducing agent solution evaporator.
  • a reducing agent precursor urea is preferably used as a precursor for the reducing agent ammonia.
  • the hydrolysis catalytic converter is also traversed by at least a part of the exhaust gas. That requires a hydrolysis catalytic converter of that type to have, due to the large mass flow rate of the exhaust gas, a certain volume, often half a liter and more, and a certain surface which is to be utilized for the catalytic reaction.
  • the volume and the surface can be considerably smaller in a hydrolysis catalytic converter according to the present invention, since the hydrolysis catalytic converter need merely be constructed to be large enough to ensure that it can convert the maximum required quantity of reducing agent precursor in the evaporated aqueous solution. In this case, the mass flow rates through the hydrolysis catalytic converter are considerably lower.
  • the urea-water solution can contain even further substances which, for example, reduce the freezing point of the solution.
  • the evaporator unit is embodied in such a way that, in operation, at least an evaporation of the urea/water solution takes place.
  • the reducing agent solution evaporator is provided upstream of the hydrolysis catalytic converter and the latter is provided upstream of the SCR catalytic converter, so that, in operation, the evaporated aqueous solution which includes a reducing agent precursor and/or a reducing agent, flows from the reducing agent solution evaporator into the hydrolysis catalytic converter, where at least a partial hydrolysis takes place to form the reducing agent.
  • the hydrolysis catalytic converter leaves or yields a gas mixture which includes at least reducing agent. The gas mixture is conducted into the SCR catalytic converter and serves there as a selective reducing agent for reducing nitrogen oxides (NO X ).
  • the internal combustion engine can be mobile or stationary.
  • the internal combustion engine is, in particular, a part of a land vehicle, water vehicle or aircraft, preferably of an automobile such as, in particular, a passenger or truck or utility vehicle.
  • the hydrolysis catalytic converter and the SCR catalytic converter denote catalyst carrier bodies which are correspondingly catalytically active.
  • the catalyst carrier bodies in particular, have coatings which are catalytically active or which contain catalytically active substances.
  • the catalyst carrier bodies particularly preferably have ceramic coatings, for example in the form of a washcoat in which the correspondingly catalytically active particles are distributed.
  • the hydrolysis catalytic converter has a coating which includes titanium dioxide (anatase) and/or iron-exchanged zeolites.
  • the SCR catalytic converter particularly preferably has a coating which includes at least one of the following components: titanium dioxide, tungsten trioxide, molybdenum trioxide, vanadium pentoxide, silicon dioxide, sulphur trioxide, zeolite.
  • honeycomb bodies in particular, are used as catalyst carrier bodies.
  • the honeycomb bodies have channels or cavities through which a fluid can flow.
  • a honeycomb body it is particularly preferable for a honeycomb body to be formed as a catalyst carrier body which is constructed from ceramic and/or metallic material.
  • One option for a honeycomb body is a honeycomb body which is composed of thin sheet metal layers, with at least one structured and one substantially smooth sheet metal layer being wound or stacked with one another, and at least one of the stacks being coiled.
  • catalyst carrier bodies for example bulk material catalytic converters, carrier bodies made from wire mesh or the like, are possible and according to the invention.
  • the provision of a separate evaporator unit advantageously makes it possible to continuously ensure a defined dispensing of reducing agent without non-uniform and/or incomplete hydrolysis of the ammonia precursor to form ammonia taking place in the event of increased demand for reducing agent.
  • the evaporator unit is connected through the use of a delivery line to a reservoir for the aqueous solution, with the delivery line and the evaporator unit being connected to one another through the use of a connecting unit.
  • the connecting unit forms the interface between the delivery line and the evaporator unit.
  • the connecting unit is constructed so as to ensure a sealed connection between the delivery line and the evaporator unit in order to avoid leakage of the aqueous solution and of the gaseous substance mixture.
  • the connecting unit is constructed in such a way that, at the same time, a deposition of substances in the interior of the connecting unit, for example as a result of precipitations of components of the corresponding aqueous solution, is suppressed or occurs to such a small extent that a flow through the connecting unit remains possible.
  • the connecting unit is preferably constructed in such a way that it can be cooled.
  • the connecting unit is, for example, connected to a corresponding cooling element. Temperature control, that is to say cooling or heating, of the connecting unit, is generally possible.
  • the connecting unit is formed at least partially from a material with a thermal conductivity of less than 10 W/m K (Watt per meter and Kelvin).
  • a material with a low thermal conductivity which is in particular lower than that of metals, advantageously permits the formation of a connecting unit which permits both a high temperature in the evaporator unit as well as a low temperature in the delivery line to the evaporator unit. It is possible, in particular, for the delivery line to have a temperature of up to 70° C., up to 80° C. or even up to 90° C. while the evaporator unit has a temperature of more than 300° C., preferably more than 350° C. and preferably even more than 400° C. A temperature of approximately 380° C. is particularly preferable. In this case, the low thermal conductivity of the material of the connecting unit, in particular, ensures that no excessive heating of the delivery line occurs.
  • materials are preferable which have a thermal conductivity of only 2 W/m K or less, particularly preferably only 1 W/m K or less, in particular between 0.1 W/m K and 0.4 W/m K, in particular approximately 0.25 W/m K or less.
  • the connecting unit is constructed in such a way that its diameter changes by less than 0.25% even if flown through by pulsatile flows.
  • the connecting unit is constructed in such a way that the diameter through which a fluid can flow is 0.5 to 6 mm in case of a substantially circular shape of the region to be flown through.
  • the diameter through which a fluid can flow is preferably 3 to 5 mm, in particular approximately 4 mm.
  • the region of the connecting unit to be flown through preferably has a cross section of 0.2 to 28 square millimeters irrespective of the shape of the region of the connecting unit to be flown through.
  • the connecting unit includes at least one Peltier element for cooling and/or heating the connecting unit.
  • the connecting unit is, in particular, galvanically isolated from the evaporator unit.
  • the connecting unit is constructed in such a way that a temperature gradient of 40 K/mm (Kelvin per millimeter) and greater can be maintained over a length of the connecting unit.
  • the connecting unit is equipped with or connected to a corresponding active or passive temperature control device which allows the temperature gradient to be maintained.
  • a temperature gradient of 40 K/mm and greater advantageously permits a high temperature of 350° C. or more to be maintained in the evaporator unit, with a more moderate temperature of, for example, 70° C., 80° C. or 90° C. being maintained in the delivery line. It is thereby possible on one hand to ensure good and preferably complete evaporation of the aqueous solution with, at the same time, a small spatial extent of the evaporator unit, and a good capability for dosing of the aqueous solution.
  • the formation of the connecting unit with a very low thermal conductivity and/or a very large possible temperature gradient advantageously permits the generation of a very constant temperature level within the evaporator unit without a significantly reduced temperature in the region adjacent the connecting unit.
  • Such a constant temperature level of the evaporator unit is advantageous since the formation of depositions or deposits within the evaporator unit can be effectively avoided or reduced in this way.
  • the connecting unit is constructed from at least one material including at least one of the following materials:
  • the materials particularly advantageously have, on one hand, a low thermal conductivity, for example of less than 10 W/m K, and on the other hand advantageously permit the formation of a connecting unit with temperature gradients of 40 K/mm and greater. It is advantageous, in particular, when using a ceramic material to use an additional sealing and/or adhesive device in order to increase the impermeability of the connecting unit.
  • the hydrolysis catalytic converter has a heat capacity of at most 60 J/K.
  • the heat capacity of the hydrolysis catalytic converter is preferably understood to mean the heat capacity without any casing tube which may be provided.
  • a heat capacity has the effect of permitting the hydrolysis catalytic converter to be heated and cooled quickly.
  • This advantageously makes it possible to use the hydrolysis catalytic converter as the regulating element, or one of several regulating elements, in a temperature regulating circuit.
  • a hydrolysis catalytic converter is even preferably formed with a heat capacity of at most 45 J/K, at most 30 J/K or even of 25 J/K and less.
  • the hydrolysis catalytic converter preferably includes a metallic honeycomb body made of a steel having a material code 1.4725 according to the German classification of steels and/or aluminum. It is to be understood that a steel with material code 1.4725 is, in particular, a steel having 14 to 16 wt.-% (weight-%) chromium, at most 0.08 wt.-% iron, at most 0.6 wt.-% manganese, at most 0.5 wt.-% silicon, 3.5 to 5 wt.-% aluminum, at most 0.3 wt.-% zirconium, and a remainder of iron which can include usual impurities that add, in particular, up to at most 0.1 wt.-%.
  • the steel having a material code 1.4725 can be coated and/or bonded with aluminum.
  • the hydrolysis catalytic converter has a volume of less than 100 ml (milliliters).
  • the hydrolysis catalytic converter includes a casing tube.
  • the casing tube serves to seal off the hydrolysis catalytic converter.
  • a construction of the hydrolysis catalytic converter is preferable in which the latter is composed of a catalytically active coating that is applied to the inner side of the casing tube.
  • the casing tube it is also advantageous and preferable for the casing tube to serve as a retainer for a conventional structure, for example a honeycomb structure which fills up at least a part of the interior space of the casing tube, or else a structure composed of wire mesh or metal and/or ceramic foam.
  • At least one at least partially structured metallic layer is provided in the casing tube.
  • the hydrolysis catalytic converter can include a conventional honeycomb structure constructed from at least one structured, in particular corrugated metallic layer and if appropriate at least one further, substantially smooth metallic layer. It is alternatively possible for the hydrolysis catalytic converter to have a casing tube and, on the inner face thereof, to have a structured, in particular corrugated metallic layer which encircles the entire periphery of the casing tube at least once, but does not fill up clear or open parts of the cross section of the casing tube, so that a freely traversable cross section remains free in the interior of the layer. This is referred to as a so-called “hot tube”.
  • the hydrolysis catalytic converter preferably has channels which are delimited by walls, with the walls of the channels being at most 80 ⁇ m (micrometers) thick. Wall thicknesses of 60 ⁇ m and less or 30 ⁇ m and less are preferable in this case, in particular where the hydrolysis catalytic converter is formed at least partially from metallic layers which form the walls of the channels. The wall thicknesses have proven to be particularly advantageous, since they make it possible to provide a hydrolysis catalytic converter with a small heat capacity.
  • the hydrolysis catalytic converter has a cell density of less than 600 cpsi (cells per square inch).
  • a hydrolysis catalytic converter which is not traversed by exhaust gas can be provided with smaller volumes and smaller surfaces. It is possible, in particular, in this case for a smaller cell density of the hydrolysis catalytic converter to be used, since the volume flow rate which flows through the hydrolysis catalytic converter even at full load is less than that of exhaust gas. It is thereby possible to use hydrolysis catalytic converters with relatively low cell densities of less than 600 cpsi, of less than 400 cpsi or even of less than 300 or 200 cpsi and less.
  • the hydrolysis catalytic converter is mechanically connected to the exhaust line, in particular flange-connected thereto. This advantageously permits a stable mechanical mounting of the device according to the invention.
  • the hydrolysis catalytic converter is thermally decoupled from the exhaust line.
  • Thermal decoupling is advantageous since, in a cold-start phase of the internal combustion engine in which the exhaust line is still relatively cool, it is not necessary for the relatively large thermal mass of the exhaust line to also be heated up during the heating of the hydrolysis catalytic converter.
  • the exhaust line Once the exhaust line has reached its conventional operating temperature, which can be up to 800° C. and more and is greater than the conventional operating temperature of the hydrolysis catalytic converter of approximately 350 to 450° C., heating of the hydrolysis catalytic converter by the exhaust line which, should it arise, is undesirable and complicates the regulation of the temperature of the hydrolysis catalytic converter, is prevented.
  • the operating temperature of the hydrolysis catalytic converter is, in particular, in the region of 350 to 450° C. whereas the heating of the hydrolysis catalytic converter preferably results from the hot vapor which includes reducing agent and/or reducing agent precursor, from a further electrical heating and/or from waste heat of the evaporator unit having an operating temperature of up to 450° C. or more.
  • a bar-shaped heating element is provided, through the use of which at least one of the following components can be heated:
  • At least one bar-shaped heating element is provided, coaxially with which at least one of the following elements is provided:
  • the hydrolysis catalytic converter can preferably be embodied as an annular honeycomb body which contains a plurality of channels between an inner casing tube, which is connected to the bar-shaped heating element, and an outer casing tube.
  • the evaporator unit can, in particular, contain a metering line which is, in particular, wound in spiral fashion around the bar-shaped heating element. It is, if appropriate, possible for a further heating element to be provided outside the configuration, so that parts of the evaporator unit and/or of the hydrolysis catalytic converter are situated between two heating elements. Particularly uniform heating can thereby take place.
  • the bar-shaped heating element preferably has a plurality of heating zones with temperatures that can be controlled independently of one another.
  • the bar-shaped heating element in particular, has at least two zones, around which are provided, in each case in one zone, the hydrolysis catalytic converter and the evaporator unit or the metering line.
  • the zone of the evaporator unit or of the metering line is preferably sub-divided further, since different processes take place in this case, specifically for example heating of the liquid, evaporation of the liquid and superheating of the liquid.
  • a configuration of the bar-shaped heating element with 5 or 6 zones is preferable.
  • the boundary between the zones can preferably be adapted as a function of the quantity of aqueous solution which is to be evaporated.
  • the temperature of at least one of the following components can be controlled:
  • temperature control is to be understood, in particular, to mean that the corresponding component(s) can be heated and/or cooled.
  • at least one of the components can be part of a regulating loop, and it is preferable for a plurality of the components to be parts of a regulating loop.
  • the regulation of the temperature of the components is carried out in such a way that one of the components or a plurality of the components are used as a type of actuator. This means, in particular, that the temperature of only one of the components is actively controlled, and the component correspondingly sets the temperature of the respective other components through the use of corresponding reaction kinetics and through the use of the corresponding present fluid-dynamic conditions.
  • a device for temperature control includes at least one of the following components:
  • the Peltier element in particular, can advantageously be used both for heating and for cooling the corresponding component.
  • the cooling body advantageously has a shape which promotes the radiation of heat.
  • the cooling body is preferably made from a material with high thermal conductivity such as, in particular, aluminum or another metal or a metal alloy.
  • a Peltier element is to be understood, in particular, as an electrical component which, when a current is passed through it, generates a temperature difference based on the so-called Peltier effect.
  • a Peltier element preferably includes one or more elements made from p-doped and n-doped semiconductor material which are connected to one another alternately through the use of electrically conductive material. The sign of the temperature difference is dependent on the direction of the current flow, so that both cooling and heating can be provided by a Peltier element.
  • a burner is to be understood, in particular, as a device for burning a fuel, in particular including hydrocarbons and/or hydrogen. Flameless combustion is also advantageously possible.
  • a material having a positive temperature coefficient a so-called PTC-resistor
  • PTC-resistor is in particular an electroconductive material having an electric resistance which increases with increasing temperature.
  • These are in use, in particular, as so-called self-regulating heating elements and are, in particular, made of a ceramic material, in particular a barium titanate ceramic.
  • PTC resistors made of a polymeric material being doped with soot particles can be used.
  • At least one of the following components has a coating which catalyses the hydrolysis of urea:
  • Hydrolysis is advantageously already catalyzed in one of the specified components as well as in the hydrolysis catalytic converter, by providing a coating which catalyses the hydrolysis of urea and which can be formed, in particular, as specified above.
  • This increases the conversion capacity and makes it possible for the hydrolysis catalytic converter to be provided to have a correspondingly small volume with a smaller catalytically active surface.
  • the formation of a coating, which catalyses the hydrolysis of ammonia, in the dosing line serves, in particular, to ensure as complete a hydrolysis of ammonia as possible, and in particular also prevents significant proportions of a reverse reaction to form urea or another ammonia precursor.
  • a coating which catalyses the hydrolysis of urea is to be understood, in particular, to mean that a metering line for metering the aqueous solution to the hydrolysis catalytic converter and/or an evaporator chamber for evaporating the aqueous solution have, at least in parts, a coating which catalyses the hydrolysis of urea.
  • the components can thereby already cause a partial hydrolysis of the reducing agent precursor to form reducing agent, and thereby improve the effectiveness of the hydrolysis.
  • the hydrolysis catalytic converter can thereby be fundamentally provided with a smaller volume or with a smaller catalytically active surface than if no corresponding coating were formed on at least one of the components.
  • the invention encompasses an embodiment of the device in which the evaporator unit and the hydrolysis catalytic converter cannot be traversed by exhaust gas, but rather only the SCR catalytic converter can be traversed by exhaust gas.
  • a metering unit is provided, through the use of which the hydrolysis catalytic converter can be flow-connected to an exhaust line of the internal combustion engine.
  • the reducing agent substance mixture including at least one reducing agent is then metered to the exhaust line.
  • the metering unit can, in particular, include the dosing line, but can also have further components. These can, in particular, be a passive mixing device, through the use of which the introducible substances can be mixed with the exhaust gas.
  • a passive mixing device is to be understood, in particular, to mean that no actively moveable mixing device is provided, but that a mixture of the substances with the exhaust gas can take place only through the use of the provision of a static mixing device together with the characteristics of the exhaust gas flow and the flow of the introducible substances.
  • the mixing device prefferably includes at least one of the following components:
  • the guide plate can, in particular, project into the exhaust line.
  • the guide plate can, in particular, be perforated at least in partial regions and/or have a curvature at least in partial regions.
  • the guide plate can project into the exhaust line at an angle with respect to the longitudinal direction of the exhaust line at that point or location.
  • the honeycomb body has channels with walls that have perforations.
  • flow can take place at an angle relative to the longitudinal axis of the channel.
  • the honeycomb body can preferably also have a conical construction.
  • the dosing line may open out in the interior of a corresponding cutout of the honeycomb body, so that the corresponding substances can be dosed directly in the honeycomb body.
  • the honeycomb body has channels and apertures which can be traversed by a fluid and connect adjacent channels to one another.
  • the apertures can, in this case, be smaller or larger than the conventional dimensions of a channel.
  • a calming zone or dead zone is to be understood to mean a region with a lower pressure than the pressure in the metering unit and/or dosing line. This can be obtained, in particular, in connection with a mixing device which produces a calming zone or dead zone directly in the opening-out region, and promotes a mixture downstream of the opening-out region.
  • thermal insulation is provided downstream of the hydrolysis catalytic converter.
  • the thermal insulation is preferably provided directly adjoining the hydrolysis catalytic converter.
  • the thermal insulation prevents thermal contact with the exhaust line, so that on one hand dissipation of heat from the hydrolysis catalytic converter to the exhaust line and thus cooling down, and on the other hand dissipation of heat from the exhaust line to the hydrolysis catalytic converter, can be prevented. In the extreme case, this could have the result that thermal regulation can no longer be carried out, since the exhaust line is always also heated as the hydrolysis catalytic converter is heated.
  • At least one of the following components includes at least one temperature sensor:
  • the temperature of the corresponding component can be measured by using the at least one temperature sensor.
  • the temperature sensor preferably includes a thermoresistor.
  • the temperature sensor can preferably be connected to a power supply.
  • the component can be heated in this way. This can, for example, be necessary in an emergency operating mode if substances have been precipitated in the component and block or threaten to block the component.
  • the substances can also involve soot which has passed into the metering unit with exhaust gas, for example by diffusion.
  • a delivery device is provided, through the use of which the aqueous solution can be delivered from a reservoir to the evaporator unit.
  • the delivery device preferably includes at least one pump.
  • a constant pressure of the aqueous solution can be built up upstream of the evaporator unit, with dosing into the evaporator unit taking place through a valve.
  • the pump is a dosing pump, with the dosing taking place through the use of a corresponding actuation of the pump.
  • a dosing pump is to be understood as a pump allowing the metering of a defined volume per time unit or per stroke.
  • the pump can build up a delivery pressure which is greater than the highest possible exhaust gas pressure on the metering unit and/or on the dosing line during operation of the internal combustion engine.
  • a pump is preferably used which has a delivery rate of up to 150 ml/min, preferably of up to 30 ml/min or up to 10 ml/min.
  • a pump is preferably used having a delivery rate per second which can be varied by 0.75 to 2.5 ml/s, in particular which can be increased by these values.
  • a pump is used as a delivery device which can generate a metering pressure of up to 6 bar absolute, preferably up to 2 bar absolute.
  • the volume flow generated by the pump varies with at most 5% around a pretederminable nominal flow.
  • the pump is provided in such a way that it is possible to convey back to the reservoir, in particular with a volume flow which corresponds to the conveying volume flow.
  • the method comprises:
  • the method according to the invention can be carried out, in particular, through the use of the device according to the invention.
  • the method according to the invention particularly advantageously permits the provision of ammonia as a reducing agent for use in the selective catalytic reduction of nitrogen oxides, with a highly dynamic method for providing the ammonia being proposed, so that it is possible to react quickly to very rapidly rising and therefore highly dynamic demands for ammonia as a result of high nitrogen oxide concentrations in the exhaust gas.
  • the mixture of the reducing agent substance mixture with the exhaust gas after step b) means, in particular, that an evaporation of an aqueous solution including at least one reducing agent precursor takes place outside the exhaust gas flow, and an addition to the exhaust gas of the internal combustion engine takes place only after the hydrolysis of the reducing agent precursor to form the reducing agent.
  • a variant of the method is preferable in which the reducing agent substance mixture is mixed with the entire exhaust gas of the internal combustion engine.
  • the reducing agent is preferably ammonia and a reducing agent precursor is preferably urea.
  • step a) includes evaporation, in an evaporator unit, of an aqueous solution including at least one reducing agent precursor.
  • the reducing agent precursor is preferably urea.
  • the solution can contain further substances, for example substances which lower the freezing point of the solution. These include, for example, ammonium formate and/or formic acid.
  • a corresponding solution is marketed under the trademark “Denoxium”.
  • a further possibility is the use of a solution which is marketed under the trademark “AdBlue”.
  • step b) at least partially takes place in a hydrolysis catalytic converter.
  • the hydrolysis catalytic converter includes, in particular, a catalyst carrier body which is provided with a coating that catalyses the hydrolysis of ammonia.
  • the temperature of at least one of the following components is regulated:
  • the regulation of the temperature of at least one of the components advantageously permits precise control of the reaction kinetics with regard to the generated products and the quantity of generated products. It is, for example, possible to meter quantities of ammonia to the exhaust gas which are precisely matched to the present nitrogen oxide content in the exhaust gas or to a nitrogen oxide content in the exhaust gas which is forecast for a future time, in order to thereby obtain as complete a conversion as possible of the nitrogen oxides in the exhaust gas of the internal combustion engine.
  • the temperature of at least one of the following components is controlled:
  • temperature control is to be understood, in particular, to mean heating or cooling of the component. It can be sufficient in this case to use one or more of the above-denoted components as a type of actuator having a temperature which is controlled in such a way that the temperature of the other components is correspondingly changed as a result of the reaction kinetics.
  • the aqueous solution is delivered through a delivery line to the reducing agent solution evaporator.
  • the delivery takes place, in particular, through the use of a pump and in particular from a reservoir.
  • the aqueous solution can be returned through the delivery line.
  • the evaporator unit is preferably constructed in such a way that up to 30 ml/min (milliliters per minute) of the aqueous solution can be continuously evaporated.
  • a dynamic provision of reducing agent is possible with which it is possible to convert even concentration peaks of the concentration of nitrogen oxides.
  • the temperature of at least one of the following components is determined before the start of a temperature control measure:
  • the other component is preferably a component which is substantially at the ambient temperature, for example an external temperature sensor of a motor vehicle, or a cooling water thermometer, etc.
  • the alignment preferably takes place before the evaporation of the aqueous solution is initiated. Alignment is to be understood in this case, in particular, to mean that a comparison of the two temperatures takes place, with it being possible for further factors to be incorporated.
  • predefining the difference value it is taken into consideration, in particular, whether or not the system was in operation in a predefinable timespan and when the system was deactivated. It is also possible to predefine a timespan in which the diagnosis functions do not take place if the system was in operation within the timespan.
  • the device and the method according to the invention can be constructed/performed in such a way that a hydrolysis catalytic converter and a reducing agent solution evaporator conduct a flow through them by a partial flow of the exhaust when in use. All advantageous improvements disclosed herein in which the hydrolysis catalytic converter and the reducing agent solution evaporator usually do not conduct a flow through them by exhaust when in use can be transferred to an alternative embodiment in which the hydrolysis catalytic converter and the reducing agent evaporator device conduct a flow through them by a part of the exhaust gas flow when in use.
  • FIG. 1 is a diagrammatic, perspective view of a device for providing a gaseous substance mixture in a first embodiment of the invention
  • FIG. 2 is an enlarged, longitudinal-sectional view of the first embodiment of the device for providing a gaseous substance mixture
  • FIG. 3 is a fragmentary, longitudinal-sectional view of a delivery line for delivering an aqueous solution from a reservoir to a metering line;
  • FIG. 4 is a plan view of a device for the selective catalytic reduction of nitrogen oxide in the exhaust gas of an internal combustion engine
  • FIG. 5 is a cross-sectional view of a second exemplary embodiment of an evaporator unit
  • FIG. 6 is a fragmentary, cross-sectional view, on a reduced scale, of a device for providing a reducing agent
  • FIG. 7 is a cross-sectional view of an alternative embodiment of the evaporator unit
  • FIG. 8 is a fragmentary, perspective view of a portion of an opening-out point of a dosing line into an exhaust line;
  • FIG. 9 is a cross-sectional view of an exemplary embodiment of a device for providing a gaseous substance mixture
  • FIG. 10 is a block diagram of a device for providing a gaseous substance mixture
  • FIG. 11 is a fragmentary, longitudinal-sectional view of an example of a possible metering unit for metering a reducing agent substance mixture to the exhaust gas;
  • FIG. 12 is a fragmentary, longitudinal-sectional view of a further example of a possible metering unit for metering the reducing agent substance mixture to the exhaust gas;
  • FIG. 13 is a fragmentary, longitudinal-sectional view of an exemplary embodiment of a device for treating the exhaust gas of an internal combustion engine
  • FIG. 14 is a perspective view of a device for depositing droplets
  • FIGS. 15 to 18 are perspective views of exemplary embodiments of evaporator units
  • FIGS. 19 and 20 are respective perspective and cross-sectional views of a further exemplary embodiment of a device for providing a gaseous substance mixture
  • FIG. 21 is a fragmentary, plan view of a further exemplary embodiment of a device for treating exhaust gas
  • FIG. 22 is a fragmentary, plan view of a portion of an opening-out region of a metering unit into the exhaust line.
  • FIGS. 23 and 24 are cross-sectional views of examples of honeycomb bodies acting as catalyst carrier bodies.
  • FIG. 1 a diagrammatic illustration of a device 1 for providing a gaseous substance mixture including at least one of the following substances:
  • the device 1 includes a metering line 2 with a dispensing opening 3 . Furthermore, a device 4 for heating the metering line 2 is provided. The metering line 2 can be heated with the device 4 above a first critical temperature, which is higher than the boiling temperature of water.
  • the device 1 also includes a reservoir (not shown in FIG. 1 ) which can be flow-connected to the metering line 2 . That is to say, in particular, that a fluid stored in the reservoir, such as for example an aqueous solution including at least one reducing agent precursor can, during operation, flow through the metering line 2 to the dispensing opening 3 .
  • a gaseous substance mixture can be provided which contains at least one reducing agent and/or at least one reducing agent precursor.
  • the device 4 for heating the metering line 2 is wound in spiral fashion together with the metering line 2 .
  • a fluid flowing through the metering line 2 is heated and ultimately evaporated.
  • a gaseous substance mixture which contains at least one reducing agent precursor is dispensed through the dispensing opening 3 .
  • at least partial thermolysis of the reducing agent precursor can even already take place in the metering line 2 , so that the gaseous substance mixture dispensed through the dispensing opening also already contains reducing agent, such as for example ammonia, in addition to a reducing agent precursor, such as for example urea.
  • the device 1 for providing a gaseous substance mixture also includes a measuring sensor 5 , through the use of which the temperature at least at one point of the metering line 2 can be measured.
  • the measuring sensor 5 can, for example, be a conventional thermal element or a conventional thermoresistor.
  • the device 1 and/or the individual components which require an electrical terminal preferably include a cable length for realizing the electrical terminals.
  • a cable length is to be understood, in particular, to mean a cable connection which is at least half of a meter, preferably at least one meter long. This allows plug-type contacts to be formed in regions which, in particular in automobiles, are exposed to only a small extent to environmental influences such as water spray, stone impacts or the like.
  • FIG. 2 shows the device 1 of FIG. 1 in section. It is possible to clearly see the metering line 2 , through which the aqueous solution including at least one reducing agent precursor can flow during operation, and the device 4 for heating the metering line 2 .
  • the metering line 2 can have a constant cross section, although it can also be variable, as in the present example. In this case, however, the traversable cross section of the metering line 2 is preferably between 0.75 mm 2 and 20 mm 2 and the traversable cross section is preferably in a region of approximately 3 mm 2 .
  • FIG. 2 also shows the measuring sensor 5 for determining the temperature of the metering line 2 .
  • the device 4 for heating the metering line 2 is operated in such a way that, in operation, the temperature across the length of the metering line 2 is at most 5° C. above and below a mean temperature.
  • the mean temperature substantially corresponds in this case to the first critical temperature.
  • the metering line 2 is formed, in particular, from a copper alloy.
  • FIG. 3 diagrammatically shows a delivery line 6 , through which the metering line 2 can, in operation, be connected to a reservoir (not shown in FIG. 3 ).
  • the delivery line 6 has a device 7 for temperature control.
  • the device 7 for temperature control includes in each case a plurality of Peltier elements 8 and a cooling body 9 .
  • the Peltier elements 8 are in each case provided with electrical terminals 10 , through which they can be supplied with current. In this case, depending on the polarity of the current, the Peltier elements 8 are used for heating or for cooling, so that basic temperature control of the delivery line 6 can be obtained with the Peltier elements 8 .
  • the cooling body 9 serves, in particular, to radiate heat energy if the delivery line 6 is cooled by the Peltier element or elements 8 .
  • the delivery line 6 can be connected to a further component through the use of a connecting unit 11 .
  • the component can be the metering line 2 as already referred to above, or generally an evaporator unit 12 .
  • the metering line 2 can then be part of the evaporator unit 12 .
  • the connecting unit 11 is formed at least partially from a material with a thermal conductivity of less than 10 W/m K (Watt per meter and Kelvin).
  • the connecting unit 11 is formed, in particular, from a ceramic material and/or polytetrafluoroethylene (PTFE).
  • the connecting unit 11 is, in particular, constructed in such a way that a temperature gradient of 40 K/mm (Kelvin per millimeter) and greater can be maintained over a length 57 of the connecting unit 11 .
  • the evaporator unit can, for example, have a temperature of 300° C. or more, 400° C. or more or of 420° C. or more, and thereby lead to substantially complete evaporation of the aqueous solution within the evaporator unit 12 , while the delivery line 6 has a temperature level of only 70° C. or more, 80° C. or more or 90° C. or more in order to ensure that the aqueous solution is not yet evaporated in the delivery line 6 .
  • FIG. 4 diagrammatically shows a device 15 for treating exhaust gas 13 of a non-illustrated internal combustion engine.
  • the exhaust gas 13 of the internal combustion engine flows through an exhaust line 14 .
  • the device 15 for treating the gases 13 of an internal combustion engine includes a reducing agent solution evaporator 16 , a hydrolysis catalytic converter 17 and an SCR catalytic converter 18 .
  • An aqueous solution including a reducing agent precursor is evaporated in the reducing agent solution evaporator 16 .
  • Urea in particular, is used as a reducing agent precursor.
  • the reducing agent solution evaporator 16 includes, in this exemplary embodiment, an evaporator unit 12 including a metering line 2 which is heated by a device 4 for heating the metering line 2 .
  • the metering line 2 is connected through a connecting unit 11 to a delivery line 6 .
  • the delivery line 6 is surrounded by a device 7 for controlling the temperature of the delivery line 6 .
  • the device 7 can, for example, include one or more Peltier elements 8 and/or a cooling body 9 , as shown above.
  • the aqueous solution of at least one reducing agent precursor can be delivered by a delivery device 19 from a corresponding reservoir 20 into the delivery line 6 .
  • a gas is provided which includes at least one reducing agent precursor such as, for example urea, and if appropriate also ammonia which has already been generated from the thermolysis of urea.
  • the gaseous substance mixture is introduced into the hydrolysis catalytic converter 17 provided downstream of the reducing agent solution evaporator 16 .
  • the hydrolysis catalytic converter 17 is constructed in such a way that, in particular, urea is hydrolyzed to form ammonia through the use of a corresponding catalytically active coating which is applied to the hydrolysis catalytic converter 17 .
  • the hydrolysis catalytic converter 17 serves for the hydrolysis of a reducing agent precursor to form a reducing agent.
  • the gas which leaves the hydrolysis catalytic converter 17 which gas contains a reducing agent and is referred to as a reducing agent substance mixture, is metered into the exhaust line 14 through a dosing line 21 .
  • the dosing line 21 opens out into the exhaust line 14 at a dosing opening which is situated upstream of the SCR catalytic converter 18 .
  • the SCR catalytic converter 18 therefore attains a mixture of reducing agent and exhaust gas which leads to a reduction of the nitrogen oxides contained in the exhaust gas 13 in the SCR catalytic converter 18 .
  • a quantity of reducing agent substance mixture is preferably provided which is such that as complete a conversion of the nitrogen oxides in the exhaust gas 13 as possible can take place in the SCR catalytic converter 18 .
  • FIG. 5 diagrammatically shows a further exemplary embodiment of an evaporator unit 12 .
  • the evaporator unit 12 includes an evaporator chamber 24 which encompasses a substantially closed volume.
  • the evaporator chamber 24 has merely a first opening 25 for connecting a delivery line 6 (not shown in FIG. 5 ) for delivering the aqueous solution, and a second opening 26 for connecting a metering line 2 (not shown in FIG. 5 ) for discharging the gaseous substance mixture.
  • a nozzle 62 is provided in the first opening 25 as a device for dosing an aqueous solution 45 into the evaporator chamber 24 .
  • the nozzle 62 serves to dose the aqueous solution 45 into the evaporator chamber 24 .
  • the evaporator unit 12 additionally has a device for heating the evaporator chamber 24 .
  • the device is formed by corresponding heat conductors 27 which are in contact with the evaporator chamber 24 .
  • the heat conductors 27 can have an asymmetric construction, that is to say a higher density of heat conductors per unit area is provided in regions which are situated substantially opposite the first opening 25 than in regions which are not situated substantially opposite the first opening 25 .
  • the device cumulatively includes a device 63 for burning hydrocarbons, such as for example a burner. A burner of that type can also be suitable for carrying out a flameless combustion of hydrocarbons.
  • the evaporator chamber 24 is preferably formed from a material including at least one of the following materials: a) copper; b) aluminum; c) noble steel; d) a nickel-based material and e) chrome-nickel steel.
  • the volume of the evaporator chamber 24 is preferably 1.5 to 10 cm 3 .
  • the heat conductor 27 is preferably operated with a heating power of up to approximately one kilowatt per second, with the maximum heating power being fixed as a function of the application. In passenger vehicles, the maximum heating power is preferably approximately 500 to 700 W/s, and in trucks or utility vehicles, preferably approximately 1200 to 1500 W/s.
  • the heat capacity of the evaporator chamber 24 is preferably less than 120 J/K, particularly preferably 100 to 110 J/K.
  • the first opening 25 and the second opening 26 preferably enclose an angle of 30 to 70°.
  • the aqueous solution 45 is preferably delivered at up to 150 ml/min into the evaporator chamber 24 , preferably at up to 100 ml/min, particularly preferably at up to 30 ml/min.
  • the evaporator chamber 24 preferably has a device with which an infiltration of droplets into the second opening 26 can be avoided.
  • the device is, in particular, a device with which a gas film situated between the droplet and the wall of the evaporator chamber 24 can be penetrated.
  • the device is, in particular, projections of the walls or the like. Structures 28 can likewise be provided in this region.
  • the evaporator chamber 24 has, in the interior, one or more of the above-mentioned structures 28 which serve to produce a larger surface for evaporating the aqueous solution.
  • the structures 28 are illustrated as being relatively large in the present exemplary embodiment. However, the structures 28 can also be a structured surface which is provided, for example, by applying a corresponding coating to the inner surface of the evaporator chamber 24 .
  • the structures 28 can alternatively or additionally also include macroscopic structures which have a structure amplitude of a few millimeters or even more. In general, the structures 28 are to be understood as a device for increasing the wetting capacity of the surface of the evaporator chamber 24 .
  • FIG. 6 diagrammatically shows the first exemplary embodiment of the evaporator chamber 24 connected to an exhaust line 14 .
  • the evaporator chamber 24 is provided with a casing 29 .
  • the casing 29 is preferably formed from a corresponding thermal insulator which reduces heat losses to the environment.
  • the device 27 for heating the evaporator chamber 24 can be connected through the use of heat conductor terminals 30 to a non-illustrated current source.
  • the evaporator unit 12 is connected through the use of the second opening 26 to a hydrolysis catalytic converter 17 .
  • the hydrolysis catalytic converter 17 has a device 31 for controlling the temperature of the hydrolysis catalytic converter 17 .
  • the device 31 is composed, in the present exemplary embodiment, of a corresponding heating wire which is wound around the hydrolysis catalytic converter 17 .
  • a corresponding casing 32 which is disposed around the hydrolysis catalytic converter 17 constitutes, in particular, thermal insulation of the hydrolysis catalytic converter 17 with respect to the environment in order to minimize as far as possible any occurring heat losses.
  • the hydrolysis catalytic converter is connected directly to the exhaust line 14 by virtue of projecting into the latter.
  • a corresponding connecting device 33 produces as sealed a connection as possible between the hydrolysis catalytic converter 17 and the exhaust line 14 .
  • a passive mixing device is also provided in the form of a guide plate 34 , through the use of which a reducing agent substance mixture 35 , which leaves the hydrolysis catalytic converter 17 , is mixed with the exhaust gas flowing in the exhaust line 14 .
  • the evaporator unit 12 serves to produce a gaseous substance mixture from an aqueous solution which contains urea as a reducing agent precursor.
  • the gaseous substance mixture generated in the evaporator unit 12 contains at least urea and if appropriate also already ammonia which has been generated by thermolysis of the corresponding urea.
  • the substance mixture is conducted through the second opening 26 into the hydrolysis catalytic converter 17 in which substantially complete hydrolysis of the urea takes place to form ammonia.
  • a reducing agent substance mixture 35 which includes ammonia is generated in the hydrolysis catalytic converter.
  • a method is particularly preferred in which 98% and more of the urea is ultimately converted to ammonia.
  • FIG. 7 diagrammatically shows an alternative embodiment of the evaporator unit of FIGS. 5 and 6 .
  • this alternative embodiment additionally has a third opening 36 .
  • exhaust gas can be introduced into the evaporator chamber 24 in a continuous or pulsatile fashion through the third opening 36 . It is possible in this way to obtain an improved distribution of the urea in the generated gas in comparison to the first exemplary embodiment.
  • an evaporator unit 12 of this type can also be used for evaporating solid urea, since water is introduced into the evaporator chamber 24 by the exhaust gases of the internal combustion engine which are introduced through the third opening 36 . That water can later be used in the hydrolysis catalytic converter 17 for the hydrolysis of the urea to form ammonia.
  • FIG. 8 diagrammatically shows an opening-out point, mouth or orifice of a dosing line 21 into the exhaust line 14 as a part of a corresponding metering unit 46 .
  • the dosing line 21 is surrounded by a heat conductor 38 which is also formed around the opening-out point of the dosing line 21 into the exhaust line 14 .
  • FIG. 9 diagrammatically shows, at a first intersection, a further possibility of a device 1 for providing a gaseous substance mixture including a reducing agent.
  • the device 1 includes a metering line 2 , around which a corresponding device 4 for heating the metering line 2 is wound, or which is wound together with the device 4 .
  • the metering line 2 and the device 4 for heating the metering line 2 are formed together in a common casing 29 .
  • a first temperature measuring sensor 39 is formed within the winding of the metering line 2 .
  • the first temperature measuring sensor 39 can be connected through the use of a first connecting element 40 to a corresponding control unit (which is not shown in FIG. 9 ).
  • the evaporator unit 12 is connected at the dispensing opening 3 of the metering line 2 to a hydrolysis catalytic converter 17 .
  • the hydrolysis catalytic converter 17 has a coating which catalyses the hydrolysis of urea to form ammonia.
  • the hydrolysis catalytic converter 17 is surrounded by a device 31 for controlling the temperature of the hydrolysis catalytic converter.
  • the device 31 includes a correspondingly formed heating wire.
  • the device 31 for controlling the temperature of the hydrolysis catalytic converter 17 can be connected in an electrically conductive manner to a corresponding power supply through the use of corresponding first heat conductor terminals 41 . This correspondingly applies to the device 4 for heating the metering line 2 .
  • the device 4 can be provided with a corresponding power supply through the use of corresponding second heat conductor terminals 42 .
  • the hydrolysis catalytic converter 17 has a second temperature measuring sensor 43 which can be connected through the use of a corresponding second connecting element 44 to a non-illustrated control unit. The temperature within or on the hydrolysis catalytic converter 17 can be determined through the use of the second temperature measuring sensor 43 .
  • an aqueous urea solution 45 is delivered into the metering line 2 .
  • the device 4 for heating the metering line 2 serves to heat the metering line 2 and thereby evaporate the aqueous urea solution and, if appropriate, depending on the temperature control, an at least partial thermolysis of the contained urea takes place to form ammonia.
  • the corresponding gaseous substance mixture is introduced through the dispensing opening 3 into the hydrolysis catalytic converter 17 , in which hydrolysis, preferably substantially complete hydrolysis of the contained urea takes place to form ammonia.
  • a corresponding reducing agent substance mixture 35 leaves the hydrolysis catalytic converter 17 .
  • the reducing agent substance mixture 35 can be introduced into an exhaust line 14 of an exhaust system of an internal combustion engine.
  • a method is preferable in this case in which the temperatures of the evaporator unit 12 and/or of the hydrolysis catalytic converter 17 are monitored through the use of the temperature measuring sensors 39 , 43 , and both components 12 , 17 can be heated by the corresponding devices 4 , 31 .
  • FIG. 10 diagrammatically shows a device 1 for providing a gaseous substance mixture 35 including at least one reducing agent.
  • the device 1 includes, sequentially, a delivery line 6 , through the use of which an aqueous solution is delivered from a non-illustrated reservoir into an evaporator unit 12 .
  • the evaporator unit 12 is adjoined by a hydrolysis catalytic converter 17 , and the latter is adjoined by a dosing line 21 for metering the corresponding substance mixture to a non-illustrated exhaust line 14 or by a metering unit 46 for metering the reducing agent substance mixture to the exhaust line 14 .
  • the evaporator unit 12 has a third temperature measuring sensor 47 .
  • the temperature of or in the delivery line 6 can be measured with the third temperature measuring sensor 47 .
  • the dosing line 21 and/or the metering unit 46 optionally has a fourth temperature measuring sensor 48 , with which the temperature of the dosing line 21 and/or of the metering unit 46 or the temperature in the dosing line 21 and/or in the metering unit 46 can be measured.
  • the evaporator unit 12 has a device 4 for heating the metering line 2 and/or a device 27 for heating the evaporator chamber 24 .
  • the hydrolysis catalytic converter 17 can optionally, alternatively or in addition to the device 4 , 27 , have a device 31 for controlling the temperature of the hydrolysis catalytic converter 17 .
  • the delivery line 6 has a temperature control device 49 , through the use of which the temperature of the delivery line 6 can be controlled. It is particularly possible, advantageous and inventive in this case to use one or more Peltier elements.
  • the dosing line 21 and/or the metering unit 46 have a metering temperature control device 50 , through the use of which the temperature of the dosing line 21 and/or of the metering unit 46 can be controlled.
  • the use of at least one Peltier element is also advantageous in this case.
  • a temperature measuring sensor 43 for the hydrolysis catalytic converter 17 and a temperature measuring sensor 39 for the metering line 2 are also shown.
  • All of the temperature control devices 4 , 27 , 31 , 49 , 50 and all of the temperature measuring sensors 39 , 43 , 47 , 48 which are provided are connected to a control unit 51 .
  • the control unit 51 carries out a regulation of the temperature in a regulating loop which includes at least one device 4 , 27 , 31 , 49 , 50 for temperature control and at least one temperature measuring sensor 39 , 43 , 47 , 48 .
  • the number of temperature measuring sensors 39 , 43 , 47 , 48 is preferably greater than the number of devices 4 , 27 , 31 , 49 , 50 for controlling the temperature of the components 6 , 2 , 24 , 17 , 21 , 46 .
  • the control unit 51 is preferably connected to a controller of the internal combustion engine or is integrated therein.
  • the data of the controller of the internal combustion engine and the operating parameters of the internal combustion engine can advantageously be incorporated in the control of the evaporation and/or of the delivery to the evaporator unit 12 .
  • FIG. 11 diagrammatically shows a portion of a device for providing a gaseous substance mixture.
  • a honeycomb body 52 with channels which can be traversed by a fluid is provided in an exhaust line 14 upstream of an SCR catalytic converter 18 .
  • the honeycomb body 52 is part of a corresponding mixing device 53 .
  • the honeycomb body 52 is constructed in such a way that it can be traversed by the exhaust gas at least partially at an angle with respect to a main flow direction of the exhaust gas. In this case, the main flow direction 54 is indicated by a corresponding arrow in FIG. 11 .
  • the honeycomb body 52 has a conical construction.
  • the honeycomb body has, in particular, a relatively large cutout 55 which is free from channels.
  • the dosing line 21 as part of the metering unit 46 , opens out into the cutout 55 .
  • the reducing agent substance mixture 35 is introduced through the dosing line 21 in operation.
  • FIG. 12 diagrammatically shows an example of a metering unit 46 with a dosing line 21 for metering the reducing agent substance mixture into an exhaust line 14 .
  • the dosing line 21 extends through the wall of the exhaust line 14 in a curved state.
  • the dosing line 21 has perforations 56 in a region which projects into the exhaust line 14 .
  • the curvature or the curved entry of the dosing line 21 into the exhaust line 14 is not strictly necessary.
  • the dosing line 21 could equally well enter into the exhaust line 14 perpendicularly or straight.
  • a guide plate 23 which is additionally provided in this case, leads to a further improved mixture of the reducing agent substance mixture with the exhaust gas 13 in the exhaust line 14 .
  • FIG. 13 diagrammatically shows an embodiment of the device 1 for treating the exhaust gas of a non-illustrated internal combustion engine.
  • the evaporator unit 12 and the hydrolysis catalytic converter 17 are provided in a first exhaust branch 58 .
  • a distribution of the exhaust gas between the first exhaust gas branch 58 and a second exhaust gas branch 59 is obtained by using a device 60 for flow guidance.
  • the SCR catalytic converter 18 is provided downstream of a mouth or opening-out point 61 of the first exhaust branch 58 into the second exhaust branch 59 .
  • the evaporator unit 12 preferably has a device 64 for depositing droplets.
  • the device 64 can, for example, be provided within the metering line 2 or in or downstream of the second opening 26 of the evaporator chamber 24 .
  • FIG. 14 shows an exemplary embodiment of a device 64 of that type for depositing droplets.
  • the device 64 is connected to the metering line 2 or generally to a line 65 through which vapor passes. Should droplets still be present in the vapor, they are deposited in the present example by the action of inertia.
  • One or more impact plates 66 which force the flow to undergo deflections 67 , are provided in the device 64 .
  • the impact plate 66 and/or a housing 68 of the device 64 are heated, so that deposited droplets are likewise evaporated.
  • the device 64 for depositing droplets which is shown in this case, it is also possible to alternatively or cumulatively take other measures.
  • the metering line 2 or the line 65 can have narrowed cross sections, projections, deflections or the like in regions.
  • FIG. 15 diagrammatically shows a further exemplary embodiment of an evaporator unit 12 , in which a metering line 2 can be heated by a device 4 for heating the metering line 2 .
  • the device 4 for heating the metering line 2 includes a bar-shaped heating element 69 which can be connected through the use of electrical terminals 70 to a power source.
  • a device 64 for depositing droplets, which is provided in the metering line 2 can be heated due to contact with the rod-shaped heating element 69 .
  • FIG. 16 diagrammatically shows a further exemplary embodiment of an evaporator unit 12 in which the metering line 2 is wound, in the form of a loop, twice around the bar-shaped heating element 69 .
  • FIGS. 17 and 18 show exemplary embodiments of evaporator units 12 in which the metering line 2 is not wound around the longitudinal axis of the bar-shaped heating element 69 but is fastened in loops to the bar-shaped heating element 69 .
  • a materially-joined connection between the metering line 2 and the bar-shaped heating element 69 in particular a brazed connection, is fundamentally preferred.
  • FIGS. 19 and 20 diagrammatically show a further exemplary embodiment of a device 1 for providing a gaseous substance mixture including at least one of the following substances: a) a reducing agent, preferably ammonia, and b) at least one reducing agent precursor, in particular urea, having a hydrolysis catalytic converter 17 .
  • the device 1 includes at least one metering line 2 , in the present exemplary embodiment four metering lines 2 , which are wound in spiral fashion around a bar-shaped heating element 69 .
  • Each of the metering lines 2 has a respective dispensing opening 3 , through which, in operation, a gaseous substance mixture which includes a reducing agent, is dispensed.
  • the respective dispensing openings 3 are distributed, so as to be distributed substantially uniformly on a circle.
  • the metering lines 2 are connected to a non-illustrated reservoir 20 from which an aqueous solution 45 of at least one reducing agent precursor is delivered into the metering line 2 by a delivery device 19 .
  • the metering lines 2 and the heating element 69 are part of a corresponding reducing agent solution evaporator 16 .
  • the hydrolysis catalytic converter 17 which is disposed downstream of the dispensing openings 3 , can likewise be heated by a bar-shaped heating element 69 .
  • a bar-shaped heating element 69 is provided.
  • the heating element 69 is in thermal contact both with the metering line or lines 2 and with the hydrolysis catalytic converter 17 .
  • the hydrolysis catalytic converter 17 is embodied as an annular honeycomb body.
  • the hydrolysis catalytic converter 17 is adjoined downstream by a dosing line 21 , through which, in operation, the gas flow including at least one reducing agent can be introduced into the exhaust line 14 .
  • a mechanical connection to the exhaust line 14 can be produced by a connecting device 71 .
  • a thermal insulation 72 is also provided, through which the hydrolysis catalytic converter 17 is thermally decoupled from the exhaust line 14 .
  • a heat shield 73 is also provided, through which the hydrolysis catalytic converter 17 is protected from a radiation of heat.
  • air gap insulation 74 which likewise serves as thermal insulation, is provided between an outer housing 75 and an inner housing 76 .
  • FIG. 20 shows a cross section through that region of the metering lines 2 which can be seen encircling the rod-shaped heating element 69 .
  • FIG. 21 diagrammatically shows a further exemplary embodiment of a device 15 for treating exhaust gas 13 .
  • a valve 77 is provided in the delivery line 6 .
  • the valve 77 serves for dosing the aqueous solution 45 into the evaporator unit 12 .
  • the valve 77 can be actuated through the use of a control terminal 78 .
  • FIG. 22 diagrammatically shows an opening-out or mouth region 79 of a metering unit 46 into the exhaust line 14 .
  • the exhaust line 14 and/or the metering unit has a shield or screen 80 which, in operation, produces a dead zone or calming zone of the exhaust gas flow, and consequently a region of reduced pressure, in the opening-out region 79 , and thereby ensures that no exhaust gas is pushed into the dosing unit 46 .
  • the metering or dosing unit 46 also has a temperature sensor 81 which includes an annular thermoresistor.
  • the temperature sensor 81 can be connected to a non-illustrated power source in order to thereby bring about a temperature increase to a second nominal temperature, for example of 550° C. or more or even of 600° C. and more, and cause a dissolution or reduction of the depositions.
  • FIG. 23 diagrammatically shows a cross section through a honeycomb body 82 which can be used both as a hydrolysis catalytic converter 17 and also as an SCR catalytic converter 18 , noting that it is necessary in this case for other catalytically active coatings to be applied.
  • the honeycomb body 82 is constructed from smooth metallic layers or sheets 83 and corrugated metallic layers or sheets 84 which, in this exemplary embodiment, are layered to form three stacks and are then wound with one another.
  • the honeycomb body 82 also includes a casing tube 85 which closes off the honeycomb body 82 from the outside.
  • the smooth layers 83 and corrugated layers 84 form channels 86 through which the exhaust gas 13 can flow.
  • FIG. 24 shows a further example of a honeycomb body 87 which has an annular construction and can be used both as a hydrolysis catalytic converter 17 and also as an SCR catalytic converter 18 , noting that it is necessary in this case for other catalytically active coatings to be applied.
  • the honeycomb body 87 is constructed from layers 88 which have smooth sections 89 and corrugated sections 90 that are folded onto one another and form channels 86 through which the exhaust gas 13 can flow.
  • the honeycomb body 87 is closed off through the use of an outer casing tube 91 and an inner casing tube 92 .
  • a metering line 2 which is heated by a device 4 , 69
  • the hydrolysis catalytic converter 17 is fundamentally also a tube which is provided with a coating that catalyses the hydrolysis, in particular, of urea to form ammonia, or else a casing tube having at least one structured metallic layer which is applied on the inside to the outer periphery and which preferably has a freely traversable cross section radially in its interior which is at least 20% of the entire cross section of the casing tube. These embodiments are preferably heated from the outside.
  • the evaporator unit 12 is supplied with the aqueous solution 45 . If the evaporator unit 12 , the metering line 2 and/or the evaporator chamber 24 are still substantially at their operating temperature, then the above-specified diagnosis steps can be omitted.
  • the heating power imparted to the evaporator unit 12 correlates with the delivery quantity of the aqueous solution 45 . This means, in particular, that it is checked as to what level of nominal heating power is required for the evaporation of the respective delivery quantity. If the measured actual heating power for a timespan is below the nominal heating power, then a warning is output to the user, since a reduction of the cross section of the metering line 2 and/or of the dosing line 21 could then be present.
  • the aqueous solution 45 can be returned from the metering line 2 .
  • the delivery of aqueous solution 45 is preferably firstly suspended, with the evaporator unit 12 , the metering line 2 and/or the evaporator chamber 24 however still being heated to the usual temperature in order to thereby carry out complete evaporation and to thereby prevent any impurities present in the evaporator unit 12 , the metering line 2 and/or the evaporator chamber 24 from passing into the delivery line 6 during the return delivery.
  • the return delivery can be initiated by the delivery device.
  • a valve is advantageously provided on or adjacent the connecting unit 11 . Air can be sucked in during the return delivery through the use of the valve. The return delivery fundamentally takes place until the delivery line 6 is substantially emptied into the reservoir 20 .
  • the quantity of reducing agent to be dispensed, and consequently also the quantity of aqueous solution 45 which is to be evaporated, can be determined as a function for example, of at least one of the following conditions:
  • the reservoir 20 , the delivery line 6 , the evaporator unit 12 , the metering line 2 , the evaporator chamber 24 and/or the hydrolysis catalytic converter 17 can be constructed to be in thermal contact, for example with the fuel tank of the internal combustion engine.
  • the fuel tank usually has a heater, for frost protection reasons, which can then also provide frost protection for the above-specified components.
  • a device 1 for providing a gaseous substance mixture including at least one of the following substances:
  • the device 1 includes a reservoir 20 for an aqueous solution 45 including at least one reducing agent precursor.
  • the aqueous solution 45 can be delivered from the reservoir 20 into at least one metering line 2 with a dispensing opening 3 by a delivery device 19 .
  • the at least one metering line 2 can be heated above a critical temperature which is greater than the boiling temperature of water.
  • the temperature is preferably 350° C. or more, preferably 400° C. or more, in particular approximately 380° C.
  • the delivery device 19 includes at least one pump.
  • the latter is preferably a dosing pump.
  • a valve for dosing the quantity of aqueous solution 45 is provided between the delivery device 19 and the metering line 2 .
  • the device 4 for heating also advantageously includes at least one of the following elements:
  • a further advantageous embodiment of the device is distinguished in that the device 1 is constructed in such a way that, in operation, the temperature across the length of the metering line 2 is at most 25° C. above and below a mean temperature.
  • a further advantageous embodiment of the device is distinguished in that the metering line 2 has a traversable cross section of at most 20 mm 2 . It is also advantageous if the metering line 2 is formed from a material including at least one of the following materials:
  • the metering line 2 has, in particular, a length of from 0.1 to 5 m, preferably a length of from 0.3 to 0.7 m, particularly preferably substantially 0.5 m.
  • the metering line 2 preferably has a wall thickness of 0.1 to 0.5 mm.
  • the metering line 2 preferably has a heat capacity of at least 150 J/K (Joule per Kelvin).
  • the metering line 2 and the device 4 for heating the metering line 2 have, at least in at least one partial region, at least one of the following configurations relative to one another:
  • the metering line 2 and the device 4 for heating the metering line 2 are connected to one another in a materially joined fashion at least in partial regions.
  • a materially joined connection is to be understood, in particular as a soldered, brazed and/or welded connection.
  • the metering line 2 is at least partially provided with a coating which catalyses the hydrolysis of a reducing agent precursor to form a reducing agent.
  • the device 1 preferably includes at least one measuring sensor 5 for determining the temperature of the metering line 2 .
  • the measuring sensor can preferably be connected to a power source 5 in order to thereby permit, for example within the context of an emergency program, heating of the metering line 2 above the critical temperature.
  • an aqueous solution 45 of at least one reducing agent precursor is delivered from a reservoir 20 into a metering line 2 .
  • the metering line 2 is heated in such a way that the aqueous solution 45 is completely evaporated to form the gaseous substance mixture.
  • Completely is to be understood herein, in particular, to mean an evaporation in which 90% by weight and more of the aqueous solution, preferably 95% by weight and more, particularly preferably 98% by weight of the aqueous solution, is evaporated.
  • One advantageous refinement of the method is aimed at least at one of the reducing agent precursors:
  • temperatures in the metering line 2 are at a mean temperature between 380° C. and 450° C.
  • the temperature along a length of the metering line 2 is preferably at most 25° C. above or below a mean temperature, preferably a mean temperature of 380° C. to 450° C.
  • a heating power which varies by up to 500 W/s is used during the heating process.
  • a quantity of 0.5 ml/s of the aqueous solution 45 is preferably delivered into the metering line 2 . It is also preferable for the metering line 2 to have a traversable cross section of at most 20 mm 2 .
  • the metering line 2 is preferably heated to a second temperature which is higher than the critical temperature at which complete evaporation of the aqueous solution 45 takes place, in order to thereby dissolve, if appropriate, any depositions which may be present.
  • the temperature of the metering line 2 is determined before the start of the evaporation, and is aligned with other known temperatures.
  • these can, for example, be other known or measured temperatures in the automobile, such as for example the ambient temperature measured through the use of an external temperature sensor, or the cooling water temperature.
  • the heating of the metering line 2 is carried out through the use of an electrical resistance heater, with the resistance of the resistance heater being determined before the start of heating and the heating of the metering line taking place as a function of the determined resistance.
  • a further advantageous refinement of the method is aimed at the introduced heating power during the heating of the metering line 2 being monitored.
  • the heating is interrupted if, over a predefinable timespan, the heating power remains below a value which is dependent on the quantity of aqueous solution to be evaporated.
  • a device 1 for providing a gaseous substance mixture including at least one of the following substances:
  • a reservoir 20 for an aqueous solution 45 including at least one reducing agent precursor is provided.
  • the reservoir 20 can be flow-connected to an evaporator chamber 24 .
  • a device for dosing the aqueous solution 45 is provided in the evaporator chamber 24 .
  • the device 27 , 63 for heating the evaporator chamber 24 is provided for heating the evaporator chamber 24 to a temperature greater than or equal to a critical temperature at which the aqueous solution is at least partially evaporated.
  • the device for dosing the aqueous solution 45 includes at least one nozzle 62 .
  • the evaporator chamber 24 advantageously has a substantially closed volume which has only a first opening 25 for connecting a delivery line 6 for the aqueous solution 45 , and a second opening 26 for connecting a metering line 2 for discharging the gaseous substance mixture.
  • the evaporator chamber 24 encompasses a substantially closed volume which has only a first opening 25 for connecting a delivery line 6 for the aqueous solution, a second opening 26 for connecting a metering line 2 for discharging the gaseous substance mixture, and a third opening 36 for metering exhaust gas 13 .
  • the device 27 , 63 for heating the evaporator chamber 24 includes at least one of the following components:
  • the evaporator chamber 24 is substantially spherically symmetrical.
  • the evaporator chamber 24 preferably has a radius of 2 mm to 25 mm. It is also advantageous for the evaporator chamber 24 to have a volume of 30 to 4,000 mm 3 .
  • the device 27 , 63 for heating the evaporator chamber can impart a heating power of up to 5 kW.
  • a delivery line 6 for delivering the aqueous solution 45 is also advantageously provided. The delivery line 6 connects the evaporator chamber 24 to a reservoir 20 and a delivery device 19 is provided therein, through the use of which a fluid can be delivered through the delivery line 6 .
  • the latter is constructed in such a way that, during operation, the temperature of the evaporator chamber 24 is at most 25° C. above and below a mean temperature. It is also advantageous for the evaporator chamber 24 to have, at least in partial regions, a device 28 for increasing the wetting capacity of the surface.
  • the device 28 can, in particular, include a structuring of the inner surface (projections or the like) of the evaporator chamber 24 .
  • a method is also described for providing a gaseous substance mixture including at least one of the following substances:
  • An aqueous solution 45 of at least one reducing agent precursor is delivered into an evaporator chamber 24 , with the evaporator chamber 24 being heated in such a way that the aqueous solution 45 is completely evaporated to form the gaseous substance mixture.
  • the method can advantageously be further developed in such a way that the evaporator chamber 24 includes a substantially closed volume which has only a first opening 25 for connecting a delivery line 6 for the aqueous solution 45 , and a second opening 26 for connecting a metering line 2 for discharging the gaseous substance mixture.
  • the evaporator chamber 24 can encompass a substantially closed volume which has only a first opening 25 for connecting a delivery line 6 for the aqueous solution 45 , a second opening 26 for connecting a metering line 2 for discharging the gaseous substance mixture, and a third opening 36 for metering exhaust gas 13 .
  • the methods can advantageously be further developed in such a way that the heating is regulated.
  • the evaporator chamber 24 is, in particular, heated to a mean temperature of 350 to 450° C. It is also advantageous for the evaporator chamber 24 to be heated to a mean temperature in such a way that the temperature does not at any point or location of the evaporator chamber 24 deviate from a mean temperature by more than +25° C. or ⁇ 25° C.
  • the device 15 according to the invention advantageously permits the provision of a sufficiently large quantity of reducing agent for the selective catalytic reduction of nitrogen oxides in the SCR catalytic converter 18 , with it being possible at the same time for the hydrolysis catalytic converter 17 to be constructed with a smaller volume than is known from the prior art, since the hydrolysis catalytic converter 17 in this case is not traversed by exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
US12/272,359 2006-05-16 2008-11-17 Method and device for treating the exhaust gas of an internal combustion engine Abandoned US20090107120A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006023145A DE102006023145A1 (de) 2006-05-16 2006-05-16 Verfahren und Vorrichtung zur Aufbereitung des Abgases einer Verbrennungskraftmaschine
DE102006023145.7 2006-05-16
PCT/EP2007/004359 WO2007131785A1 (de) 2006-05-16 2007-05-16 Verfahren und vorrichtung zur aufbereitung des abgases einer verbrennungskraftmaschine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/004359 Continuation WO2007131785A1 (de) 2006-05-16 2007-05-16 Verfahren und vorrichtung zur aufbereitung des abgases einer verbrennungskraftmaschine

Publications (1)

Publication Number Publication Date
US20090107120A1 true US20090107120A1 (en) 2009-04-30

Family

ID=38229217

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/272,359 Abandoned US20090107120A1 (en) 2006-05-16 2008-11-17 Method and device for treating the exhaust gas of an internal combustion engine

Country Status (11)

Country Link
US (1) US20090107120A1 (de)
EP (2) EP2368623B1 (de)
JP (1) JP5016026B2 (de)
KR (1) KR101031200B1 (de)
CN (1) CN101443095B (de)
DE (1) DE102006023145A1 (de)
ES (1) ES2373467T3 (de)
PL (1) PL2021101T3 (de)
RU (1) RU2457893C2 (de)
TW (1) TWI372205B (de)
WO (1) WO2007131785A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219756A1 (en) * 2008-10-10 2011-09-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Method for operating an evaporation unit for producing gaseous ammonia and motor vehicle having an evaporation unit
CN103069119A (zh) * 2010-08-18 2013-04-24 排放技术有限公司 具有反应剂添加的紧凑型排气处理单元
US9915185B2 (en) 2016-02-17 2018-03-13 Caterpillar Inc. Injector mounting assembly
CN111720193A (zh) * 2019-03-22 2020-09-29 埃贝斯佩歇排气技术有限公司 排气加热元件
US11215098B2 (en) 2016-12-21 2022-01-04 Perkins Engines Company Limited Method and apparatus for a selective catalytic reduction system
US11248506B2 (en) 2020-04-24 2022-02-15 Faurecia Emissions Control Technologies, Usa, Llc Dual purpose heating and cooling element for exhaust aftertreatment system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241277B2 (ja) * 2008-03-11 2013-07-17 日揮触媒化成株式会社 排ガス処理装置
DE102008016177A1 (de) * 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
US8071037B2 (en) * 2008-06-25 2011-12-06 Cummins Filtration Ip, Inc. Catalytic devices for converting urea to ammonia
DE102008048426A1 (de) * 2008-09-23 2010-04-01 Man Nutzfahrzeuge Aktiengesellschaft Dosiervorrichtung zur Zudosierung eines Reduktionsmittels, insbesondere für eine selektive katalytische Reduktion, in einen Abgasstrom einer Brennkraftmaschine
DE102009015419A1 (de) * 2009-03-27 2010-09-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Zufuhr von Reduktionsmittel in ein Abgassystem und entsprechendes Abgassystem
DE102009024717A1 (de) * 2009-06-12 2010-12-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betreiben einer Einspritzdüse und entsprechendes Kraftfahrzeug
DE102009053950A1 (de) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
DE102010009605A1 (de) * 2010-02-26 2011-09-01 Albonair Gmbh Harnstoffeinspritzdüse mit integriertem Temperatursensor
CN103068733A (zh) * 2010-08-19 2013-04-24 陶氏环球技术有限责任公司 在车辆排放控制系统中加热含脲材料的方法和装置
US8661785B2 (en) * 2011-04-15 2014-03-04 Ford Global Technologies, Llc System and method for liquid reductant injection
CN105804837B (zh) * 2011-08-22 2018-12-14 康明斯排放处理公司 具有泄漏旁路的尿素溶液泵
EP2784282B1 (de) * 2013-03-29 2017-11-01 Inergy Automotive Systems Research (Société Anonyme) Tank für selektive katalytische Reduktionsreinigung der Abgase eines Verbrennungsmotors eines Fahrzeugs
TWI504843B (zh) * 2013-08-30 2015-10-21 Automotive Res & Testing Ct 載具廢氣處理裝置及其處理方法
JP6052247B2 (ja) * 2014-07-17 2016-12-27 株式会社デンソー 還元剤添加装置
RU2576758C1 (ru) * 2015-02-04 2016-03-10 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" Система селективного каталитического восстановления окислов азота в отработавших газах дизельных двигателей
EP3339588B1 (de) * 2016-12-21 2021-03-03 Perkins Engines Company Limited System zur verbesserten selektiven katalytischen reduktion
DE102017124276A1 (de) 2017-10-18 2019-04-18 Eberspächer Exhaust Technology GmbH & Co. KG Mischanordnung
DE102019210415B4 (de) * 2019-07-15 2021-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasnachbehandlung
JP7551448B2 (ja) * 2020-10-20 2024-09-17 株式会社三井E&S 高融点配管閉塞物質の生成抑制装置及び方法
EP4063627A1 (de) * 2021-03-25 2022-09-28 Volvo Truck Corporation Abgasnachbehandlungsanordnung zur konvertierung von nox-emissionen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029164A1 (en) * 2001-01-13 2003-02-13 Hernier Manuel Markus Method of converting a solid nitrogen-containing reducing agent to the gas phase for use in the reduction of nitrogen oxides in exhaust gases
US20040098980A1 (en) * 2002-11-21 2004-05-27 Montreuil Clifford Norman Exhaust gas aftertreatment systems
US20050069476A1 (en) * 2001-12-20 2005-03-31 Blakeman Philip Gerald Selective catalytic reduction
US6895747B2 (en) * 2002-11-21 2005-05-24 Ford Global Technologies, Llc Diesel aftertreatment systems
US6928807B2 (en) * 2002-02-14 2005-08-16 Man Nutzfahrzeuge Ag Method and apparatus for producing ammonia (NH3)
US20050247050A1 (en) * 2004-05-05 2005-11-10 Eaton Corporation Adsorption based ammonia storage and regeneration system
US20060233689A1 (en) * 2003-09-30 2006-10-19 Kiminobu Hirata Exhaust emission purifying apparatus and exhaust emission purifying method for engine
US20060248880A1 (en) * 2003-09-30 2006-11-09 Kiminobu Hirata Exhaust gas purification apparatus for engine
US20070036694A1 (en) * 2005-07-28 2007-02-15 Hitachi, Ltd. Exhaust aftertreatment system using urea water
US7178329B2 (en) * 2004-06-17 2007-02-20 Man Nutzfahrzeuge Ag Feed device for supplying solid urea granules into an ammonia generator arranged within or outside of an exhaust line
US7294313B2 (en) * 2004-09-01 2007-11-13 Man Nutzfahrzeuge Ag Device and method for producing ammonia from solid urea pellets

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038054A1 (de) * 1990-11-29 1992-06-04 Man Technologie Gmbh Verfahren und vorrichtung zur selektiven katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion in sauerstoffhaltigen abgasen
EP0918146A1 (de) * 1997-11-19 1999-05-26 Sulzer Chemtech AG Einrichtung zum Abbau von Schadstoffen in Abgasen mittels Katalysatoren
NL1008746C2 (nl) * 1998-03-30 1999-10-01 Stichting Energie Werkwijze voor het omzetten van distikstofoxide.
DE19817994A1 (de) * 1998-04-22 1999-11-04 Emitec Emissionstechnologie Verfahren und Vorrichtung zur Reinigung von Stickoxid (NO¶x¶) enthaltendem Abgas eines Verbrennungsmotors
DE19913462A1 (de) 1999-03-25 2000-09-28 Man Nutzfahrzeuge Ag Verfahren zur thermischen Hydrolyse und Dosierung von Harnstoff bzw. wässriger Harnstofflösung in einem Reaktor
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
DE19949296A1 (de) * 1999-10-13 2001-04-19 Fev Motorentech Gmbh Einrichtung zur Erzeugung eines gasförmigen Reduktionsmittels für die katalytische Reinigung von Abgasen eines Verbrennungsmotors
DE10215605A1 (de) * 2002-04-09 2003-10-30 Uhde Gmbh Entstickungsverfahren
DE10226461A1 (de) * 2002-06-13 2004-01-22 Uhde Gmbh Verfahren und Vorrichtung zur Verringerung des Gehaltes an NOx und N2O in Gasen
JP4262522B2 (ja) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ エンジン用排気ガス処理装置および排気ガス処理方法
DE10342003A1 (de) * 2003-09-05 2005-03-31 Robert Bosch Gmbh Vorrichtung zur Aufbereitung einer Reduktionsmittel-Vorprodukt-Lösung zur Abgasnachbehandlung
JP2005344597A (ja) * 2004-06-02 2005-12-15 Hitachi Ltd エンジン用排気ガス処理装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029164A1 (en) * 2001-01-13 2003-02-13 Hernier Manuel Markus Method of converting a solid nitrogen-containing reducing agent to the gas phase for use in the reduction of nitrogen oxides in exhaust gases
US20050069476A1 (en) * 2001-12-20 2005-03-31 Blakeman Philip Gerald Selective catalytic reduction
US6928807B2 (en) * 2002-02-14 2005-08-16 Man Nutzfahrzeuge Ag Method and apparatus for producing ammonia (NH3)
US20040098980A1 (en) * 2002-11-21 2004-05-27 Montreuil Clifford Norman Exhaust gas aftertreatment systems
US6895747B2 (en) * 2002-11-21 2005-05-24 Ford Global Technologies, Llc Diesel aftertreatment systems
US20060233689A1 (en) * 2003-09-30 2006-10-19 Kiminobu Hirata Exhaust emission purifying apparatus and exhaust emission purifying method for engine
US20060248880A1 (en) * 2003-09-30 2006-11-09 Kiminobu Hirata Exhaust gas purification apparatus for engine
US20050247050A1 (en) * 2004-05-05 2005-11-10 Eaton Corporation Adsorption based ammonia storage and regeneration system
US7178329B2 (en) * 2004-06-17 2007-02-20 Man Nutzfahrzeuge Ag Feed device for supplying solid urea granules into an ammonia generator arranged within or outside of an exhaust line
US7294313B2 (en) * 2004-09-01 2007-11-13 Man Nutzfahrzeuge Ag Device and method for producing ammonia from solid urea pellets
US20070036694A1 (en) * 2005-07-28 2007-02-15 Hitachi, Ltd. Exhaust aftertreatment system using urea water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219756A1 (en) * 2008-10-10 2011-09-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Method for operating an evaporation unit for producing gaseous ammonia and motor vehicle having an evaporation unit
CN103069119A (zh) * 2010-08-18 2013-04-24 排放技术有限公司 具有反应剂添加的紧凑型排气处理单元
US8978366B2 (en) 2010-08-18 2015-03-17 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Compact exhaust gas treatment unit with reaction agent addition and motor vehicle having an exhaust gas treatment unit
US9915185B2 (en) 2016-02-17 2018-03-13 Caterpillar Inc. Injector mounting assembly
US11215098B2 (en) 2016-12-21 2022-01-04 Perkins Engines Company Limited Method and apparatus for a selective catalytic reduction system
CN111720193A (zh) * 2019-03-22 2020-09-29 埃贝斯佩歇排气技术有限公司 排气加热元件
US11248506B2 (en) 2020-04-24 2022-02-15 Faurecia Emissions Control Technologies, Usa, Llc Dual purpose heating and cooling element for exhaust aftertreatment system

Also Published As

Publication number Publication date
KR20090027636A (ko) 2009-03-17
DE102006023145A1 (de) 2007-11-22
EP2368623A1 (de) 2011-09-28
JP5016026B2 (ja) 2012-09-05
TWI372205B (en) 2012-09-11
EP2021101A1 (de) 2009-02-11
CN101443095A (zh) 2009-05-27
TW200804673A (en) 2008-01-16
RU2008149241A (ru) 2011-02-20
KR101031200B1 (ko) 2011-04-27
RU2457893C2 (ru) 2012-08-10
ES2373467T3 (es) 2012-02-03
EP2368623B1 (de) 2016-06-22
EP2021101B1 (de) 2011-09-21
JP2009537724A (ja) 2009-10-29
WO2007131785A1 (de) 2007-11-22
PL2021101T3 (pl) 2012-02-29
CN101443095B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
US20090107120A1 (en) Method and device for treating the exhaust gas of an internal combustion engine
US8155509B2 (en) Method and device for providing a gaseous substance mixture
US7986870B2 (en) Method and device for providing a gaseous substance mixture
US9375682B2 (en) Exhaust gas system with a reducing agent supply
US8407990B2 (en) Evaporation unit for producing a gas including at least one reducing agent precursor and/or a reducing agent and device and motor vehicle having the evaporation unit
US8281573B2 (en) Evaporation unit for producing gaseous ammonia and device and motor vehicle having an evaporation unit
US8615985B2 (en) Method and device for providing a gas flow containing a reducing agent
US8357332B2 (en) Device and method for evaporating a reactant
US8966884B2 (en) Exhaust gas treatment device and motor vehicle having the device
US20110023461A1 (en) Exhaust aftertreatment system with heated device
US8549841B2 (en) Method and device for the controlled feeding of a reducing agent
KR101864749B1 (ko) 선박 배연탈질 시스템
US20110219756A1 (en) Method for operating an evaporation unit for producing gaseous ammonia and motor vehicle having an evaporation unit
US11506099B1 (en) Electrically-heated mix pipe for processing diesel exhaust fluid in a selective catalytic reduction system

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRUECK, ROLF;BRUGGER, MARC;HAERIG, THOMAS;AND OTHERS;SIGNING DATES FROM 20081107 TO 20081112;REEL/FRAME:027000/0875

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION