US20090095384A1 - Aqueous quenching media and use thereof in quenching metal substrates - Google Patents
Aqueous quenching media and use thereof in quenching metal substrates Download PDFInfo
- Publication number
- US20090095384A1 US20090095384A1 US11/870,457 US87045707A US2009095384A1 US 20090095384 A1 US20090095384 A1 US 20090095384A1 US 87045707 A US87045707 A US 87045707A US 2009095384 A1 US2009095384 A1 US 2009095384A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- molecular weight
- vinylpyrrolidone
- water
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010791 quenching Methods 0.000 title claims abstract description 108
- 230000000171 quenching effect Effects 0.000 title claims abstract description 107
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 54
- 239000002184 metal Substances 0.000 title claims abstract description 54
- 239000000758 substrate Substances 0.000 title claims abstract description 48
- 229920000642 polymer Polymers 0.000 claims abstract description 144
- 229920001577 copolymer Polymers 0.000 claims abstract description 60
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 36
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 36
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 12
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims abstract description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 72
- -1 polyoxyethylene Polymers 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 22
- 239000012141 concentrate Substances 0.000 claims description 22
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 claims description 21
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 claims description 18
- 125000000304 alkynyl group Chemical group 0.000 claims description 18
- 150000002918 oxazolines Chemical class 0.000 claims description 18
- 125000003342 alkenyl group Chemical group 0.000 claims description 17
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 14
- 125000005842 heteroatom Chemical group 0.000 claims description 13
- 238000005260 corrosion Methods 0.000 claims description 9
- 230000007797 corrosion Effects 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 7
- 125000004426 substituted alkynyl group Chemical group 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 239000000872 buffer Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000013530 defoamer Substances 0.000 claims description 2
- 239000006078 metal deactivator Substances 0.000 claims description 2
- 239000003755 preservative agent Substances 0.000 claims description 2
- 230000002335 preservative effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 2
- 238000001816 cooling Methods 0.000 abstract description 20
- 239000012736 aqueous medium Substances 0.000 abstract description 2
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 abstract 1
- 229910000734 martensite Inorganic materials 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 49
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 125000000623 heterocyclic group Chemical group 0.000 description 19
- 0 *C(CC)CC(C)N1CCCC1=O.C.C.C.C Chemical compound *C(CC)CC(C)N1CCCC1=O.C.C.C.C 0.000 description 17
- 125000001072 heteroaryl group Chemical group 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 125000004434 sulfur atom Chemical group 0.000 description 8
- 125000000392 cycloalkenyl group Chemical group 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 6
- 125000005157 alkyl carboxy group Chemical group 0.000 description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- WRPOOWMUTPTCKA-UHFFFAOYSA-N C.C.CCC(C)N1CCCC1=O Chemical compound C.C.CCC(C)N1CCCC1=O WRPOOWMUTPTCKA-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 125000004103 aminoalkyl group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000005110 aryl thio group Chemical group 0.000 description 3
- 125000004104 aryloxy group Chemical group 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 125000004001 thioalkyl group Chemical group 0.000 description 3
- 125000005000 thioaryl group Chemical group 0.000 description 3
- 125000006664 (C1-C3) perfluoroalkyl group Chemical group 0.000 description 2
- 125000006546 (C4-C10) cycloalkyl group Chemical group 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004622 benzoxazinyl group Chemical group O1NC(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 125000002576 diazepinyl group Chemical group N1N=C(C=CC=C1)* 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000000597 dioxinyl group Chemical group 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000005438 isoindazolyl group Chemical group 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003585 oxepinyl group Chemical group 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000006089 thiamorpholinyl sulfoxide group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000003777 thiepinyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
Definitions
- This invention relates to aqueous quenching media and processes using the same for quenching metal substrates.
- Various methods of heat treating metal substrates include heating a metal substrate to an elevated temperature and then cooling.
- the cooling step which is known in the art as “quenching”, typically is performed rapidly and is accomplished by immersing the hot metal substrate in a liquid quenching medium, i.e. a quenching bath, which typically is water or oil.
- the quenching medium When the quenching medium is water alone, very rapid cooling of the metal substrate occurs. Rapid cooling is not suitable for many types of steel, since it tends to produce excessive strain which warps and cracks the steel.
- the quenching medium When the quenching medium is a hydrocarbon oil, a slower rate of cooling occurs. This can impart certain desirable physical properties in the metal substrate, including ductility in steel. Even though the slower cooling rate provided by oil quenching prevents or reduces excessive strain in the metal substrate, it often has the undesirable side-effect of preventing the metal substrate from adequately hardening.
- aqueous media is available for quenching metal substrates and may include one or more of a polymer.
- U.S. Pat. No. 3,220,893 discusses a quenching medium containing an oxyalkylene polymer having oxyethylene and higher oxyalkylene groups which form a desirable covering over the metal substrate surface during quenching.
- the polymer layer that coats the metal permits relatively short quenching times, thereby resulting in minimum internal stress of the metal substrate, minimum distortion of the metal substrate, and imparts uniform hardenability of the metal substrate.
- U.S. Pat. Nos. 3,902,929, 4,826,545, and PE 34119 discuss aqueous quenching media containing a polyvinylpyrrolidone and U.S. Pat. No. 4,087,290 discusses an aqueous quenching medium containing a water-soluble polyacrylate, such as a sodium polyacrylate, which forms a vapor blanket about the metal substrate during the quenching operation.
- a water-soluble polyacrylate such as a sodium polyacrylate
- aqueous polymer-based quenching media typically contain large amounts of polymer, e.g., 10 to 15% by weight, and “drag out” occurs during quenching in which the polymer coating that initially forms around in the metal substrate is removed.
- drag out occurs, the viscosity of the quenching medium changes due to presence of solid polymer, thereby requiring an additional step of washing the quenched metal substrate to remove any of the solid polymer present on the metal substrate.
- quenching media which will cool a heated metal substrate at a rate similar to oil-based quenching media at a rate that is between oil and water, while achieving the greatest degree of hardness without warping or cracking the metal substrate.
- aqueous quenching media contain a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone/polyvinylcaprolactam copolymer; and a non-ionic, water-soluble or water-dispersible polymer including one or more of (a) a substituted oxazoline polymer; (b) a poly(oxyethyleneoxyalkylene) glycol polymer; or (c) a polyvinylpyrrolidone polymer
- aqueous quenching media for heat-treating metal substrates contain (i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam copolymer of Formula I, wherein R, n, and m are defined herein:
- processes for quenching heated metal substrates include quenching the heated metal substrate with an aqueous quenching medium containing a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone/polyvinylcaprolactam copolymer; and a non-ionic, water-soluble or water-dispersible polymer including one or more of (a) a substituted oxazoline polymer; (b) a poly(oxyethyleneoxyalkylene) glycol polymer; or (c) a polyvinylpyrrolidone polymer.
- concentrates for preparing aqueous quenching media useful in the heat treatment of metal substrates contain at least about 5% by weight of a mixture of the aqueous quenching medium.
- the invention provides aqueous quenching media and processes for treating metal substrates using these aqueous quenching media.
- the inventors found that when a metal substrate is heated to an elevated temperature, the aqueous quenching media described herein are effective in quenching the metal substrate without warping or cracking the metal substrate. These aqueous quenching media are also effective in slowly cooling the metal substrate.
- the aqueous quenching media also exhibit a relatively short vapor phase and an extended convection stage which is more pronounced at higher temperatures. Further, the used aqueous quenching media require less wastewater treatment and are more environmentally friendly.
- the aqueous quenching media described herein find use in industries, such as automotive, aerospace, bearing industries, gear industries, and industries involving the controlled heating and cooling of metal for the purpose of obtaining specific properties, including industries whereby aqueous quenching media cannot be utilized or are not effective.
- metal substrate refers to any commercial metal substrate that can be heated and then quenched.
- the metal substrate contains only one metal.
- the metal substrate contains more than one metal, i.e., a metal alloy.
- the metal substrate may contain one or more of iron, manganese, copper, silicon, sulfur, phosphorus, aluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, among others.
- Specific examples of metals that can be treated with the compositions described herein include those described in “The Heat Treater's Guide”, American Society for Metals, 1982, which is hereby incorporated by reference.
- alkyl is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups.
- an alkyl group has 1 to about 10 carbon atoms (i.e., C 1 , C 2 , C 3 , C 4 , C 5 C 6 , C 7 , C 8 , C 9 , or C 10 ).
- an alkyl group has 4 to about 10 carbon atoms (i.e., C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- an alkyl group has 5 to about 10 carbon atoms (i.e., C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- cycloalkyl is used herein to refer to cyclic, saturated aliphatic hydrocarbon groups.
- a cycloalkyl group has 4 to about 10 carbon atoms (i.e., C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- a cycloalkyl group has 5 to about 10 carbon atoms (i.e., C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- alkenyl is used herein to refer to both straight- and branched-chain alkyl groups having one or more carbon-carbon double bonds.
- an alkenyl group has 2 to about 10 carbon atoms (i.e., C 2 , C 3 , C 4 , C 5 C 6 , C 7 , C 8 , C 9 , or C 10 )
- an alkenyl group has 4 to about 10 carbon atoms (i.e., C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- an alkenyl group has 5 to about 10 carbon atoms (i.e., C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ). In another embodiment, an alkenyl group has 1 or 2 carbon-carbon double bonds.
- cycloalkenyl is used herein to refer to cyclic, aliphatic hydrocarbon groups containing one or more carbon-carbon double bond.
- a cycloalkenyl group has 4 to about 10 carbon atoms (i.e., C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- a cycloalkenyl group has 5 to about 10 carbon atoms (i.e., C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- alkynyl is used herein to refer to both straight- and branched-chain alkyl groups having one or more carbon-carbon triple bonds.
- an alkynyl group has 2 to about 10 carbon atoms (i.e., C 2 , C 3 , C 4 , C 5 C 6 , C 7 , C 8 , C 9 , or C 10 ).
- an alkynyl group has 4 to about 10 carbon atoms (i.e., C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ).
- an alkynyl group has 5 to about 10 carbon atoms (i.e., C 5 , C 6 , C 7 , C 8 , C 9 , or C 10 ). In another embodiment, an alkynyl group contains 1 or 2 carbon-carbon triple bonds.
- cycloalkynyl is used herein to refer to cyclic, aliphatic hydrocarbon groups containing one or more carbon-carbon triple bond.
- a cycloalkynyl group has 8 to about 14 carbon atoms (i.e., C 8 , C 9 , C 10 , C 11 , C 12 , C 13 , or C 14 ).
- a cycloalkynyl group has 8 to about 10 carbon atoms (i.e., C 8 , C 9 , or C 10 ).
- substituted alkyl refers to alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl groups, respectively, having one or more substituents including, without limitation, hydrogen, halogen, CN, OH, NO 2 , amino, aryl, heterocyclic, heteroaryl, alkoxy, aryloxy, alkylcarbonyl, alkylcarboxy, amino, and arylthio.
- alkylcarbonyl refers to the C(O)(alkyl) group, where the point of attachment is through the carbon-atom of the carbonyl moiety and the alkyl group can be substituted as noted above.
- alkylcarboxy refers to the C(O)O(alkyl) group, where the point of attachment is through the carbon-atom of the carboxy moiety and the alkyl group can be substituted as noted above.
- alkylamino and “aminoalkyl” as used herein are interchangeable and refer to both secondary and tertiary amines where the point of attachment is through the nitrogen-atom and the alkyl groups can be substituted as noted above.
- the alkyl groups can be the same or different.
- halogen refers to Cl, Br, F, or I groups.
- aryl refers to an aromatic, carbocyclic system, e.g., of about 6 to 14 carbon atoms, which can include a single ring or multiple aromatic rings fused or linked together where at least one part of the fused or linked rings forms the conjugated aromatic system.
- the aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, phenanthryl, indene, benzonaphthyl, and fluorenyl.
- substituted aryl refers to an aryl group which is substituted with one or more substituents including halogen, CN, OH, NO 2 , amino, alkyl, cycloalkyl, alkenyl, alkynyl, C 1 to C 3 perfluoroalkyl, C 1 to C 3 perfluoroalkoxy, aryloxy, alkoxy including —O— (C 1 to C 10 alkyl) or —O—(C 1 to C 10 substituted alkyl), alkylcarbonyl including —CO—(C 1 to C 10 alkyl) or —CO—(C 1 to C 10 substituted alkyl), alkylcarboxy including —COO—(C 1 to C 10 alkyl) or —COO—(C 1 to C 10 substituted alkyl), —C(NH 2 ) ⁇ N—OH, —SO 2 —(C 1 to C 10 alkyl), —SO 2 —(C 1 to C 10 —(C 1 to
- heterocycle or “heterocyclic” as used herein can be used interchangeably to refer to a stable, saturated or partially unsaturated 3- to 9-membered monocyclic or multicyclic heterocyclic ring.
- the heterocyclic ring has in its backbone carbon atoms and one or more heteroatoms including nitrogen, oxygen, and sulfur atoms. In one embodiment, the heterocyclic ring has 1 to about 4 heteroatoms in the backbone of the ring. When the heterocyclic ring contains nitrogen or sulfur atoms in the backbone of the ring, the nitrogen or sulfur atoms can be oxidized.
- heterocycle or “heterocyclic” also refers to multicyclic rings in which a heterocyclic ring is fused to an aryl ring of about 6 to about 14 carbon atoms.
- the heterocyclic ring can be attached to the aryl ring through a heteroatom or carbon atom provided the resultant heterocyclic ring structure is chemically stable.
- the heterocyclic ring includes multicyclic systems having 1 to 5 rings.
- heterocyclic groups include, without limitation, oxygen-containing rings, nitrogen-containing rings, sulfur-containing rings, mixed heteroatom-containing rings, fused heteroatom containing rings, and combinations thereof.
- heterocyclic groups include, without limitation, tetrahydrofuranyl, piperidinyl, 2-oxopiperidinyl, pyrrolidinyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, pyranyl, pyronyl, dioxinyl, piperazinyl, dithiolyl, oxathiolyl, dioxazolyl, oxathiazolyl, oxazinyl, oxathiazinyl, benzopyranyl, benzoxazinyl and xanthenyl.
- heteroaryl refers to a stable, aromatic 5- to 14-membered monocyclic or multicyclic heteroatom-containing ring.
- the heteroaryl ring has in its backbone carbon atoms and one or more heteroatoms including nitrogen, oxygen, and sulfur atoms.
- the heteroaryl ring contains 1 to about 4 heteroatoms in the backbone of the ring.
- the nitrogen or sulfur atoms can be oxidized.
- heteroaryl also refers to multicyclic rings in which a heteroaryl ring is fused to an aryl ring.
- the heteroaryl ring can be attached to the aryl ring through a heteroatom or carbon atom provided the resultant heterocyclic ring structure is chemically stable.
- the heteroaryl ring includes multicyclic systems having 1 to 5 rings.
- heteroaryl groups include, without limitation, oxygen-containing rings, nitrogen-containing rings, sulfur-containing rings, mixed heteroatom-containing rings, fused heteroatom containing rings, and combinations thereof.
- heteroaryl groups include, without limitation, furyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, azepinyl, thienyl, dithiolyl, oxathiolyl, oxazolyl, thiazolyl, oxadiazolyl, oxatriazolyl, oxepinyl, thiepinyl, diazepinyl, benzofuranyl, thionapthene, indolyl, benzazolyl, purindinyl, pyranopyrrolyl, isoindazolyl, indox
- substituted heterocycle and “substituted heteroaryl” as used herein refers to a heterocycle or heteroaryl group having one or more substituents including halogen, CN, OH, NO 2 , amino, alkyl, cycloalkyl, alkenyl, alkynyl, C 1 to C 3 perfluoroalkyl, C 1 to C 3 perfluoroalkoxy, aryloxy, alkoxy including —O—(C 1 to C 10 alkyl) or —O—(C 1 to C 10 substituted alkyl), alkylcarbonyl including —CO—(C 1 to C 10 alkyl) or —CO—(C 1 to C 10 substituted alkyl), alkylcarboxy including —COO—(C 1 to C 10 alkyl) or —COO—(C 1 to C 10 substituted alkyl), —C(NH 2 ) ⁇ N—OH, —SO 2 —(C 1 to C 10 alkyl), —C(
- thioaryl refers to the S(aryl) group, where the point of attachment is through the sulfur-atom and the aryl group can be substituted as noted above.
- alkoxy refers to the O(alkyl) group, where the point of attachment is through the oxygen-atom and the alkyl group can be substituted as noted above.
- oxyaryl refers to the O(aryl) group, where the point of attachment is through the oxygen-atom and the aryl group can be substituted as noted above.
- thioalkyl refers to the S(alkyl) group, where the point of attachment is through the sulfur-atom and the alkyl group can be substituted as noted above.
- the aqueous quenching medium described herein contains at least two components, i. e., component (i) and component (ii).
- component (i) and component (ii) The inventors found that the aqueous quenching medium is effective in quenching metal substrates, without any significant increase in cooling rate, when the amount of component (ii) is greater than the amount of component (i).
- the two components are present in the quenching medium in an amount that is effective to reduce the cooling rate of the quenching medium when applied to a metal substrate, i.e., the aqueous quenching medium contains an effective cooling rate reducing amount of (i) and (ii).
- the ratio of component (i) to component (ii) is about 90:10 to about 10:90.
- the ratio of component (i) to component (ii) is about 80:20 to about 20:80. In another example, the ratio of component (i) to component (ii) is about 75:25 to about 25:75. In another example, the ratio of component (i) to component (ii) is about 60:40 to about 40:60. In a farther example, the ratio of component (i) to component (ii) is about 75:25.
- the first component, i.e., component (i), of the aqueous quenching medium described herein is a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone (PVP)/polyvinylcaprolactam (PVC) copolymer.
- PVP polyvinylpyrrolidone
- PVC polyvinylcaprolactam
- water-dispersible refers to a compound that does not dissolve in water, but combines with water without clumping in the water.
- water-soluble refers to a compound that substantially dissolves in water. Desirably, the term “water-soluble” refers to a compound has 100% dissolution in water.
- the PVP/PVC copolymer is of formula I:
- R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the PVP/PVC copolymer and n and m are, independently, integers. Desirably, n is about 45 to about 18,000, and fractional integers therebetween.
- n is 45, 50, 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, 6,500, 7,000, 7,500, 8,000, 8,500, 9,000, 9,500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, or 18,000.
- n is about 1,000 to about 17,000.
- n is about 3,000 to about 15,000.
- n is about 5,000 to about 13,000.
- n is about 7,000 to about 11,000.
- n is about 9,000 to about 10,000.
- m is about 36 to about 14,500.
- m is 36, 50, 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, 6,500, 7,000, 7,500, 8,000, 8,500, 9,000, 9,500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, or 14,500.
- m is about 1,000 to about 13,000.
- m is about 3,000 to about 11,000.
- m is about 5,000 to about 9,000.
- m is about 7,000 to about 8,000.
- organic radical refers to an organic moiety that contains at least carbon and hydrogen atoms.
- the R group in each unit may be the same or may be different.
- R is alkyl, alkenyl, or alkynyl, optionally containing one or more heteroatoms in the backbone of the alkyl, alkenyl, or alkynyl group.
- R is OH, NH 2 , SH, C 4 to C 10 alkyl, substituted C 4 to C 10 alkyl, C 4 to C 10 cycloalkyl, substituted C 4 to C 10 cycloalkyl, C 4 to C 10 cycloalkenyl, substituted C 4 to C 10 cycloalkenyl, C 4 to C 10 cycloalkynyl, substituted C 4 to C 10 cycloalkynyl, C 4 to C 10 alkoxy, substituted C 4 to C 10 alkoxy, C 4 to C 10 aminoalkyl, substituted C 4 to C 10 aminoalkyl, C 4 to C 10 thioalkyl, C 4 to C 10 substituted thioalkyl, thioaryl, substituted thioaryl, oxyaryl, oxy(substituted aryl), alkylcarbonyl, substituted alkylcarbonyl, alkylcarboxy, or substituted alkylcarboxy.
- the PVP/PVC copolymer has a molecular weight of about 5,000 to about 2,000,000. Desirably, the molecular weight of the PVP/PVC copolymer is about 50,000 to about 1,000,000. In another example, the molecular weight of the PVP/PVC copolymer is about 50,000 to about 390,000. In a further example, the molecular weight of the PVP/PVC copolymer is about 100,000 to about 200,000. In still another example, the molecular weight of the PVP/PVC copolymer is about 400,000.
- the PVP/PVC copolymer is also characterized by a K-value of at least about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 to about 70.
- K-value as used herein is commonly utilized in the art and refers to a function of molecular weight as described in “Performance & Industrial Chemicals Reference Guide”, International Specialty Products, page 20, 2005, which is hereby incorporated by reference.
- the K-value of the PVP/PVC copolymer is about 65.
- the PVP/PVC copolymer can have varying ratios of n and m.
- the copolymer contains about 50 to about 75% of n and about 25 to about 50% of m, provided that the combination of n and m is 100%.
- the PVP/PVC copolymer contains about 75% of n and about 25% of m.
- the PVP/PVC copolymer contains about 66.6% of n and about 33.3% of m.
- the PVP/PVC copolymer contains about 50% of n and about 50% of m.
- the second component of the aqueous quenching medium is a non-ionic, water-soluble or water-dispersible polymer.
- the second component is a substituted oxazoline polymer, a poly(oxyethyleneoxyalkylene) glycol polymer, or a polyvinylpyrrolidone polymer.
- the second component of the aqueous quenching medium is a substituted oxazoline polymer of formula II:
- R 1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer and p is an integer. In one example, p is an integer of from 25 to 12,000. In still other embodiments, p is at least 50; 100; 250; 400; 600; 850; 1000; 2000; 3000; 4000; 5000; 6000; 7000; 8000; 9000; 10,000; 11,000; 11,900 or an integer therebetween.
- R 1 in each unit may be the same or different.
- R 1 is aryl, aryl substituted with halogen, C 1 to C 7 alkyl, or C 1 to C 7 alkyl substituted with halogen.
- R 1 is phenyl or phenyl substituted with halogen.
- R 1 is C 1 to C 6 alkyl in at least about 50% of the units.
- the molecular weight of the oxazoline polymer typically is about 5,000 to about 1,000,000. In another example, the molecular weight of the oxazoline polymer at least about 25,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween. In a further example, the molecular weight of the oxazoline polymer is about 200,000 to about 500,000.
- the second component is a polyoxyethylene/polyoxyalkylene polymer of formula III:
- R 2 is an a chemical moiety that maintains the water solubility of the polyoxyethylene/polyoxyalkylene polymer and x and y are integers, provided that the polyoxyethylene/polyoxyalkylene polymer is water-soluble and the polyoxyethylene/polyoxyalkylene polymer has a molecular weight of at least about 1,000; 25,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween.
- R 2 maintains the water solubility of the polyoxyethylene/polyoxyalkylene polymer at about 70 to about 180° F., including temperatures of at least 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, or 180, and values therebetween.
- R 2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl.
- R2 is methyl or ethyl.
- the units, i.e., x and y, of the polyoxyethylene/polyoxyalkylene polymer may be the same or may differ and may have varying amounts therein.
- x may be larger than y or y may be larger than x.
- x is about 10 to about 5,000.
- x is about 10, 50, 100, 200, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, or 5,000, or values therebetween.
- x is about 100 to about 4,000.
- x is about 500 to about 3,500.
- x is about 500 to about 3,500.
- x is about 750 to about 3,000. In another embodiment, x is about 1,000 to about 2,500. Desirably, y is about 10 to about 5,000. In one embodiment, y is about 10, 50, 100, 200, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, or 5,000, or values therebetween. In another embodiment, y is about 100 to about 4,000. In a further embodiment, y is about 500 to about 3,500. In yet another embodiment, y is about 500 to about 3,500. In still a further embodiment, y is about 750 to about 3,000. In another embodiment, y is about 1,000 to about 2,500.
- the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is at least about 1,000; 12,000; 15,000; 25,000; 30,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween.
- the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is about 5,000 to about 100,000. In a further example, the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is about 300,000.
- the second component is a vinylpyrrolidone polymer of formula IV:
- z is an integer. Desirably, z is about 40 to about 32,000. In one embodiment, z is about 100, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000,20,000,21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, or 32,000, or values therebetween. In another embodiment, z is about 1,000 to about 30,000. In a further embodiment, z is about 3,000 to about 28,000. In still another embodiment, z is about 5,000 to about 26,000.
- z is about 7,000 to about 24,000. In a further embodiment, z is about 9,000 to about 22,000. In still a further embodiment, z is about 11,000 to about 20,000. In yet another embodiment, z is about 13,000 to about 18,000. In a further embodiment, z is about 15,000 to about 16,000.
- the vinylpyrrolidone polymer has a molecular weight of at least about 5,000; 50,000; 100,000; 250,000; 500,000; 750,000; 1,000,000; 1,500,000; 2,000,000; 2,500,000; 3,000,000 to about 3,500,000, including numbers therebetween.
- the vinylpyrrolidone polymer has a molecular weight of least about 5,000; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 70,000; 80,000; 90,000 to about 1,000,000 or values therebetween.
- the vinylpyrrolidone polymer has a molecular weight of about 50,000 to about 360,000.
- the vinylpyrrolidone polymer has a molecular weight of about 400,000 to 500,000.
- the vinylpyrrolidone polymer has a molecular weight of about 100,000 to about 200,000.
- the vinylpyrrolidone polymer have a K-value of about 26 to 130.
- the K-value is about 90.
- the K-value is at least 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, or integers therebetween.
- the aqueous quenching medium may also contain one or more additional components, as identified below.
- the additional components typically are present in the medium at an excess over components (i) and (ii) described above.
- the additional components are present in the medium at a concentration of about 95 to about 99.95% and components (i) and (ii) described above are present in the medium at a concentration of about 0.05% to about 5% by weight.
- the additional components are present in the medium at a concentration of about 98.5% to about 99.95% by weight and components (i) and (ii) described above are present in the medium at a concentration of about 0.05% to about 1.5%.
- the additional components present in the aqueous quenching medium may include a carrier.
- the carrier is water.
- the carrier may be included in the quenching medium, thereby permitting use of the product by the customer without addition of further carrier.
- the carrier is present in the quenching medium in sufficient amounts to provide a stable solution for further dilution by the customer prior to use.
- the carrier may also be added by the customer to a concentrated quenching medium composition prior to use. However, more water made be added to the composition to ensure that the final quenching medium contains sufficient water for use by the customer.
- the aqueous quenching medium may also contain one or more of a bacteriocidal agent or biocide, preservative, corrosion inhibitor such as sodium nitrite, ethanol amine or amine soaps, buffer, metal deactivator, dye, fragrance, caustic agent, wetting agent, sequestering agent, fungicide, and defoamer, among others.
- a bacteriocidal agent or biocide preservative
- corrosion inhibitor such as sodium nitrite, ethanol amine or amine soaps
- buffer metal deactivator
- dye such as sodium nitrite, ethanol amine or amine soaps
- fragrance such as sodium nitrite, ethanol amine or amine soaps
- caustic agent such as sodium nitrite
- wetting agent such as sodium nitrite
- sequestering agent such as sodium nitrite, ethanol amine or amine soaps
- the additional components include corrosion inhibitors and defoamers. These components may be present in the composition at about
- these components are present in the composition at about 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10% by weight, or fractional percentages therebetween.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000
- component (ii) is an oxazoline polymer having a molecular weight of about 50,000 to about 500,000
- concentration of components (i) and (ii) is about 0.05% to about 5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000
- component (ii) is an oxazoline polymer having a molecular weight of about 200,000 to about 500,000
- concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000
- component (i) is a polyoxyethylene/polyoxyalkylene polymer having a molecular weight of about 1,000 to about 500,000
- concentration of components (i) and (ii) is about 0.05% to 5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000
- component (ii) is polyoxyethylene/polyoxyalkylene polymer having a molecular weight of about 5,000 to about 100,000
- concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000
- component (ii) is a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000
- concentration of components (i) and (ii) is about 0.05% to 5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000
- component (ii) is a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000
- concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight.
- the aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- an aqueous quenching medium for heat-treating metal substrates contains a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I, wherein, R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the vinylpyrrolidone/ vinylcaprolactam polymer; n and m are independently integers, provided that the substituted vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70.
- the substituted vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, the substituted vinylpyrrolidone/vinylcaprolactam copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and the sum of said vinylpyrrolidone and vinylcaprolactam components is 100 mol %.
- the aqueous quenching medium also contains one of more polymers selected from among (a), (b), or (c).
- Polymer (a) is a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula II, wherein, R 1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer; p is an integer, provided that the molecular weight of the oxazoline polymer is about 50,000 to about 1,000,000.
- Polymer (b) is a polyoxyethylene/polyoxyalkylene polymer having formula III, wherein, R 2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl; x and y are integers, provided that the polyoxyethylene/polyalkylene polymer is water-soluble and the has a molecular weight of about 1,000 to about 500,000.
- Polymer (c) is a vinylpyrrolidone polymer having formula IV, wherein, z is an integer, provided that the vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 3,500,000 and a K-value of about 26 to 130.
- the invention also provides a concentrate which contains the first and second components described above.
- This concentrate may be utilized by those skilled in the art for preparing an aqueous quenching medium useful in the heat treatment of metal substrates.
- the concentrate contains water and at least about 5% by weight of components (i) and (ii) described above.
- the concentrate contain water and about 5% to 70% by weight of components (i) and (ii).
- the concentrate contains about 5% to about 20% of components (i) and (ii) described above.
- a concentrate in one embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and an oxazoline polymer having a molecular weight of about 50,000 to about 500,000 wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the oxazoline polymer in the concentrate is about 5% to 70%.
- a concentrate in another embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and an oxazoline polymer having a molecular weight of about 200,000 to about 500,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the oxazoline polymer in the concentrate is about 5% to about 20%.
- a concentrate in a further embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and a polyoxyethylene/polyoxyalkylene copolymer having a molecular weight of about 1,000 to about 500,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the polyoxyethylene/polyoxyalkylene copolymer in the concentrate is about 5% to 70%.
- a concentrate in yet another embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and a polyoxyethylene/polyoxyalkylene copolymer having a molecular weight of about 5,000 to about 100,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the polyoxyethylene/polyoxyalkylene copolymer in the concentrate is about 5% to about 20%.
- a concentrate in a further embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the vinylpyrrolidone polymer in the concentrate is about 5% to 70%.
- a concentrate in still a further embodiment, contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the vinylpyrrolidone polymer is about 5% to about 20%.
- a concentrate is provided and contains at least about 5% by weight of a mixture of (i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I, wherein, R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the vinylpyrrolidone/vinylcaprolactam polymer, n and m are independently integers, provided that the vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70; and wherein the vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, the vinylpyrrolidone/vinylcaprolactam copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and
- the concentrate also contains one of more polymers selected from among (a), (b), or (c).
- Polymer (a) is a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula II, wherein, R 1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer, p is an integer, provided that the molecular weight of the oxazoline polymer is about 50,000 to about 1,000,000.
- Polymer (b) is a polyoxyethylene/polyoxyalkylene polymer having formula III, wherein, R 2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl, x and y are integers, provided that the polyoxyethylene/polyoxyalkylene polymer is water-soluble and the polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000.
- Polymer (c) is a vinylpyrrolidone polymer having formula IV, wherein, z is an integer, provided that the vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 3,500,000 and a K-value of about 26 to 130.
- the IVF Quenchotest (The Swedish Institute of Production Engineering Research) was utilized and included the IVF data acquisition/recording unit, test probe, probe handle and furnace.
- the test probe (600 mm in length and 12.5 mm diameter of the Inconel® 600 probe enclosing a type K thermocouple —NiCr/NiAl— with a diameter of 1.5 mm) complied with the specification for testing quenchants as established by the International Federation for the Heat Treatment of Materials (IFHT).
- the furnace thermostat controlled the power supplied to the furnace through diode rectification and was operated without a controlled atmosphere. The furnace temperature was adjusted to about 1625° F. (885° C.).
- the metal substrate was heated to a temperature of about 1571° F. (855° C.) to about 1600° F. (870° C.) and then immersed in 1.0 kilograms of one of the fifteen (15) aqueous quenching media described above which were maintained at a temperature of about 100° F. (40° C.).
- Data acquisition began when the test probe temperature of the aqueous quenching medium reached about 1562° F. (849° C.) and was acquired for about 60 seconds, i.e., until the temperature reached about 300° F.
- cooling curves were obtained using the data collected using the various polymer mixtures. Cooling times were determined from the cooling curves during which the test specimens were cooled from 1562° F. (849° C.) to less than 203° F. (95° C.).
- the data illustrate that varying the quenching medium significantly increased cooling time when compared to each component in the quench medium.
- the data also illustrate that the reduced concentration of the combined polymers in the quenching medium did not significantly affect the cooling time of the metal substrate as compared to the individual polymers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Lubricants (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Aqueous media for quenching metal substrates are provided and contain (i) a polyvinylpyrrolidone/polyvinylcaprolactam copolymer and (ii) one or more of a second polymer, which is selected from (a) a substituted oxazoline polymer; (b) a poly(oxyethylene-oxyalkylene) glycol; or (c) a polyvinylpyrrolidone polymer. The quenching bath provides reduced cooling rates through the martensite temperature ranges. Also provided are processes for quenching metal substrates using these quenching media.
Description
- This invention relates to aqueous quenching media and processes using the same for quenching metal substrates.
- Various methods of heat treating metal substrates are known and include heating a metal substrate to an elevated temperature and then cooling. The cooling step, which is known in the art as “quenching”, typically is performed rapidly and is accomplished by immersing the hot metal substrate in a liquid quenching medium, i.e. a quenching bath, which typically is water or oil.
- When the quenching medium is water alone, very rapid cooling of the metal substrate occurs. Rapid cooling is not suitable for many types of steel, since it tends to produce excessive strain which warps and cracks the steel. When the quenching medium is a hydrocarbon oil, a slower rate of cooling occurs. This can impart certain desirable physical properties in the metal substrate, including ductility in steel. Even though the slower cooling rate provided by oil quenching prevents or reduces excessive strain in the metal substrate, it often has the undesirable side-effect of preventing the metal substrate from adequately hardening.
- A variety of aqueous media is available for quenching metal substrates and may include one or more of a polymer. For example, U.S. Pat. No. 3,220,893 discusses a quenching medium containing an oxyalkylene polymer having oxyethylene and higher oxyalkylene groups which form a desirable covering over the metal substrate surface during quenching. The polymer layer that coats the metal permits relatively short quenching times, thereby resulting in minimum internal stress of the metal substrate, minimum distortion of the metal substrate, and imparts uniform hardenability of the metal substrate.
- U.S. Pat. Nos. 3,902,929, 4,826,545, and PE 34119 discuss aqueous quenching media containing a polyvinylpyrrolidone and U.S. Pat. No. 4,087,290 discusses an aqueous quenching medium containing a water-soluble polyacrylate, such as a sodium polyacrylate, which forms a vapor blanket about the metal substrate during the quenching operation.
- Typically, aqueous polymer-based quenching media contain large amounts of polymer, e.g., 10 to 15% by weight, and “drag out” occurs during quenching in which the polymer coating that initially forms around in the metal substrate is removed. When drag out occurs, the viscosity of the quenching medium changes due to presence of solid polymer, thereby requiring an additional step of washing the quenched metal substrate to remove any of the solid polymer present on the metal substrate.
- What is needed in the art are quenching media which will cool a heated metal substrate at a rate similar to oil-based quenching media at a rate that is between oil and water, while achieving the greatest degree of hardness without warping or cracking the metal substrate.
- In one aspect, aqueous quenching media are provided and contain a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone/polyvinylcaprolactam copolymer; and a non-ionic, water-soluble or water-dispersible polymer including one or more of (a) a substituted oxazoline polymer; (b) a poly(oxyethyleneoxyalkylene) glycol polymer; or (c) a polyvinylpyrrolidone polymer
- In another aspect, aqueous quenching media for heat-treating metal substrates are provided and contain (i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam copolymer of Formula I, wherein R, n, and m are defined herein:
- (ii) one of more polymers selected from among (a) a nonionic, water soluble or water dispersible substituted oxazoline polymer having Formula II, wherein R1 and p are defined herein:
- (b) a polyoxyethylene/polyoxyalkylene polymer having Formula III, wherein R2, x, and y are defined herein:
- or (c) a vinylpyrrolidone polymer having Formula IV, wherein z is defined herein.
- In a further aspect, processes for quenching heated metal substrates are provided and include quenching the heated metal substrate with an aqueous quenching medium containing a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone/polyvinylcaprolactam copolymer; and a non-ionic, water-soluble or water-dispersible polymer including one or more of (a) a substituted oxazoline polymer; (b) a poly(oxyethyleneoxyalkylene) glycol polymer; or (c) a polyvinylpyrrolidone polymer.
- In yet a further aspect, concentrates for preparing aqueous quenching media useful in the heat treatment of metal substrates are provided and contain at least about 5% by weight of a mixture of the aqueous quenching medium.
- Other aspects and advantages of the invention will be readily apparent from the following detailed description of the invention.
- The invention provides aqueous quenching media and processes for treating metal substrates using these aqueous quenching media. The inventors found that when a metal substrate is heated to an elevated temperature, the aqueous quenching media described herein are effective in quenching the metal substrate without warping or cracking the metal substrate. These aqueous quenching media are also effective in slowly cooling the metal substrate. The aqueous quenching media also exhibit a relatively short vapor phase and an extended convection stage which is more pronounced at higher temperatures. Further, the used aqueous quenching media require less wastewater treatment and are more environmentally friendly. Therefore, the aqueous quenching media described herein find use in industries, such as automotive, aerospace, bearing industries, gear industries, and industries involving the controlled heating and cooling of metal for the purpose of obtaining specific properties, including industries whereby aqueous quenching media cannot be utilized or are not effective.
- The processes and compositions described herein are therefore useful for quenching heated metal substrate. The term “metal substrate” as used herein refers to any commercial metal substrate that can be heated and then quenched. In one embodiment, the metal substrate contains only one metal. In another embodiment, the metal substrate contains more than one metal, i.e., a metal alloy. For example, the metal substrate may contain one or more of iron, manganese, copper, silicon, sulfur, phosphorus, aluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, among others. Specific examples of metals that can be treated with the compositions described herein include those described in “The Heat Treater's Guide”, American Society for Metals, 1982, which is hereby incorporated by reference.
- The term “alkyl” is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups. In one embodiment, an alkyl group has 1 to about 10 carbon atoms (i.e., C1, C2, C3, C4, C5 C6, C7, C8, C9, or C10). In another embodiment, an alkyl group has 4 to about 10 carbon atoms (i.e., C4, C5, C6, C7, C8, C9, or C10). In a further embodiment, an alkyl group has 5 to about 10 carbon atoms (i.e., C5, C6, C7, C8, C9, or C10).
- The term “cycloalkyl” is used herein to refer to cyclic, saturated aliphatic hydrocarbon groups. In one embodiment, a cycloalkyl group has 4 to about 10 carbon atoms (i.e., C4, C5, C6, C7, C8, C9, or C10). In another embodiment, a cycloalkyl group has 5 to about 10 carbon atoms (i.e., C5, C6, C7, C8, C9, or C10).
- The term “alkenyl” is used herein to refer to both straight- and branched-chain alkyl groups having one or more carbon-carbon double bonds. In one embodiment, an alkenyl group has 2 to about 10 carbon atoms (i.e., C2, C3, C4, C5 C6, C7, C8, C9, or C10) In another embodiment, an alkenyl group has 4 to about 10 carbon atoms (i.e., C4, C5, C6, C7, C8, C9, or C10). In a further embodiment, an alkenyl group has 5 to about 10 carbon atoms (i.e., C5, C6, C7, C8, C9, or C10). In another embodiment, an alkenyl group has 1 or 2 carbon-carbon double bonds.
- The term “cycloalkenyl” is used herein to refer to cyclic, aliphatic hydrocarbon groups containing one or more carbon-carbon double bond. In one embodiment, a cycloalkenyl group has 4 to about 10 carbon atoms (i.e., C4, C5, C6, C7, C8, C9, or C10). In another embodiment, a cycloalkenyl group has 5 to about 10 carbon atoms (i.e., C5, C6, C7, C8, C9, or C10).
- The term “alkynyl” is used herein to refer to both straight- and branched-chain alkyl groups having one or more carbon-carbon triple bonds. In one embodiment, an alkynyl group has 2 to about 10 carbon atoms (i.e., C2, C3, C4, C5 C6, C7, C8, C9, or C10). In another embodiment, an alkynyl group has 4 to about 10 carbon atoms (i.e., C4, C5, C6, C7, C8, C9, or C10). In a further embodiment, an alkynyl group has 5 to about 10 carbon atoms (i.e., C5, C6, C7, C8, C9, or C10). In another embodiment, an alkynyl group contains 1 or 2 carbon-carbon triple bonds.
- The term “cycloalkynyl” is used herein to refer to cyclic, aliphatic hydrocarbon groups containing one or more carbon-carbon triple bond. In one embodiment, a cycloalkynyl group has 8 to about 14 carbon atoms (i.e., C8, C9, C10, C11, C12, C13, or C14). In another embodiment, a cycloalkynyl group has 8 to about 10 carbon atoms (i.e., C8, C9, or C10).
- The terms “substituted alkyl”, “substituted alkenyl”, “substituted alkynyl”, “substituted cycloalkyl”, “substituted cycloalkenyl”, and “substituted cycloalkynyl” refer to alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl groups, respectively, having one or more substituents including, without limitation, hydrogen, halogen, CN, OH, NO2, amino, aryl, heterocyclic, heteroaryl, alkoxy, aryloxy, alkylcarbonyl, alkylcarboxy, amino, and arylthio.
- The term “alkylcarbonyl” as used herein refers to the C(O)(alkyl) group, where the point of attachment is through the carbon-atom of the carbonyl moiety and the alkyl group can be substituted as noted above.
- The term “alkylcarboxy” as used herein refers to the C(O)O(alkyl) group, where the point of attachment is through the carbon-atom of the carboxy moiety and the alkyl group can be substituted as noted above.
- The term “alkylamino” and “aminoalkyl” as used herein are interchangeable and refer to both secondary and tertiary amines where the point of attachment is through the nitrogen-atom and the alkyl groups can be substituted as noted above. The alkyl groups can be the same or different.
- The term “halogen” as used herein refers to Cl, Br, F, or I groups.
- The term “aryl” as used herein refers to an aromatic, carbocyclic system, e.g., of about 6 to 14 carbon atoms, which can include a single ring or multiple aromatic rings fused or linked together where at least one part of the fused or linked rings forms the conjugated aromatic system. The aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, phenanthryl, indene, benzonaphthyl, and fluorenyl.
- The term “substituted aryl” refers to an aryl group which is substituted with one or more substituents including halogen, CN, OH, NO2, amino, alkyl, cycloalkyl, alkenyl, alkynyl, C1 to C3 perfluoroalkyl, C1 to C3 perfluoroalkoxy, aryloxy, alkoxy including —O— (C1 to C10 alkyl) or —O—(C1 to C10 substituted alkyl), alkylcarbonyl including —CO—(C1 to C10 alkyl) or —CO—(C1 to C10 substituted alkyl), alkylcarboxy including —COO—(C1 to C10 alkyl) or —COO—(C1 to C10 substituted alkyl), —C(NH2)═N—OH, —SO2—(C1 to C10 alkyl), —SO2—(C1 to C10 substituted alkyl), —O—CH2-aryl, alkylamino, arylthio, aryl, or heteroaryl, which groups can be substituted. Desirably, a substituted aryl group is substituted with 1 to about 4 substituents.
- The term “heterocycle” or “heterocyclic” as used herein can be used interchangeably to refer to a stable, saturated or partially unsaturated 3- to 9-membered monocyclic or multicyclic heterocyclic ring. The heterocyclic ring has in its backbone carbon atoms and one or more heteroatoms including nitrogen, oxygen, and sulfur atoms. In one embodiment, the heterocyclic ring has 1 to about 4 heteroatoms in the backbone of the ring. When the heterocyclic ring contains nitrogen or sulfur atoms in the backbone of the ring, the nitrogen or sulfur atoms can be oxidized. The term “heterocycle” or “heterocyclic” also refers to multicyclic rings in which a heterocyclic ring is fused to an aryl ring of about 6 to about 14 carbon atoms. The heterocyclic ring can be attached to the aryl ring through a heteroatom or carbon atom provided the resultant heterocyclic ring structure is chemically stable. In one embodiment, the heterocyclic ring includes multicyclic systems having 1 to 5 rings.
- A variety of heterocyclic groups are known in the art and include, without limitation, oxygen-containing rings, nitrogen-containing rings, sulfur-containing rings, mixed heteroatom-containing rings, fused heteroatom containing rings, and combinations thereof. Examples of heterocyclic groups include, without limitation, tetrahydrofuranyl, piperidinyl, 2-oxopiperidinyl, pyrrolidinyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, pyranyl, pyronyl, dioxinyl, piperazinyl, dithiolyl, oxathiolyl, dioxazolyl, oxathiazolyl, oxazinyl, oxathiazinyl, benzopyranyl, benzoxazinyl and xanthenyl.
- The term “heteroaryl” as used herein refers to a stable, aromatic 5- to 14-membered monocyclic or multicyclic heteroatom-containing ring. The heteroaryl ring has in its backbone carbon atoms and one or more heteroatoms including nitrogen, oxygen, and sulfur atoms. In one embodiment, the heteroaryl ring contains 1 to about 4 heteroatoms in the backbone of the ring. When the heteroaryl ring contains nitrogen or sulfur atoms in the backbone of the ring, the nitrogen or sulfur atoms can be oxidized. The term “heteroaryl” also refers to multicyclic rings in which a heteroaryl ring is fused to an aryl ring. The heteroaryl ring can be attached to the aryl ring through a heteroatom or carbon atom provided the resultant heterocyclic ring structure is chemically stable. In one embodiment, the heteroaryl ring includes multicyclic systems having 1 to 5 rings.
- A variety of heteroaryl groups are known in the art and include, without limitation, oxygen-containing rings, nitrogen-containing rings, sulfur-containing rings, mixed heteroatom-containing rings, fused heteroatom containing rings, and combinations thereof. Examples of heteroaryl groups include, without limitation, furyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, azepinyl, thienyl, dithiolyl, oxathiolyl, oxazolyl, thiazolyl, oxadiazolyl, oxatriazolyl, oxepinyl, thiepinyl, diazepinyl, benzofuranyl, thionapthene, indolyl, benzazolyl, purindinyl, pyranopyrrolyl, isoindazolyl, indoxazinyl, benzoxazolyl, quinolinyl, isoquinolinyl, benzodiazonyl, napthylridinyl, benzothienyl, pyridopyridinyl, acridinyl, carbazolyl, and purinyl rings.
- The term “substituted heterocycle” and “substituted heteroaryl” as used herein refers to a heterocycle or heteroaryl group having one or more substituents including halogen, CN, OH, NO2, amino, alkyl, cycloalkyl, alkenyl, alkynyl, C1 to C3 perfluoroalkyl, C1 to C3 perfluoroalkoxy, aryloxy, alkoxy including —O—(C1 to C10 alkyl) or —O—(C1 to C10 substituted alkyl), alkylcarbonyl including —CO—(C1 to C10 alkyl) or —CO—(C1 to C10 substituted alkyl), alkylcarboxy including —COO—(C1 to C10 alkyl) or —COO—(C1 to C10 substituted alkyl), —C(NH2)═N—OH, —SO2—(C1 to C10 alkyl), —SO2—(C1 to C10 substituted alkyl), —O—CH2-aryl, alkylamino, arylthio, aryl, or heteroaryl, which groups may be optionally substituted. A substituted heterocycle or heteroaryl group may have 1, 2, 3, or 4 substituents.
- The term “thioaryl” as used herein refers to the S(aryl) group, where the point of attachment is through the sulfur-atom and the aryl group can be substituted as noted above. The term “alkoxy” as used herein refers to the O(alkyl) group, where the point of attachment is through the oxygen-atom and the alkyl group can be substituted as noted above. The term “oxyaryl” as used herein refers to the O(aryl) group, where the point of attachment is through the oxygen-atom and the aryl group can be substituted as noted above. The term “thioalkyl” as used herein refers to the S(alkyl) group, where the point of attachment is through the sulfur-atom and the alkyl group can be substituted as noted above.
- The aqueous quenching medium described herein contains at least two components, i. e., component (i) and component (ii). The inventors found that the aqueous quenching medium is effective in quenching metal substrates, without any significant increase in cooling rate, when the amount of component (ii) is greater than the amount of component (i). Desirably, the two components are present in the quenching medium in an amount that is effective to reduce the cooling rate of the quenching medium when applied to a metal substrate, i.e., the aqueous quenching medium contains an effective cooling rate reducing amount of (i) and (ii). In one example, the ratio of component (i) to component (ii) is about 90:10 to about 10:90. In a further example, the ratio of component (i) to component (ii) is about 80:20 to about 20:80. In another example, the ratio of component (i) to component (ii) is about 75:25 to about 25:75. In another example, the ratio of component (i) to component (ii) is about 60:40 to about 40:60. In a farther example, the ratio of component (i) to component (ii) is about 75:25.
- The first component, i.e., component (i), of the aqueous quenching medium described herein is a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone (PVP)/polyvinylcaprolactam (PVC) copolymer. The term “water-dispersible” as used herein refers to a compound that does not dissolve in water, but combines with water without clumping in the water. The term “water-soluble” as used herein refers to a compound that substantially dissolves in water. Desirably, the term “water-soluble” refers to a compound has 100% dissolution in water.
- In one embodiment, the PVP/PVC copolymer is of formula I:
- wherein, R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the PVP/PVC copolymer and n and m are, independently, integers. Desirably, n is about 45 to about 18,000, and fractional integers therebetween. In one embodiment, n is 45, 50, 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, 6,500, 7,000, 7,500, 8,000, 8,500, 9,000, 9,500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, or 18,000. In another embodiment, n is about 1,000 to about 17,000. In a further embodiment, n is about 3,000 to about 15,000. In yet another embodiment, n is about 5,000 to about 13,000. In still a further embodiment, n is about 7,000 to about 11,000. In another embodiment, n is about 9,000 to about 10,000. Desirably, m is about 36 to about 14,500. In one embodiment, m is 36, 50, 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, 6,500, 7,000, 7,500, 8,000, 8,500, 9,000, 9,500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, or 14,500. In another embodiment, m is about 1,000 to about 13,000. In a further embodiment, m is about 3,000 to about 11,000. In yet another embodiment, m is about 5,000 to about 9,000. In still a further embodiment, m is about 7,000 to about 8,000.
- The term “organic radical” as used herein refers to an organic moiety that contains at least carbon and hydrogen atoms. The R group in each unit may be the same or may be different. In one example, R is alkyl, alkenyl, or alkynyl, optionally containing one or more heteroatoms in the backbone of the alkyl, alkenyl, or alkynyl group. In another example, R is OH, NH2, SH, C4 to C10 alkyl, substituted C4 to C10 alkyl, C4 to C10 cycloalkyl, substituted C4 to C10 cycloalkyl, C4 to C10 cycloalkenyl, substituted C4 to C10 cycloalkenyl, C4 to C10 cycloalkynyl, substituted C4 to C10 cycloalkynyl, C4 to C10 alkoxy, substituted C4 to C10 alkoxy, C4 to C10 aminoalkyl, substituted C4 to C10 aminoalkyl, C4 to C10 thioalkyl, C4 to C10 substituted thioalkyl, thioaryl, substituted thioaryl, oxyaryl, oxy(substituted aryl), alkylcarbonyl, substituted alkylcarbonyl, alkylcarboxy, or substituted alkylcarboxy.
- The PVP/PVC copolymer has a molecular weight of about 5,000 to about 2,000,000. Desirably, the molecular weight of the PVP/PVC copolymer is about 50,000 to about 1,000,000. In another example, the molecular weight of the PVP/PVC copolymer is about 50,000 to about 390,000. In a further example, the molecular weight of the PVP/PVC copolymer is about 100,000 to about 200,000. In still another example, the molecular weight of the PVP/PVC copolymer is about 400,000. The PVP/PVC copolymer is also characterized by a K-value of at least about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 to about 70. The term “K-value” as used herein is commonly utilized in the art and refers to a function of molecular weight as described in “Performance & Industrial Chemicals Reference Guide”, International Specialty Products, page 20, 2005, which is hereby incorporated by reference. In one example, the K-value of the PVP/PVC copolymer is about 65.
- The PVP/PVC copolymer can have varying ratios of n and m. In one example, the copolymer contains about 50 to about 75% of n and about 25 to about 50% of m, provided that the combination of n and m is 100%. In a further example, the PVP/PVC copolymer contains about 75% of n and about 25% of m. In another example, the PVP/PVC copolymer contains about 66.6% of n and about 33.3% of m. In yet a further example, the PVP/PVC copolymer contains about 50% of n and about 50% of m.
- The second component of the aqueous quenching medium is a non-ionic, water-soluble or water-dispersible polymer. Desirably, the second component is a substituted oxazoline polymer, a poly(oxyethyleneoxyalkylene) glycol polymer, or a polyvinylpyrrolidone polymer.
- In one embodiment, the second component of the aqueous quenching medium is a substituted oxazoline polymer of formula II:
- wherein, R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer and p is an integer. In one example, p is an integer of from 25 to 12,000. In still other embodiments, p is at least 50; 100; 250; 400; 600; 850; 1000; 2000; 3000; 4000; 5000; 6000; 7000; 8000; 9000; 10,000; 11,000; 11,900 or an integer therebetween. R1 in each unit may be the same or different. In one example, R1 is aryl, aryl substituted with halogen, C1 to C7 alkyl, or C1 to C7 alkyl substituted with halogen. In a further example, R1 is phenyl or phenyl substituted with halogen. In another example, R1 is C1 to C6 alkyl in at least about 50% of the units.
- The molecular weight of the oxazoline polymer typically is about 5,000 to about 1,000,000. In another example, the molecular weight of the oxazoline polymer at least about 25,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween. In a further example, the molecular weight of the oxazoline polymer is about 200,000 to about 500,000.
- In another embodiment, the second component is a polyoxyethylene/polyoxyalkylene polymer of formula III:
- wherein, R2 is an a chemical moiety that maintains the water solubility of the polyoxyethylene/polyoxyalkylene polymer and x and y are integers, provided that the polyoxyethylene/polyoxyalkylene polymer is water-soluble and the polyoxyethylene/polyoxyalkylene polymer has a molecular weight of at least about 1,000; 25,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween. Desirably, R2 maintains the water solubility of the polyoxyethylene/polyoxyalkylene polymer at about 70 to about 180° F., including temperatures of at least 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, or 180, and values therebetween. In one example, R2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl. In another example, R2 is methyl or ethyl.
- The units, i.e., x and y, of the polyoxyethylene/polyoxyalkylene polymer may be the same or may differ and may have varying amounts therein. For example x may be larger than y or y may be larger than x. Desirably, x is about 10 to about 5,000. In one embodiment, x is about 10, 50, 100, 200, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, or 5,000, or values therebetween. In another embodiment, x is about 100 to about 4,000. In a further embodiment, x is about 500 to about 3,500. In yet another embodiment, x is about 500 to about 3,500. In still a further embodiment, x is about 750 to about 3,000. In another embodiment, x is about 1,000 to about 2,500. Desirably, y is about 10 to about 5,000. In one embodiment, y is about 10, 50, 100, 200, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, or 5,000, or values therebetween. In another embodiment, y is about 100 to about 4,000. In a further embodiment, y is about 500 to about 3,500. In yet another embodiment, y is about 500 to about 3,500. In still a further embodiment, y is about 750 to about 3,000. In another embodiment, y is about 1,000 to about 2,500.
- In one example, the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is at least about 1,000; 12,000; 15,000; 25,000; 30,000; 50,000; 75,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000; 400,000; 450,000; to about 500,000, or any amount therebetween. In another example, the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is about 5,000 to about 100,000. In a further example, the molecular weight of the polyoxyethylene/polyoxyalkylene polymer is about 300,000.
- In a further embodiment, the second component is a vinylpyrrolidone polymer of formula IV:
- wherein, z is an integer. Desirably, z is about 40 to about 32,000. In one embodiment, z is about 100, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000,20,000,21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, or 32,000, or values therebetween. In another embodiment, z is about 1,000 to about 30,000. In a further embodiment, z is about 3,000 to about 28,000. In still another embodiment, z is about 5,000 to about 26,000. In yet a further embodiment, z is about 7,000 to about 24,000. In a further embodiment, z is about 9,000 to about 22,000. In still a further embodiment, z is about 11,000 to about 20,000. In yet another embodiment, z is about 13,000 to about 18,000. In a further embodiment, z is about 15,000 to about 16,000.
- Desirably, the vinylpyrrolidone polymer has a molecular weight of at least about 5,000; 50,000; 100,000; 250,000; 500,000; 750,000; 1,000,000; 1,500,000; 2,000,000; 2,500,000; 3,000,000 to about 3,500,000, including numbers therebetween. In one example, the vinylpyrrolidone polymer has a molecular weight of least about 5,000; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 70,000; 80,000; 90,000 to about 1,000,000 or values therebetween. In another example, the vinylpyrrolidone polymer has a molecular weight of about 50,000 to about 360,000. In a further example, the vinylpyrrolidone polymer has a molecular weight of about 400,000 to 500,000. In yet another example, the vinylpyrrolidone polymer has a molecular weight of about 100,000 to about 200,000.
- It is also desirable that the vinylpyrrolidone polymer have a K-value of about 26 to 130. In one example, the K-value is about 90. In still other embodiments, the K-value is at least 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, or integers therebetween.
- The aqueous quenching medium may also contain one or more additional components, as identified below. The additional components typically are present in the medium at an excess over components (i) and (ii) described above. In one example, the additional components are present in the medium at a concentration of about 95 to about 99.95% and components (i) and (ii) described above are present in the medium at a concentration of about 0.05% to about 5% by weight. In another example, the additional components are present in the medium at a concentration of about 98.5% to about 99.95% by weight and components (i) and (ii) described above are present in the medium at a concentration of about 0.05% to about 1.5%.
- In one embodiment, the additional components present in the aqueous quenching medium may include a carrier. In one example, the carrier is water. The carrier may be included in the quenching medium, thereby permitting use of the product by the customer without addition of further carrier. Alternatively, the carrier is present in the quenching medium in sufficient amounts to provide a stable solution for further dilution by the customer prior to use. The carrier may also be added by the customer to a concentrated quenching medium composition prior to use. However, more water made be added to the composition to ensure that the final quenching medium contains sufficient water for use by the customer.
- The aqueous quenching medium may also contain one or more of a bacteriocidal agent or biocide, preservative, corrosion inhibitor such as sodium nitrite, ethanol amine or amine soaps, buffer, metal deactivator, dye, fragrance, caustic agent, wetting agent, sequestering agent, fungicide, and defoamer, among others. Desirably, the additional components include corrosion inhibitors and defoamers. These components may be present in the composition at about 0.05% to about 10% by weight. In one example, these components are present in the composition at about 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10% by weight, or fractional percentages therebetween.
- In one example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000, component (ii) is an oxazoline polymer having a molecular weight of about 50,000 to about 500,000, and the concentration of components (i) and (ii) is about 0.05% to about 5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In another example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000, component (ii) is an oxazoline polymer having a molecular weight of about 200,000 to about 500,000, and the concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In a further example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000, component (i) is a polyoxyethylene/polyoxyalkylene polymer having a molecular weight of about 1,000 to about 500,000, and the concentration of components (i) and (ii) is about 0.05% to 5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In still another example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000, component (ii) is polyoxyethylene/polyoxyalkylene polymer having a molecular weight of about 5,000 to about 100,000, and concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In yet a further example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 50,000 to about 1,000,000, component (ii) is a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, and the concentration of components (i) and (ii) is about 0.05% to 5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In another example, component (i) of the aqueous quenching medium is a PVP/PVC copolymer having a molecular weight of about 100,000 to about 200,000, component (ii) is a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, and the concentration of components (i) and (ii) is about 0.05% to about 1.5% by weight. The aqueous quenching medium may also contain about 0.05% to about 10% by weight of additives, including, without limitation, corrosion inhibitors and defoamers.
- In one preferred embodiment, an aqueous quenching medium for heat-treating metal substrates is provided and contains a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I, wherein, R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the vinylpyrrolidone/ vinylcaprolactam polymer; n and m are independently integers, provided that the substituted vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70. The substituted vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, the substituted vinylpyrrolidone/vinylcaprolactam copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and the sum of said vinylpyrrolidone and vinylcaprolactam components is 100 mol %. The aqueous quenching medium also contains one of more polymers selected from among (a), (b), or (c). Polymer (a) is a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula II, wherein, R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer; p is an integer, provided that the molecular weight of the oxazoline polymer is about 50,000 to about 1,000,000. Polymer (b) is a polyoxyethylene/polyoxyalkylene polymer having formula III, wherein, R2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl; x and y are integers, provided that the polyoxyethylene/polyalkylene polymer is water-soluble and the has a molecular weight of about 1,000 to about 500,000. Polymer (c) is a vinylpyrrolidone polymer having formula IV, wherein, z is an integer, provided that the vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 3,500,000 and a K-value of about 26 to 130.
- The invention also provides a concentrate which contains the first and second components described above. This concentrate may be utilized by those skilled in the art for preparing an aqueous quenching medium useful in the heat treatment of metal substrates. In one example, the concentrate contains water and at least about 5% by weight of components (i) and (ii) described above. In another example, the concentrate contain water and about 5% to 70% by weight of components (i) and (ii). In a further example, the concentrate contains about 5% to about 20% of components (i) and (ii) described above.
- In one embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and an oxazoline polymer having a molecular weight of about 50,000 to about 500,000 wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the oxazoline polymer in the concentrate is about 5% to 70%.
- In another embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and an oxazoline polymer having a molecular weight of about 200,000 to about 500,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the oxazoline polymer in the concentrate is about 5% to about 20%.
- In a further embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and a polyoxyethylene/polyoxyalkylene copolymer having a molecular weight of about 1,000 to about 500,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the polyoxyethylene/polyoxyalkylene copolymer in the concentrate is about 5% to 70%.
- In yet another embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and a polyoxyethylene/polyoxyalkylene copolymer having a molecular weight of about 5,000 to about 100,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the polyoxyethylene/polyoxyalkylene copolymer in the concentrate is about 5% to about 20%.
- In a further embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 50,000 to about 1,000,000 and a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the vinylpyrrolidone polymer in the concentrate is about 5% to 70%.
- In still a further embodiment, a concentrate is provided and contains a vinylpyrrolidone/vinylcaprolactam copolymer having a molecular weight of about 100,000 to about 200,000 and a vinylpyrrolidone polymer having a molecular weight of about 5,000 to about 1,000,000, wherein the concentration of the vinylpyrrolidone/vinylcaprolactam copolymer and the vinylpyrrolidone polymer is about 5% to about 20%.
- In one example, a concentrate is provided and contains at least about 5% by weight of a mixture of (i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I, wherein, R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of the vinylpyrrolidone/vinylcaprolactam polymer, n and m are independently integers, provided that the vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70; and wherein the vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, the vinylpyrrolidone/vinylcaprolactam copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and the sum of the vinylpyrrolidone and vinylcaprolactam components is 100 mol %. The concentrate also contains one of more polymers selected from among (a), (b), or (c). Polymer (a) is a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula II, wherein, R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of the substituted oxazoline polymer, p is an integer, provided that the molecular weight of the oxazoline polymer is about 50,000 to about 1,000,000. Polymer (b) is a polyoxyethylene/polyoxyalkylene polymer having formula III, wherein, R2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl, x and y are integers, provided that the polyoxyethylene/polyoxyalkylene polymer is water-soluble and the polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000. Polymer (c) is a vinylpyrrolidone polymer having formula IV, wherein, z is an integer, provided that the vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 3,500,000 and a K-value of about 26 to 130.
- The following examples are illustrative only and are not intended to be a limitation on the present invention.
- Fifteen aqueous quenching media were prepared:
-
- (a) Quenching media 1-5 contained aqueous solutions of polyvinylpyrrolidone/polyvinylcaprolactam copolymer of Formula I above and/or a substituted oxazoline polymer of Formula II above;
- (b) Quenching media 6-10 contained aqueous solutions of polyvinylpyrrolidone/polyvinylcaprolactam copolymer of Formula I above and/or a poly(oxyethylene-oxyalkylene) glycol of Formula III above; and
- (c) Quenching media 11-15 contained aqueous solutions of polyvinylpyrrolidone/polyvinylcaprolactam copolymer of Formula I and/or a polyvinylpyrrolidone polymer of Formula IV above. The sample concentrations are set forth in Table I.
- In order to determine cooling times, the IVF Quenchotest (The Swedish Institute of Production Engineering Research) was utilized and included the IVF data acquisition/recording unit, test probe, probe handle and furnace. The test probe (600 mm in length and 12.5 mm diameter of the Inconel® 600 probe enclosing a type K thermocouple —NiCr/NiAl— with a diameter of 1.5 mm) complied with the specification for testing quenchants as established by the International Federation for the Heat Treatment of Materials (IFHT). The furnace thermostat controlled the power supplied to the furnace through diode rectification and was operated without a controlled atmosphere. The furnace temperature was adjusted to about 1625° F. (885° C.).
- In each run, the metal substrate was heated to a temperature of about 1571° F. (855° C.) to about 1600° F. (870° C.) and then immersed in 1.0 kilograms of one of the fifteen (15) aqueous quenching media described above which were maintained at a temperature of about 100° F. (40° C.). Data acquisition began when the test probe temperature of the aqueous quenching medium reached about 1562° F. (849° C.) and was acquired for about 60 seconds, i.e., until the temperature reached about 300° F.
- After data collection, cooling curves were obtained using the data collected using the various polymer mixtures. Cooling times were determined from the cooling curves during which the test specimens were cooled from 1562° F. (849° C.) to less than 203° F. (95° C.).
- The data obtained is set forth in Table 1 below.
-
TABLE 1 Concentration Concentration of Compound Cooling Time (sec) Cooling Time (sec) Run (weight %) I II III IV 1562-300° F. 1562-500° F. 1 0.80 100 14 8 2 1.00 100 12 8.5 3 0.85 75 25 12 8.5 4 0.90 50 50 14 9 5 0.95 25 75 14 10 6 0.80 100 14 8 7 4.00 100 15 8 8 1.60 75 25 24 10 9 2.40 50 50 27 14 10 3.20 25 75 24 10 11 0.80 100 14 8 12 1.00 100 25 12 13 0.85 75 25 25 13 14 0.90 50 50 32 17 15 0.95 25 75 35 20 - The data illustrate that varying the quenching medium significantly increased cooling time when compared to each component in the quench medium. The data also illustrate that the reduced concentration of the combined polymers in the quenching medium did not significantly affect the cooling time of the metal substrate as compared to the individual polymers.
- All publications cited in this specification are incorporated herein by reference. While the invention has been described with reference to particular embodiments, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.
Claims (24)
1. A process for quenching heated metal substrate, comprising quenching said heated metal substrate with an aqueous quenching medium comprising:
(i) a non-ionic, water-soluble or water-dispersible polyvinylpyrrolidone/polyvinylcaprolactam copolymer; and
(ii) a non-ionic, water-soluble or water-dispersible polymer comprising one or more of a polymer comprising:
(a) a substituted oxazoline polymer;
(b) a poly(oxyethyleneoxyalkylene) glycol polymer; or
(c) a polyvinylpyrrolidone polymer.
2. The process according to claim 1 , wherein component (i) is of formula I:
wherein:
R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of said vinylpyrrolidone/vinylcaprolactam polymer;
n and m are, independently, integers, provided that said polymer of component (i) has a molecular weight of about 5,000 to about 2,000,000 and a K-value of about 60 to about 70.
3. The process according to claim 2 , wherein R is an alkyl, alkenyl, or alkynyl comprising one or more heteroatoms in the backbone of said alkyl, alkenyl, alkynyl.
4. The process according to claim 2 , wherein said copolymer (i) contains about 75% of n and about 25% of m.
5. The process according to claim 1 , wherein said polyvinylpyrrolidone/polyvinylcaprolactam copolymer (i) has a molecular weight of about 50,000 to about 1,000,000.
6. The process according to claim 1 , wherein component (ii) is said substituted oxazoline polymer (a) and is of formula II:
wherein:
R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of said substituted oxazoline polymer (a); and
p is an integer, provided that the molecular weight of said oxazoline polymer (a) is about 5,000 to about 1,000,000.
7. The process according to claim 6 , wherein R1 is aryl, aryl substituted with halogen, C1 to C7 alkyl, or C1 to C7 alkyl substituted with halogen.
8. The process according to claim 6 , wherein said oxazoline polymer (a) has a molecular weight of about 50,000 to about 500,000.
9. The process according to claim 1 , wherein component (ii) is said polyoxyethylene/polyoxyalkylene polymer (b) and is of formula III:
wherein:
R2 is an a chemical moiety that maintains the water solubility of said polymer (b);
x and y are integers, provided that said polymer (b) is water-soluble and said polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000.
10. The process according to claim 9 , wherein R2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl.
12. The process according to claim 11 , wherein said vinylpyrrolidone polymer (c) has a molecular weight of about 5,000 to about 1,000,000.
13. The process according to claim 1 , wherein the total concentration of components (i) and (ii) in said aqueous quenching medium is about 0.05% to about 5% by weight.
14. The process according to claim 1 , wherein said process further comprises one or more of a bacteriocidal agent, preservative, corrosion inhibitor, buffer, metal deactivator, and defoamer.
15. The process according to claim 1 , wherein the ratio of component (i) to component (ii) is about 90:10 to about 10:90.
16. An aqueous quenching medium for heat-treating metal substrates, comprising:
(i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I:
wherein:
R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of said vinylpyrrolidone/vinylcaprolactam polymer;
n and m are independently integers, provided that said polymer of component (i) has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70; and
wherein said vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, said copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and the sum of said vinylpyrrolidone and vinylcaprolactam components is 100 mol %; and
(ii) one of more polymers selected from the group consisting of:
(a) a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula I:
wherein:
R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of said substituted oxazoline polymer;
p is an integer, provided that the molecular weight of said oxazoline polymer is about 50,000 to about 1,000,000;
(b) a polyoxyethylene/polyoxyalkylene polymer having formula III:
wherein:
R2 is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl;
x and y are integers, provided that said polymer (b) is water-soluble and said polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000; and
(c) a vinylpyrrolidone polymer having formula IV:
17. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to 5%, by weight; said vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of about 50,000 to about 1,000,000; and said oxazoline has a molecular weight of about 50,000 to about 500,000.
18. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to about 1.5%; said vinylpyrrolidone/vinylcaprolactam polymer has a molecular weight of about 100,000 to about 200,000; and said oxazoline polymer has a molecular weight of about 200,000 to about 500,000.
19. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to about 5%, by weight, based on the total weight of the quenching medium; said (a) vinylpyrrolidone/vinylcaprolactam copolymer has a molecular weight of about 50,000 to about 1,000,000; and said polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000.
20. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to about 1.5%; said vinylpyrrolidone/vinylcaprolactam copolymer has a molecular weight of about 100,000 to about 200,000; and said polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 5,000 to about 100,000.
21. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to about 5%, by weight, based on the total weight of the quenching medium; said vinylpyrrolidone/vinylcaprolactam copolymer has a molecular weight of about 50,000 to about 1,000,000; and said vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 1,000,000.
22. The quenching medium according to claim 16 , wherein the total concentration of components (i) and (ii) in said quenching medium is about 0.05% to about 1.5%; said vinylpyrrolidone/vinylcaprolactam copolymer has a molecular weight of about 100,000 to about 200,000; and said vinylpyrrolidone polymer has a molecular weight of about 5,000 to about 1,000,000.
23. A concentrate for preparing an aqueous quenching medium useful in the heat treatment of metal substrates comprising at least about 5% by weight, of a mixture of:
(i) a nonionic, water-soluble or water-dispersible substituted vinylpyrrolidone/vinylcaprolactam polymer of formula I:
wherein:
R is an organic radical which does not significantly alter the nonionic, water-solubility, and water-dispersibility characteristic of said vinylpyrrolidone/vinylcaprolactam polymer;
n and m are independently integers, provided that said polymer of component (i) has a molecular weight of from about 5,000 to about 1,000,000 and a K-value of about 60 to about 70; and
wherein said vinylpyrrolidone/vinylcaprolactam copolymer has a vinylpyrrolidone component of about 10 to about 90 mol %, said copolymer has a vinylcaprolactam component of about 90 to about 10 mol %, and the sum of said vinylpyrrolidone and vinylcaprolactam components is 100 mol %; and
(ii) one of more polymers selected from the group consisting of:
(a) a nonionic, water soluble or water dispersible substituted oxazoline polymer having formula II:
wherein:
R1 is an organic radical which does not significantly alter the nonionic and water soluble or water dispersible characteristics of said substituted oxazoline polymer;
p is an integer, provided that the molecular weight of said oxazoline polymer is about 50,000 to about 1,000,000;
(b) a polyoxyethylene/polyoxyalkylene polymer having formula III:
wherein:
R2 is an alkyl substituted alkyl alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl;
x and y are integers, provided that said polymer (b) is water-soluble and said polyoxyethylene/polyoxyalkylene polymer has a molecular weight of about 1,000 to about 500,000; and
(c) a vinylpyrrolidone polymer having formula IV:
24. The concentrate according to claim 23 , wherein the concentration of components (i) and (ii) is about 5% to 70%; said vinylpyrrolidone/vinylcaprolactam copolymer has a molecular weight of about 50,000 to about 1,000,000; and said oxazoline has a molecular weight of about 50,000 to about 500,000.
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/870,457 US20090095384A1 (en) | 2007-10-11 | 2007-10-11 | Aqueous quenching media and use thereof in quenching metal substrates |
| HUE08746187A HUE041394T2 (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching media and use therof in quenching metal substrates |
| DE08746187T DE08746187T1 (en) | 2007-10-11 | 2008-04-18 | AQUEOUS DETERGENTS AND THEIR USE IN SCRATCHING METAL SUBSTRATES |
| CN201310573198.8A CN103643002B (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching medium and the application in metal base is quenched thereof |
| ES08746187T ES2348117T3 (en) | 2007-10-11 | 2008-04-18 | Aqueous tempering medium and use thereof in the tempering of metal substrates |
| EP08746187.7A EP2215177B1 (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching media and use therof in quenching metal substrates |
| CN2008801176653A CN101868512B (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching medium and its use in quenching metal substrates |
| PCT/US2008/060717 WO2009048648A1 (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching media and use therof in quenching metal substrates |
| PL08746187T PL2215177T3 (en) | 2007-10-11 | 2008-04-18 | Aqueous quenching media and use therof in quenching metal substrates |
| US12/981,589 US8764914B2 (en) | 2007-10-11 | 2010-12-30 | Aqueous quenching media and use thereof in quenching metal substrates |
| US14/276,214 US9803255B2 (en) | 2007-10-11 | 2014-05-13 | Aqueous quenching media and use thereof in quenching metal substrates |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/870,457 US20090095384A1 (en) | 2007-10-11 | 2007-10-11 | Aqueous quenching media and use thereof in quenching metal substrates |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/981,589 Continuation US8764914B2 (en) | 2007-10-11 | 2010-12-30 | Aqueous quenching media and use thereof in quenching metal substrates |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090095384A1 true US20090095384A1 (en) | 2009-04-16 |
Family
ID=40533024
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/870,457 Abandoned US20090095384A1 (en) | 2007-10-11 | 2007-10-11 | Aqueous quenching media and use thereof in quenching metal substrates |
| US12/981,589 Active US8764914B2 (en) | 2007-10-11 | 2010-12-30 | Aqueous quenching media and use thereof in quenching metal substrates |
| US14/276,214 Active 2029-01-19 US9803255B2 (en) | 2007-10-11 | 2014-05-13 | Aqueous quenching media and use thereof in quenching metal substrates |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/981,589 Active US8764914B2 (en) | 2007-10-11 | 2010-12-30 | Aqueous quenching media and use thereof in quenching metal substrates |
| US14/276,214 Active 2029-01-19 US9803255B2 (en) | 2007-10-11 | 2014-05-13 | Aqueous quenching media and use thereof in quenching metal substrates |
Country Status (8)
| Country | Link |
|---|---|
| US (3) | US20090095384A1 (en) |
| EP (1) | EP2215177B1 (en) |
| CN (2) | CN103643002B (en) |
| DE (1) | DE08746187T1 (en) |
| ES (1) | ES2348117T3 (en) |
| HU (1) | HUE041394T2 (en) |
| PL (1) | PL2215177T3 (en) |
| WO (1) | WO2009048648A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120118446A1 (en) * | 2010-11-17 | 2012-05-17 | Basf Se | Aqueous metal quenching medium |
| WO2012065928A1 (en) | 2010-11-17 | 2012-05-24 | Basf Se | Aqueous metal quenching medium |
| WO2013060679A1 (en) | 2011-10-27 | 2013-05-02 | Basf Se | Use of a composition containing vinyl-lactam-containing polymer, solvent and at least one halogen-free biocide as a metal-quenching medium |
| US10526447B2 (en) | 2015-04-15 | 2020-01-07 | Houghton Technical Corp. | Materials that provide bioresistance and/or defoaming and slower cooling properties for aqueous quenchants |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8535791B2 (en) * | 2006-06-30 | 2013-09-17 | The University Of Akron | Aligned carbon nanotube-polymer materials, systems and methods |
| US9969625B2 (en) | 2013-06-18 | 2018-05-15 | Houghton Technical Corp. | Component recovery from metal quenching bath or spray |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3220893A (en) * | 1963-11-29 | 1965-11-30 | Union Carbide Corp | Metal quenching medium |
| US3290274A (en) * | 1960-02-26 | 1966-12-06 | Shell Oil Co | Polymeric amine salts of thioalkyl-phosphono compounds |
| US3902929A (en) * | 1974-02-01 | 1975-09-02 | Park Chem Co | Water-based quenching composition comprising polyvinylpyrrolidone and method of quenching |
| US4087290A (en) * | 1975-07-03 | 1978-05-02 | E. F. Houghton & Co. | Process for the controlled cooling of ferrous metal |
| US4381205A (en) * | 1982-04-05 | 1983-04-26 | E. F. Houghton & Company | Metal quenching process |
| US4404044A (en) * | 1981-09-08 | 1983-09-13 | E. F. Houghton & Co. | Method of quenching |
| US4486246A (en) * | 1983-05-18 | 1984-12-04 | E. F. Houghton & Co. | Polyoxazolines in aqueous quenchants |
| US4528044A (en) * | 1983-12-16 | 1985-07-09 | E. F. Houghton & Co. | Aqueous quenchants containing polyoxazolines and n-vinyl heterocyclic polymers and their use in quenching steel |
| US4826545A (en) * | 1987-06-02 | 1989-05-02 | Foreman Robert W | Method of heat treating metal parts using a washable synthetic quenchant |
| USRE34119E (en) * | 1985-08-19 | 1992-11-03 | Park Chemical Company | Method of heat treating metal using a washable synthetic quenchant |
| US6103820A (en) * | 1996-03-13 | 2000-08-15 | Basf Aktiengesellschaft | Preparation of water-soluble copolymers of at least one water-soluble N-vinyllactam and at least one hydrophobic comonomer |
| US20070154438A1 (en) * | 2004-04-16 | 2007-07-05 | Basf Aktiengesellschaft | Method for producing a water-in-water polyvinyl lactam dispersion with a k value of = 120 |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US34119A (en) | 1862-01-07 | Improvement in railroad-switches | ||
| JP3824695B2 (en) * | 1996-02-15 | 2006-09-20 | 出光興産株式会社 | Method for recovering cooling characteristics of water-soluble quenching agent and water-soluble quenching agent with improved cooling characteristics |
-
2007
- 2007-10-11 US US11/870,457 patent/US20090095384A1/en not_active Abandoned
-
2008
- 2008-04-18 WO PCT/US2008/060717 patent/WO2009048648A1/en active Application Filing
- 2008-04-18 HU HUE08746187A patent/HUE041394T2/en unknown
- 2008-04-18 ES ES08746187T patent/ES2348117T3/en active Active
- 2008-04-18 CN CN201310573198.8A patent/CN103643002B/en active Active
- 2008-04-18 EP EP08746187.7A patent/EP2215177B1/en active Active
- 2008-04-18 DE DE08746187T patent/DE08746187T1/en active Pending
- 2008-04-18 CN CN2008801176653A patent/CN101868512B/en active Active
- 2008-04-18 PL PL08746187T patent/PL2215177T3/en unknown
-
2010
- 2010-12-30 US US12/981,589 patent/US8764914B2/en active Active
-
2014
- 2014-05-13 US US14/276,214 patent/US9803255B2/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3290274A (en) * | 1960-02-26 | 1966-12-06 | Shell Oil Co | Polymeric amine salts of thioalkyl-phosphono compounds |
| US3220893A (en) * | 1963-11-29 | 1965-11-30 | Union Carbide Corp | Metal quenching medium |
| US3902929A (en) * | 1974-02-01 | 1975-09-02 | Park Chem Co | Water-based quenching composition comprising polyvinylpyrrolidone and method of quenching |
| US4087290A (en) * | 1975-07-03 | 1978-05-02 | E. F. Houghton & Co. | Process for the controlled cooling of ferrous metal |
| US4404044A (en) * | 1981-09-08 | 1983-09-13 | E. F. Houghton & Co. | Method of quenching |
| US4381205A (en) * | 1982-04-05 | 1983-04-26 | E. F. Houghton & Company | Metal quenching process |
| US4486246A (en) * | 1983-05-18 | 1984-12-04 | E. F. Houghton & Co. | Polyoxazolines in aqueous quenchants |
| US4528044A (en) * | 1983-12-16 | 1985-07-09 | E. F. Houghton & Co. | Aqueous quenchants containing polyoxazolines and n-vinyl heterocyclic polymers and their use in quenching steel |
| USRE34119E (en) * | 1985-08-19 | 1992-11-03 | Park Chemical Company | Method of heat treating metal using a washable synthetic quenchant |
| US4826545A (en) * | 1987-06-02 | 1989-05-02 | Foreman Robert W | Method of heat treating metal parts using a washable synthetic quenchant |
| US6103820A (en) * | 1996-03-13 | 2000-08-15 | Basf Aktiengesellschaft | Preparation of water-soluble copolymers of at least one water-soluble N-vinyllactam and at least one hydrophobic comonomer |
| US20070154438A1 (en) * | 2004-04-16 | 2007-07-05 | Basf Aktiengesellschaft | Method for producing a water-in-water polyvinyl lactam dispersion with a k value of = 120 |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120118446A1 (en) * | 2010-11-17 | 2012-05-17 | Basf Se | Aqueous metal quenching medium |
| WO2012065928A1 (en) | 2010-11-17 | 2012-05-24 | Basf Se | Aqueous metal quenching medium |
| WO2013060679A1 (en) | 2011-10-27 | 2013-05-02 | Basf Se | Use of a composition containing vinyl-lactam-containing polymer, solvent and at least one halogen-free biocide as a metal-quenching medium |
| US10526447B2 (en) | 2015-04-15 | 2020-01-07 | Houghton Technical Corp. | Materials that provide bioresistance and/or defoaming and slower cooling properties for aqueous quenchants |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2215177A1 (en) | 2010-08-11 |
| HUE041394T2 (en) | 2019-05-28 |
| EP2215177A4 (en) | 2014-03-05 |
| ES2348117T3 (en) | 2019-02-21 |
| US20110094638A1 (en) | 2011-04-28 |
| CN101868512B (en) | 2013-12-25 |
| CN103643002B (en) | 2016-08-17 |
| CN101868512A (en) | 2010-10-20 |
| US9803255B2 (en) | 2017-10-31 |
| DE08746187T1 (en) | 2011-01-27 |
| CN103643002A (en) | 2014-03-19 |
| US20140246132A1 (en) | 2014-09-04 |
| EP2215177B1 (en) | 2018-10-10 |
| US8764914B2 (en) | 2014-07-01 |
| ES2348117T1 (en) | 2010-11-30 |
| WO2009048648A1 (en) | 2009-04-16 |
| PL2215177T3 (en) | 2019-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9803255B2 (en) | Aqueous quenching media and use thereof in quenching metal substrates | |
| EP0149623B1 (en) | Polyoxazolines in aqueous quenchants | |
| CA1084822A (en) | Process for the controlled cooling of ferrous metal | |
| US3220893A (en) | Metal quenching medium | |
| US3022205A (en) | Method of quenching and quenching liquid | |
| US4528044A (en) | Aqueous quenchants containing polyoxazolines and n-vinyl heterocyclic polymers and their use in quenching steel | |
| US10526447B2 (en) | Materials that provide bioresistance and/or defoaming and slower cooling properties for aqueous quenchants | |
| US4404044A (en) | Method of quenching | |
| CN114262773B (en) | A tempering solution based on organic electrolyte with imidazole ring | |
| EP1625240B1 (en) | Quenching fluid composition | |
| Ba³a et al. | Continuous heating from as-quenched state in a new hot-work steel | |
| JPH0470366B2 (en) | ||
| CN119709302A (en) | Composite additive and preparation method and application thereof | |
| Jasim | Study the effect of polymer solution and oil quenchants on hardening automotive camshaft | |
| SU1723153A1 (en) | Method of heat treatment of steel products | |
| SU1516496A1 (en) | Method of isothermal hardening of articles | |
| Basak et al. | Thermal reversion characteristics of austempered ductile iron alloyed with copper |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HOUGHTON TECHNICAL CORP., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUNSALUS, LAURA;WARCHOL, JOSEPH F.;REEL/FRAME:020013/0327 Effective date: 20071022 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |



















