USRE34119E - Method of heat treating metal using a washable synthetic quenchant - Google Patents

Method of heat treating metal using a washable synthetic quenchant Download PDF

Info

Publication number
USRE34119E
USRE34119E US07/302,306 US30230689A USRE34119E US RE34119 E USRE34119 E US RE34119E US 30230689 A US30230689 A US 30230689A US RE34119 E USRE34119 E US RE34119E
Authority
US
United States
Prior art keywords
parts
polyvinylpyrrolidone
range
iaddend
iadd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/302,306
Inventor
Robert W. Foreman
Anthony G. Meszaros
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Park Chemical Co
Original Assignee
Park Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Chemical Co filed Critical Park Chemical Co
Priority to US07/302,306 priority Critical patent/USRE34119E/en
Application granted granted Critical
Publication of USRE34119E publication Critical patent/USRE34119E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents

Definitions

  • This invention relates to heat treating methods and particularly to a method of quenching heated metal parts i.e., parts fabricated from steel, alloy steel, aluminum and aluminum alloys, using an aqueous solution of a polyvinylpyrrolidone polymer having surprisingly improved washability in water.
  • Oil exhibits a particularly desirable cooling response; i.e., a response which is characterized by a relatively fast cooling rate in the high temperature range and a relatively slow cooling rate in the low temperature range.
  • the fast cooling rate in the high range is necessary to avoid the knee of the time-temperature transformation curve and the slow rate in the lower temperature range is desirable to minimize internal stresses in the quenched parts.
  • oil exhibits this highly advantageous cooling response, the secondary characteristics of the material are undesirable.
  • the combustibility of oil leads to frequency fires in heat treating plants, thus affecting worker safety and insurance rates.
  • the polluting characteristics of oil are such as to require special and expensive disposal procedures.
  • quenchants comprising water soluble polymers such as polyvinyl alcohol, polyglycols, polyvinylpyrrolidone and sodium polyacrylate, the most popular of these being the polyglycols and polyvinylpyrrolidone.
  • the patent further states that suitable results are obtained using a concentration of polyvinylpyrrolidone of about 1 to 13% by weight of the quenching composition.
  • the patent further discloses the use of rust inhibiting agents and bacteriocidal agents in the bath, but only in very small amounts.
  • Another preferred embodiment combines the above-described aqueous solution of polymer such as polyvinylpyrrolidone with a substantially greater amount, in percentage by weight, of at least one and preferably two organic rust inhibitors, by way of example, AQUALOX 225 A-100, manufactured by the Alox Corporation of Niagara Falls, NY and triethanolamine (T.E.A.) manufactured by the Union Carbide Corporation of New York, NY.
  • AQUALOX 225 A-100 manufactured by the Alox Corporation of Niagara Falls, NY
  • T.E.A. triethanolamine
  • One preferred embodiment exhibits advantageous high soluability in water immediately after quenching, i.e. while the quenchant film is still wet, but water soluability declines markedly when the quenchant film has dried.
  • the alternative embodiment combining PVP with both AQUALOX 225 A-100 and T.E.A., retains the high water soluability of the quenchant film up to two to three weeks after quenching, long after drying.
  • This alternative embodiment thus extends the functional range of the polymer quenchant beyond metallurgical applications in which the material is quenched and essentially immediately thereafter washed, to applications in which the washing and subsequent surface treatment of the quenched material is delayed up to three weeks.
  • our invention may be summarized in one aspect as a method of quenching metal parts comprising the steps of heating the parts to a desired temperature above a metallurgical transformation range, quenching the parts in an aqueous solution of a polymer having a molecular weight in the range of between 900,000 and 3,000,000 and product concentrations of between about .[.10% and 25% by volume.]. .Iadd.1.75% and 5% by weight.Iaddend., removing the parts from the quenchant and thereafter washing the parts to remove the polymeric film.
  • the invention is a quenching composition comprising an aqueous solution of a high molecular weight polymer such as polyvinylpyrrolidone in the range of 900,000 to 3,000,000.
  • the advantage of the invention may be supplemented by incorporating with the invention a system for recovering the polymer from the power wash water and returning it either to the bath or to a storage facility for later use in reconstituting the bath.
  • the preferred formulation for use as the quenching composition herein is as follows:
  • the polymer used herein is preferably that specified in the specification of U.S. Pat. No. 3,902,929 and the disclosure of that patent is incorporated herein by reference.
  • the polymer should have a molecular weight within the range of about 900,000 to about 3,000,000 and preferably the average molecular weight should be about 1,270,000 and 2,240,000.
  • the rust inhibiting agents and the bacteriocidal agent may be present in the amounts specified in U.S. Pat. No. 3,902,929 and, as stated in that patent, the quenching media may also optionally include as minor amounts at least one water soluble material selected from the group consisting of polyvinyl alcohol, polyoxyalkylene glycol polymer or a cellulosic polymer. Generally this minor amount should be less than 5% by weight of the composition.
  • One preferred formulation of the invention includes 0.5% by weight paraformaldehyde, a bacteriocide and preservative, 0.80% by weight rust inhibiting agent A, comprising Borax, and 0.20% by weight rust inhibiting agent B, comprising sodium nitrite.
  • This embodiment also includes 20% by weight polymer as described above, the balance being water.
  • rust inhibiting agent A is AQUALOX 225A-100 as manufactured by the Alox Corporation and rust inhibiting agent B is triethanolamine (T.E.A.) as manufactured by the Union Carbide Corporation.
  • the formulation of this alternative embodiment for use as the quenching composition comprises 7% by weight AQUALOX 225A-100, 7% by weight T.E.A., no bacteriocide, 7% by weight polymer, balance water.
  • AQUALOX 225A-100 is commercially available from the Alox Corporation of Niagara Falls, N.Y. It can be broadly described as an oxygenated hydrocarbon in which a portion of the free organic acid produced by oxidation is neutralized with amine and blended with a minor amount of amine. More specifically, it is an amine salt, a diethanolamine of aliphatic carboxylic acid in which the oxygenated hydrocarbon portion can be either aliphatic or aromatic.
  • AQUALOX 225A-100 is characterized as a 100% active, low foaming, surface active agent which effectively inhibits the attack of ferrous metals by aqueous solution.
  • Triethanolamine also called Tri(2-hydroxyethyl)-amine, is a member of the alkanolamine family, having a formula of (HOC 2 H 4 ) 3 N. It also effectively inhibits the attack of ferrous metals by aqueous solutions. It is commercially available from the Union Carbide Corporation of New York, New York.
  • the process of the invention comprises heating the metal parts using conventional techniques to a temperature which is above the metallurgical transformation zone well known to those skilled in the art and thereafter submerging the parts in a quench bath constituted as previously described.
  • the quench bath is preferably agitated so that the flow of quenchant past the parts is about 100 ft./min.
  • the bath is operated at a temperature of about 120° F. to 160° F.
  • the parts are thereafter removed from the quench bath and are subjected to a washing step, preferably using water spray at pressures of about 20 to 45 psi.
  • an immersion wash removes only 35.14% on the polymer film on a panel quenched in a bath consisting of 10% by volume concentration of the polyvinylpyrrolidone based quenchant the average molecular weight of which was between 100,000 and 200,000, whereas immersion wash of a similar panel removed 68.83% of a 25% solution of 1,270,000 molecular weight polymer (K-90).
  • a power wash at 37 psi removes 73.11% of the K-60 polymer film formed by quenching in a 20% by volume concentration bath
  • a 37 psi pressure water spray removes 96.30% of the polymeric film on panels quenched in a bath consisting of a 25% by volume concentration of polyvinylpyrrolidone based quenchant having an average molecular weight of about 1,270,000 (K-90).
  • the second example of the preferred embodiment combining Alox 225 A-100 and T.E.A. with the polymer in aqueous solution, not only provides similar advantageous water soluability in both immersion wash and power wash, but also extends the time during which the quenchant film upon the material remains highly soluable, to a period of up to two to three weeks after quenching, well after the treated material has dried. This formulation also greatly enhances the rust inhibiting characteristic of the quenchant.
  • the wash water is preferably caught and processed such as by filtration or distillation to recover the polymer from the wash water.
  • the polymer after sufficient concentration of high molecular weights has been achieved, may be returned to a storage facility or directly to the bath to maintain the correct concentration of the bath in accordance with the disclosures of this document.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

A method of quenching metal components utilizing a water based quenching composition which includes a polyvinylpyrrolidone polymer of high molecular weight and in relatively high concentrations and thereafter power washing the parts to remove the polymeric film. Another preferred embodiment uses the same high molecular weight polyvinylpyrrolidone in combination with two rust inhibiting agents which greatly extend the time during which the quenchant film left on the quenched parts remains water soluable, while still providing an excellent approximation of the cooling curve characteristic of an oil quenchant.

Description

RELATED APPLICATION
This application is a continuation-in-part of Ser. No. 819,204 filed Jan. 15, 1986 now abandoned which is a continuation-in-part of Ser. No. 766,598 filed Aug. 19, 1985, now abandoned.
FIELD OF THE INVENTION
This invention relates to heat treating methods and particularly to a method of quenching heated metal parts i.e., parts fabricated from steel, alloy steel, aluminum and aluminum alloys, using an aqueous solution of a polyvinylpyrrolidone polymer having surprisingly improved washability in water.
BACKGROUND OF THE INVENTION
It has been known for years to use oil as a quench medium in the heat treating of fabricated metal products. Oil exhibits a particularly desirable cooling response; i.e., a response which is characterized by a relatively fast cooling rate in the high temperature range and a relatively slow cooling rate in the low temperature range. The fast cooling rate in the high range is necessary to avoid the knee of the time-temperature transformation curve and the slow rate in the lower temperature range is desirable to minimize internal stresses in the quenched parts.
Although oil exhibits this highly advantageous cooling response, the secondary characteristics of the material are undesirable. The combustibility of oil leads to frequency fires in heat treating plants, thus affecting worker safety and insurance rates. The polluting characteristics of oil are such as to require special and expensive disposal procedures.
Accordingly, a substantial market has developed for quenchants comprising water soluble polymers such as polyvinyl alcohol, polyglycols, polyvinylpyrrolidone and sodium polyacrylate, the most popular of these being the polyglycols and polyvinylpyrrolidone.
U.S. Pat. No. 3,902,929 "Water Based Quenching Composition Comprising Polyvinylpyrrolidone and Method of Quenching" granted Sep. 2, 1975 to Anthony G. Meszaros discloses the use of an aqueous solution of polyvinylpyrrolidone having an average molecular weight of between about 5,000 and about 400,000 and in concentrations of between about 2% and 10% polymer solids by weight as a quenching composition for metal parts. According to the patent, the preferred molecular weight range is about 50,000 to about 360,000 and further, best results are obtained with an average molecular weight between about 100,000 and 200,000.
The patent further states that suitable results are obtained using a concentration of polyvinylpyrrolidone of about 1 to 13% by weight of the quenching composition.
The patent further discloses the use of rust inhibiting agents and bacteriocidal agents in the bath, but only in very small amounts.
BRIEF SUMMARY OF THE INVENTION
We have found that the best approximation of the cooling curve characteristic of oil can be achieved using an aqueous solution of polymer such as polyvinylpyrrolidone having a molecular weight as reported by GAF Corporation in a Technical Data Sheet published in June, 1986 in the range of 900,000 to 300,000 and preferably in the range between about 1,270,000 and 2,240,000. One preferred embodiment of the invention, which uses high molecular weight polymeric quenchant at concentrations between about .[.10% and 25% product by volume.]. .Iadd.1.75% to 5% by weight.Iaddend., not only closely approximates the desired cooling curve characteristic of oil but also exhibits surprisingly increased removability from the quenched parts using a water bath or spray wash.
Another preferred embodiment combines the above-described aqueous solution of polymer such as polyvinylpyrrolidone with a substantially greater amount, in percentage by weight, of at least one and preferably two organic rust inhibitors, by way of example, AQUALOX 225 A-100, manufactured by the Alox Corporation of Niagara Falls, NY and triethanolamine (T.E.A.) manufactured by the Union Carbide Corporation of New York, NY. These greater amounts, in percentage by weight, of the two rust inhibitors in combination with a lesser percentage by weight of PVP, the balance being water, not only increase the rust-inhibiting characteristics of the quenchant but unexpectedly greatly extend the period of time during which the quenchant film on the quenched parts remains highly water soluable. It is unexpected that the approximation of the oil quenchant cooling curve characteristic is retained despite the presence of high concentrations of two rust inhibitors. Even more surprising is the extension of time during which the quenchant film retains its high water soluability; this aspect is yet unexplained.
One preferred embodiment exhibits advantageous high soluability in water immediately after quenching, i.e. while the quenchant film is still wet, but water soluability declines markedly when the quenchant film has dried. Conversely, the alternative embodiment combining PVP with both AQUALOX 225 A-100 and T.E.A., retains the high water soluability of the quenchant film up to two to three weeks after quenching, long after drying. This alternative embodiment thus extends the functional range of the polymer quenchant beyond metallurgical applications in which the material is quenched and essentially immediately thereafter washed, to applications in which the washing and subsequent surface treatment of the quenched material is delayed up to three weeks.
Accordingly, our invention may be summarized in one aspect as a method of quenching metal parts comprising the steps of heating the parts to a desired temperature above a metallurgical transformation range, quenching the parts in an aqueous solution of a polymer having a molecular weight in the range of between 900,000 and 3,000,000 and product concentrations of between about .[.10% and 25% by volume.]. .Iadd.1.75% and 5% by weight.Iaddend., removing the parts from the quenchant and thereafter washing the parts to remove the polymeric film. In another aspect, the invention is a quenching composition comprising an aqueous solution of a high molecular weight polymer such as polyvinylpyrrolidone in the range of 900,000 to 3,000,000.
The advantage of the invention may be supplemented by incorporating with the invention a system for recovering the polymer from the power wash water and returning it either to the bath or to a storage facility for later use in reconstituting the bath.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The preferred formulation for use as the quenching composition herein is as follows:
______________________________________                                    
                      Range of amount                                     
                      % by weight                                         
______________________________________                                    
(1) water                   78.95-79                                      
(2) paraformaldehyde (bacteriocidal                                       
                               0-0.05                                     
    agent and perservative)                                               
(3) rust inhibiting agent A 0.80-7                                        
(4) rust inhibiting agent B 0.20-7                                        
(5) polymer having an average molecular                                   
                               7-20                                       
    weight of about 1,270,000 to 2,240,000                                
    at 25% solution by weight, GAF Corp.                                  
    products K-90, K-110                                                  
______________________________________                                    
To prepare the quench bath approximately 1/3 of item number 1 above is transferred into heated mixer apparatus and the temperature is brought to about 190° F. Items 2, 3 and 4 are then added and mixed until all of the solids are dissolved and a clear solution is obtained. Heating is then discontinued. The remainder of Item 1 is added and Item 5 is added and mixed until clear and uniform. This product is then placed in a rust proof container by drawing it through a 40 mesh screen.
The polymer used herein is preferably that specified in the specification of U.S. Pat. No. 3,902,929 and the disclosure of that patent is incorporated herein by reference. The polymer, however, should have a molecular weight within the range of about 900,000 to about 3,000,000 and preferably the average molecular weight should be about 1,270,000 and 2,240,000. The rust inhibiting agents and the bacteriocidal agent may be present in the amounts specified in U.S. Pat. No. 3,902,929 and, as stated in that patent, the quenching media may also optionally include as minor amounts at least one water soluble material selected from the group consisting of polyvinyl alcohol, polyoxyalkylene glycol polymer or a cellulosic polymer. Generally this minor amount should be less than 5% by weight of the composition.
One preferred formulation of the invention includes 0.5% by weight paraformaldehyde, a bacteriocide and preservative, 0.80% by weight rust inhibiting agent A, comprising Borax, and 0.20% by weight rust inhibiting agent B, comprising sodium nitrite. This embodiment also includes 20% by weight polymer as described above, the balance being water.
In another preferred formulation using the same .[.polymer.]. .Iadd.of the 25% by weight polymer solution .Iaddend.described above, rust inhibiting agent A is AQUALOX 225A-100 as manufactured by the Alox Corporation and rust inhibiting agent B is triethanolamine (T.E.A.) as manufactured by the Union Carbide Corporation. The formulation of this alternative embodiment for use as the quenching composition comprises 7% by weight AQUALOX 225A-100, 7% by weight T.E.A., no bacteriocide, 7% by weight polymer, balance water.
AQUALOX 225A-100, is commercially available from the Alox Corporation of Niagara Falls, N.Y. It can be broadly described as an oxygenated hydrocarbon in which a portion of the free organic acid produced by oxidation is neutralized with amine and blended with a minor amount of amine. More specifically, it is an amine salt, a diethanolamine of aliphatic carboxylic acid in which the oxygenated hydrocarbon portion can be either aliphatic or aromatic. AQUALOX 225A-100 is characterized as a 100% active, low foaming, surface active agent which effectively inhibits the attack of ferrous metals by aqueous solution.
Triethanolamine (T.E.A.), also called Tri(2-hydroxyethyl)-amine, is a member of the alkanolamine family, having a formula of (HOC2 H4)3 N. It also effectively inhibits the attack of ferrous metals by aqueous solutions. It is commercially available from the Union Carbide Corporation of New York, New York.
The process of the invention comprises heating the metal parts using conventional techniques to a temperature which is above the metallurgical transformation zone well known to those skilled in the art and thereafter submerging the parts in a quench bath constituted as previously described. In addition, the quench bath is preferably agitated so that the flow of quenchant past the parts is about 100 ft./min. The bath is operated at a temperature of about 120° F. to 160° F. The parts are thereafter removed from the quench bath and are subjected to a washing step, preferably using water spray at pressures of about 20 to 45 psi.
By way of example it has been found that an immersion wash removes only 35.14% on the polymer film on a panel quenched in a bath consisting of 10% by volume concentration of the polyvinylpyrrolidone based quenchant the average molecular weight of which was between 100,000 and 200,000, whereas immersion wash of a similar panel removed 68.83% of a 25% solution of 1,270,000 molecular weight polymer (K-90). Similarly, a power wash at 37 psi removes 73.11% of the K-60 polymer film formed by quenching in a 20% by volume concentration bath, whereas a 37 psi pressure water spray removes 96.30% of the polymeric film on panels quenched in a bath consisting of a 25% by volume concentration of polyvinylpyrrolidone based quenchant having an average molecular weight of about 1,270,000 (K-90).
The second example of the preferred embodiment, combining Alox 225 A-100 and T.E.A. with the polymer in aqueous solution, not only provides similar advantageous water soluability in both immersion wash and power wash, but also extends the time during which the quenchant film upon the material remains highly soluable, to a period of up to two to three weeks after quenching, well after the treated material has dried. This formulation also greatly enhances the rust inhibiting characteristic of the quenchant.
The wash water is preferably caught and processed such as by filtration or distillation to recover the polymer from the wash water. The polymer, after sufficient concentration of high molecular weights has been achieved, may be returned to a storage facility or directly to the bath to maintain the correct concentration of the bath in accordance with the disclosures of this document.
While it will be apparent that the preferred embodiment of the invention disclosed above is calculated to fulfill the objects above stated it will be appreciated that the invention is susceptible to modification, variation and change without departing from the spirit and scope of the following claims.

Claims (14)

We claim:
1. A method of heat treating fabricated metal parts comprising the steps of:
(A) heating the parts to a temperature above a metallurgical transformation range;
(B) placing the parts in a heated, agitated quench bath comprising an aqueous solution of about .[.10%.]. .Iadd.1.75% .Iaddend.to 25% by volume of polyvinylpyrrolidone having a molecular weight in the range of between .[.900,000 and 3,000,000.]. .Iadd.1,270,000 and 2,240,000.Iaddend.;
(C) removing the parts from the quench bath; and
(D) water washing the parts to substantially remove any polymeric film formed on the parts in the quench bath.
2. A method as defined in claim 1 wherein the concentration of the polyvinylpyrrolidone is approximately .[.25% by volume.]. .Iadd.5% by weight.Iaddend.. .[.3. A method as defined in claim 1 wherein the polyvinylpyrrolidone has a molecular weight in the range of between about
1,270,000 and 2,240,000..]. 4. A method as defined in claim 1 further including the step of recovering the polyvinylpyrrolidone from the wash
water. 5. A method as defined in claim 1 wherein the washing step is performed by a power spray at a pressure in the range of about 20 to 45
psi. 6. A method as defined in claim 1, wherein the bath temperature is
about 130° F. 7. A method of heat treating fabricated metal parts comprising the steps of:
(A) heating the parts to a temperature above a metallurgical transformation temperature range;
(B) placing the parts in a heated, agitated quench bath consisting essentially, by weight, of:
(i) about .[.7%.]. .Iadd.1.75% to 5% .Iaddend.of polyvinylpyrrolidone having a molecular weight in the range of between .[.900,000 and 3,000,000.]. .Iadd.1,270,000 and 2,240,000.Iaddend.;
(ii) about 7% of an amine-neutralized, carboxylic acid;
(iii) about 7% of triethanolamine; and
(iv) the balance water;
(C) removing the parts from the quench bath; and
(D) water washing the parts to substantially remove any polymeric film
formed on the parts in the quench bath. .[.8. A method as defined in claim 7 wherein the polyvinylpyrrolidone has a molecular weight in the
range of between about 1,270,000 and 2,240,000..]. 9. A method as defined in claim 7 further including the step of recovering the polyvinylpyrrolidone, amine neutralized carboxylic acid and
triethanolamine from the wash water. 10. A method of heating treating fabricated metal parts comprising the steps of:
(A) heating the parts to a temperature above a metallurgical transformation temperature range;
(B) placing the parts in a heated, agitated quench bath consisting essentially, by weight .[.,.]. of:
(i) about .[.20%.]. .Iadd.1.75% to 5% .Iaddend.of polyvinylpyrrolidone having a molecular weight in the range between .[.900,000 and 3,000,000.]. .Iadd.1,270,000 and 2,240,000.Iaddend.;
(ii) about 0.8% borax;
(iii) about 0.2% sodium nitrite; and
(iv) the balance water;
(C) removing the parts from the quench bath; and
(D) water washing the parts to substantially remove any polymeric film
formed on the parts in the quench bath. 11. A method as defined in claim 10 wherein said quench bath also includes about 0.5%, by weight, of a bacteriocidal agent. .[.12. A method as defined in claim 10 wherein the polyvinylpyrrolidone has a molecular weight in the range of between about
1,270,000 and 2,240,000..]. 13. A method as defined in claim 10 further including the step of recovering the polyvinylpyrrolidone, borax and
sodium nitrite from the wash water. 14. A method for controlling the microstructure of carbon steel objects by immersing said objects, after preheating in a water based polymeric bath wherein the improvement comprises constituting said bath as an aqueous solution comprising about .[.7-20%.]. .Iadd.1.75% to 5% .Iaddend.by weight polyvinylpyrrolidone having a molecular weight between about .[.900,000 and 3,000,000.].
.Iadd.1,270,000 and 2,240,000 .Iaddend.and the balance water. 15. The method of claim 14 wherein the quenchant is constituted of said polyvinylpyrrolidone and water and, in addition, at least about 7% weight of each triethanolamine and an amine neutralized, carboxylic acid rust
inhibitor. 16. The method of claim 15 including the later step of water washing the objects using a power spray at a pressure in the range of about 20 to 40 psi to remove residual polyvinylpyrrolidone from the objects.
US07/302,306 1985-08-19 1989-01-23 Method of heat treating metal using a washable synthetic quenchant Expired - Lifetime USRE34119E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/302,306 USRE34119E (en) 1985-08-19 1989-01-23 Method of heat treating metal using a washable synthetic quenchant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76659885A 1985-08-19 1985-08-19
US81920486A 1986-01-15 1986-01-15
US07/302,306 USRE34119E (en) 1985-08-19 1989-01-23 Method of heat treating metal using a washable synthetic quenchant

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US81920486A Continuation-In-Part 1985-08-19 1986-01-15
US06/915,427 Reissue US4738731A (en) 1986-01-15 1986-10-06 Method of heat treating metal using a washable synthetic quenchant

Publications (1)

Publication Number Publication Date
USRE34119E true USRE34119E (en) 1992-11-03

Family

ID=27404872

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/302,306 Expired - Lifetime USRE34119E (en) 1985-08-19 1989-01-23 Method of heat treating metal using a washable synthetic quenchant

Country Status (1)

Country Link
US (1) USRE34119E (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095384A1 (en) * 2007-10-11 2009-04-16 Houghton Technical Corp. Aqueous quenching media and use thereof in quenching metal substrates
WO2012065928A1 (en) 2010-11-17 2012-05-24 Basf Se Aqueous metal quenching medium
WO2013060679A1 (en) 2011-10-27 2013-05-02 Basf Se Use of a composition containing vinyl-lactam-containing polymer, solvent and at least one halogen-free biocide as a metal-quenching medium
US10526447B2 (en) 2015-04-15 2020-01-07 Houghton Technical Corp. Materials that provide bioresistance and/or defoaming and slower cooling properties for aqueous quenchants
CN114231867A (en) * 2021-12-10 2022-03-25 浙江亚通焊材有限公司 Preparation process of cobalt-chromium-tungsten alloy sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022205A (en) * 1958-05-14 1962-02-20 Gen Motors Corp Method of quenching and quenching liquid
US3902929A (en) * 1974-02-01 1975-09-02 Park Chem Co Water-based quenching composition comprising polyvinylpyrrolidone and method of quenching
US4087290A (en) * 1975-07-03 1978-05-02 E. F. Houghton & Co. Process for the controlled cooling of ferrous metal
GB2099858A (en) * 1981-06-05 1982-12-15 Servimetal Aqueous quenching agent for ferrous metals and alloys
GB2133047A (en) * 1982-12-16 1984-07-18 Ugine Kuhlmann Additive for aqueous quenching by immersion of aluminium-base alloys
US4826545A (en) * 1987-06-02 1989-05-02 Foreman Robert W Method of heat treating metal parts using a washable synthetic quenchant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022205A (en) * 1958-05-14 1962-02-20 Gen Motors Corp Method of quenching and quenching liquid
US3902929A (en) * 1974-02-01 1975-09-02 Park Chem Co Water-based quenching composition comprising polyvinylpyrrolidone and method of quenching
US4087290A (en) * 1975-07-03 1978-05-02 E. F. Houghton & Co. Process for the controlled cooling of ferrous metal
GB2099858A (en) * 1981-06-05 1982-12-15 Servimetal Aqueous quenching agent for ferrous metals and alloys
GB2133047A (en) * 1982-12-16 1984-07-18 Ugine Kuhlmann Additive for aqueous quenching by immersion of aluminium-base alloys
US4826545A (en) * 1987-06-02 1989-05-02 Foreman Robert W Method of heat treating metal parts using a washable synthetic quenchant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095384A1 (en) * 2007-10-11 2009-04-16 Houghton Technical Corp. Aqueous quenching media and use thereof in quenching metal substrates
US20110094638A1 (en) * 2007-10-11 2011-04-28 Houghton Technical Corp. Aqueous Quenching Media and Use Thereof in Quenching Metal Substrates
US8764914B2 (en) 2007-10-11 2014-07-01 Houghton Technical Corp. Aqueous quenching media and use thereof in quenching metal substrates
US9803255B2 (en) 2007-10-11 2017-10-31 Houghton Technical Corporation Aqueous quenching media and use thereof in quenching metal substrates
WO2012065928A1 (en) 2010-11-17 2012-05-24 Basf Se Aqueous metal quenching medium
WO2013060679A1 (en) 2011-10-27 2013-05-02 Basf Se Use of a composition containing vinyl-lactam-containing polymer, solvent and at least one halogen-free biocide as a metal-quenching medium
US10526447B2 (en) 2015-04-15 2020-01-07 Houghton Technical Corp. Materials that provide bioresistance and/or defoaming and slower cooling properties for aqueous quenchants
CN114231867A (en) * 2021-12-10 2022-03-25 浙江亚通焊材有限公司 Preparation process of cobalt-chromium-tungsten alloy sheet
CN114231867B (en) * 2021-12-10 2023-02-07 浙江亚通新材料股份有限公司 Preparation process of cobalt-chromium-tungsten alloy sheet

Similar Documents

Publication Publication Date Title
US4738731A (en) Method of heat treating metal using a washable synthetic quenchant
US4826545A (en) Method of heat treating metal parts using a washable synthetic quenchant
CA1084822A (en) Process for the controlled cooling of ferrous metal
CA1038735A (en) Method of quenching
US3220893A (en) Metal quenching medium
Souza et al. Intercritical austenitization of two Fe-Mn-C steels
CA1225009A (en) Polyoxazolines in aqueous quenchants
EP0179545B1 (en) Aqueous quenchants containing polyoxazolines and n-vinyl heterocyclic polymers
USRE34119E (en) Method of heat treating metal using a washable synthetic quenchant
US4596612A (en) Method of quenching metals
EP0140027B1 (en) Aqueous solution for cooling cold-rolled steel strip in a continuous annealing process
CA1197444A (en) Method of quenching
US3855019A (en) Processing for high permeability silicon steel comprising copper
KR900006502B1 (en) Corrosion inhibiting quenchant compositions
CA1130180A (en) Processing for cube-on-edge oriented silicon steel
EP0030699A2 (en) Process for producing a wire rod for cold forging
US4519852A (en) Annealing of high speed steel powder
US3865642A (en) Water based quenching composition and method
US4873014A (en) Polyamine-polyglycol inhibitor for steel pickling
EP0196836B1 (en) Metal quenchants
ATE133996T1 (en) METHOD FOR HEAT TREATING A STEEL PRODUCT
SU1359313A1 (en) Hardening medium
EP1277845B1 (en) Quenching method
SU1516496A1 (en) Method of isothermal hardening of articles
SU1664853A1 (en) Rolling process

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND OF EXCESS PAYMENTS PROCESSED (ORIGINAL EVENT CODE: R169); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12