US20090100864A1 - Process to compress air and its use in an air separation process and systems using said processes - Google Patents
Process to compress air and its use in an air separation process and systems using said processes Download PDFInfo
- Publication number
- US20090100864A1 US20090100864A1 US12/167,698 US16769808A US2009100864A1 US 20090100864 A1 US20090100864 A1 US 20090100864A1 US 16769808 A US16769808 A US 16769808A US 2009100864 A1 US2009100864 A1 US 2009100864A1
- Authority
- US
- United States
- Prior art keywords
- compressor
- air
- driver
- iii
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04969—Retrofitting or revamping of an existing air fractionation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04121—Steam turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04133—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
Definitions
- the present invention is directed to a process to compress air and the use of such a process as part of an air separation process.
- the invention is also directed to systems using said processes to respectively compress air and to separate oxygen from air.
- Air separation in an Air Separation Unit is frequently applied to obtain a substantially pure or enriched stream of air for use in a combustion process.
- This combustion may be a complete combustion as applied in the so-called oxy-fuel processes.
- the combustion may also be a partial combustion of a carbonaceous fuel to obtain a mixture of hydrogen and carbon monoxide.
- the latter gas mixture is also referred to as synthesis gas and can be used as feedstock in a so-called Fischer Tropsch synthesis to prepare paraffins.
- Such a route is used in the so-called gas (GTL) or coal to liquid (CTL) process.
- GTL gas
- CTL coal to liquid
- the synthesis gas can also be used as fuel in an Integrated Combined Cycle process or in direct ore reduction process.
- EP-A-757217 is directed to an air separation process.
- air is compressed in a main air compressor (MAC) to a pressure between 5 and 6 bar.
- the compressed air is further increased in pressure in a series of so-called booster compressors (BAC) to a pressure of 49 bar.
- Part of the compressed air is let down in pressure and the cold is used to cool the remaining part of the compressed air.
- the cooled and compressed air is subsequently distilled and oxygen is separated from the other air components.
- EP-A-1197717 describes a process to compress air in an air separation unit wherein the main air compressor (MAC) and the booster air compressor (BAC) are driven by a common steam turbine. Between the steam turbine and the booster compressor a gear system is present.
- MAC main air compressor
- BAC booster air compressor
- the present invention provides a high capacity process to compress air in a single compressor train.
- the invention provides a process to compress air by performing the following steps,
- step (i) compressing air in a compressor, (ii) cooling the compressed air as obtained in step (i) (iii) further compressing the air of step (ii) in a compressor, (iv) further compressing at least part of the compressed air as obtained in step (iii) in a booster compressor, wherein the compressor in step (i) is an axial compressor, the compressor of step (i) and (iii) are driven by a common first driver and the booster compressor is driven by a separate second driver and wherein the compressors of steps (i) and (iii) are split into two individual casings.
- the invention is also directed to a process for separating oxygen from air by cryogenic air separation, wherein compressed air as obtained in step (iii) of the above process is cooled against expanded air as obtained in step (iv) of the above process and wherein oxygen is separated by means of distillation from the cooled and compressed air.
- the invention is also directed to a system for compressing air comprising
- an axial compressor (b) cooling means to cool, in use, the compressed air as obtained in the axial compressor, (c) a radial or isothermal compressor to further compress, in use, the compressed and cooled air as obtained in the axial compressor, and (d) a booster compressor to further compress, in use, at least part of the compressed air as obtained in the radial or isothermal compressor, wherein the axial compressor and the radial or isothermal compressor have a common first driver and wherein the axial compressor and the radial or isothermal compressor are split into two individual casings and wherein the booster compressor is provided with a second driver separate from the first driver.
- FIG. 1 shows a state of the art system for compressing air.
- FIG. 2 shows a system for compressing air according to the invention.
- FIG. 3 shows a system for air separation wherein the system according to FIG. 2 is applied.
- step (i) of the process according to the present invention air is compressed in a compressor. Because the pressure does not have to be raised to the same high level as in a single MAC of the state of the art it is possible to use in step (i) state of the art compressors, which have a large capacity at the desired pressure differential.
- a axial compressor is used in step (i).
- an axial compressor which is obtained by modifying an existing axial compressor, as derived from an existing axial compressor of a large industrial or aeroderivative gas turbine, by reducing the number of stages.
- conventional axial compressor designs can be applied as well.
- gas turbine derived axial compressors are the axial compressor stages of the well known GE (General Electric) designed Frame 7 and Frame 9 machines, Siemens designed industrial gas turbines of the V84.x and V94.x designs and Mitsubishi designed industrial gas turbines of the type F501 and F701.
- the capacity of the compressor in step (i) is preferably greater than 15000 t/d air and more preferably between 25000 and 40000 t/d air.
- step (i) the pressure is preferably raised from ambient to between 0.3 and 1.2 MPa and more preferably to between 0.6 and 0.8 MPa.
- the temperature of the compressed air as obtained in step (i) may be between 150 and 250° C.
- step (ii) the temperature of this compressed air is reduced to preferably below 60° C. and more preferably below 50° C. before said air is further compressed in step (iii). Cooling is preferably performed by indirect heat exchange against water or air.
- step (iii) the compressed and cooled air of step (ii) is further compressed.
- the air is compressed to between 1 and 2 MPa and more preferably to between 1.2 and 1.8 MPa.
- the compressor in step (iii) may be an axial, radial or isothermal compressor and more preferably a radial or isothermal compressor. Examples of commercially available compressors suited for performing step (iii) are standard type compressors on the market. Examples are Siemens, GE, Mitsubishi and ManTurbo.
- the compressor in step (i) and the compressor in step (iii) are driven by a common first driver.
- This driver may be a steam turbine, electric motor or a gas turbine and preferably a steam turbine.
- the steam turbine preferably operates on steam having a pressure of between 1.8 and 11 Mpa inlet pressure, and is preferably designed for pass-out steam and/or admission steam or both.
- step (i) is directly driven by the driver.
- a gear box is preferably placed between the common driver and the compressor of step (iii).
- step (iv) at least part of the compressed air as obtained in step (iii) is further compressed in a booster compressor. Preferably this air is cooled before being further compressed in step (iv).
- step (iii) Preferably between 20 and 50 wt % of the air which is prepared in step (iii) is further compressed in step (iv).
- the booster compressor will preferably increase the pressure to above 7 MPa and more preferably to between 8 and 11 MPa.
- the booster compressor is preferably an inline radial compressor (IRC) or isothermal compressor.
- IRC inline radial compressor
- Examples of commercially available compressors suited for performing step (iv) are The RIK type of ManTurbo for the isothermal design and other standard type radial compressors as offered by for example Siemens, GE and Mitsubishi for use as a booster compressor.
- the compressor in step (iv) is driven by a driver which operates separate from the driver of steps (i) and (iii). This is advantageous when the driver for the main compression steps in (i) and (iii) is steam driven and wherein the availability of high-pressure steam is low.
- step (iv) By having a separate driver for step (iv) the possibility exists to either chose for an electric motor driver or for a steam turbine, which can operate on a lower pressure steam. In case an electric motor driver is used a gear box between driver and the compressor of step (iv) is preferred.
- the present invention is also directed to a process for separating oxygen from air by cryogenic air separation, wherein compressed air as obtained in step (iii) of the above process is cooled against expanded air as obtained in step (iv) of said process. Oxygen is subsequently separated by means of distillation from the cooled and compressed air.
- Cryogenic air separation is a well known process. See for example Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1993, 4 th edition, Vol. 7, pages 662-664 or in the earlier referred to EP-A-757217.
- the invention is also directed to a system for compressing air comprising
- an axial compressor (b) cooling means to cool, in use, the compressed air as obtained in the axial compressor, (c) an radial or isothermal compressor to further compress, in use, the compressed and cooled air as obtained in the axial compressor, and (d) a booster compressor to further compress, in use, at least part of the compressed air as obtained in the radial or isothermal compressor, wherein the axial compressor and the radial or isothermal compressor have a common first driver and wherein the axial compressor and the radial or isothermal compressor are split into two individual casings and wherein the booster compressor is provided with a second driver separate from the first driver.
- FIG. 1 shows a compressor system according to the state of the art.
- Air is fed via line 1 to a main air compressor 2 (MAC), which is typically a single axial compressor, and compressed air is discharged via line 4 .
- Cooler 5 cools the compressed air and cooled air as present in line 6 is split into two streams 10 and 9 .
- Compressed air in line 9 is subsequently further increased in pressure in booster air compressor 8 (BAC), which is typically a radial centrifugal compressor.
- BAC booster air compressor 8
- Main air compressor 2 and the booster air compressor 8 are driven by a common driver 3 , which is typically a steam turbine. Between the driver 3 and the booster air compressor 7 a gear box 7 is shown.
- FIG. 2 shows a system according to the present invention.
- Air is supplied via line 12 to an axial compressor 13 .
- the compressed air in line 14 is cooled in heat exchanger 16 .
- Heat exchanger 16 is suitably an indirect heat exchanger using air or water as the cooling medium.
- the cooled air in line 17 is further compressed in a radial compressor 19 .
- the axial compressor 13 is directly driven by a steam turbine 15 .
- Radial compressor 19 is driven by the same steam turbine 15 via gear box 18 .
- the combined axial compressor 13 and radial compressor 19 have the same function as the main air compressor 2 of FIG. 1 .
- both the axial compressor 13 and radial compressor 19 have their own individual casing. By using this configuration a simpler axial compressor can be used than compressor 2 of FIG. 1 . This allows a high capacity for the combined compressors 13 and 19 .
- Part of the compressed air in line 20 is discharged from the system in line 21 as the compressed air as made in step (iii) of the process according to the present invention.
- Another part of the compressed air is provided via line 22 to a booster air compressor.
- the air in line 20 is cooled in a heat exchanger 23 .
- This heat exchanger 23 may also be located in line 20 .
- the cooled air is further compressed in a booster compressor 24 to obtain a second stream of compressed air in line 27 .
- This booster compressor 24 which is suitably a radial compressor, is driven by an electric motor 26 . Between electric motor 26 and the compressor 24 a gear box 25 is present.
- FIG. 3 shows a system for air separation. It illustrates how the system for compressing air of FIG. 2 can be advantageously be applied in a cryogenic air separation system as described in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1993, 4 th edition, Vol. 7, pages 662-664 and especially the FIG. 1 on page 662.
- FIGS. 2 and 3 have the same meaning. Additionally shown is an air inlet filter 49 .
- Compressed air in line 20 as obtained in compressor 19 is cooled in heat exchanger 23 against cooling water to obtain cooled air in line 28 .
- Water is separated in vessel 29 and to avoid freezing of water and carbon dioxide in the colder parts of the downstream process the air is passed through an adsorbent bed of molecular sieves 30 to obtain dry air in line 31 .
- Part of this air in line 22 is further increased in pressure in the booster compressor 24 of FIG. 2 to obtain the second stream of compressed air in line 27 .
- the air in line 27 optionally after a pre-cooling step is cooled in main heat exchanger 32 against returning cold product nitrogen in line 46 and oxygen in line 48 .
- the cooled and compressed air as obtained in line 33 is work expanded to near atmospheric pressure and fed to distillation column 36 . This expansion provides the needed refrigeration for the air separation process.
- the main air stream 31 is cooled in the main heat exchanger 32 and in a secondary heat exchanger 37 to near its dew point. Nitrogen and oxygen are separated in a two stage distillation process from this stream 31 .
- First air in line 38 is provided to the lower end of column 39 , which operates at the elevated pressure of the air in line 38 .
- a crude liquid oxygen stream is discharged at the bottom of this column in line 40 .
- This crude oxygen stream is heat exchanged in heat exchanger 41 , let down in pressure in valve 43 and fed to distillation column 36 .
- nitrogen is obtained as the top product in line 45 and purified oxygen is obtained as the bottom product in line 47 .
- a product stream of purified oxygen is obtained in line 48 .
- a nitrogen reflux in column 39 is created by sending back part of a liquid nitrogen of line 50 via line 52 to column 39 . Another part of this liquid nitrogen of line 50 is provided as reflux to column 36 via line 51 .
- argon as present in air, boils between oxygen and nitrogen a peak in argon concentration occurs in column 36 .
- An argon rich stream in line 53 is withdrawn from column 36 and fed to an argon distillation column 54 .
- An argon product stream is obtained via line 55 .
- the bottom product of this column 54 is recycled via line 53 ′ to column 36 .
- Reflux of the argon column is achieved by cooling with part of the crude liquid oxygen via line 56 and valve 58 .
- a waste stream 57 is withdrawn from the top part of column 36 containing argon, oxygen and nitrogen.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/167,698 US20090100864A1 (en) | 2007-07-06 | 2008-07-03 | Process to compress air and its use in an air separation process and systems using said processes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07111919.2 | 2007-07-06 | ||
EP07111919 | 2007-07-06 | ||
US94864907P | 2007-07-09 | 2007-07-09 | |
US12/167,698 US20090100864A1 (en) | 2007-07-06 | 2008-07-03 | Process to compress air and its use in an air separation process and systems using said processes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090100864A1 true US20090100864A1 (en) | 2009-04-23 |
Family
ID=38980992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/167,698 Abandoned US20090100864A1 (en) | 2007-07-06 | 2008-07-03 | Process to compress air and its use in an air separation process and systems using said processes |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090100864A1 (fr) |
EP (1) | EP2162692A2 (fr) |
CN (1) | CN101688754A (fr) |
AU (1) | AU2008274334B2 (fr) |
WO (1) | WO2009007310A2 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090205368A1 (en) * | 2008-02-14 | 2009-08-20 | Henry Edward Howard | Distillation method and apparatus |
US20160033196A1 (en) * | 2012-10-03 | 2016-02-04 | Henry E. Howard | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US20160033197A1 (en) * | 2012-10-03 | 2016-02-04 | Nick J. Degenstein | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US9435229B2 (en) * | 2012-01-26 | 2016-09-06 | Linde Ag | Process and device for air separation and steam generation in a combined system |
US11268753B2 (en) * | 2016-08-01 | 2022-03-08 | Nuovo Pignone Technologie Srl | Split refrigerant compressor for the liquefaction of natural gas |
EP4163500A1 (fr) * | 2021-10-11 | 2023-04-12 | Siemens Energy Global GmbH & Co. KG | Installation de compression de l'air pour une séparation de l'air |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2256317A1 (fr) | 2009-05-29 | 2010-12-01 | Shell Internationale Research Maatschappij B.V. | Procédé pour produire de l'énergie |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626510A (en) * | 1947-06-18 | 1953-01-27 | Air Prod Inc | Air fractionating cycle and apparatus |
US5174866A (en) * | 1990-05-24 | 1992-12-29 | Air Products And Chemicals, Inc. | Oxygen recovery from turbine exhaust using solid electrolyte membrane |
US5546766A (en) * | 1994-05-27 | 1996-08-20 | The Boc Group Plc | Air separation |
US5572874A (en) * | 1994-06-17 | 1996-11-12 | The Boc Group, Plc | Air separation |
US5609041A (en) * | 1994-12-16 | 1997-03-11 | The Boc Group Plc | Air separation |
US5934105A (en) * | 1998-03-04 | 1999-08-10 | Praxair Technology, Inc. | Cryogenic air separation system for dual pressure feed |
US6189337B1 (en) * | 1996-04-15 | 2001-02-20 | The Boc Group Plc | Air separation apparatus |
US6305191B1 (en) * | 1999-05-07 | 2001-10-23 | The Boc Group Plc | Separation of air |
US20020116945A1 (en) * | 2000-10-12 | 2002-08-29 | Linde Aktiengesellschaft | Process and apparatus for air separation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2721383B1 (fr) * | 1994-06-20 | 1996-07-19 | Maurice Grenier | Procédé et installation de production d'oxygène gazeux sous pression. |
FR2774157B1 (fr) * | 1998-01-23 | 2000-05-05 | Air Liquide | Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre |
FR2827186A1 (fr) * | 2001-07-12 | 2003-01-17 | Air Liquide | Procede et installation de distillation d'air et de production de vapeur d'eau |
FR2828729B1 (fr) * | 2001-08-14 | 2003-10-31 | Air Liquide | Installation de production d'oxygene sous haute pression par distillation d'air |
-
2008
- 2008-07-03 US US12/167,698 patent/US20090100864A1/en not_active Abandoned
- 2008-07-04 CN CN200880020956A patent/CN101688754A/zh active Pending
- 2008-07-04 WO PCT/EP2008/058635 patent/WO2009007310A2/fr active Application Filing
- 2008-07-04 AU AU2008274334A patent/AU2008274334B2/en not_active Expired - Fee Related
- 2008-07-04 EP EP08774747A patent/EP2162692A2/fr not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2626510A (en) * | 1947-06-18 | 1953-01-27 | Air Prod Inc | Air fractionating cycle and apparatus |
US5174866A (en) * | 1990-05-24 | 1992-12-29 | Air Products And Chemicals, Inc. | Oxygen recovery from turbine exhaust using solid electrolyte membrane |
US5546766A (en) * | 1994-05-27 | 1996-08-20 | The Boc Group Plc | Air separation |
US5572874A (en) * | 1994-06-17 | 1996-11-12 | The Boc Group, Plc | Air separation |
US5609041A (en) * | 1994-12-16 | 1997-03-11 | The Boc Group Plc | Air separation |
US6189337B1 (en) * | 1996-04-15 | 2001-02-20 | The Boc Group Plc | Air separation apparatus |
US5934105A (en) * | 1998-03-04 | 1999-08-10 | Praxair Technology, Inc. | Cryogenic air separation system for dual pressure feed |
US6305191B1 (en) * | 1999-05-07 | 2001-10-23 | The Boc Group Plc | Separation of air |
US20020116945A1 (en) * | 2000-10-12 | 2002-08-29 | Linde Aktiengesellschaft | Process and apparatus for air separation |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8191386B2 (en) * | 2008-02-14 | 2012-06-05 | Praxair Technology, Inc. | Distillation method and apparatus |
US20090205368A1 (en) * | 2008-02-14 | 2009-08-20 | Henry Edward Howard | Distillation method and apparatus |
US9435229B2 (en) * | 2012-01-26 | 2016-09-06 | Linde Ag | Process and device for air separation and steam generation in a combined system |
US10443603B2 (en) * | 2012-10-03 | 2019-10-15 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US20160033197A1 (en) * | 2012-10-03 | 2016-02-04 | Nick J. Degenstein | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US10385861B2 (en) * | 2012-10-03 | 2019-08-20 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US20160033196A1 (en) * | 2012-10-03 | 2016-02-04 | Henry E. Howard | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US10519962B2 (en) | 2012-10-03 | 2019-12-31 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US10533565B2 (en) | 2012-10-03 | 2020-01-14 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US10533564B2 (en) | 2012-10-03 | 2020-01-14 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US11268753B2 (en) * | 2016-08-01 | 2022-03-08 | Nuovo Pignone Technologie Srl | Split refrigerant compressor for the liquefaction of natural gas |
EP4163500A1 (fr) * | 2021-10-11 | 2023-04-12 | Siemens Energy Global GmbH & Co. KG | Installation de compression de l'air pour une séparation de l'air |
WO2023061813A1 (fr) * | 2021-10-11 | 2023-04-20 | Siemens Energy Global GmbH & Co. KG | Système de compression d'air pour un processus de séparation d'air |
Also Published As
Publication number | Publication date |
---|---|
AU2008274334A1 (en) | 2009-01-15 |
AU2008274334B2 (en) | 2011-02-24 |
CN101688754A (zh) | 2010-03-31 |
EP2162692A2 (fr) | 2010-03-17 |
WO2009007310A3 (fr) | 2009-09-03 |
WO2009007310A2 (fr) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109690215B (zh) | 工业气体场所与液氢生产的一体化 | |
US8900355B2 (en) | Purification of carbon dioxide | |
US20090100864A1 (en) | Process to compress air and its use in an air separation process and systems using said processes | |
JP4216765B2 (ja) | 凝縮天然ガスからの窒素除去方法及び装置 | |
US5263328A (en) | Process for low-temperature air fractionation | |
US8257476B2 (en) | Purification of carbon dioxide | |
JP4452239B2 (ja) | 炭化水素の分離方法および分離装置 | |
US6962062B2 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
US5609040A (en) | Process and plant for producing carbon monoxide | |
US6568206B2 (en) | Cryogenic hydrogen and carbon monoxide production with membrane permeate expander | |
US4488890A (en) | Low temperature separation of gaseous mixture for methanol synthesis | |
EP1767884A1 (fr) | Procédé et dispositif pour la séparation cryogénique d'air | |
US6178774B1 (en) | Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide | |
US6266976B1 (en) | Cryogenic H2 and carbon monoxide production with an impure carbon monoxide expander | |
US6173585B1 (en) | Process for the production of carbon monoxide | |
US20180038642A1 (en) | Process integration of a gas processing unit with liquefaction unit | |
JP6092804B2 (ja) | 空気液化分離方法及び装置 | |
EP1726900A1 (fr) | Procédé et installation pour la séparation cryogénique d'air | |
US20050113468A1 (en) | Natural gas liquefaction and conversion method | |
US10295252B2 (en) | System and method for providing refrigeration to a cryogenic separation unit | |
US20110209498A1 (en) | Process for separating off nitrogen | |
US11874057B2 (en) | Process to separate nitrogen from methane by permeation and cryogenic distillation | |
US20190368810A1 (en) | Method and installation for cryogenic separation of a gaseous mixture by methane scrubbing | |
US20070122272A1 (en) | Gas compressor, unit for separating a gas mixture incorporating such a compressor, and method of separating a gas mixture incorporating such a compressor | |
WO2023242144A1 (fr) | Procédé et installation de séparation de dioxyde de carbone (co2) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEN HELD, PAUL ANTON;VAN DER PLOEG, HENDRIK JAN;REEL/FRAME:022040/0222;SIGNING DATES FROM 20080508 TO 20080821 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |