US20090081188A1 - Glycopegylated factor ix - Google Patents

Glycopegylated factor ix Download PDF

Info

Publication number
US20090081188A1
US20090081188A1 US12/184,956 US18495608A US2009081188A1 US 20090081188 A1 US20090081188 A1 US 20090081188A1 US 18495608 A US18495608 A US 18495608A US 2009081188 A1 US2009081188 A1 US 2009081188A1
Authority
US
United States
Prior art keywords
peptide
conjugate according
peg
moiety
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/184,956
Inventor
Shawn DeFrees
Robert J. Bayer
Caryn Bowe
Krishnasamy Panneerselvam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Neose Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2004/041070 external-priority patent/WO2005055950A2/en
Application filed by Neose Technologies Inc filed Critical Neose Technologies Inc
Priority to US12/184,956 priority Critical patent/US20090081188A1/en
Assigned to NOVO NORDISK A/S reassignment NOVO NORDISK A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEOSE TECHNOLOGIES, INC.
Publication of US20090081188A1 publication Critical patent/US20090081188A1/en
Priority to US12/851,651 priority patent/US8632770B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Vitamin K-dependent proteins e.g., Factor IX
  • Vitamin K-dependent proteins contain 9 to 13 gamma-carboxyglutamic acid residues (Gla) in their amino terminal 45 residues.
  • the Gla residues are produced by enzymes in the liver that utilize vitamin K to carboxylate the side chains of glutamic acid residues in protein precursors.
  • Vitamin K-dependent proteins are involved in a number of biological processes, of which the best described is blood coagulation (reviewed in Nelsestuen, Vitam. Horm. 58: 355-389 (2000)).
  • Vitamin K-dependent proteins include protein Z, protein S, prothrombin (Factor II), Factor X, Factor IX, protein C, Factor VII, Gas6, and matrix GLA protein.
  • Gas6 is a growth arrest hormone encoded by growth arrest-specific gene 6 (gas6) and is related to protein S. See, Manfioletti et al. Mol. Cell. Biol. 13: 4976-4985 (1993).
  • Matrix GLA protein normally is found in bone and is critical to prevention of calcification of soft tissues in the circulation. Luo et al. Nature 386: 78-81 (1997).
  • the regulation of blood coagulation is a process that presents a number of leading health problems, including both the failure to form blood clots as well as thrombosis, the formation of unwanted blood clots.
  • Agents that prevent unwanted clots are used in many situations and a variety of agents are available.
  • Most current therapies have undesirable side effects.
  • Orally administered anticoagulants such as Warfarin act by inhibiting the action of vitamin K in the liver, thereby preventing complete carboxylation of glutamic acid residues in the vitamin K-dependent proteins, resulting in a lowered concentration of active proteins in the circulatory system and reduced ability to form clots.
  • Warfarin therapy is complicated by the competitive nature of the drug with its target. Fluctuations of dietary vitamin K can result in an over-dose or under-dose of Warfarin. Fluctuations in coagulation activity are an undesirable outcome of this therapy.
  • Injected substances such as heparin, including low molecular weight heparin, also are commonly used anticoagulants. Again, these compounds are subject to overdose and must be carefully monitored.
  • a newer category of anticoagulants includes active-site modified vitamin K-dependent clotting factors such as factor VIIa and IX a .
  • the active sites are blocked by serine protease inhibitors such as chloromethylketone derivatives of amino acids or short peptides.
  • the active site-modified proteins retain the ability to form complexes with their respective cofactors, but are inactive, thereby producing no enzyme activity and preventing complexing of the cofactor with the respective active enzymes. In short, these proteins appear to offer the benefits of anticoagulation therapy without the adverse side effects of other anticoagulants.
  • Active site modified factor X a is another possible anticoagulant in this group. Its cofactor protein is factor Va.
  • Active site modified activated protein C (APC) may also form an effective inhibitor of coagulation. See, Sorensen et al. J. Biol. Chem. 272: 11863-11868 (1997). Active site modified APC binds to factor Va and prevents factor X a from binding.
  • vitamin K-dependent clotting factors A major inhibition to the use of vitamin K-dependent clotting factors is cost. Biosynthesis of vitamin K-dependent proteins is dependent on an intact glutamic acid carboxylation system, which is present in a small number of animal cell types. Overproduction of these proteins is limited by this enzyme system. Furthermore, the effective dose of these proteins is high. A common dosage is 1000 ⁇ g of peptide/kg body weight. See, Harker et al. 1997, supra.
  • Factor VIIa illustrates this problem.
  • Factor VII and VIIa have circulation half-times of about 2-4 hours in the human. That is, within 2-4 hours, the concentration of the peptide in the serum is reduced by half.
  • the standard protocol is to inject VIIa every two hours and at high dosages (45 to 90 .mu.g/kg body weight). See, Hedner et al., Transfus. Med. Rev. 7: 78-83 (1993)).
  • procoagulants or anticoagulants in the case of factor VIIa
  • glycopeptide therapeutics with improved pharmacokinetic properties have been produced by attaching synthetic polymers to the peptide backbone.
  • An exemplary polymer that has been conjugated to peptides is poly(ethylene glycol) (“PEG”).
  • PEG poly(ethylene glycol)
  • the use of PEG to derivatize peptide therapeutics has been demonstrated to reduce the immunogenicity of the peptides.
  • U.S. Pat. No. 4,179,337 discloses non-immunogenic polypeptides such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol.
  • the clearance time in circulation is prolonged due to the increased size of the PEG-conjugate of the polypeptides in question.
  • the principal mode of attachment of PEG, and its derivatives, to peptides is a non-specific bonding through a peptide amino acid residue (see e.g., U.S. Pat. No. 4,088,538 U.S. Pat. No. 4,496,689, U.S. Pat. No. 4,414,147, U.S. Pat. No. 4,055,635, and PCT WO 87/00056).
  • Another mode of attaching PEG to peptides is through the non-specific oxidation of glycosyl residues on a glycopeptide (see e.g., WO 94/05332).
  • poly(ethyleneglycol) is added in a random, non-specific manner to reactive residues on a peptide backbone.
  • random addition of PEG molecules has its drawbacks, including a lack of homogeneity of the final product, and the possibility for reduction in the biological or enzymatic activity of the peptide. Therefore, for the production of therapeutic peptides, a derivitization strategy that results in the formation of a specifically labeled, readily characterizable, essentially homogeneous product is superior. Such methods have been developed.
  • homogeneous peptide therapeutics can be produced in vitro through the action of enzymes.
  • enzyme-based syntheses have the advantages of regioselectivity and stereoselectivity.
  • Two principal classes of enzymes for use in the synthesis of labeled peptides are glycosyltransferases (e.g., sialyltransferases, oligosaccharyltransferases, N-acetylglucosaminyltransferases), and glycosidases. These enzymes can be used for the specific attachment of sugars which can be subsequently modified to comprise a therapeutic moiety.
  • glycosyltransferases and modified glycosidases can be used to directly transfer modified sugars to a peptide backbone (see e.g., U.S. Pat. No. 6,399,336, and U.S. Patent Application Publications 20030040037, 20040132640, 20040137557, 20040126838, and 20040142856, each of which are incorporated by reference herein).
  • Methods combining both chemical and enzymatic synthetic elements are also known (see e.g., Yamamoto et al. Carbohydr. Res. 305: 415-422 (1998) and U.S. Patent Application Publication 20040137557 which is incorporated herein by reference).
  • Factor IX is an extremely valuable therapeutic peptide. Although commercially available forms of Factor IX are in use today, these peptides can be improved by modifications that enhance the pharmacokinetics of the resulting isolated glycoprotein product. Thus, there remains a need in the art for longer lasting Factor IX peptides with improved effectiveness and better pharmacokinetics. Furthermore, to be effective for the largest number of individuals, it must be possible to produce, on an industrial scale, a Factor IX peptide with improved therapeutic pharmacokinetics that has a predictable, essentially homogeneous, structure which can be readily reproduced over, and over again.
  • Factor IX peptides with improved pharmacokinetics and methods for making them have now been discovered.
  • the invention also provides industrially practical and cost effective methods for the production of these Factor IX peptides.
  • the Factor IX peptides of the invention comprise modifying groups such as PEG moieties, therapeutic moieties, biomolecules and the like.
  • the present invention therefore fulfills the need for Factor IX peptides with improved the therapeutic effectiveness and improved pharmacokinetics for the treatment of conditions and diseases wherein Factor IX provides effective therapy.
  • “glycopeglyated” Factor IX molecules of the invention are produced by the enzyme mediated formation of a conjugate between a glycosylated or non-glycosylated Factor IX peptide and an enzymatically transferable saccharyl moiety that includes a poly(ethylene glycol) moiety within its structure
  • the PEG moiety is attached to the saccharyl moiety directly (i.e., through a single group formed by the reaction of two reactive groups) or through a linker moiety, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, etc.
  • An exemplary transferable PEG-saccharyl structure is set forth in FIG. 7 .
  • the polymeric modifying moiety can be attached at any position of a glycosyl moiety of Factor IX. Moreover, the polymeric modifying moiety can be bound to a glycosyl residue at any position in the amino acid sequence of a wild type or mutant Factor IX peptide.
  • the invention provides an Factor IX peptide that is conjugated through a glycosyl linking group to a polymeric modifying moiety.
  • exemplary Factor IX peptide conjugates include a glycosyl linking group having a formula selected from:
  • R 2 is H, CH 2 OR 7 , COOR 7 or OR 7 , in which R 7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • R 7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • the symbols R 3 , R 4 , R 5 , R 6 and R 6′ independently represent H, substituted or unsubstituted alkyl, OR 8 , NHC(O)R 9 .
  • the index d is 0 or 1.
  • R 8 and R 9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl or sialic acid.
  • At least one of R 3 , R 4 , R 5 , R 6 or R 6′ includes the polymeric modifying moiety e.g., PEG.
  • R 6 and R 6′ together with the carbon to which they are attached are components of the side chain of sialic acid. In a further exemplary embodiment, this side chain is functionalized with the polymeric modifying moiety.
  • the polymeric moiety is bound to the glycosyl linking group, generally through a heteroatom on the glycosyl core (e.g., N, O), through a linker, L, as shown below:
  • R 1 is the polymeric modifying moiety and L is selected from a bond and a linking group.
  • the index w represents an integer selected from 1-6, preferably 1-3 and more preferably 1-2.
  • Exemplary linking groups include substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl moieties and sialic acid.
  • An exemplary component of the linker is an acyl moiety.
  • Another exemplary linking group is an amino acid residue (e.g., cysteine, serine, lysine, and short oligopeptides, e.g., Lys-Lys, Lys-Lys-Lys, Cys-Lys, Ser-Lys, etc.)
  • L When L is a bond, it is formed by reaction of a reactive functional group on a precursor of R 1 and a reactive functional group of complementary reactivity on a precursor of the glycosyl linking group.
  • L When L is a non-zero order linking group, L can be in place on the glycosyl moiety prior to reaction with the R 1 precursor.
  • the precursors of R 1 and L can be incorporated into a preformed cassette that is subsequently attached to the glycosyl moiety.
  • the selection and preparation of precursors with appropriate reactive functional groups is within the ability of those skilled in the art.
  • coupling of the precursors proceeds by chemistry that is well understood in the art.
  • L is a linking group that is formed from an amino acid, or small peptide (e.g., 1-4 amino acid residues) providing a modified sugar in which the polymeric modifying moiety is attached through a substituted alkyl linker.
  • exemplary linkers include glycine, lysine, serine and cysteine.
  • Amino acid analogs, as defined herein, are also of use as linker components.
  • the amino acid may be modified with an additional component of a linker, e.g., alkyl, heteroalkyl, covalently attached through an acyl linkage, for example, an amide or urethane formed through an amine moiety of the amino acid residue.
  • the glycosyl linker has a structure according to Formula I and R 5 includes the polymeric modifying moiety.
  • R 5 includes both the polymeric modifying moiety and a linker, L, joining the modifying moiety to the glycosyl core.
  • L can be a linear or branched structure.
  • the polymeric modifying can be branched or linear.
  • the polymeric modifying moiety comprises two or more repeating units that can be water-soluble or essentially insoluble in water.
  • Exemplary water-soluble polymers of use in the compounds of the invention include PEG, e.g., m-PEG, PPG, e.g., m-PPG, polysialic acid, polyglutamate, polyaspartate, polylysine, polyethyeleneimine, biodegradable polymers (e.g., polylactide, polyglyceride), and functionalized PEG, e.g., terminal-functionalized PEG.
  • the glycosyl core of the glycosyl linking groups of use in the Factor IX conjugates of the invention is selected from both natural and unnatural furanoses and pyranoses.
  • the unnatural saccharides optionally include an alkylated or acylated hydroxyl and/or amine moiety, e.g., ethers, esters and amide substituents on the ring.
  • Other unnatural saccharides include an H, hydroxyl, ether, ester or amide substituent at a position on the ring at which such a substituent is not present in the natural saccharide.
  • the carbohydrate is missing a substituent that would be found in the carbohydrate from which its name is derived, e.g., deoxy sugars.
  • Still further exemplary unnatural sugars include both oxidized (e.g., -onic and -uronic acids) and reduced (sugar alcohols) carbohydrates.
  • the sugar moiety can be a mono-, oligo- or poly-
  • Exemplary natural sugars of use as components of glycosyl linking groups in the present invention include glucose, glucosamine, galactose, galactosamine, fucose, mannose, mannosamine, xylanose, ribose, N-acetyl glucose, N-acetyl glucosamine, N-acetyl galactose, N-acetyl galactosamine, and sialic acid.
  • the present invention provides an Factor IX peptide comprising the moiety:
  • D is a member selected from —OH and R 1 -L-HN—; G is a member selected from H and R 1 -L- and —C(O)(C 1 -C 6 )alkyl; R 1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue; and L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl.
  • D is a member selected from —OH and R 1 -L-HN—
  • G is a member selected from H and R 1 -L- and —C(O)(C 1 -C 6 )alkyl
  • R 1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue
  • L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and
  • the invention provides a peptide comprising a glycosyl linking group having the formula:
  • the group has the formula:
  • the group has the formula:
  • index p represents and integer from 1 to 10
  • c represents 0 or 1.
  • the invention provides a method of making a PEGylated Factor IX peptide of the invention.
  • the method includes: (a) contacting a substrate Factor IX peptide comprising a glycosyl group selected from:
  • An exemplary modified sialic acid donor is CMP-sialic acid modified, through a linker moiety, with a polymer, e.g., a straight chain or branched poly(ethylene glycol) moiety.
  • the indices c and r independently represent 0 or 1.
  • the peptide can be acquired from essentially any source, however, in one embodiment, prior to being modified as discussed above, the Factor IX peptide is expressed in a suitable host.
  • Mammalian e.g., CHO
  • bacteria e.g., E. coli
  • insect cells e.g., Sf-9
  • FIG. 9 An exemplary O-linked glycan that is glycopegylated is shown in FIG. 9 .
  • Exemplary glycans produced in an insect system and a mammalian system, and subsequently glycoconjugated and or remodeled and glycoconjugated to PEG are set forth in FIG. 10 and FIG. 11 .
  • the invention provides a method of treating a condition in a subject in need thereof.
  • exemplary conditions include those characterized by compromised blood clotting in the subject.
  • the method includes the step of administering to the subject an amount of the polymer-modified Factor IX peptide of the invention effective to ameliorate the condition in the subject.
  • the invention provides a method of enhancing blood clotting in a mammal.
  • the method includes administering to the mammal an amount of the polymer-modified Factor IX peptide of the invention effective to enhance clotting in the mammal.
  • the invention provides a method of treating a condition in a subject in need of treatment with Factor IX.
  • the method includes the step of administering to the subject an amount of a polymer-modified Factor IX peptide of the invention effective to ameliorate the condition of the subject.
  • the invention provides a pharmaceutical formulation comprising a polymer-modified Factor IX peptide of the invention and a pharmaceutically acceptable carrier.
  • each of the amino acid residues to which the polymer is bound has the same structure.
  • one peptide includes an asparagine linked glycosyl residue
  • at least about 70%, 80%, 90%, 95%, 97%, 99%, 99.2%, 99.4%, 99.6%, or more preferably 99.8% of the peptides in the population will have the same glycosyl residue covalently bound to the same Ser residue.
  • this is true of a glycosyl residue linked to a threonine or a serine.
  • FIG. 1 is the structure of Factor IX, showing the presence and location of potential glycosylation sites at Asn 157, Asn 167; Ser 53, Ser 61, Thr 159, Thr 169, and Thr 172.
  • FIG. 2 is a scheme showing an exemplary embodiment of the invention in which a carbohydrate residue on a Factor IX peptide is remodeled and glycopegylated: (A) sialic acid moieties are removed by sialidase and the resulting galactose residues are glycopegylated with the sialic acid derivative of FIG.
  • any glycosylated Factor IX molecule may comprise any mixture of mono-, bi- tri-, or tetra-antennary N-linked glycosyl residues and any one or more of the branches may further comprise a modified sialic acid moiety of the invention.
  • the modified glycan can be positioned at any one or more N- or O-linked glycosylation site without limitation.
  • FIG. 3 is a plot comparing the in vivo residence lifetimes of unglycosylated Factor IX and enzymatically glycoPEGylated Factor IX.
  • FIG. 4 is a table comparing the activities of the species shown in FIG. 3 .
  • FIG. 5 is the amino acid sequence of Factor IX.
  • FIG. 6 is a graphic presentation of the pharmacokinetic properties of various glycoPEGylated Factor IX molecules compared to a non-pegylated Factor IX.
  • LS refers to “low substitution” (the peptide is glycoPEGylated using ST3Gal3 without desialylation).
  • HS refers to high substitution (the peptide is glycoPEGylated using ST3Gal3, following desialylation).
  • Unmodified Gal residues are optionally capped with Sia.
  • FIG. 7 is a synthetic scheme for producing an exemplary PEG-glycosyl linking group precursor (modified sugar) of us in preparing the conjugates of the invention.
  • FIG. 8 is a table of sialyl transferases of use to transfer onto an acceptor a modified sialic acid moiety, such as those set forth herein and unmodified sialic acid moieties.
  • FIG. 9 shows an exemplary O-linked glycan structure on a Factor IX glycoconjugate of the invention. Each index n is independently selected.
  • FIG. 10 shows an exemplary N-linked glycan structure on a mutant Factor IX glycoconjugate of the invention expressed in insect cells (and remodeled and glycopegylated) in which the mutant includes one or more N-linked glycosylation sites.
  • FIG. 11 shows an exemplary N-linked glycan structure on a mutant Factor IX glycoconjugate of the invention expressed in mammalian cells (and glycopegylated) in which the mutant includes one or more N-linked glycosylation sites: A) N-linked glycans of Factor IX expressed in CHO; B) N-linked glycans of CHO-derived Factor IX glycoPEGylated with CST-II or ⁇ 2,8 sialyltransferase; C)N-linked glycans of CHO-derived Factor IX glycoPEGylated with CST-II and/or ST3Gal3.
  • a glycine linker can be interposed between the linear and/or branched PEG species such as discussed herein.
  • FIG. 12 illustrates exemplary modified sialic acid nucleotides useful in the practice of the invention.
  • A Structure of exemplary branched (e.g., 30 kDa, 40 kDa) CMP-sialic acid-PEG sugar nucleotides.
  • B Structure of linear CMP-sialic acid-PEG (e.g., 10 kDa).
  • PEG poly(ethylene glycol); PPG, poly(propylene glycol); Ara, arabinosyl; Fru, fructosyl; Fuc, fucosyl; Gal, galactosyl; GalNAc, N-acetylgalactosaminyl; Glc, glucosyl; GlcNAc, N-acetylglucosaminyl; Man, mannosyl; ManAc, mannosaminyl acetate; Xyl, xylosyl; NeuAc (N-acetylneuraminyl), Sia (sialyl); M6P, mannose-6-phosphate.
  • oligosaccharides described herein are described with the name or abbreviation for the non-reducing saccharide (i.e., Gal), followed by the configuration of the glycosidic bond ( ⁇ or ⁇ ), the ring bond (1 or 2), the ring position of the reducing saccharide involved in the bond (2, 3, 4, 6 or 8), and then the name or abbreviation of the reducing saccharide (i.e., GlcNAc).
  • Each saccharide is preferably a pyranose.
  • Oligosaccharides are considered to have a reducing end and a non-reducing end, whether or not the saccharide at the reducing end is in fact a reducing sugar. In accordance with accepted nomenclature, oligosaccharides are depicted herein with the non-reducing end on the left and the reducing end on the right.
  • sialic acid refers to any member of a family of nine-carbon carboxylated sugars.
  • the most common member of the sialic acid family is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid (often abbreviated as Neu5Ac, NeuAc, or NANA).
  • a second member of the family is N-glycolyl-neuraminic acid (Neu5Gc or NeuGc), in which the N-acetyl group of NeuAc is hydroxylated.
  • a third sialic acid family member is 2-keto-3-deoxy-nonulosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J. Biol. Chem. 265: 21811-21819 (1990)). Also included are 9-substituted sialic acids such as a 9-O—C 1 -C 6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-acetyl-Neu5Ac, 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac.
  • KDN 2-keto-3-deoxy-nonulosonic acid
  • 9-substituted sialic acids such as a 9-O—C 1 -C 6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-
  • sialic acid family see, e.g., Varki, Glycobiology 2: 25-40 (1992); Sialic Acids: Chemistry, Metabolism and Function , R. Schauer, Ed. (Springer-Verlag, New York (1992)).
  • the synthesis and use of sialic acid compounds in a sialylation procedure is disclosed in international application WO 92/16640, published Oct. 1, 1992.
  • “Peptide” refers to a polymer in which the monomers are amino acids and are joined together through amide bonds, alternatively referred to as a polypeptide. Additionally, unnatural amino acids, for example, ⁇ -alanine, phenylglycine and homoarginine are also included. Amino acids that are not gene-encoded may also be used in the present invention. Furthermore, amino acids that have been modified to include reactive groups, glycosylation sites, polymers, therapeutic moieties, biomolecules and the like may also be used in the invention. All of the amino acids used in the present invention may be either the D - or L -isomer. The L -isomer is generally preferred. In addition, other peptidomimetics are also useful in the present invention.
  • peptide refers to both glycosylated and unglycosylated peptides. Also included are peptides that are incompletely glycosylated by a system that expresses the peptide.
  • Spatola A. F., in C HEMISTRY AND B IOCHEMISTRY OF A MINO A CIDS , P EPTIDES AND P ROTEINS , B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983).
  • peptide conjugate refers to species of the invention in which a peptide is conjugated with a modified sugar as set forth herein.
  • amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
  • Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
  • Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function in a manner similar to a naturally occurring amino acid.
  • modified sugar refers to a naturally- or non-naturally-occurring carbohydrate that is enzymatically added onto an amino acid or a glycosyl residue of a peptide in a process of the invention.
  • the modified sugar is selected from enzyme substrates including, but not limited to sugar nucleotides (mono-, di-, and tri-phosphates), activated sugars (e.g., glycosyl halides, glycosyl mesylates) and sugars that are neither activated nor nucleotides.
  • the “modified sugar” is covalently functionalized with a “modifying group.”
  • modifying groups include, but are not limited to, PEG moieties, therapeutic moieties, diagnostic moieties, biomolecules and the like.
  • the modifying group is preferably not a naturally occurring, or an unmodified carbohydrate.
  • the locus of functionalization with the modifying group is selected such that it does not prevent the “modified sugar” from being added enzymatically to a peptide.
  • water-soluble refers to moieties that have some detectable degree of solubility in water. Methods to detect and/or quantify water solubility are well known in the art.
  • Exemplary water-soluble polymers include peptides, saccharides, poly(ethers), poly(amines), poly(carboxylic acids) and the like. Peptides can have mixed sequences of be composed of a single amino acid, e.g., poly(lysine).
  • An exemplary polysaccharide is poly(sialic acid).
  • An exemplary poly(ether) is poly(ethylene glycol).
  • Poly(ethylene imine) is an exemplary polyamine, and poly(acrylic) acid is a representative poly(carboxylic acid).
  • the polymer backbone of the water-soluble polymer can be poly(ethylene glycol) (i.e. PEG).
  • PEG poly(ethylene glycol)
  • other related polymers are also suitable for use in the practice of this invention and that the use of the term PEG or poly(ethylene glycol) is intended to be inclusive and not exclusive in this respect.
  • PEG includes poly(ethylene glycol) in any of its forms, including alkoxy PEG, difunctional PEG, multiarmed PEG, forked PEG, branched PEG, pendent PEG (i.e. PEG or related polymers having one or more functional groups pendent to the polymer backbone), or PEG with degradable linkages therein.
  • the polymer backbone can be linear or branched.
  • Branched polymer backbones are generally known in the art.
  • a branched polymer has a central branch core moiety and a plurality of linear polymer chains linked to the central branch core.
  • PEG is commonly used in branched forms that can be prepared by addition of ethylene oxide to various polyols, such as glycerol, pentaerythritol and sorbitol.
  • the central branch moiety can also be derived from several amino acids, such as lysine.
  • the branched poly(ethylene glycol) can be represented in general form as R(-PEG-OH) m in which R represents the core moiety, such as glycerol or pentaerythritol, and m represents the number of arms.
  • R represents the core moiety, such as glycerol or pentaerythritol
  • m represents the number of arms.
  • Multi-armed PEG molecules such as those described in U.S. Pat. No. 5,932,462, which is incorporated by reference herein in its entirety, can also be used as the polymer backbone.
  • polymers are also suitable for the invention.
  • suitable polymers include, but are not limited to, other poly(alkylene glycols), such as poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxypropylmethacrylamide), poly( ⁇ -hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), such as described in U.S. Pat.
  • PPG poly(propylene glycol)
  • PPG poly(propylene glycol)
  • copolymers of ethylene glycol and propylene glycol and the like poly(oxyethylated polyol), poly(olefinic alcohol),
  • AUC area under the curve
  • half-life or “t1 ⁇ 2”, as used herein in the context of administering a peptide drug to a patient, is defined as the time required for plasma concentration of a drug in a patient to be reduced by one half. There may be more than one half-life associated with the peptide drug depending on multiple clearance mechanisms, redistribution, and other mechanisms well known in the art. Usually, alpha and beta half-lives are defined such that the alpha phase is associated with redistribution, and the beta phase is associated with clearance. However, with protein drugs that are, for the most part, confined to the bloodstream, there can be at least two clearance half-lives.
  • rapid beta phase clearance may be mediated via receptors on macrophages, or endothelial cells that recognize terminal galactose, N-acetylgalactosamine, N-acetylglucosamine, mannose, or fucose.
  • Slower beta phase clearance may occur via renal glomerular filtration for molecules with an effective radius ⁇ 2 nm (approximately 68 kD) and/or specific or non-specific uptake and metabolism in tissues.
  • GlycoPEGylation may cap terminal sugars (e.g., galactose or N-acetylgalactosamine) and thereby block rapid alpha phase clearance via receptors that recognize these sugars.
  • glycoconjugation refers to the enzymatically mediated conjugation of a modified sugar species to an amino acid or glycosyl residue of a polypeptide, e.g., a Factor IX peptide of the present invention.
  • a subgenus of “glycoconjugation” is “glycol-PEGylation,” in which the modifying group of the modified sugar is poly(ethylene glycol), and alkyl derivative (e.g., m-PEG) or reactive derivative (e.g., H 2 N-PEG, HOOC-PEG) thereof.
  • large-scale and “industrial-scale” are used interchangeably and refer to a reaction cycle that produces at least about 250 mg, preferably at least about 500 mg, and more preferably at least about 1 gram of glycoconjugate at the completion of a single reaction cycle.
  • glycosyl linking group refers to a glycosyl residue to which a modifying group (e.g., PEG moiety, therapeutic moiety, biomolecule) is covalently attached; the glycosyl linking group joins the modifying group to the remainder of the conjugate.
  • the “glycosyl linking group” becomes covalently attached to a glycosylated or unglycosylated peptide, thereby linking the agent to an amino acid and/or glycosyl residue on the peptide.
  • glycosyl linking group is generally derived from a “modified sugar” by the enzymatic attachment of the “modified sugar” to an amino acid and/or glycosyl residue of the peptide.
  • the glycosyl linking group can be a saccharide-derived structure that is degraded during formation of modifying group-modified sugar cassette (e.g., oxidation ⁇ Schiff base formation ⁇ reduction), or the glycosyl linking group may be intact.
  • an “intact glycosyl linking group” refers to a linking group that is derived from a glycosyl moiety in which the saccharide monomer that links the modifying group and to the remainder of the conjugate is not degraded, e.g., oxidized, e.g., by sodium metaperiodate.
  • “Intact glycosyl linking groups” of the invention may be derived from a naturally occurring oligosaccharide by addition of glycosyl unit(s) or removal of one or more glycosyl unit from a parent saccharide structure.
  • targeting moiety refers to species that will selectively localize in a particular tissue or region of the body. The localization is mediated by specific recognition of molecular determinants, molecular size of the targeting agent or conjugate, ionic interactions, hydrophobic interactions and the like. Other mechanisms of targeting an agent to a particular tissue or region are known to those of skill in the art.
  • exemplary targeting moieties include antibodies, antibody fragments, transferrin, HS-glycoprotein, coagulation factors, serum proteins, ⁇ -glycoprotein, G-CSF, GM-CSF, M-CSF, EPO and the like.
  • therapeutic moiety means any agent useful for therapy including, but not limited to, antibiotics, anti-inflammatory agents, anti-tumor drugs, cytotoxins, and radioactive agents.
  • therapeutic moiety includes prodrugs of bioactive agents, constructs in which more than one therapeutic moiety is bound to a carrier, e.g, multivalent agents.
  • Therapeutic moiety also includes proteins and constructs that include proteins.
  • Exemplary proteins include, but are not limited to, Granulocyte Colony Stimulating Factor (GCSF), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interferon (e.g., Interferon- ⁇ , - ⁇ , - ⁇ ), Interleukin (e.g., Interleukin II), serum proteins (e.g., Factors VII, VIIa, VIII, IX, and X), Human Chorionic Gonadotropin (HCG), Follicle Stimulating Hormone (FSH) and Lutenizing Hormone (LH) and antibody fusion proteins (e.g. Tumor Necrosis Factor Receptor ((TNFR)/Fc domain fusion protein)).
  • GCSF Granulocyte Colony Stimulating Factor
  • GMCSF Granulocyte Macrophage Colony Stimulating Factor
  • Interferon e.g., Interferon- ⁇ , - ⁇ , - ⁇
  • Interleukin e
  • “pharmaceutically acceptable carrier” includes any material, which when combined with the conjugate retains the conjugates' activity and is non-reactive with the subject's immune systems. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Other carriers may also include sterile solutions, tablets including coated tablets and capsules. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Compositions comprising such carriers are formulated by well known conventional methods.
  • administering means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular, intralesional, intranasal or subcutaneous administration, or the implantation of a slow-release device e.g., a mini-osmotic pump, to the subject.
  • Administration is by any route including parenteral, and transmucosal (e.g., oral, nasal, vaginal, rectal, or transdermal).
  • Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial.
  • injection is to treat a tumor, e.g., induce apoptosis
  • administration may be directly to the tumor and/or into tissues surrounding the tumor.
  • Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transdermal patches, etc.
  • Ameliorating refers to any indicia of success in the treatment of a pathology or condition, including any objective or subjective parameter such as abatement, remission or diminishing of symptoms or an improvement in a patient's physical or mental well-being. Amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination and/or a psychiatric evaluation.
  • therapy refers to “treating” or “treatment” of a disease or condition including preventing the disease or condition from occurring in an animal that may be predisposed to the disease but does not yet experience or exhibit symptoms of the disease (prophylactic treatment), inhibiting the disease (slowing or arresting its development), providing relief from the symptoms or side-effects of the disease (including palliative treatment), and relieving the disease (causing regression of the disease).
  • an amount effective to or a “therapeutically effective amount” or any grammatically equivalent term means the amount that, when administered to an animal for treating a disease, is sufficient to effect treatment for that disease.
  • isolated refers to a material that is substantially or essentially free from components, which are used to produce the material.
  • isolated refers to material that is substantially or essentially free from components which normally accompany the material in the mixture used to prepare the peptide conjugate.
  • isolated and pure are used interchangeably.
  • isolated peptide conjugates of the invention have a level of purity preferably expressed as a range. The lower end of the range of purity for the peptide conjugates is about 60%, about 70% or about 80% and the upper end of the range of purity is about 70%, about 80%, about 90% or more than about 90%.
  • the peptide conjugates are more than about 90% pure, their purities are also preferably expressed as a range.
  • the lower end of the range of purity is about 90%, about 92%, about 94%, about 96% or about 98%.
  • the upper end of the range of purity is about 92%, about 94%, about 96%, about 98% or about 100% purity.
  • Purity is determined by any art-recognized method of analysis (e.g., band intensity on a silver stained gel, polyacrylamide gel electrophoresis, HPLC, or a similar means).
  • Essentially each member of the population describes a characteristic of a population of peptide conjugates of the invention in which a selected percentage of the modified sugars added to a peptide are added to multiple, identical acceptor sites on the peptide. “Essentially each member of the population” speaks to the “homogeneity” of the sites on the peptide conjugated to a modified sugar and refers to conjugates of the invention, which are at least about 80%, preferably at least about 90% and more preferably at least about 95% homogenous.
  • “Homogeneity,” refers to the structural consistency across a population of acceptor moieties to which the modified sugars are conjugated. Thus, in a peptide conjugate of the invention in which each modified sugar moiety is conjugated to an acceptor site having the same structure as the acceptor site to which every other modified sugar is conjugated, the peptide conjugate is said to be about 100% homogeneous. Homogeneity is typically expressed as a range. The lower end of the range of homogeneity for the peptide conjugates is about 60%, about 70% or about 80% and the upper end of the range of purity is about 70%, about 80%, about 90% or more than about 90%.
  • the peptide conjugates are more than or equal to about 90% homogeneous, their homogeneity is also preferably expressed as a range.
  • the lower end of the range of homogeneity is about 90%, about 92%, about 94%, about 96% or about 98%.
  • the upper end of the range of purity is about 92%, about 94%, about 96%, about 98% or about 100% homogeneity.
  • the purity of the peptide conjugates is typically determined by one or more methods known to those of skill in the art, e.g., liquid chromatography-mass spectrometry (LC-MS), matrix assisted laser desorption mass time of flight spectrometry (MALDITOF), capillary electrophoresis, and the like.
  • substantially uniform glycoform or a “substantially uniform glycosylation pattern,” when referring to a glycopeptide species, refers to the percentage of acceptor moieties that are glycosylated by the glycosyltransferase of interest (e.g., fucosyltransferase). For example, in the case of a ⁇ 1,2 fucosyltransferase, a substantially uniform fucosylation pattern exists if substantially all (as defined below) of the Gal ⁇ 1,4-GlcNAc-R and sialylated analogues thereof are fucosylated in a peptide conjugate of the invention.
  • the starting material may contain glycosylated acceptor moieties (e.g., fucosylated Gal ⁇ 1,4-GlcNAc-R moieties).
  • glycosylated acceptor moieties e.g., fucosylated Gal ⁇ 1,4-GlcNAc-R moieties.
  • the calculated percent glycosylation will include acceptor moieties that are glycosylated by the methods of the invention, as well as those acceptor moieties already glycosylated in the starting material.
  • substantially in the above definitions of “substantially uniform” generally means at least about 40%, at least about 70%, at least about 80%, or more preferably at least about 90%, and still more preferably at least about 95% of the acceptor moieties for a particular glycosyltransferase are glycosylated.
  • substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH 2 O— is intended to also recite —OCH 2 —.
  • alkyl by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C 1 -C 10 means one to ten carbons).
  • saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
  • An unsaturated alkyl group is one having one or more double bonds or triple bonds.
  • alkyl groups examples include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
  • alkyl unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups that are limited to hydrocarbon groups are termed “homoalkyl”.
  • alkylene by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH 2 CH 2 CH 2 CH 2 —, and further includes those groups described below as “heteroalkylene.”
  • an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention.
  • a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • alkoxy alkylamino and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
  • heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
  • Examples include, but are not limited to, —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —CH 3 , —CH 2 —CH 2 , —S(O)—CH 3 , —CH 2 —CH 2 -S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH—N(CH 3 )—CH 3 .
  • heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH 2 —CH 2 —S—CH 2 —CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —.
  • heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O) 2 R′— represents both —C(O) 2 R′— and —R′C(O) 2 —.
  • cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocycloalkyl examples include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • halo or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
  • aryl means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently.
  • heteroaryl refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinoly
  • aryl when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above.
  • arylalkyl is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
  • alkyl group e.g., benzyl, phenethyl, pyridylmethyl and the like
  • an oxygen atom e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naph
  • alkyl e.g., “alkyl,” “heteroalkyl,” “aryl” and “heteroaryl” is meant to include both substituted and unsubstituted forms of the indicated radical.
  • Preferred substituents for each type of radical are provided below.
  • alkyl and heteroalkyl radicals are generically referred to as “alkyl group substituents,” and they can be one or more of a variety of groups selected from, but not limited to: —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, ——OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′
  • R′, R′′, R′′′ and R′′′′ each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
  • each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
  • R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
  • —NR′R′′ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl.
  • alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF 3 and —CH 2 CF 3 ) and acyl (e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like).
  • haloalkyl e.g., —CF 3 and —CH 2 CF 3
  • acyl e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like.
  • substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents.”
  • the substituents are selected from, for example: halogen, —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR—C(NR′R′′R′′′) ⁇ NR′′′′, —NR—C(NR′R′′) ⁇ NR′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′
  • each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
  • the symbol X represents “R” as described above.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′) q -U-, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r —B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 NR′— or a single bond, and r is an integer of from 1 to 4.
  • One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′) s —X—(CR′′R′′′) d —, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O) 2 —, or —S(O) 2 NR′—.
  • the substituents R, R′, R′′ and R′′′ are preferably independently selected from hydrogen or substituted or unsubstituted (C 1 -C 6 )alkyl.
  • heteroatom is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • Factor IX is vital in the blood coagulation cascade.
  • the structure and sequence of Factor IX is provided in FIG. 1 and FIG. 5 .
  • a deficiency of Factor IX in the body characterizes a type of hemophilia (type B).
  • Treatment of this disease is usually limited to intravenous transfusion of human plasma protein concentrates of Factor IX.
  • transfusion of blood concentrates involves the risk of transmission of viral hepatitis, acquired immune deficiency syndrome or thromboembolic diseases to the recipient.
  • the present invention provides conjugates of glycosylated and unglycosylated Factor IX peptides with polymers, e.g., PEG (m-PEG), PPG (m-PPG), etc.
  • the conjugates may be additionally or alternatively modified by further conjugation with diverse species such as therapeutic moieties, diagnostic moieties, targeting moieties and the like.
  • the conjugates of the invention are formed by the enzymatic attachment of a modified sugar to the glycosylated or unglycosylated peptide.
  • a glycosylation site and/or a glycosyl residue provides a locus for conjugating a sugas bearing a modifying group to the peptide, e.g., by glycoconjugation.
  • An exemplary modifying group is a water-soluble polymer, such as poly(ethylene glycol), e.g., methoxy-poly(ethylene glycol).
  • Modification of the Factor IX peptides e.g., with a water-soluble peptide can improve the stability and retention time of the recombinant Factor IX in a patient's circulation, and/or reduce the antigenicity of recombinant Factor IX.
  • the methods of the invention make it possible to assemble peptides and glycopeptides that have a substantially homogeneous derivatization pattern.
  • the enzymes used in the invention are generally selective for a particular amino acid residue, combination of amino acid residues, or particular glycosyl residues of the peptide.
  • the methods are also practical for large-scale production of modified peptides and glycopeptides.
  • the methods of the invention provide a practical means for large-scale preparation of glycopeptides having preselected uniform derivatization patterns.
  • the present invention also provides conjugates of glycosylated and unglycosylated peptides with increased therapeutic half-life due to, for example, reduced clearance rate, or reduced rate of uptake by the immune or reticuloendothelial system (RES).
  • the methods of the invention provide a means for masking antigenic determinants on peptides, thus reducing or eliminating a host immune response against the peptide.
  • Selective attachment of targeting agents can also be used to target a peptide to a particular tissue or cell surface receptor that is specific for the particular targeting agent.
  • the present invention provides a conjugate between a selected modifying group and an Factor IX peptide.
  • the link between the peptide and the modifying moiety includes a glycosyl linking group interposed between the peptide and the selected moiety.
  • the selected modifying moiety is essentially any species that can be attached to a saccharide unit, resulting in a “modified sugar” that is recognized by an appropriate transferase enzyme, which appends the modified sugar onto the peptide, or a glycosyl residue attached thereto.
  • the saccharide component of the modified sugar when interposed between the peptide and a selected moiety, becomes a “glycosyl linking group,” e.g., an “intact glycosyl linking group.”
  • the glycosyl linking group is formed from any mono- or oligo-saccharide that, after modification with the modifying group, is a substrate for an enzyme that adds the modified sugar to an amino acid or glycosyl residue of a peptide.
  • the glycosyl linking group can be, or can include, a saccharide moiety that is degradatively modified before or during the addition of the modifying group.
  • the glycosyl linking group can be derived from a saccharide residue that is produced by oxidative degradation of an intact saccharide to the corresponding aldehyde, e.g., via the action of metaperiodate, and subsequently converted to a Schiff base with an appropriate amine, which is then reduced to the corresponding amine.
  • the “agent” is a therapeutic agent, a bioactive agent, a detectable label, water-soluble moiety (e.g., PEG, m-PEG, PPG, and m-PPG) or the like.
  • the “agent” can be a peptide, e.g., enzyme, antibody, antigen, etc.
  • the linker can be any of a wide array of linking groups, infra. Alternatively, the linker may be a single bond or a “zero order linker.”
  • the selected modifying group is a water-soluble polymer, e.g., m-PEG.
  • the water-soluble polymer is covalently attached to the peptide via a glycosyl linking group.
  • the glycosyl linking group is covalently attached to an amino acid residue or a glycosyl residue of the peptide.
  • the invention also provides conjugates in which an amino acid residue and a glycosyl residue are modified with a glycosyl linking group.
  • An exemplary water-soluble polymer is poly(ethylene glycol), e.g., methoxy-poly(ethylene glycol).
  • the poly(ethylene glycol) used in the present invention is not restricted to any particular form or molecular weight range.
  • the molecular weight is preferably between 500 and 100,000.
  • a molecular weight of 2000-60,000 is preferably used and preferably of from about 5,000 to about 30,000.
  • the poly(ethylene glycol) is a branched PEG having more than one PEG moiety attached.
  • Examples of branched PEGs are described in U.S. Pat. No. 5,932,462; U.S. Pat. No. 5,342,940; U.S. Pat. No. 5,643,575; U.S. Pat. No. 5,919,455; U.S. Pat. No. 6,113,906; U.S. Pat. No. 5,183,660; WO 02/09766; Kodera Y., Bioconjugate Chemistry 5: 283-288 (1994); and Yamasaki et al., Agric. Biol. Chem., 52: 2125-2127, 1998.
  • the molecular weight of each poly(ethylene glycol) of the branched PEG is less than or equal to 40,000 daltons.
  • the present invention provides conjugates that are highly homogenous in their substitution patterns. Using the methods of the invention, it is possible to form peptide conjugates in which essentially all of the modified sugar moieties across a population of conjugates of the invention are attached to a structurally identical amino acid or glycosyl residue.
  • the invention provides a peptide conjugate having a population of water-soluble polymer moieties, which are covalently bound to the peptide through a glycosyl linking group, e.g., an intact glycosyl linking group.
  • each member of the population is bound via the glycosyl linking group to a glycosyl residue of the peptide, and each glycosyl residue of the peptide to which the glycosyl linking group is attached has the same structure.
  • a peptide conjugate having a population of water-soluble polymer moieties covalently bound thereto through a glycosyl linking group.
  • a glycosyl linking group essentially every member of the population of water soluble polymer moieties is bound to an amino acid residue of the peptide via a glycosyl linking group, and each amino acid residue having a glycosyl linking group attached thereto has the same structure.
  • the present invention also provides conjugates analogous to those described above in which the peptide is conjugated to a therapeutic moiety, diagnostic moiety, targeting moiety, toxin moiety or the like via an intact glycosyl linking group.
  • a therapeutic moiety e.g., diagnostic moiety, targeting moiety, toxin moiety or the like via an intact glycosyl linking group.
  • Each of the above-recited moieties can be a small molecule, natural polymer (e.g., polypeptide) or synthetic polymer.
  • the modifying moiety is attached to a sialic acid, it is generally preferred that the modifying moiety is substantially non-fluorescent.
  • the glycosyl residue has the structure set forth above, it is conjugated to one or both Asn 157 and Asn 167.
  • Factor IX has been cloned and sequenced. Essentially any Factor IX peptide having any sequence is of use as the Factor IX peptide component of the conjugates of the present invention.
  • the peptide has the sequence presented herein as SEQ ID NO:1:
  • Factor IX variants are well known in the art, as described in, for example, U.S. Pat. Nos. 4,770,999, 5,521,070 in which a tyrosine is replaced by an alanine in the first position, U.S. Pat. No. 6,037,452, in which Factor XI is linked to an alkylene oxide group, and U.S. Pat. No. 6,046,380, in which the DNA encoding Factor IX is modified in at least one splice site.
  • variants of Factor IX are well known in the art, and the present disclosure encompasses those variants known or to be developed or discovered in the future.
  • Methods for determining the activity of a mutant or modified Factor IX can be carried out using the methods described in the art, such as a one stage activated partial thromboplastin time assay as described in, for example, Biggs (1972, Human Blood Coagulation Homeostasis and Thrombosis (Ed. 1), Oxford, Blackwell, Scientific, pg. 614).
  • the assay can be performed with equal volumes of activated partial thromboplastin reagent, Factor IX deficient plasma isolated from a patient with hemophilia B using sterile phlebotomy techniques well known in the art, and normal pooled plasma as standard, or the sample.
  • one unit of activity is defined as that amount present in one milliliter of normal pooled plasma.
  • an assay for biological activity based on the ability of Factor IX to reduce the clotting time of plasma from Factor IX-deficient patients to normal can be performed as described in, for example, Proctor and Rapaport ( Amer. J. Clin. Path. 36: 212 (1961).
  • the peptides of the invention include at least one N-linked or O-linked glycosylation site, at least one of which is conjugated to a glycosyl residue that includes a PEG moiety.
  • the PEG is covalently attached to the peptide via an intact glycosyl linking group.
  • the glycosyl linking group is covalently attached to either an amino acid residue or a glycosyl residue of the peptide.
  • the glycosyl linking group is attached to one or more glycosyl units of a glycopeptide.
  • the invention also provides conjugates in which the glycosyl linking group is attached to both an amino acid residue and a glycosyl residue.
  • the PEG moiety is attached to an intact glycosyl linker directly, or via a non-glycosyl linker, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl.
  • neither the amino nor the carboxy terminus of the Factor IX peptide is derivatized with a polymeric modifying moiety.
  • the peptides of the invention include at least one N-linked or O-linked glycosylation site, which is glycosylated with a glycosyl residue that includes a polymeric modifying moiety, e.g., a PEG moiety.
  • the PEG is covalently attached to the peptide via an intact glycosyl linking group.
  • the glycosyl linking group is covalently attached to either an amino acid residue or a glycosyl residue of the peptide.
  • the glycosyl linking group is attached to one or more glycosyl units of a glycopeptide.
  • the invention also provides conjugates in which a glycosyl linking group is attached to both an amino acid residue and a glycosyl residue.
  • the PEG moiety is attached to an intact glycosyl linker directly, or via a non-glycosyl linker, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl.
  • the invention utilizes a modified sugar amine that has the formula:
  • J is a glycosyl moiety (e.g., a nucleotide sugar)
  • L is a bond or a linker
  • R 1 is the modifying group, e.g., a polymeric modifying moiety.
  • bonds are those that are formed between an NH 2 moiety on the glycosyl moiety and a group of complementary reactivity on the modifying group.
  • R 1 includes a carboxylic acid moiety, this moiety may be activated and coupled with the NH 2 moiety on the glycosyl residue affording a bond having the structure NHC(O)R 1 .
  • J is preferably a glycosyl moiety that is “intact”, not having been degraded by exposure to conditions that cleave the pyranose or furanose structure, e.g. oxidative conditions, e.g., sodium periodate.
  • Exemplary linkers include alkyl and heteroalkyl moieties.
  • the linkers include linking groups, for example acyl-based linking groups, e.g., —C(O)NH—, —OC(O)NH—, and the like.
  • the linking groups are bonds formed between components of the species of the invention, e.g., between the glycosyl moiety and the linker (L), or between the linker and the modifying group (R 1 ).
  • Other exemplary linking groups are ethers, thioethers and amines.
  • the linker is an amino acid residue, such as a glycine residue.
  • the carboxylic acid moiety of the glycine is converted to the corresponding amide by reaction with an amine on the glycosyl residue, and the amine of the glycine is converted to the corresponding amide or urethane by reaction with an activated carboxylic acid or carbonate of the modifying group.
  • Another exemplary linker is a PEG moiety, e.g., a PEG moiety that is functionalized with an amino acid residue.
  • the PEG linker is conjugated to the glycosyl group through the amino acid residue at one PEG terminus and bound to R 1 through the other PEG terminus.
  • the amino acid residue is bound to R 1 and the PEG terminus, which is not bound to the amino acid, is bound to the glycosyl group.
  • An exemplary species of NH-L-R 1 has the formula: —NH ⁇ C(O)(CH 2 ) n NH ⁇ s ⁇ C(O)(CH 2 ) b (OCH 2 CH 2 ) c —O—(CH 2 ) d NH ⁇ t R 1 , in which the indices s and t are independently 0 or 1.
  • the indices a, b and d are independently integers from 0 to 20, and c is an integer from 1 to 2500.
  • Other similar linkers are based on species in which an —NH moiety is replaced by another group, for example, —S, —O or —CH 2 .
  • one or more of the bracketed moieties corresponding to indices s and t can be replaced with a substituted or unsubstituted alkyl or heteroalkyl moiety.
  • the invention utilizes compounds in which NH-L-R 1 is: NHC(O)(CH 2 ) a NHC(O)(CH 2 ) b (OCH 2 CH 2 ) c —O—(CH 2 ) d NHR 1 , NHC(O)(CH 2 ) b (OCH 2 CH 2 ) c —O—(CH 2 ) d NHR 1 , NHC(O)O(CH 2 ) b (OCH 2 CH 2 ) c —O—(CH 2 ) d NHR 1 , NH(CH 2 ) a NHC(O)(CH 2 ) b (OCH 2 CH 2 ) c —O—(CH 2 ) d NHR 1 , NHC(O)(CH 2 ) a NHR 1 , NH(CH 2 ) a NHR 1 , and NHR 1 .
  • the indices a, b and d are independently selected from the integers from
  • c is selected such that the PEG moiety is approximately 1 kD, 5 kD, 10, kD, 15 kD, 20 kD or 30 kD.
  • the invention provides a glycopeptide that is conjugated to a polymeric modifying moiety through an intact glycosyl linking group having a formula that is selected from:
  • R 2 is H, CH 2 OR 7 , COOR 7 or OR 7 , in which R 7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • R 7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • R 3 , R 4 , R 5 , R 6 and R 6′ independently represent H, substituted or unsubstituted alkyl, OR 8 , NHC(O)R 9 .
  • the index d is 0 or 1.
  • R 8 and R 9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, sialic acid or polysialic acid.
  • At least one of R 3 , R 4 , R 5 , R 6 or R 6′ includes the polymeric modifying moiety e.g., PEG, linked through a bond or a linking group.
  • R 6 and R 6 together with the carbon to which they are attached are components of the pyruvyl side chain of sialic acid. In a further exemplary embodiment, this side chain is functionalized with the polymeric modifying moiety.
  • R 6 and R 6′ together with the carbon to which they are attached are components of the side chain of sialic acid and the polymeric modifying moiety is a component of R 5 .
  • the polymeric modifying moiety is bound to the sugar core, generally through a heteroatom, e.g, nitrogen, on the core through a linker, L, as shown below:
  • R 1 is the polymeric moiety and L is selected from a bond and a linking group.
  • the index w represents an integer selected from 1-6, preferably 1-3 and more preferably 1-2.
  • Exemplary linking groups include substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl moieties and sialic acid.
  • An exemplary component of the linker is an acyl moiety.
  • An exemplary compound according to the invention has a structure according to Formulae I or II, in which at least one of R 2 , R 3 , R 4 , R 5 , R 6 or R 6′ has the formula:
  • At least one of R 2 , R 3 , R 4 , R 5 , R 6 or R 6′ has the formula:
  • R 1 is a linear polymeric modifying moiety
  • the polymeric modifying moiety-linker construct is a branched structure that includes two or more polymeric chains attached to central moiety.
  • the construct has the formula:
  • R 1 and L are as discussed above and w′ is an integer from 2 to 6, preferably from 2 to 4 and more preferably from 2 to 3.
  • L When L is a bond it is formed between a reactive functional group on a precursor of R 1 and a reactive functional group of complementary reactivity on the saccharyl core.
  • a precursor of L can be in place on the glycosyl moiety prior to reaction with the R 1 precursor.
  • the precursors of R 1 and L can be incorporated into a preformed cassette that is subsequently attached to the glycosyl moiety.
  • the selection and preparation of precursors with appropriate reactive functional groups is within the ability of those skilled in the art.
  • coupling the precursors proceeds by chemistry that is well understood in the art.
  • L is a linking group that is formed from an amino acid, or small peptide (e.g., 1-4 amino acid residues) providing a modified sugar in which the polymeric modifying moiety is attached through a substituted alkyl linker.
  • exemplary linkers include glycine, lysine, serine and cysteine.
  • the PEG moiety can be attached to the amine moiety of the linker through an amide or urethane bond.
  • the PEG is linked to the sulfur or oxygen atoms of cysteine and serine through thioether or ether bonds, respectively.
  • R 5 includes the polymeric modifying moiety.
  • R 5 includes both the polymeric modifying moiety and a linker, L, joining the modifying moiety to the remainder of the molecule.
  • L can be a linear or branched structure.
  • the polymeric modifying can be branched or linear.
  • the present invention provides an Factor IX peptide comprising the moiety:
  • D is a member selected from —OH and R 1 -L-HN—; G is a member selected from H and R 1 -L- and —C(O)(C 1 -C 6 )alkyl; R 1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue; and L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl.
  • D is a member selected from —OH and R 1 -L-HN—
  • G is a member selected from H and R 1 -L- and —C(O)(C 1 -C 6 )alkyl
  • R 1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue
  • L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and
  • the invention provides a conjugate formed between a modified sugar of the invention and a substrate Factor IX peptide.
  • the sugar moiety of the modified sugar becomes a glycosyl linking group interposed between the peptide substrate and the modifying group.
  • An exemplary glycosyl linking group is an intact glycosyl linking group, in which the glycosyl moiety or moieties forming the linking group are not degraded by chemical (e.g., sodium metaperiodate) or enzymatic (e.g., oxidase) processes.
  • Selected conjugates of the invention include a modifying group that is attached to the amine moiety of an amino-saccharide, e.g., mannosamine, glucosamine, galactosamine, sialic acid etc.
  • exemplary modifying group-intact glycosyl linking group cassettes according to this motif are based on a sialic acid structure, such as those having the formulae:
  • R 1 and L are as described above. Further detail about the structure of exemplary R 1 groups is provided below.
  • the conjugate is formed between a substrate Factor IX and a saccharyl moiety in which the modifying group is attached through a linker at the 6-carbon position of the saccharyl moiety.
  • illustrative conjugates according to this embodiment have the formula:
  • saccharyl moieties include, without limitation, glucose, glucosamine, N-acetyl-glucosamine, galactose, galactosamine, N-acetyl-galactosamine, mannose, mannosamine, N-acetyl-mannosamine, and the like.
  • the glycosyl structures on the peptide conjugates of the invention can have substantially any structure.
  • the glycans can be O-linked or N-linked.
  • each of the pyranose and furanose derivatives discussed above can be a component of a glycosyl moiety of a peptide.
  • the invention provides a modified Factor IX peptide that includes a glycosyl group having the formula:
  • the group has the formula:
  • the group has the formula:
  • the group has the formula:
  • index p represents and integer from 1 to 10; and c is either 0 or 1.
  • the PEG-glycosyl linking group is attached at Serine 61 (Ser 61) of Factor IX.
  • a glycoPEGylated Factor IX peptide of the invention includes at least one N-linked glycosyl residue selected from the glycosyl residues set forth below:
  • the index t is 0 or 1 and the index p is an integer from 1 to 10.
  • R 15 represents H, OH (e.g., Gal- OH ), a sialyl moiety, a polymer modified sialyl moiety (i.e., glycosyl linking group-polymeric modifying moiety (Sia-L-R 1 )) or a sialyl moiety to which is bound a polymer modified sialyl moiety (e.g., Sia-Sia-L-R 1 ) (“Sia-Sia p ”).
  • Exemplary polymer modified saccharyl moieties have a structure according to Formulae I and II.
  • An exemplary Factor IX peptide of the invention will include at least one glycan having a R 15′ that includes a structure according to Formulae I or II.
  • the oxygen, with the open valence, of Formulae I and II is preferably attached through a glycosidic linkage to a carbon of a Gal or GalNAc moiety.
  • the oxygen is attached to the carbon at position 3 of a galactose residue.
  • the modified sialic acid is linked ⁇ 2,3-to the galactose residue.
  • the sialic acid is linked ⁇ 2,6-to the galactose residue.
  • the invention provides an Factor IX peptide conjugate that includes a glycosyl linking group, such as those set forth above, that is covalently attached to an amino acid residue of the peptide.
  • a glycosyl linking group such as those set forth above, that is covalently attached to an amino acid residue of the peptide.
  • the glycosyl linking moiety is linked to a galactose residue through a Sia residue:
  • An exemplary species according to this motif is prepared by conjugating Sia-L-R 1 to a terminal sialic acid of a glycan using an enzyme that forms Sia-Sia bonds, e.g., CST-II, ST8Sia-II, ST8Sia-III and ST8Sia-IV.
  • the glycans have a formula that is selected from the group:
  • the glycans of this group generally correspond to those found on an Factor IX peptide that is produced by insect (e.g., Sf-9) cells, following remodeling according to the methods set forth herein.
  • insect-derived Factor IX that is expressed with a tri-mannosyl core is subsequently contacted with a GlcNAc donor and a GlcNAc transferase and a Gal donor and a Gal transferase.
  • Appending GlcNAc and Gal to the tri-mannosyl core is accomplished in either two steps or a single step.
  • a modified sialic acid is added to at least one branch of the glycosyl moiety as discussed herein.
  • Those Gal moieties that are not functionalized with the modified sialic acid are optionally “capped” by reaction with a sialic acid donor in the presence of a sialyl transferase.
  • the glycosyl linking group is attached to a member selected from Asn 157, Asn 167 and combinations thereof.
  • At least 60% of terminal Gal moieties in a population of peptides is capped with sialic acid, preferably at least 70%, more preferably, at least 80%, still more preferably at least 90% and even more preferably at least 95%, 96%, 97%, 98% or 99% are capped with sialic acid.
  • R 15 /R 15′ is as discussed above.
  • an exemplary modified Factor IX peptide of the invention will include at least one glycan with an R 15 /R 15′ moiety having a structure according to Formulae I or II.
  • glycosyl linking moiety has the formula:
  • b is 0 or 1.
  • the index s represents and integer from 1 to 10; and f represents and integer from 1 to 2500.
  • a PEG moiety that has a molecular weight of about 20 kDa.
  • the attachment of the glycosyl linking group a member selected from Ser 61, Ser 63, Thr 159, Thr 169, Thr 172 and combinations thereof.
  • the Factor IX is derived from insect cells, remodeled by adding GlcNAc and Gal to the mannose core and glycopegylated using a sialic acid bearing a linear PEG moiety, affording an Factor IX peptide that comprises at least one moiety having the formula:
  • the PEG of use in the conjugates of the invention can be linear or branched.
  • An exemplary precursor of use to form the branched conjugates according to this embodiment of the invention has the formula:
  • branched polymer species according to this formula are essentially pure water-soluble polymers.
  • X 3′ is a moiety that includes an ionizable, e.g., OH, COOH, H 2 PO 4 , HSO 3 , HPO 3 , and salts thereof, etc.) or other reactive functional group, e.g., infra.
  • C is carbon.
  • X 5 is preferably a non-reactive group (e.g., H, unsubstituted alkyl, unsubstituted heteroalkyl), and can be a polymeric arm.
  • R 16 and R 17 are independently selected polymeric arms, e.g., nonpeptidic, nonreactive polymeric arms (e.g., PEG)).
  • X 2 and X 4 are linkage fragments that are preferably essentially non-reactive under physiological conditions, which may be the same or different.
  • An exemplary linker includes neither aromatic nor ester moieties. Alternatively, these linkages can include one or more moiety that is designed to degrade under physiologically relevant conditions, e.g., esters, disulfides, etc.
  • X 2 and X 4 join polymeric arms R 16 and R 17 to C.
  • Exemplary linkage fragments for X 2 , X 3 and X 4 are independently selected and include S, SC(O)NH, HNC(O)S, SC(O)O, O, NH, NHC(O), (O)CNH and NHC(O)O, and OC(O)NH, CH 2 S, CH 2 O, CH 2 CH 2 O, CH 2 CH 2 S, (CH 2 ) o O, (CH 2 ) o S or (CH 2 ) o Y′-PEG wherein, Y′ is S, NH, NHC(O), C(O)NH, NHC(O)O, OC(O)NH, or O and o is an integer from 1 to 50.
  • the linkage fragments X 2 and X 4 are different linkage fragments.
  • the precursor (III), or an activated derivative thereof is reacted with, and thereby bound to a sugar, an activated sugar or a sugar nucleotide through a reaction between X 3′ and a group of complementary reactivity on the sugar moiety, e.g., an amine.
  • X 3′ reacts with a reactive functional group on a precursor to linker, L.
  • R 2 , R 3 , R 4 , R 5 R 6 or R 6′ of Formulae I and II can include the branched polymeric modifying moiety, or this moiety bound through L.
  • an exemplary linker is derived from a natural or unnatural amino acid, amino acid analogue or amino acid mimetic, or a small peptide formed from one or more such species.
  • certain branched polymers found in the compounds of the invention have the formula:
  • X a is a linkage fragment that is formed by the reaction of a reactive functional group, e.g., X 3′ , on a precursor of the branched polymeric modifying moiety and a reactive functional group on the sugar moiety, or a precursor to a linker.
  • a reactive functional group e.g., X 3′
  • X 3′ when X 3′ is a carboxylic acid, it can be activated and bound directly to an amine group pendent from an amino-saccharide (e.g., Sia, GalNH 2 , GlcNH 2 , ManNH 2 , etc.), forming an X a that is an amide.
  • an amino-saccharide e.g., Sia, GalNH 2 , GlcNH 2 , ManNH 2 , etc.
  • Additional exemplary reactive functional groups and activated precursors are described hereinbelow.
  • the index c represents an integer from 1 to 10. The other symbols have the same identity as those discussed
  • X a is a linking moiety formed with another linker:
  • X b is a second linkage fragment and is independently selected from those groups set forth for X a , and, similar to L, L 1 is a bond, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • Exemplary species for X a and X b include S, SC(O)NH, HNC(O)S, SC(O)O, O, NH, NHC(O), C(O)NH and NHC(O)O, and OC(O)NH.
  • X 4 is a peptide bond to R 17 , which is an amino acid, di-peptide (e.g., Lys-Lys) or tri-peptide (E.G., Lys-Lys-Lys) in which the alpha-amine moiety(ies) and/or side chain heteroatom(s) are modified with a polymeric modifying moiety.
  • R 17 is an amino acid, di-peptide (e.g., Lys-Lys) or tri-peptide (E.G., Lys-Lys-Lys) in which the alpha-amine moiety(ies) and/or side chain heteroatom(s) are modified with a polymeric modifying moiety.
  • the conjugates of the invention include a moiety, e.g., an R 15 /R 15′ moiety that has a formula that is selected from:
  • L a is a bond or a linker as discussed above for L and L 1 , e.g., substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl moiety.
  • L a is a moiety of the side chain of sialic acid that is functionalized with the polymeric modifying moiety as shown.
  • Exemplary L a moieties include substituted or unsubstituted alkyl chains that include one or more OH or NH 2 .
  • the invention provides conjugates having a moiety, e.g., an R 15 /R 15′ moiety with formula:
  • the Factor IX peptide includes an R 15′ moiety with the formula:
  • L a is —(CH 2 ) j C(O)NH(CH 2 ) h C(O)NH—, in which h and j are independently selected integers from 0 to 10.
  • a further exemplary species is —C(O)NH—.
  • poly(ethylene glycol) e.g., methoxy-poly(ethylene glycol).
  • PEG poly(ethylene glycol)
  • Those of skill will appreciate that the focus in the sections that follow is for clarity of illustration and the various motifs set forth using PEG as an exemplary polymer are equally applicable to species in which a polymer other than PEG is utilized.
  • PEG of any molecular weight e.g. 1 kDa, 2 kDa, 5 kDa, 10 kDa, 15 kDa, 20 kDa, 30 kDa and 40 kDa is of use in the present invention.
  • the R 15 moiety has a formula that is a member selected from the group:
  • the linker fragment —NH(CH 2 ) a — can be present or absent.
  • the conjugate includes an R 15 moiety selected from the group:
  • the indices e and f are independently selected from the integers from 1 to 2500. In further exemplary embodiments, e and f are selected to provide a PEG moiety that is about 1 kD, 2 kD, 10 kD, 15 kD, 20 kD, 30 kD or 40 kD.
  • the symbol Q represents substituted or unsubstituted alkyl (e.g., C 1 -C 6 alkyl, e.g., methyl), substituted or unsubstituted heteroalkyl or H.
  • branched polymers have structures based on di-lysine (Lys-Lys) peptides, e.g.:
  • e, f, f′ and f′′ represent integers independently selected from 1 to 2500.
  • the indices q, q′ and q′′ represent integers independently selected from 1 to 20.
  • the Factor IX peptide comprises a glycosyl moiety selected from the formulae:
  • L a is a bond or a linker as described herein; the index t represents 0 or 1; and the index c represents 0 or 1.
  • L a is a bond or a linker as described herein; the index t represents 0 or 1; and the index c represents 0 or 1.
  • Each of these groups can be included as components of the mono-, bi-, tri- and tetra-antennary saccharide structures set forth above.
  • the conjugates of the invention include a modified glycosyl residue that includes the substructure selected from:
  • index a and the linker L a are as discussed above.
  • the index p is an integer from 1 to 10.
  • the index c represents 0 or 1.
  • Each of these groups can be included as components of the mono-, bi-, tri- and tetra-antennary saccharide structures set forth above.
  • the invention utilizes modified sugars in which the 6-hydroxyl position is converted to the corresponding amine moiety, which bears a linker-modifying group cassette such as those set forth above.
  • modified sugars in which the 6-hydroxyl position is converted to the corresponding amine moiety, which bears a linker-modifying group cassette such as those set forth above.
  • exemplary saccharyl groups that can be used as the core of these modified sugars include Gal, GalNAc, Glc, GlcNAc, Fuc, Xyl, Man, and the like.
  • a representative modified sugar according to this embodiment has the formula:
  • R 11 -R 14 are members independently selected from H, OH, C(O)CH 3 , NH, and NH C(O)CH 3 .
  • R 10 is a link to another glycosyl residue (—O-glycosyl) or to an amino acid of the Factor IX peptide (—NH-(Factor IX)).
  • R 14 is OR 1 , NHR 1 or NH-L-R 1 .
  • R 1 and NH-L-R 1 are as described above.
  • Selected conjugates according to this motif are based on mannose, galactose or glucose, or on species having the stereochemistry of mannose, galactose or glucose.
  • the general formulae of these conjugates are:
  • the invention provides saccharides bearing a modifying group, activated analogues of these species and conjugates formed between species such as peptides and lipids and a modified saccharide of the invention.
  • the present invention uses modified sugars and modified sugar nucleotides to form conjugates of the modified sugars.
  • the sugar moiety is preferably a saccharide, a deoxy-saccharide, an amino-saccharide, or an N-acyl saccharide.
  • saccharide a saccharide
  • deoxy-saccharide an amino-saccharide
  • N-acyl saccharide an N-acyl saccharide.
  • the modifying group is attached through an amine moiety on the sugar, e.g., through an amide, a urethane or a urea that is formed through the reaction of the amine with a reactive derivative of the modifying group.
  • any sugar can be utilized as the sugar core of the glycosyl linking group of the conjugates of the invention.
  • Exemplary sugar cores that are useful in forming the compositions of the invention include, but are not limited to, glucose, galactose, mannose, fucose, and sialic acid.
  • Other useful sugars include amino sugars such as glucosamine, galactosamine, mannosamine, the 5-amine analogue of sialic acid and the like.
  • the sugar core can be a structure found in nature or it can be modified to provide a site for conjugating the modifying group.
  • the invention provides a sialic acid derivative in which the 9-hydroxy moiety is replaced with an amine.
  • the amine is readily derivatized with an activated analogue of a selected modifying group.
  • modified sugars are modified with water-soluble or water-insoluble polymers.
  • useful polymer are further exemplified below.
  • water-soluble polymers are known to those of skill in the art and are useful in practicing the present invention.
  • the term water-soluble polymer encompasses species such as saccharides (e.g., dextran, amylose, hyalouronic acid, poly(sialic acid), heparans, heparins, etc.); poly (amino acids), e.g., poly(aspartic acid) and poly(glutamic acid); nucleic acids; synthetic polymers (e.g., poly(acrylic acid), poly(ethers), e.g., poly(ethylene glycol); peptides, proteins, and the like.
  • the present invention may be practiced with any water-soluble polymer with the sole limitation that the polymer must include a point at which the remainder of the conjugate can be attached.
  • Preferred water-soluble polymers are those in which a substantial proportion of the polymer molecules in a sample of the polymer are of approximately the same molecular weight; such polymers are “homodisperse.”
  • the present invention is further illustrated by reference to a poly(ethylene glycol) conjugate.
  • a poly(ethylene glycol) conjugate Several reviews and monographs on the functionalization and conjugation of PEG are available. See, for example, Harris, M acronol. Chem. Phys. C 25: 325-373 (1985); Scouten, Methods in Enzymology 135: 30-65 (1987); Wong et al., Enzyme Microb. Technol. 14: 866-874 (1992); Delgado et al., Critical Reviews in Therapeutic Drug Carrier Systems 9: 249-304 (1992); Zalipsky, Bioconjugate Chem. 6: 150-165 (1995); and Bhadra, et al., Pharmazie, 57:5-29 (2002).
  • U.S. Pat. No. 5,672,662 discloses a water soluble and isolatable conjugate of an active ester of a polymer acid selected from linear or branched poly(alkylene oxides), poly(oxyethylated polyols), poly(olefinic alcohols), and poly(acrylomorpholine).
  • U.S. Pat. No. 6,376,604 sets forth a method for preparing a water-soluble 1-benzotriazolylcarbonate ester of a water-soluble and non-peptidic polymer by reacting a terminal hydroxyl of the polymer with di(1-benzotriazoyl)carbonate in an organic solvent.
  • the active ester is used to form conjugates with a biologically active agent such as a protein or peptide.
  • WO 99/45964 describes a conjugate comprising a biologically active agent and an activated water soluble polymer comprising a polymer backbone having at least one terminus linked to the polymer backbone through a stable linkage, wherein at least one terminus comprises a branching moiety having proximal reactive groups linked to the branching moiety, in which the biologically active agent is linked to at least one of the proximal reactive groups.
  • Other branched poly(ethylene glycols) are described in WO 96/21469, U.S. Pat. No. 5,932,462 describes a conjugate formed with a branched PEG molecule that includes a branched terminus that includes reactive functional groups.
  • the free reactive groups are available to react with a biologically active species, such as a protein or peptide, forming conjugates between the poly(ethylene glycol) and the biologically active species.
  • a biologically active species such as a protein or peptide
  • U.S. Pat. No. 5,446,090 describes a bifunctional PEG linker and its use in forming conjugates having a peptide at each of the PEG linker termini.
  • Conjugates that include degradable PEG linkages are described in WO 99/34833; and WO 99/14259, as well as in U.S. Pat. No. 6,348,558. Such degradable linkages are applicable in the present invention.
  • the modified sugars are prepared by reacting the glycosyl core (or a linker on the core) with a polymeric modifying moiety (or a linker on the polymeric modifying moiety).
  • a polymeric modifying moiety or a linker on the polymeric modifying moiety.
  • Representative polymeric modifying moieties include structures that are based on side chain-containing amino acids, e.g., serine, cysteine, lysine, and small peptides, e.g., lys-lys.
  • Exemplary structures include:
  • the free amine in the di-lysine structures can also be pegylated through an amide or urethane bond with a PEG moiety.
  • the branched PEG moiety is based upon a tri-lysine peptide.
  • the tri-lysine can be mono-, di-, tri-, or tetra-PEG-ylated.
  • Exemplary species according to this embodiment have the formulae:
  • e, f and f′ are independently selected integers from 1 to 2500; and q, q′ and q′′ are independently selected integers from 1 to 20.
  • the branched polymers of use in the invention include variations on the themes set forth above.
  • the di-lysine-PEG conjugate shown above can include three polymeric subunits, the third bonded to the ⁇ -amine shown as unmodified in the structure above.
  • the use of a tri-lysine functionalized with three or four polymeric subunits labeled with the polymeric modifying moiety in a desired manner is within the scope of the invention.
  • the polymeric modifying moieties can be activated for reaction with the glycosyl core.
  • activated species e.g., carbonates and active esters
  • activating, or leaving groups appropriate for activating linear and branched PEGs of use in preparing the compounds set forth herein include, but are not limited to the species:
  • PEG molecules that are activated with these and other species and methods of making the activated PEGs are set forth in WO 04/083259.
  • m-PEG arms of the branched polymers shown above can be replaced by a PEG moiety with a different terminus, e.g., OH, COOH, NH 2 , C 2 -C 10 -alkyl, etc.
  • the structures above are readily modified by inserting alkyl linkers (or removing carbon atoms) between the ⁇ -carbon atom and the functional group of the amino acid side chain.
  • “homo” derivatives and higher homologues, as well as lower homologues are within the scope of cores for branched PEGs of use in the present invention.
  • branched PEG species set forth herein are readily prepared by methods such as that set forth in the scheme below:
  • X d is O or S and r is an integer from 1 to 5.
  • the indices e and f are independently selected integers from 1 to 2500. In an exemplary embodiment, one or both of these indices are selected such that the polymer is about 10 kD, 15 kD or 20 kD in molecular weight.
  • a natural or unnatural amino acid is contacted with an activated m-PEG derivative, in this case the tosylate, forming 1 by alkylating the side-chain heteroatom X d .
  • the mono-functionalize m-PEG amino acid is submitted to N-acylation conditions with a reactive m-PEG derivative, thereby assembling branched m-PEG 2.
  • the tosylate leaving group can be replaced with any suitable leaving group, e.g., halogen, mesylate, triflate, etc.
  • the reactive carbonate utilized to acylate the amine can be replaced with an active ester, e.g., N-hydroxysuccinimide, etc., or the acid can be activated in situ using a dehydrating agent such as dicyclohexylcarbodiimide, carbonyldiimidazole, etc.
  • the urea moiety is replaced by a group such as a amide.
  • modified sugar is sialic acid and selected modified sugar compounds of use in the invention have the formulae:
  • the indices a, b and d are integers from 0 to 20.
  • the index c is an integer from 1 to 2500.
  • the structures set forth above can be components of R 15 .
  • a primary hydroxyl moiety of the sugar is functionalized with the modifying group.
  • the 9-hydroxyl of sialic acid can be converted to the corresponding amine and functionalized to provide a compound according to the invention.
  • Formulae according to this embodiment include:
  • sialic acid moiety in the exemplary compounds above can be replaced with any other amino-saccharide including, but not limited to, glucosamine, galactosamine, mannosamine, their N-acyl derivatives, and the like.
  • R 1 or L-R 1 is a branched PEG, for example, one of the species set forth above.
  • Illustrative modified sugars according to this embodiment include:
  • the alkylamine linker —(CH 2 )aNH- can be present or absent.
  • the structures set forth above can be components of R 15 /R 15′ .
  • the polymer-modified sialic acids of use in the invention may also be linear structures.
  • the invention provides for conjugates that include a sialic acid moiety derived from a structure such as:
  • the modified sugars include a water-insoluble polymer, rather than a water-soluble polymer.
  • the conjugates of the invention may also include one or more water-insoluble polymers. This embodiment of the invention is illustrated by the use of the conjugate as a vehicle with which to deliver a therapeutic peptide in a controlled manner.
  • Polymeric drug delivery systems are known in the art. See, for example, Dunn et al., Eds. P OLYMERIC D RUGS A ND D RUG D ELIVERY S YSTEMS , ACS Symposium Series Vol. 469, American Chemical Society, Washington, D.C. 1991.
  • substantially any known drug delivery system is applicable to the conjugates of the present invention.
  • Representative water-insoluble polymers include, but are not limited to, polyphosphazines, poly(vinyl alcohols), polyamides, polycarbonates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate)
  • Synthetically modified natural polymers of use in conjugates of the invention include, but are not limited to, alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, and nitrocelluloses.
  • Particularly preferred members of the broad classes of synthetically modified natural polymers include, but are not limited to, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, cellulose sulfate sodium salt, and polymers of acrylic and methacrylic esters and alginic acid.
  • biodegradable polymers of use in the conjugates of the invention include, but are not limited to, polylactides, polyglycolides and copolymers thereof, poly(ethylene terephthalate), poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), poly(lactide-co-glycolide), polyanhydrides, polyorthoesters, blends and copolymers thereof.
  • compositions that form gels such as those including collagen, pluronics and the like.
  • the polymers of use in the invention include “hybrid” polymers that include water-insoluble materials having within at least a portion of their structure, a bioresorbable molecule.
  • An example of such a polymer is one that includes a water-insoluble copolymer, which has a bioresorbable region, a hydrophilic region and a plurality of crosslinkable functional groups per polymer chain.
  • water-insoluble materials includes materials that are substantially insoluble in water or water-containing environments. Thus, although certain regions or segments of the copolymer may be hydrophilic or even water-soluble, the polymer molecule, as a whole, does not to any substantial measure dissolve in water.
  • bioresorbable molecule includes a region that is capable of being metabolized or broken down and resorbed and/or eliminated through normal excretory routes by the body. Such metabolites or break down products are preferably substantially non-toxic to the body.
  • the bioresorbable region may be either hydrophobic or hydrophilic, so long as the copolymer composition as a whole is not rendered water-soluble.
  • the bioresorbable region is selected based on the preference that the polymer, as a whole, remains water-insoluble. Accordingly, the relative properties, i.e., the kinds of functional groups contained by, and the relative proportions of the bioresorbable region, and the hydrophilic region are selected to ensure that useful bioresorbable compositions remain water-insoluble.
  • Exemplary resorbable polymers include, for example, synthetically produced resorbable block copolymers of poly( ⁇ -hydroxy-carboxylic acid)/poly(oxyalkylene, (see, Cohn et al., U.S. Pat. No. 4,826,945). These copolymers are not crosslinked and are water-soluble so that the body can excrete the degraded block copolymer compositions. See, Younes et al., J. Biomed. Mater. Res. 21: 1301-1316 (1987); and Cohn et al., J. Biomed. Mater. Res. 22: 993-1009 (1988).
  • bioresorbable polymers include one or more components selected from poly(esters), poly(hydroxy acids), poly(lactones), poly(amides), poly(ester-amides), poly (amino acids), poly(anhydrides), poly(orthoesters), poly(carbonates), poly(phosphazines), poly(phosphoesters), poly(thioesters), polysaccharides and mixtures thereof. More preferably still, the biosresorbable polymer includes a poly(hydroxy) acid component. Of the poly(hydroxy) acids, polylactic acid, polyglycolic acid, polycaproic acid, polybutyric acid, polyvaleric acid and copolymers and mixtures thereof are preferred.
  • preferred polymeric coatings for use in the methods of the invention can also form an excretable and/or metabolizable fragment.
  • Bioresorbable regions of coatings useful in the present invention can be designed to be hydrolytically and/or enzymatically cleavable.
  • hydrolytically cleavable refers to the susceptibility of the copolymer, especially the bioresorbable region, to hydrolysis in water or a water-containing environment.
  • enzymatically cleavable refers to the susceptibility of the copolymer, especially the bioresorbable region, to cleavage by endogenous or exogenous enzymes.
  • the hydrophilic region When placed within the body, the hydrophilic region can be processed into excretable and/or metabolizable fragments.
  • the hydrophilic region can include, for example, polyethers, polyalkylene oxides, polyols, poly(vinyl pyrrolidine), poly(vinyl alcohol), poly(alkyl oxazolines), polysaccharides, carbohydrates, peptides, proteins and copolymers and mixtures thereof.
  • the hydrophilic region can also be, for example, a poly(alkylene) oxide.
  • Such poly(alkylene) oxides can include, for example, poly(ethylene) oxide, poly(propylene) oxide and mixtures and copolymers thereof.
  • Hydrogels are polymeric materials that are capable of absorbing relatively large quantities of water.
  • hydrogel forming compounds include, but are not limited to, polyacrylic acids, sodium carboxymethylcellulose, polyvinyl alcohol, polyvinyl pyrrolidine, gelatin, carrageenan and other polysaccharides, hydroxyethylenemethacrylic acid (HEMA), as well as derivatives thereof, and the like.
  • Hydrogels can be produced that are stable, biodegradable and bioresorbable.
  • hydrogel compositions can include subunits that exhibit one or more of these properties.
  • Bio-compatible hydrogel compositions whose integrity can be controlled through crosslinking are known and are presently preferred for use in the methods of the invention.
  • Hubbell et al. U.S. Pat. Nos. 5,410,016, which issued on Apr. 25, 1995 and 5,529,914, which issued on Jun. 25, 1996, disclose water-soluble systems, which are crosslinked block copolymers having a water-soluble central block segment sandwiched between two hydrolytically labile extensions. Such copolymers are further end-capped with photopolymerizable acrylate functionalities. When crosslinked, these systems become hydrogels.
  • the water soluble central block of such copolymers can include poly(ethylene glycol); whereas, the hydrolytically labile extensions can be a poly( ⁇ -hydroxy acid), such as polyglycolic acid or polylactic acid. See, Sawhney et al., Macromolecules 26: 581-587 (1993).
  • the gel is a thermoreversible gel.
  • Thermoreversible gels including components, such as pluronics, collagen, gelatin, hyalouronic acid, polysaccharides, polyurethane hydrogel, polyurethane-urea hydrogel and combinations thereof are presently preferred.
  • the conjugate of the invention includes a component of a liposome.
  • Liposomes can be prepared according to methods known to those skilled in the art, for example, as described in Eppstein et al., U.S. Pat. No. 4,522,811.
  • liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
  • aqueous solution of the active compound or its pharmaceutically acceptable salt is then introduced into the container.
  • the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • microparticles and methods of preparing the microparticles are offered by way of example and they are not intended to define the scope of microparticles of use in the present invention. It will be apparent to those of skill in the art that an array of microparticles, fabricated by different methods, is of use in the present invention.
  • the present invention provides methods for preparing these and other conjugates. Moreover, the invention provides methods of preventing, curing or ameliorating a disease state by administering a conjugate of the invention to a subject at risk of developing the disease or a subject that has the disease.
  • the conjugate is formed between a polymeric modifying moiety and a glycosylated or non-glycosylated peptide.
  • the polymer is conjugated to the peptide via a glycosyl linking group, which is interposed between, and covalently linked to both the peptide (or glycosyl residue) and the modifying group (e.g., water-soluble polymer).
  • the method includes contacting the peptide with a mixture containing a modified sugar and an enzyme, e.g., a glycosyltransferase that conjugates the modified sugar to the substrate.
  • the reaction is conducted under conditions appropriate to form a covalent bond between the modified sugar and the peptide.
  • the sugar moiety of the modified sugar is preferably selected from nucleotide sugars.
  • the modified sugar such as those set forth above, is activated as the corresponding nucleotide sugars.
  • Exemplary sugar nucleotides that are used in the present invention in their modified form include nucleotide mono-, di- or triphosphates or analogs thereof.
  • the modified sugar nucleotide is selected from a UDP-glycoside, CMP-glycoside, or a GDP-glycoside.
  • the sugar nucleotide portion of the modified sugar nucleotide is selected from UDP-galactose, UDP-galactosamine, UDP-glucose, UDP-glucosamine, GDP-mannose, GDP-fucose, CMP-sialic acid, or CMP-NeuAc.
  • the nucleotide phosphate is attached to C-1.
  • the method of the invention utilizes compounds having the formulae:
  • L-R 1 is as discussed above, and L 1 -R 1 represents a linker bound to the modifying group.
  • exemplary linker species according to L 1 include a bond, alkyl or heteroalkyl moieties.
  • the present invention provides for the use of nucleotide sugars that are modified with a water-soluble polymer, which is either straight-chain or branched.
  • a water-soluble polymer which is either straight-chain or branched.
  • the invention also provides for the use of sugar nucleotides modified with L-R 1 at the 6-carbon position.
  • Exemplary species according to this embodiment include:
  • the index “y” is 0, 1 or 2.
  • L is a bond between NH and R 1 .
  • the base is a nucleic acid base.
  • nucleotide sugars of use in the invention in which the carbon at the 6-position is modified include species having the stereochemistry of GDP mannose, e.g.:
  • X 5 is a bond or O.
  • the index i represents 0 or 1.
  • the index a represents an integer from 1 to 20.
  • the indices e and f independently represent integers from 1 to 2500.
  • Q is H or substituted or unsubstituted C 1 -C 6 alkyl. As those of skill will appreciate, the serine derivative, in which S is replaced with 0 also falls within this general motif.
  • the invention provides a conjugate in which the modified sugar is based on the stereochemistry of UDP galactose.
  • An exemplary nucleotide sugar of use in this invention has the structure:
  • nucleotide sugar is based on the stereochemistry of glucose.
  • exemplary species according to this embodiment have the formulae:
  • sugar moiety or sugar moiety-linker cassette and the PEG or PEG-linker cassette groups are linked together through the use of reactive groups, which are typically transformed by the linking process into a new organic functional group or unreactive species.
  • the sugar reactive functional group(s) is located at any position on the sugar moiety.
  • Reactive groups and classes of reactions useful in practicing the present invention are generally those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive sugar moieties are those, which proceed under relatively mild conditions.
  • nucleophilic substitutions e.g., reactions of amines and alcohols with acyl halides, active esters
  • electrophilic substitutions e.g., enamine reactions
  • additions to carbon-carbon and carbon-heteroatom multiple bonds e.g., Michael reaction, Diels-Alder addition.
  • Useful reactive functional groups pendent from a sugar nucleus or modifying group include, but are not limited to:
  • the reactive functional groups can be chosen such that they do not participate in, or interfere with, the reactions necessary to assemble the reactive sugar nucleus or modifying group.
  • a reactive functional group can be protected from participating in the reaction by the presence of a protecting group.
  • protecting groups see, for example, Greene et al., P ROTECTIVE G ROUPS IN O RGANIC S YNTHESIS , John Wiley & Sons, New York, 1991.
  • a sialic acid derivative is utilized as the sugar nucleus to which the modifying group is attached.
  • the focus of the discussion on sialic acid derivatives is for clarity of illustration only and should not be construed to limit the scope of the invention.
  • Those of skill in the art will appreciate that a variety of other sugar moieties can be activated and derivatized in a manner analogous to that set forth using sialic acid as an example.
  • numerous methods are available for modifying galactose, glucose, N-acetylgalactosamine and fucose to name a few sugar substrates, which are readily modified by art recognized methods. See, for example, Elhalabi et al., Curr. Med. Chem. 6: 93 (1999); and Schafer et al., J. Org. Chem. 65: 24 (2000)).
  • the modified sugar is based upon a 6-amino-N-acetyl-glycosyl moiety.
  • the 6-amino-sugar moiety is readily prepared by standard methods.
  • the index n represents an integer from 1 to 2500. In an exemplary embodiment, this index is selected such that the polymer is about 10 kD, 15 kD or 20 kD in molecular weight.
  • the symbol “A” represents an activating group, e.g., a halo, a component of an activated ester (e.g., a N-hydroxysuccinimide ester), a component of a carbonate (e.g., p-nitrophenyl carbonate) and the like.
  • an activating group e.g., a halo, a component of an activated ester (e.g., a N-hydroxysuccinimide ester), a component of a carbonate (e.g., p-nitrophenyl carbonate) and the like.
  • the acceptor peptide is typically synthesized de novo, or recombinantly expressed in a prokaryotic cell (e.g., bacterial cell, such as E. coli ) or in a eukaryotic cell such as a mammalian, yeast, insect, fungal or plant cell.
  • a prokaryotic cell e.g., bacterial cell, such as E. coli
  • a eukaryotic cell such as a mammalian, yeast, insect, fungal or plant cell.
  • the peptide can be either a full-length protein or a fragment.
  • the peptide can be a wild type or mutated peptide.
  • the peptide includes a mutation that adds one or more N- or O-linked glycosylation sites to the peptide sequence.
  • the method of the invention also provides for modification of incompletely glycosylated peptides that are produced recombinantly.
  • Many recombinantly produced glycoproteins are incompletely glycosylated, exposing carbohydrate residues that may have undesirable properties, e.g., immunogenicity, recognition by the RES.
  • the peptide can be simultaneously further glycosylated and derivatized with, e.g., a water-soluble polymer, therapeutic agent, or the like.
  • the sugar moiety of the modified sugar can be the residue that would properly be conjugated to the acceptor in a fully glycosylated peptide, or another sugar moiety with desirable properties.
  • Peptides modified by the methods of the invention can be synthetic or wild-type peptides or they can be mutated peptides, produced by methods known in the art, such as site-directed mutagenesis. Glycosylation of peptides is typically either N-linked or O-linked. An exemplary N-linkage is the attachment of the modified sugar to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of a carbohydrate moiety to the asparagine side chain.
  • O-linked glycosylation refers to the attachment of one sugar (e.g., N-acetylgalactosamine, galactose, mannose, GlcNAc, glucose, fucose or xylose) to the hydroxy side chain of a hydroxyamino acid, preferably serine or threonine, although unusual or non-natural amino acids, e.g., 5-hydroxyproline or 5-hydroxylysine may also be used.
  • one sugar e.g., N-acetylgalactosamine, galactose, mannose, GlcNAc, glucose, fucose or xylose
  • the methods of the present invention can be practiced with other biological structures (e.g., glycolipids, lipids, sphingoids, ceramides, whole cells, and the like, containing a glycosylation site).
  • biological structures e.g., glycolipids, lipids, sphingoids, ceramides, whole cells, and the like, containing a glycosylation site.
  • Addition of glycosylation sites to a peptide or other structure is conveniently accomplished by altering the amino acid sequence such that it contains one or more glycosylation sites.
  • the addition may also be made by the incorporation of one or more species presenting an —OH group, preferably serine or threonine residues, within the sequence of the peptide (for O-linked glycosylation sites).
  • the addition may be made by mutation or by full chemical synthesis of the peptide.
  • the peptide amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the peptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • the DNA mutation(s) are preferably made using methods known in the art.
  • the glycosylation site is added by shuffling polynucleotides.
  • Polynucleotides encoding a candidate peptide can be modulated with DNA shuffling protocols.
  • DNA shuffling is a process of recursive recombination and mutation, performed by random fragmentation of a pool of related genes, followed by reassembly of the fragments by a polymerase chain reaction-like process. See, e.g., Stemmer, Proc. Natl. Acad. Sci. USA 91:10747-10751 (1994); Stemmer, Nature 370:389-391 (1994); and U.S. Pat. Nos. 5,605,793, 5,837,458, 5,830,721 and 5,811,238.
  • the present invention also takes advantage of adding to (or removing from) a peptide one or more selected glycosyl residues, after which a modified sugar is conjugated to at least one of the selected glycosyl residues of the peptide.
  • the present embodiment is useful, for example, when it is desired to conjugate the modified sugar to a selected glycosyl residue that is either not present on a peptide or is not present in a desired amount.
  • the selected glycosyl residue prior to coupling a modified sugar to a peptide, the selected glycosyl residue is conjugated to the peptide by enzymatic or chemical coupling.
  • the glycosylation pattern of a glycopeptide is altered prior to the conjugation of the modified sugar by the removal of a carbohydrate residue from the glycopeptide. See, for example WO 98/31826.
  • Enzymatic cleavage of carbohydrate moieties on polypeptide variants can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol. 138: 350 (1987).
  • the peptide is essentially completely desialylated with neuraminidase prior to performing glycoconjugation or remodeling steps on the peptide.
  • the peptide is optionally re-sialylated using a sialyltransferase.
  • the re-sialylation occurs at essentially each (e.g., >80%, preferably greater than 85%, greater than 90%, preferably greater than 95% and more preferably greater than 96%, 97%, 98% or 99%) terminal saccharyl acceptor in a population of sialyl acceptors.
  • the saccharide has a substantially uniform sialylation pattern (i.e., substantially uniform glycosylation pattern).
  • glycosyl moieties Chemical addition of glycosyl moieties is carried out by any art-recognized method. Enzymatic addition of sugar moieties is preferably achieved using a modification of the methods set forth herein, substituting native glycosyl units for the modified sugars used in the invention. Other methods of adding sugar moieties are disclosed in U.S. Pat. Nos. 5,876,980, 6,030,815, 5,728,554, and 5,922,577.
  • Exemplary attachment points for selected glycosyl residue include, but are not limited to: (a) consensus sites for N-linked glycosylation, and sites for O-linked glycosylation; (b) terminal glycosyl moieties that are acceptors for a glycosyltransferase; (c) arginine, asparagine and histidine; (d) free carboxyl groups; (e) free sulfhydryl groups such as those of cysteine; (f) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (g) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (h) the amide group of glutamine.
  • the invention provides a method for linking two or more peptides through a linking group.
  • the linking group is of any useful structure and may be selected from straight- and branched-chain structures.
  • each terminus of the linker, which is attached to a peptide includes a modified sugar (i.e., a nascent intact glycosyl linking group).
  • two peptides are linked together via a linker moiety that includes a polymeric (e.g., PEG linker).
  • the construct conforms to the general structure set forth in the cartoon above.
  • the focus on a PEG linker that includes two glycosyl groups is for purposes of clarity and should not be interpreted as limiting the identity of linker arms of use in this embodiment of the invention.
  • a PEG moiety is functionalized at a first terminus with a first glycosyl unit and at a second terminus with a second glycosyl unit.
  • the first and second glycosyl units are preferably substrates for different transferases, allowing orthogonal attachment of the first and second peptides to the first and second glycosyl units, respectively.
  • the (glycosyl) 1 -PEG-(glycosyl) 2 linker is contacted with the first peptide and a first transferase for which the first glycosyl unit is a substrate, thereby forming (peptide) 1 -(glycosyl) 1 -PEG-(glycosyl) 2 .
  • Transferase and/or unreacted peptide is then optionally removed from the reaction mixture.
  • the second peptide and a second transferase for which the second glycosyl unit is a substrate are added to the (peptide) 1 -(glycosyl) 1 -PEG-(glycosyl) 2 conjugate, forming (peptide) 1 -(glycosyl) 1 -PEG-(glycosyl) 2 -(peptide) 2 ; at least one of the glycosyl residues is either directly or indirectly O-linked.
  • the peptide that is modified by a method of the invention is a glycopeptide that is produced in mammalian cells (e.g., CHO cells) or in a transgenic animal and thus, contains N- and/or O-linked oligosaccharide chains, which are incompletely sialylated.
  • the oligosaccharide chains of the glycopeptide lacking a sialic acid and containing a terminal galactose residue can be PEGylated, PPGylated or otherwise modified with a modified sialic acid.
  • the amino glycoside 1 is treated with the active ester of a protected amino acid (e.g., glycine) derivative, converting the sugar amine residue into the corresponding protected amino acid amide adduct.
  • the adduct is treated with an aldolase to form ⁇ -hydroxy carboxylate 2.
  • Compound 2 is converted to the corresponding CMP derivative by the action of CMP-SA synthetase, followed by catalytic hydrogenation of the CMP derivative to produce compound 3.
  • the amine introduced via formation of the glycine adduct is utilized as a locus of PEG attachment by reacting compound 3 with an activated PEG or PPG derivative (e.g., PEG-C(O)NHS, PEG-OC(O)O-p-nitrophenyl), producing species such as 4 or 5, respectively.
  • an activated PEG or PPG derivative e.g., PEG-C(O)NHS, PEG-OC(O)O-p-nitrophenyl
  • the PEG modified sugars are conjugated to a glycosylated or non-glycosylated peptide using an appropriate enzyme to mediate the conjugation.
  • concentrations of the modified donor sugar(s), enzyme(s) and acceptor peptide(s) are selected such that glycosylation proceeds until the acceptor is consumed.
  • the present invention is practiced using a single glycosyltransferase or a combination of glycosyltransferases.
  • a single glycosyltransferase or a combination of glycosyltransferases For example, one can use a combination of a sialyltransferase and a galactosyltransferase.
  • the enzymes and substrates are preferably combined in an initial reaction mixture, or the enzymes and reagents for a second enzymatic reaction are added to the reaction medium once the first enzymatic reaction is complete or nearly complete.
  • each of the first and second enzyme is a glycosyltransferase.
  • one enzyme is an endoglycosidase.
  • more than two enzymes are used to assemble the modified glycoprotein of the invention. The enzymes are used to alter a saccharide structure on the peptide at any point either before or after the addition of the modified sugar to the peptide.
  • the method makes use of one or more exo- or endoglycosidase.
  • the glycosidase is typically a mutant, which is engineered to form glycosyl bonds rather than rupture them.
  • the mutant glycanase typically includes a substitution of an amino acid residue for an active site acidic amino acid residue.
  • the substituted active site residues will typically be Asp at position 130, Glu at position 132 or a combination thereof.
  • the amino acids are generally replaced with serine, alanine, asparagine, or glutamine.
  • the glycosyl donor molecule e.g., a desired oligo- or mono-saccharide structure
  • the reaction proceeds with the addition of the donor molecule to a GlcNAc residue on the protein.
  • the leaving group can be a halogen, such as fluoride.
  • the leaving group is a Asn, or a Asn-peptide moiety.
  • the GlcNAc residue on the glycosyl donor molecule is modified.
  • the GlcNAc residue may comprise a 1,2 oxazoline moiety.
  • each of the enzymes utilized to produce a conjugate of the invention are present in a catalytic amount.
  • the catalytic amount of a particular enzyme varies according to the concentration of that enzyme's substrate as well as to reaction conditions such as temperature, time and pH value. Means for determining the catalytic amount for a given enzyme under preselected substrate concentrations and reaction conditions are well known to those of skill in the art.
  • the temperature at which an above process is carried out can range from just above freezing to the temperature at which the most sensitive enzyme denatures. Preferred temperature ranges are about 0° C. to about 55° C., and more preferably about 20° C. to about 37° C. In another exemplary embodiment, one or more components of the present method are conducted at an elevated temperature using a thermophilic enzyme.
  • the reaction mixture is maintained for a period of time sufficient for the acceptor to be glycosylated, thereby forming the desired conjugate. Some of the conjugate can often be detected after a few h, with recoverable amounts usually being obtained within 24 h or less.
  • rate of reaction is dependent on a number of variable factors (e.g, enzyme concentration, donor concentration, acceptor concentration, temperature, solvent volume), which are optimized for a selected system.
  • the present invention also provides for the industrial-scale production of modified peptides.
  • an industrial scale generally produces at least one gram of finished, purified conjugate.
  • the invention is exemplified by the conjugation of modified sialic acid moieties to a glycosylated peptide.
  • the exemplary modified sialic acid is labeled with PEG.
  • PEG poly(ethylene glycol)-modified sialic acid
  • glycosylated peptides The focus of the following discussion on the use of PEG-modified sialic acid and glycosylated peptides is for clarity of illustration and is not intended to imply that the invention is limited to the conjugation of these two partners.
  • One of skill understands that the discussion is generally applicable to the additions of modified glycosyl moieties other than sialic acid.
  • the discussion is equally applicable to the modification of a glycosyl unit with agents other than PEG including other PEG moieties, therapeutic moieties, and biomolecules.
  • An enzymatic approach can be used for the selective introduction of PEGylated or PPGylated carbohydrates onto a peptide or glycopeptide.
  • the method utilizes modified sugars containing PEG, PPG, or a masked reactive functional group, and is combined with the appropriate glycosyltransferase or glycosynthase.
  • the PEG or PPG can be introduced directly onto the peptide backbone, onto existing sugar residues of a glycopeptide or onto sugar residues that have been added to a peptide.
  • an acceptor for a sialyltransferase is present on the peptide to be modified either as a naturally occurring structure or it is placed there recombinantly, enzymatically or chemically.
  • Suitable acceptors include, for example, galactosyl acceptors such as Gal ⁇ 1,4GlcNAc, Gal ⁇ 1,4GalNAc, Gal ⁇ 1,3GalNAc, lacto-N-tetraose, Gal ⁇ 1,3GlcNAc, Gal ⁇ 1,3Ara, Gal ⁇ 1,6GlcNAc, Gal ⁇ 1,4Glc (lactose), and other acceptors known to those of skill in the art (see, e.g., Paulson et al., J. Biol. Chem. 253: 5617-5624 (1978)).
  • Exemplary sialyltransferases are set forth herein.
  • an acceptor for the sialyltransferase is present on the glycopeptide to be modified upon in vivo synthesis of the glycopeptide.
  • Such glycopeptides can be sialylated using the claimed methods without prior modification of the glycosylation pattern of the glycopeptide.
  • the methods of the invention can be used to sialylate a peptide that does not include a suitable acceptor; one first modifies the peptide to include an acceptor by methods known to those of skill in the art.
  • a GalNAc residue is added by the action of a GalNAc transferase.
  • the galactosyl acceptor is assembled by attaching a galactose residue to an appropriate acceptor linked to the peptide, e.g., a GlcNAc.
  • the method includes incubating the peptide to be modified with a reaction mixture that contains a suitable amount of a galactosyltransferase (e.g., Gal ⁇ 1,3 or Gal ⁇ 1,4), and a suitable galactosyl donor (e.g., UDP-galactose).
  • a galactosyltransferase e.g., Gal ⁇ 1,3 or Gal ⁇ 1,4
  • a suitable galactosyl donor e.g., UDP-galactose
  • glycopeptide-linked oligosaccharides are first “trimmed,” either in whole or in part, to expose either an acceptor for the sialyltransferase or a moiety to which one or more appropriate residues can be added to obtain a suitable acceptor.
  • Enzymes such as glycosyltransferases and endoglycosidases (see, for example U.S. Pat. No. 5,716,812) are useful for the attaching and trimming reactions.
  • the sialic acid moieties of the peptide are essentially completely removed (e.g., at least 90, at least 95 or at least 99%), exposing an acceptor for a modified sialic acid.
  • a modified sugar bearing a PEG moiety is conjugated to one or more of the sugar residues exposed by the “trimming back.”
  • a PEG moiety is added via a GlcNAc moiety conjugated to the PEG moiety.
  • the modified GlcNAc is attached to one or both of the terminal mannose residues of the biantennary structure.
  • an unmodified GlcNAc can be added to one or both of the termini of the branched species.
  • a PEG moiety is added to one or both of the terminal mannose residues of the biantennary structure via a modified sugar having a galactose residue, which is conjugated to a GlcNAc residue added onto the terminal mannose residues.
  • an unmodified Gal can be added to one or both terminal GlcNAc residues.
  • a PEG moiety is added onto a Gal residue using a modified sialic acid such as those discussed above.
  • a high mannose structure is “trimmed back” to the mannose from which the biantennary structure branches.
  • a PEG moiety is added via a GlcNAc modified with the polymer.
  • an unmodified GlcNAc is added to the mannose, followed by a Gal with an attached PEG moiety.
  • unmodified GlcNAc and Gal residues are sequentially added to the mannose, followed by a sialic acid moiety modified with a PEG moiety.
  • a high mannose structure can also be trimmed back to the elementary tri-mannosyl core.
  • high mannose is “trimmed back” to the GlcNAc to which the first mannose is attached.
  • the GlcNAc is conjugated to a Gal residue bearing a PEG moiety.
  • an unmodified Gal is added to the GlcNAc, followed by the addition of a sialic acid modified with a water-soluble sugar.
  • the terminal GlcNAc is conjugated with Gal and the GlcNAc is subsequently fucosylated with a modified fucose bearing a PEG moiety.
  • High mannose may also be trimmed back to the first GlcNAc attached to the Asn of the peptide.
  • the GlcNAc of the GlcNAc-(Fuc) a residue is conjugated with ha GlcNAc bearing a water soluble polymer.
  • the GlcNAc of the GlcNAc-(Fuc)a residue is modified with Gal, which bears a water soluble polymer.
  • the GlcNAc is modified with Gal, followed by conjugation to the Gal of a sialic acid modified with a PEG moiety.
  • the Examples set forth above provide an illustration of the power of the methods set forth herein. Using the methods described herein, it is possible to “trim back” and build up a carbohydrate residue of substantially any desired structure.
  • the modified sugar can be added to the termini of the carbohydrate moiety as set forth above, or it can be intermediate between the peptide core and the terminus of the carbohydrate.
  • an existing sialic acid is removed from a glycopeptide using a sialidase, thereby unmasking all or most of the underlying galactosyl residues.
  • a peptide or glycopeptide is labeled with galactose residues, or an oligosaccharide residue that terminates in a galactose unit.
  • an appropriate sialyltransferase is used to add a modified sialic acid.
  • an enzyme that transfers sialic acid onto sialic acid is utilized. This method can be practiced without treating a sialylated glycan with a sialidase to expose glycan residues beneath the sialic acid.
  • An exemplary polymer-modified sialic acid is a sialic acid modified with poly(ethylene glycol).
  • Other exemplary enzymes that add sialic acid and modified sialic acid moieties onto glycans that include a sialic acid residue or exchange an existing sialic acid residue on a glycan for these species include ST3Gal3, CST-II, ST8Sia-II, ST8Sia-III and ST8Sia-IV.
  • a masked reactive functionality is present on the sialic acid.
  • the masked reactive group is preferably unaffected by the conditions used to attach the modified sialic acid to the Factor IX.
  • the mask is removed and the peptide is conjugated with an agent such as PEG.
  • the agent is conjugated to the peptide in a specific manner by its reaction with the unmasked reactive group on the modified sugar residue.
  • Any modified sugar can be used with its appropriate glycosyltransferase, depending on the terminal sugars of the oligosaccharide side chains of the glycopeptide.
  • the terminal sugar of the glycopeptide required for introduction of the PEGylated structure can be introduced naturally during expression or it can be produced post expression using the appropriate glycosidase(s), glycosyltransferase(s) or mix of glycosidase(s) and glycosyltransferase(s).
  • UDP-galactose-PEG is reacted with ⁇ 1,4-galactosyltransferase, thereby transferring the modified galactose to the appropriate terminal N-acetylglucosamine structure.
  • the terminal GlcNAc residues on the glycopeptide may be produced during expression, as may occur in such expression systems as mammalian, insect, plant or fungus, but also can be produced by treating the glycopeptide with a sialidase and/or glycosidase and/or glycosyltransferase, as required.
  • a GlcNAc transferase such as GNT1-5, is utilized to transfer PEGylated-GlcNAc to a terminal mannose residue on a glycopeptide.
  • an the N- and/or O-linked glycan structures are enzymatically removed from a glycopeptide to expose an amino acid or a terminal glycosyl residue that is subsequently conjugated with the modified sugar.
  • an endoglycanase is used to remove the N-linked structures of a glycopeptide to expose a terminal GlcNAc as a GlcNAc-linked-Asn on the glycopeptide.
  • UDP-Gal-PEG and the appropriate galactosyltransferase is used to introduce the PEG-galactose functionality onto the exposed GlcNAc.
  • the modified sugar is added directly to the peptide backbone using a glycosyltransferase known to transfer sugar residues to the peptide backbone.
  • exemplary glycosyltransferases useful in practicing the present invention include, but are not limited to, GalNAc transferases (GalNAc T1-14), GlcNAc transferases, fucosyltransferases, glucosyltransferases, xylosyltransferases, mannosyltransferases and the like. Use of this approach allows the direct addition of modified sugars onto peptides that lack any carbohydrates or, alternatively, onto existing glycopeptides.
  • the addition of the modified sugar occurs at specific positions on the peptide backbone as defined by the substrate specificity of the glycosyltransferase and not in a random manner as occurs during modification of a protein's peptide backbone using chemical methods.
  • An array of agents can be introduced into proteins or glycopeptides that lack the glycosyltransferase substrate peptide sequence by engineering the appropriate amino acid sequence into the polypeptide chain.
  • one or more additional chemical or enzymatic modification steps can be utilized following the conjugation of the modified sugar to the peptide.
  • an enzyme e.g., fucosyltransferase
  • a glycosyl unit e.g., fucose
  • an enzymatic reaction is utilized to “cap” sites to which the modified sugar failed to conjugate.
  • a chemical reaction is utilized to alter the structure of the conjugated modified sugar. For example, the conjugated modified sugar is reacted with agents that stabilize or destabilize its linkage with the peptide component to which the modified sugar is attached.
  • a component of the modified sugar is deprotected following its conjugation to the peptide.
  • One of skill will appreciate that there is an array of enzymatic and chemical procedures that are useful in the methods of the invention at a stage after the modified sugar is conjugated to the peptide. Further elaboration of the modified sugar-peptide conjugate is within the scope of the invention.
  • Enzymes and reaction conditions for preparing the conjugates of the present invention are discussed in detail in the parent of the instant application as well as co-owned published PCT patent applications WO 03/031464, WO 04/033651, WO 04/099231.
  • a Factor IX peptide expressed in insect cells, is remodeled such that glycans on the remodeled glycopeptide include a GlcNAc-Gal glycosyl residue.
  • the addition of GlcNAc and Gal can occur as separate reactions or as a single reaction in a single vessel.
  • GlcNAc-transferase I and Gal-transferase I are used.
  • the modified sialyl moiety is added using ST3Gal-III.
  • the addition of GlcNAc, Gal and modified Sia can also occur in a single reaction vessel, using the enzymes set forth above.
  • Each of the enzymatic remodeling and glycoPEGylation steps are carried out individually.
  • the peptide is conjugated without need for remodeling prior to conjugation by contacting the peptide with a sialyltransferase that transfers the modified sialic acid directly onto a sialic acid on the peptide forming Sia-Sia-L-R 1 , or exchanges a sialic acid on the peptide for the modified sialic acid, forming Sia-L-R 1 .
  • a sialyltransferase that transfers the modified sialic acid directly onto a sialic acid on the peptide forming Sia-Sia-L-R 1 , or exchanges a sialic acid on the peptide for the modified sialic acid, forming Sia-L-R 1 .
  • An exemplary enzyme of use in this method is CST-II.
  • Other enzymes that add sialic acid to sialic acid are known to those of skill in the art and examples of such enzymes are set forth the figures appended hereto.
  • the peptide expressed in a mammalian system is desialylated using a sialidase.
  • the exposed Gal residue is sialylated with a modified sialic acid using a sialyltransferase specific for O-linked glycans, providing an Factor IX peptide with an O-linked modified glycan.
  • the desialylated, modified Factor IX peptide is optionally partially or fully re-sialylated by using a sialyltransferase such as ST3GalIII.
  • ST3GalIII sialyltransferase
  • one or more of the O-linked sites are essentially selectively glycoPEGylated.
  • the use of CST-II provides a route to essentially selectively glycoPEGylate one or more N-linked site (e.g., Asn 157, Asn 167 of FIG. 1 ).
  • the Factor IX of the invention includes at least one linear 2 kDa PEG moiety covalently attached thereto through an intact glycosyl linking group.
  • a presently preferred Factor IX peptide conjugate of the invention includes up to 9 2 kDa PEG moieties attached to both N- and O-linked sites through an intact glycosyl linking group, more preferably from 5-9 PEG moieties.
  • the Factor IX of the invention includes at least one linear 30 kDa PEG moiety covalently attached thereto through an intact glycosyl linking group.
  • the Factor IX peptide conjugate of the invention includes from 1 to 3 PEG moieties.
  • the invention provides a method of making a PEGylated Factor IX of the invention.
  • the method includes: (a) contacting a substrate Factor IX peptide comprising a glycosyl group selected from:
  • An exemplary modified sialic acid donor is CMP-sialic acid modified, through a linker moiety, with a polymer, e.g., a straight chain or branched poly(ethylene glycol) moiety.
  • the peptide is optionally glycosylated with GalNAc and/or Gal and/or Sia (“Remodeled”) prior to attaching the modified sugar.
  • the remodeling steps can occur in sequence in the same vessel without purification of the glycosylated peptide between steps. Alternatively, following one or more remodeling step, the glycosylated peptide can be purified prior to submitting it to the next glycosylation or glycPEGylation step.
  • placement of an acceptor moiety for the PEG-sugar is accomplished in any desired number of steps.
  • the addition of GalNAc to the peptide can be followed by a second step in which the PEG-sugar is conjugated to the GalNAc in the same reaction vessel.
  • these two steps can be carried out in a single vessel approximately simultaneously.
  • the PEG-sialic acid donor has the formula:
  • the PEG-sialic acid donor has the formula:
  • the Factor IX peptide is expressed in an appropriate expression system prior to being glycopegylated or remodeled.
  • exemplary expression systems include Sf-9/baculovirus and Chinese Hamster Ovary (CHO) cells.
  • the products produced by the above processes can be used without purification. However, it is usually preferred to recover the product and one or more of the intermediates, e.g., nucleotide sugars, branched and linear PEG species, modified sugars and modified nucleotide sugars.
  • Standard, well-known techniques for recovery of glycosylated saccharides such as thin or thick layer chromatography, column chromatography, ion exchange chromatography, or membrane filtration can be used. It is preferred to use membrane filtration, more preferably utilizing a reverse osmotic membrane, or one or more column chromatographic techniques for the recovery as is discussed hereinafter and in the literature cited herein. For instance, membrane filtration wherein the membranes have molecular weight cutoff of about 3000 to about 10,000 can be used to remove proteins such as glycosyl transferases.
  • the particulate debris either host cells or lysed fragments, is removed.
  • the PEGylated peptide is purified by art-recognized methods, for example, by centrifugation or ultrafiltration; optionally, the protein may be concentrated with a commercially available protein concentration filter, followed by separating the polypeptide variant from other impurities by one or more steps selected from immunoaffinity chromatography, ion-exchange column fractionation (e.g., on diethylaminoethyl (DEAE) or matrices containing carboxymethyl or sulfopropyl groups), chromatography on Blue-Sepharose, CM Blue-Sepharose, MONO-Q, MONO-S, lentil lectin-Sepharose, WGA-Sepharose, Con A-Sepharose, Ether Toyopearl, Butyl Toyopearl, Phenyl Toy
  • Modified glycopeptides produced in culture are usually isolated by initial extraction from cells, enzymes, etc., followed by one or more concentration, salting-out, aqueous ion-exchange, or size-exclusion chromatography steps. Additionally, the modified glycoprotein may be purified by affinity chromatography. Finally, HPLC may be employed for final purification steps.
  • a protease inhibitor e.g., methylsulfonylfluoride (PMSF) may be included in any of the foregoing steps to inhibit proteolysis and antibiotics or preservatives may be included to prevent the growth of adventitious contaminants.
  • PMSF methylsulfonylfluoride
  • supernatants from systems which produce the modified glycopeptide of the invention are first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
  • the concentrate may be applied to a suitable purification matrix.
  • a suitable affinity matrix may comprise a ligand for the peptide, a lectin or antibody molecule bound to a suitable support.
  • an anion-exchange resin may be employed, for example, a matrix or substrate having pendant DEAE groups.
  • Suitable matrices include acrylamide, agarose, dextran, cellulose, or other types commonly employed in protein purification.
  • a cation-exchange step may be employed.
  • Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are particularly preferred.
  • One or more RP-HPLC steps employing hydrophobic RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups, may be employed to further purify a polypeptide conjugate composition.
  • Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous or essentially homogeneous modified glycoprotein.
  • the modified glycopeptide of the invention resulting from a large-scale fermentation may be purified by methods analogous to those disclosed by Urdal et al., J. Chromatog. 296: 171 (1984).
  • This reference describes two sequential, RP-HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column.
  • techniques such as affinity chromatography may be utilized to purify the modified glycoprotein.
  • the invention provides a pharmaceutical composition.
  • the pharmaceutical composition includes a pharmaceutically acceptable diluent and a covalent conjugate between a non-naturally-occurring, PEG moiety, therapeutic moiety or biomolecule and a glycosylated or non-glycosylated peptide.
  • the polymer, therapeutic moiety or biomolecule is conjugated to the peptide via an intact glycosyl linking group interposed between and covalently linked to both the peptide and the polymer, therapeutic moiety or biomolecule.
  • compositions of the invention are suitable for use in a variety of drug delivery systems. Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences , Mace Publishing Company, Philadelphia, Pa., 17th ed. (1985). For a brief review of methods for drug delivery, see, Langer, Science 249:1527-1533 (1990).
  • the pharmaceutical compositions may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration.
  • the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer.
  • any of the above carriers or a solid carrier such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed.
  • Biodegradable microspheres e.g., polylactate polyglycolate
  • suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.
  • compositions for parenteral administration that include the compound dissolved or suspended in an acceptable carrier, preferably an aqueous carrier, e.g., water, buffered water, saline, PBS and the like.
  • an acceptable carrier e.g., water, buffered water, saline, PBS and the like.
  • the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents, detergents and the like.
  • compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered.
  • the resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 and 8.
  • the glycopeptides of the invention can be incorporated into liposomes formed from standard vesicle-forming lipids.
  • a variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9: 467 (1980), U.S. Pat. Nos. 4,235,871, 4,501,728 and 4,837,028.
  • the targeting of liposomes using a variety of targeting agents e.g., the sialyl galactosides of the invention is well known in the art (see, e.g., U.S. Pat. Nos. 4,957,773 and 4,603,044).
  • Standard methods for coupling targeting agents to liposomes can be used. These methods generally involve incorporation into liposomes of lipid components, such as phosphatidylethanolamine, which can be activated for attachment of targeting agents, or derivatized lipophilic compounds, such as lipid-derivatized glycopeptides of the invention.
  • lipid components such as phosphatidylethanolamine, which can be activated for attachment of targeting agents, or derivatized lipophilic compounds, such as lipid-derivatized glycopeptides of the invention.
  • Targeting mechanisms generally require that the targeting agents be positioned on the surface of the liposome in such a manner that the target moieties are available for interaction with the target, for example, a cell surface receptor.
  • the carbohydrates of the invention may be attached to a lipid molecule before the liposome is formed using methods known to those of skill in the art (e.g., alkylation or acylation of a hydroxyl group present on the carbohydrate with a long chain alkyl halide or with a fatty acid, respectively).
  • the liposome may be fashioned in such a way that a connector portion is first incorporated into the membrane at the time of forming the membrane. The connector portion must have a lipophilic portion, which is firmly embedded and anchored in the membrane.
  • the reactive portion is selected so that it will be chemically suitable to form a stable chemical bond with the targeting agent or carbohydrate, which is added later.
  • the target agent it is possible to attach the target agent to the connector molecule directly, but in most instances it is more suitable to use a third molecule to act as a chemical bridge, thus linking the connector molecule which is in the membrane with the target agent or carbohydrate which is extended, three dimensionally, off of the vesicle surface.
  • the compounds prepared by the methods of the invention may also find use as diagnostic reagents.
  • labeled compounds can be used to locate areas of inflammation or tumor metastasis in a patient suspected of having an inflammation.
  • the compounds can be labeled with 125 I, 14 C, or tritium.
  • the active ingredient used in the pharmaceutical compositions of the present invention is glycopegylated Factor IX and its derivatives having the biological properties of participating in the blood coagulation cascade.
  • the formulation of the present invention is useful as a parenteral formulation in treating coagulation disorders characterized by low or defective coagulation such as various forms of hemophilia.
  • the Factor IX composition of the present invention is administered parenterally (e.g. IV, IM, SC or IP).
  • Effective dosages are expected to vary considerably depending on the condition being treated and the route of administration but are expected to be in the range of about 0.1 to 1000 ⁇ g/kg body weight of the active material.
  • Preferable doses for treatment of coagulation disorders are about 50 to about 3000 ⁇ g/kg three times a week.
  • the stated dosages are optionally lowered when a composition of the invention is administered.
  • compositions of the invention are generally set forth in various patent publications, e.g., US 20040137557; WO 04/083258; and WO 04/033651.
  • US 20040137557 e.g., US 20040137557
  • WO 04/083258 e.g., US 20040137557
  • WO 04/033651 e.g., US 20040137557
  • WO 04/083258 e.g., WO 04/033651
  • the following examples are provided to illustrate the conjugates, and methods and of the present invention, but not to limit the claimed invention.
  • Potassium hydroxide (84.2 mg, 1.5 mmol, as a powder) was added to a solution of L-cysteine (93.7 mg, 0.75 mmol) in anhydrous methanol (20 mL) under argon. The mixture was stirred at room temperature for 30 min, and then mPEG-O-tosylate of molecular mass 20 kilodalton (Ts; 1.0 g, 0.05 mmol) was added in several portions over 2 hours. The mixture was stirred at room temperature for 5 days, and concentrated by rotary evaporation. The residue was diluted with water (30 mL), and stirred at room temperature for 2 hours to destroy any excess 20 kilodalton mPEG-O-tosylate.
  • the solution was then neutralized with acetic acid, the pH adjusted to pH 5.0 and loaded onto a reverse phase chromatography (C-18 silica) column.
  • the column was eluted with a gradient of methanol/water (the product elutes at about 70% methanol), product elution monitored by evaporative light scattering, and the appropriate fractions collected and diluted with water (500 mL).
  • This solution was chromatographed (ion exchange, XK 50 Q, BIG Beads, 300 mL, hydroxide form; gradient of water to water/acetic acid-0.75N) and the pH of the appropriate fractions lowered to 6.0 with acetic acid.
  • Structural data for the compound were as follows: 1 H-NMR (500 MHz; D 2 O) ⁇ 2.83 (t, 2H, O—C—C H 2 —S), 3.05 (q, 1H, S—C H H—CHN), 3.18 (q, 1H, (q, 1H, S—C H H—CHN), 3.38 (s, 3H, C H 3 O), 3.7 (t, OC H 2 C H 2 O), 3.95 (q, 1H, C H N). The purity of the product was confirmed by SDS PAGE.
  • Triethylamine ( ⁇ 0.5 mL) was added dropwise to a solution of 1 (440 mg, 22 ⁇ mol) dissolved in anhydrous CH 2 Cl 2 (30 mL) until the solution was basic.
  • a solution of 20 kilodalton mPEG-O-p-nitrophenyl carbonate (660 mg, 33 ⁇ mol) and N-hydroxysuccinimide (3.6 mg, 30.8 ⁇ mol) in CH 2 Cl 2 (20 mL) was added in several portions over 1 h at room temperature. The reaction mixture was stirred at room temperature for 24 h. The solvent was then removed by rotary evaporation, the residue was dissolved in water (100 mL), and the pH adjusted to 9.5 with 1.0 N NaOH.
  • the basic solution was stirred at room temperature for 2 h and was then neutralized with acetic acid to a pH 7.0.
  • the solution was then loaded onto a reversed phase chromatography (C-18 silica) column.
  • the column was eluted with a gradient of methanol/water (the product elutes at about 70% methanol), product elution monitored by evaporative light scattering, and the appropriate fractions collected and diluted with water (500 mL).
  • This solution was chromatographed (ion exchange, XK 50 Q, BIG Beads, 300 mL, hydroxide form; gradient of water to water/acetic acid-0.75N) and the pH of the appropriate fractions lowered to 6.0 with acetic acid.
  • This example sets forth the preparation of asialoFactor IX and its sialylation with CMP-sialic acid-PEG.
  • a recombinant form of Coagulation Factor IX was made in CHO cells. 6000 IU of rFactor IX were dissolved in a total of 12 mL USP H 2 O. This solution was transferred to a Centricon Plus 20, PL-10 centrifugal filter with another 6 mL USP H 2 O. The solution was concentrated to 2 mL and then diluted with 15 mL 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 5 mM CaCl 2 , 0.05% NaN 3 and then reconcentrated. The dilution/concentration was repeated 4 times to effectively change the buffer to a final volume of 3.0 mL.
  • the pooled washings and supernatants were centrifuged again for 2 minutes at 10,000 rpm to remove any residual agarose resin.
  • the pooled, desialylated protein solution was diluted to 19 mL with the same buffer and concentrated down to ⁇ 2 mL in a Centricon Plus 20 PL-10 centrifugal filter.
  • the solution was twice diluted with 15 mL of 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 0.05% NaN 3 and reconcentrated to 2 mL.
  • the final desialyated rFactor IX solution was diluted to 3 mL final volume ( ⁇ 10 mg/mL) with the Tris Buffer.
  • Isoelectric Focusing Gels (pH 3-7) were run using 1.5 ⁇ L (15 ⁇ g) samples first diluted with 10 ⁇ L Tris buffer and mixed with 12 ⁇ L sample loading buffer. Gels were loaded, run and fixed using standard procedures. Gels were stained with Colloidal Blue Stain ( FIG. 154 ), showing a band for desialylated Factor IX.
  • Desialylated rFactor-IX (29 mg, 3 mL) was divided into two 1.5 mL (14.5 mg) samples in two 15 mL centrifuge tubes. Each solution was diluted with 12.67 mL 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 0.05% NaN 3 and either CMP-SA-PEG-1k or 10k (7.25 ⁇ mol) was added. The tubes were inverted gently to mix and 2.9 U ST3Gal3 (326 ⁇ L) was added (total volume 14.5 mL). The tubes were inverted again and rotated gently for 65 hours at 32° C. The reactions were stopped by freezing at ⁇ 20° C. 10 ⁇ g samples of the reactions were analyzed by SDS-PAGE.
  • the PEGylated proteins were purified on a Toso Haas Biosep G3000SW (21.5 ⁇ 30 cm, 13 um) HPLC column with Dulbecco's Phosphate Buffered Saline, pH 7.1 (Gibco), 6 mL/min. The reaction and purification were monitored using SDS Page and IEF gels.
  • Novex Tris-Glycine 4-20% 1 mm gels were loaded with 10 ⁇ L (10 ⁇ g) of samples after dilution with 2 ⁇ L of 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% NaN 3 buffer and mixing with 12 ⁇ L sample loading buffer and 1 ⁇ L 0.5 M DTT and heated for 6 minutes at 85° C. Gels were stained with Colloidal Blue Stain ( FIG. 155 ) showing a band for PEG (1 kDa and 10 kDa)-SA-Factor IX.
  • This example sets forth the preparation of sialyl-PEGylation of Factor IX without prior sialidase treatment.
  • Factor IX (1100 IU), which was expressed in CHO cells and was fully sialylated, was dissolved in 5 mL of 20 mM histidine, 520 mM glycine, 2% sucrose, 0.05% NaN 3 and 0.01% polysorbate 80, pH 5.0.
  • the CMP-SA-PEG-(10 kDa) (27 mg, 2.5 ⁇ mol) was then dissolved in the solution and 1 U of ST3Gal3 was added.
  • the reaction was complete after gently mixing for 28 hours at 32° C.
  • the reaction was analyzed by SDS-PAGE as described by Invitrogen.
  • Factor IX (1100 IU), which was expressed in CHO cells and was fully sialylated, was dissolved in 5 mL of 20 mM histidine, 520 mM glycine, 2% sucrose, 0.05% NaN 3 and 0.01% polysorbate 80, pH 5.0.
  • the CMP-SA-PEG-(20 kDa) 50 mg, 2.3 ⁇ mol was then dissolved in the solution and CST-II was added.
  • the reaction mixture was complete after gently mixing for 42 hours at 32° C.
  • the reaction was analyzed by SDS-PAGE as described by Invitrogen.
  • r-Factor-IX-PEG (10 kDa) (2.4 mg) was concentrated in a Centricon® Plus 20 PL-10 (Millipore Corp., Bedford, Mass.) centrifugal filter and the buffer was changed to 50 mM Tris-HCl pH 7.2, 0.15 M NaCl, 0.05% NaN 3 to a final volume of 1.85 mL.
  • the protein solution was diluted with 372 ⁇ L of the same Tris buffer and 7.4 mg CMP-SA (12 ⁇ mol) was added as a solid. The solution was inverted gently to mix and 0.1 U ST3Gall and 0.1 U ST3Gal3 were added. The reaction mixture was rotated gently for 42 hours at 32° C.
  • a 10 ⁇ g sample of the reaction was analyzed by SDS-PAGE. Novex Tris-Glycine 4-12% 1 mm gels were performed and stained using Colloidal Blue as described by Invitrogen. Briefly, samples, 10 ⁇ L (10 ⁇ g), were mixed with 12 ⁇ L sample loading buffer and 1 ⁇ L 0.5 M DTT and heated for 6 minutes at 85° C. ( FIG. 156 , lane 4).
  • ETP TEG Clot activity (relative (relative Compound (% of plasma) specific activity specific activity BeneFIX 45% 1.0 1.0 PEG-9-2K (LS) 27% 0.3 0.2 PEG-9-2K (HS) 20% 0.2 0.1 PEG-9-10K 11% 0.6 0.3 PEG-9-30K 14% 0.9 0.4
  • Non-hemophilic mice were used, 2 animal per time point, 3 samples per animal. Sampling time points were 0, 0.08, 0.17, 0.33, 1, 3, 5, 8, 16, 24, 30, 48, 64, 72, and 96 h post compound administration. Blood samples were centrifuged and stored in two aliquots; one for clot analysis and one for ELISA.
  • the PEG-9 compounds were dosed in different amounts: BeneFIX 250 U/kg; 2K(low substitution: “LS” (1-2 PEG substitutions per peptide molecule) 200 U/kg; 2K(high substitution: “HS” (3-4 PEG substitutions per peptide molecule) 200 U/kg; 10K 100 U/kg; 30K 100 U/kg. All doses were based on measured clotting assay units.
  • GlycoPEGylated Factor IX with a low degree of substitution with PEG were prepared from native Factor IX by an exchange reaction catalyzed by ST3Gal-III. The reactions were performed in a buffer of 10 mM histidine, 260 mM glycine, 1% sucrose and 0.02% Tween 80, pH 7.2. For PEGylation with CMPSA-PEG (2 kD and 10 kD), Factor IX (0.5 mg/mL) was incubated with ST3GalIII (50 mU/mL) and CMP-SA-PEG (0.5 mM) for 16 h at 32° C.
  • the concentration of Factor IX was increased to 1.0 mg/mL, and the concentration of CMP-SA-PEG was decreased to 0.17 mM. Under these conditions, more than 90% of the Factor IX molecules were substituted with at least one PEG moiety.
  • GlycoPEGylated Factor IX with a high degree of substitution with PEG were prepared by enzymatic desialylation of native Factor IX.
  • the Factor IX peptide was buffer exchanged into 50 mM mES, pH 6.0, using a PD10 column, adjusted to a concentration of 0.66 mg/mL and treated with AUS sialidase (5 mU/mL) for 16 h at 32° C. Desialylation was verified by SDS-PAGE, HPLC and MALDI glycan analysis.
  • Asialo Factor IX was purified on Q Sepharose FF to remove the sialidase.
  • the CaCl 2 fraction was concentrated using an Ultra15 concentrator and buffer exchanged into MES, pH 6.0 using a PD10 column.
  • O-glycan chains were introduced de novo into native Factor IX (1 mg/mL) by incubation of the peptide with GalNAcT-II (25 mU/mL) and 1 mM UDP-GalNAc at 32° C. After 4 h of incubation, the PEGylation reaction was initiated by adding CMPSA-PEG (2 Kd or 10 Kd at 0.5 mM or 30 kDd at 0.17 mM) and ST6GalNAc-I (25 mU/mL) and incubating for an additional 20 h.
  • CMPSA-PEG 2 Kd or 10 Kd at 0.5 mM or 30 kDd at 0.17 mM
  • ST6GalNAc-I 25 mU/mL

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides conjugates between Factor IX and PEG moieties. The conjugates are linked via an intact glycosyl linking group interposed between and covalently attached to the peptide and the modifying group. The conjugates are formed from glycosylated peptides by the action of a glycosyltransferase. The glycosyltransferase ligates a modified sugar moiety onto a glycosyl residue on the peptide. Also provided are methods for preparing the conjugates, methods for treating various disease conditions with the conjugates, and pharmaceutical formulations including the conjugates.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 11/166,028, filed Jun. 23, 2005, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 60/684,729, filed May 25, 2005; U.S. patent application Ser. No. 11/166,028, filed Jun. 23, 2005, which is a continuation-in-part of PCT Application No. PCT/US2004/041070, filed Dec. 3, 2004, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 60/527,089, filed Dec. 3, 2003, U.S. Provisional Patent Application No. 60/539,387, filed Jan. 26, 2004, U.S. Provisional Patent Application No. 60/592,744, filed Jul. 29, 2004, U.S. Provisional Patent Application No. 60/614,518, filed Sep. 29, 2004, and U.S. Provisional Patent Application No. 60/623,387, filed Oct. 29, 2004, each of which are incorporated herein by reference in their entirety for all purposes.
  • BACKGROUND OF THE INVENTION
  • Vitamin K-dependent proteins (e.g., Factor IX) contain 9 to 13 gamma-carboxyglutamic acid residues (Gla) in their amino terminal 45 residues. The Gla residues are produced by enzymes in the liver that utilize vitamin K to carboxylate the side chains of glutamic acid residues in protein precursors. Vitamin K-dependent proteins are involved in a number of biological processes, of which the best described is blood coagulation (reviewed in Nelsestuen, Vitam. Horm. 58: 355-389 (2000)). Vitamin K-dependent proteins include protein Z, protein S, prothrombin (Factor II), Factor X, Factor IX, protein C, Factor VII, Gas6, and matrix GLA protein. Factors VII, IX, X and II function in procoagulation processes while protein C, protein S and protein Z serve in anticoagulation roles. Gas6 is a growth arrest hormone encoded by growth arrest-specific gene 6 (gas6) and is related to protein S. See, Manfioletti et al. Mol. Cell. Biol. 13: 4976-4985 (1993). Matrix GLA protein normally is found in bone and is critical to prevention of calcification of soft tissues in the circulation. Luo et al. Nature 386: 78-81 (1997).
  • The regulation of blood coagulation is a process that presents a number of leading health problems, including both the failure to form blood clots as well as thrombosis, the formation of unwanted blood clots. Agents that prevent unwanted clots are used in many situations and a variety of agents are available. Unfortunately, most current therapies have undesirable side effects. Orally administered anticoagulants such as Warfarin act by inhibiting the action of vitamin K in the liver, thereby preventing complete carboxylation of glutamic acid residues in the vitamin K-dependent proteins, resulting in a lowered concentration of active proteins in the circulatory system and reduced ability to form clots. Warfarin therapy is complicated by the competitive nature of the drug with its target. Fluctuations of dietary vitamin K can result in an over-dose or under-dose of Warfarin. Fluctuations in coagulation activity are an undesirable outcome of this therapy.
  • Injected substances such as heparin, including low molecular weight heparin, also are commonly used anticoagulants. Again, these compounds are subject to overdose and must be carefully monitored.
  • A newer category of anticoagulants includes active-site modified vitamin K-dependent clotting factors such as factor VIIa and IXa. The active sites are blocked by serine protease inhibitors such as chloromethylketone derivatives of amino acids or short peptides. The active site-modified proteins retain the ability to form complexes with their respective cofactors, but are inactive, thereby producing no enzyme activity and preventing complexing of the cofactor with the respective active enzymes. In short, these proteins appear to offer the benefits of anticoagulation therapy without the adverse side effects of other anticoagulants. Active site modified factor Xa is another possible anticoagulant in this group. Its cofactor protein is factor Va. Active site modified activated protein C (APC) may also form an effective inhibitor of coagulation. See, Sorensen et al. J. Biol. Chem. 272: 11863-11868 (1997). Active site modified APC binds to factor Va and prevents factor Xa from binding.
  • A major inhibition to the use of vitamin K-dependent clotting factors is cost. Biosynthesis of vitamin K-dependent proteins is dependent on an intact glutamic acid carboxylation system, which is present in a small number of animal cell types. Overproduction of these proteins is limited by this enzyme system. Furthermore, the effective dose of these proteins is high. A common dosage is 1000 μg of peptide/kg body weight. See, Harker et al. 1997, supra.
  • Another phenomena that hampers the use of therapeutic peptides is the well known aspect of protein glycosylation is the relatively short in vivo half life exhibited by these peptides. Overall, the problem of shot in vivo half life means that therapeutic glycopeptides must be administered frequently in high dosages, which ultimately translate to higher health care costs than might be necessary if a more efficient method for making longer lasting, more effective glycoprotein therapeutics was available.
  • Factor VIIa, for example, illustrates this problem. Factor VII and VIIa have circulation half-times of about 2-4 hours in the human. That is, within 2-4 hours, the concentration of the peptide in the serum is reduced by half. When Factor VIIa is used as a procoagulant to treat certain forms of hemophilia, the standard protocol is to inject VIIa every two hours and at high dosages (45 to 90 .mu.g/kg body weight). See, Hedner et al., Transfus. Med. Rev. 7: 78-83 (1993)). Thus, use of these proteins as procoagulants or anticoagulants (in the case of factor VIIa) requires that the proteins be administered at frequent intervals and at high dosages.
  • One solution to the problem of providing cost effective glycopeptide therapeutics has been to provide peptides with longer in vivo half lives. For example, glycopeptide therapeutics with improved pharmacokinetic properties have been produced by attaching synthetic polymers to the peptide backbone. An exemplary polymer that has been conjugated to peptides is poly(ethylene glycol) (“PEG”). The use of PEG to derivatize peptide therapeutics has been demonstrated to reduce the immunogenicity of the peptides. For example, U.S. Pat. No. 4,179,337 (Davis et al.) discloses non-immunogenic polypeptides such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol. In addition to reduced immunogenicity, the clearance time in circulation is prolonged due to the increased size of the PEG-conjugate of the polypeptides in question.
  • The principal mode of attachment of PEG, and its derivatives, to peptides is a non-specific bonding through a peptide amino acid residue (see e.g., U.S. Pat. No. 4,088,538 U.S. Pat. No. 4,496,689, U.S. Pat. No. 4,414,147, U.S. Pat. No. 4,055,635, and PCT WO 87/00056). Another mode of attaching PEG to peptides is through the non-specific oxidation of glycosyl residues on a glycopeptide (see e.g., WO 94/05332).
  • In these non-specific methods, poly(ethyleneglycol) is added in a random, non-specific manner to reactive residues on a peptide backbone. Of course, random addition of PEG molecules has its drawbacks, including a lack of homogeneity of the final product, and the possibility for reduction in the biological or enzymatic activity of the peptide. Therefore, for the production of therapeutic peptides, a derivitization strategy that results in the formation of a specifically labeled, readily characterizable, essentially homogeneous product is superior. Such methods have been developed.
  • Specifically labeled, homogeneous peptide therapeutics can be produced in vitro through the action of enzymes. Unlike the typical non-specific methods for attaching a synthetic polymer or other label to a peptide, enzyme-based syntheses have the advantages of regioselectivity and stereoselectivity. Two principal classes of enzymes for use in the synthesis of labeled peptides are glycosyltransferases (e.g., sialyltransferases, oligosaccharyltransferases, N-acetylglucosaminyltransferases), and glycosidases. These enzymes can be used for the specific attachment of sugars which can be subsequently modified to comprise a therapeutic moiety. Alternatively, glycosyltransferases and modified glycosidases can be used to directly transfer modified sugars to a peptide backbone (see e.g., U.S. Pat. No. 6,399,336, and U.S. Patent Application Publications 20030040037, 20040132640, 20040137557, 20040126838, and 20040142856, each of which are incorporated by reference herein). Methods combining both chemical and enzymatic synthetic elements are also known (see e.g., Yamamoto et al. Carbohydr. Res. 305: 415-422 (1998) and U.S. Patent Application Publication 20040137557 which is incorporated herein by reference).
  • Factor IX is an extremely valuable therapeutic peptide. Although commercially available forms of Factor IX are in use today, these peptides can be improved by modifications that enhance the pharmacokinetics of the resulting isolated glycoprotein product. Thus, there remains a need in the art for longer lasting Factor IX peptides with improved effectiveness and better pharmacokinetics. Furthermore, to be effective for the largest number of individuals, it must be possible to produce, on an industrial scale, a Factor IX peptide with improved therapeutic pharmacokinetics that has a predictable, essentially homogeneous, structure which can be readily reproduced over, and over again.
  • Fortunately, Factor IX peptides with improved pharmacokinetics and methods for making them have now been discovered. In addition to Factor IX peptides with improved pharmacokinetics, the invention also provides industrially practical and cost effective methods for the production of these Factor IX peptides. The Factor IX peptides of the invention comprise modifying groups such as PEG moieties, therapeutic moieties, biomolecules and the like. The present invention therefore fulfills the need for Factor IX peptides with improved the therapeutic effectiveness and improved pharmacokinetics for the treatment of conditions and diseases wherein Factor IX provides effective therapy.
  • SUMMARY OF THE INVENTION
  • It has now been discovered that the controlled modification of Factor IX with one or more poly(ethylene glycol) moieties affords a novel Factor IX derivative with pharmacokinetic properties that are improved relative to the corresponding native (un-pegylated) Factor IX (FIG. 3). Moreover, the glycoPEGylated Factor IX retains its pharmacological activity (FIG. 4).
  • In an exemplary embodiment, “glycopeglyated” Factor IX molecules of the invention are produced by the enzyme mediated formation of a conjugate between a glycosylated or non-glycosylated Factor IX peptide and an enzymatically transferable saccharyl moiety that includes a poly(ethylene glycol) moiety within its structure The PEG moiety is attached to the saccharyl moiety directly (i.e., through a single group formed by the reaction of two reactive groups) or through a linker moiety, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, etc. An exemplary transferable PEG-saccharyl structure is set forth in FIG. 7.
  • The polymeric modifying moiety can be attached at any position of a glycosyl moiety of Factor IX. Moreover, the polymeric modifying moiety can be bound to a glycosyl residue at any position in the amino acid sequence of a wild type or mutant Factor IX peptide.
  • In an exemplary embodiment, the invention provides an Factor IX peptide that is conjugated through a glycosyl linking group to a polymeric modifying moiety. Exemplary Factor IX peptide conjugates include a glycosyl linking group having a formula selected from:
  • Figure US20090081188A1-20090326-C00001
  • In Formulae I and II, R2 is H, CH2OR7, COOR7 or OR7, in which R7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl. The symbols R3, R4, R5, R6 and R6′ independently represent H, substituted or unsubstituted alkyl, OR8, NHC(O)R9. The index d is 0 or 1. R8 and R9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl or sialic acid. At least one of R3, R4, R5, R6 or R6′ includes the polymeric modifying moiety e.g., PEG. In an exemplary embodiment, R6 and R6′, together with the carbon to which they are attached are components of the side chain of sialic acid. In a further exemplary embodiment, this side chain is functionalized with the polymeric modifying moiety.
  • In an exemplary embodiment, the polymeric moiety is bound to the glycosyl linking group, generally through a heteroatom on the glycosyl core (e.g., N, O), through a linker, L, as shown below:
  • Figure US20090081188A1-20090326-C00002
  • R1 is the polymeric modifying moiety and L is selected from a bond and a linking group. The index w represents an integer selected from 1-6, preferably 1-3 and more preferably 1-2. Exemplary linking groups include substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl moieties and sialic acid. An exemplary component of the linker is an acyl moiety. Another exemplary linking group is an amino acid residue (e.g., cysteine, serine, lysine, and short oligopeptides, e.g., Lys-Lys, Lys-Lys-Lys, Cys-Lys, Ser-Lys, etc.)
  • When L is a bond, it is formed by reaction of a reactive functional group on a precursor of R1 and a reactive functional group of complementary reactivity on a precursor of the glycosyl linking group. When L is a non-zero order linking group, L can be in place on the glycosyl moiety prior to reaction with the R1 precursor. Alternatively, the precursors of R1 and L can be incorporated into a preformed cassette that is subsequently attached to the glycosyl moiety. As set forth herein, the selection and preparation of precursors with appropriate reactive functional groups is within the ability of those skilled in the art. Moreover, coupling of the precursors proceeds by chemistry that is well understood in the art.
  • In an exemplary embodiment L is a linking group that is formed from an amino acid, or small peptide (e.g., 1-4 amino acid residues) providing a modified sugar in which the polymeric modifying moiety is attached through a substituted alkyl linker. Exemplary linkers include glycine, lysine, serine and cysteine. Amino acid analogs, as defined herein, are also of use as linker components. The amino acid may be modified with an additional component of a linker, e.g., alkyl, heteroalkyl, covalently attached through an acyl linkage, for example, an amide or urethane formed through an amine moiety of the amino acid residue.
  • In an exemplary embodiment, the glycosyl linker has a structure according to Formula I and R5 includes the polymeric modifying moiety. In another exemplary embodiment, R5 includes both the polymeric modifying moiety and a linker, L, joining the modifying moiety to the glycosyl core. L can be a linear or branched structure. Similarly, the polymeric modifying can be branched or linear.
  • The polymeric modifying moiety comprises two or more repeating units that can be water-soluble or essentially insoluble in water. Exemplary water-soluble polymers of use in the compounds of the invention include PEG, e.g., m-PEG, PPG, e.g., m-PPG, polysialic acid, polyglutamate, polyaspartate, polylysine, polyethyeleneimine, biodegradable polymers (e.g., polylactide, polyglyceride), and functionalized PEG, e.g., terminal-functionalized PEG.
  • The glycosyl core of the glycosyl linking groups of use in the Factor IX conjugates of the invention is selected from both natural and unnatural furanoses and pyranoses. The unnatural saccharides optionally include an alkylated or acylated hydroxyl and/or amine moiety, e.g., ethers, esters and amide substituents on the ring. Other unnatural saccharides include an H, hydroxyl, ether, ester or amide substituent at a position on the ring at which such a substituent is not present in the natural saccharide. Alternatively, the carbohydrate is missing a substituent that would be found in the carbohydrate from which its name is derived, e.g., deoxy sugars. Still further exemplary unnatural sugars include both oxidized (e.g., -onic and -uronic acids) and reduced (sugar alcohols) carbohydrates. The sugar moiety can be a mono-, oligo- or poly-saccharide.
  • Exemplary natural sugars of use as components of glycosyl linking groups in the present invention include glucose, glucosamine, galactose, galactosamine, fucose, mannose, mannosamine, xylanose, ribose, N-acetyl glucose, N-acetyl glucosamine, N-acetyl galactose, N-acetyl galactosamine, and sialic acid.
  • In one embodiment, the present invention provides an Factor IX peptide comprising the moiety:
  • Figure US20090081188A1-20090326-C00003
  • wherein D is a member selected from —OH and R1-L-HN—; G is a member selected from H and R1-L- and —C(O)(C1-C6)alkyl; R1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue; and L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl. In exemplary embodiments, when D is OH, G is R1-L-, and when G is —C(O)(C1-C6)alkyl, D is R1-L-NH—.
  • In another aspect, the invention provides a peptide comprising a glycosyl linking group having the formula:
  • Figure US20090081188A1-20090326-C00004
  • In other embodiments, the group has the formula:
  • Figure US20090081188A1-20090326-C00005
  • in which t is 0 or 1.
  • In yet another embodiment, the group has the formula:
  • Figure US20090081188A1-20090326-C00006
  • in which the index p represents and integer from 1 to 10, and c represents 0 or 1.
  • In another aspect, the invention provides a method of making a PEGylated Factor IX peptide of the invention. The method includes: (a) contacting a substrate Factor IX peptide comprising a glycosyl group selected from:
  • Figure US20090081188A1-20090326-C00007
  • with a PEG-sialic acid donor having the formula:
  • Figure US20090081188A1-20090326-C00008
  • and an enzyme that transfers PEG-sialic acid from said donor onto a member selected from the GalNAc, Gal and the Sia of said glycosyl group, under conditions appropriate for said transfer. An exemplary modified sialic acid donor is CMP-sialic acid modified, through a linker moiety, with a polymer, e.g., a straight chain or branched poly(ethylene glycol) moiety. The indices c and r independently represent 0 or 1.
  • The peptide can be acquired from essentially any source, however, in one embodiment, prior to being modified as discussed above, the Factor IX peptide is expressed in a suitable host. Mammalian (e.g., CHO), bacteria (e.g., E. coli) and insect cells (e.g., Sf-9) are exemplary expression systems providing Factor IX of use in the compositions and methods set forth herein. An exemplary O-linked glycan that is glycopegylated is shown in FIG. 9. Exemplary glycans produced in an insect system and a mammalian system, and subsequently glycoconjugated and or remodeled and glycoconjugated to PEG are set forth in FIG. 10 and FIG. 11.
  • In another aspect, the invention provides a method of treating a condition in a subject in need thereof. Exemplary conditions include those characterized by compromised blood clotting in the subject. The method includes the step of administering to the subject an amount of the polymer-modified Factor IX peptide of the invention effective to ameliorate the condition in the subject.
  • In another aspect, the invention provides a method of enhancing blood clotting in a mammal. The method includes administering to the mammal an amount of the polymer-modified Factor IX peptide of the invention effective to enhance clotting in the mammal.
  • In another aspect, the invention provides a method of treating a condition in a subject in need of treatment with Factor IX. The method includes the step of administering to the subject an amount of a polymer-modified Factor IX peptide of the invention effective to ameliorate the condition of the subject.
  • In another aspect, the invention provides a pharmaceutical formulation comprising a polymer-modified Factor IX peptide of the invention and a pharmaceutically acceptable carrier.
  • In the polymer-modified Factor IX glycoconjugates of the invention, essentially each of the amino acid residues to which the polymer is bound has the same structure. For example, if one peptide includes an asparagine linked glycosyl residue, at least about 70%, 80%, 90%, 95%, 97%, 99%, 99.2%, 99.4%, 99.6%, or more preferably 99.8% of the peptides in the population will have the same glycosyl residue covalently bound to the same Ser residue. In other embodiments, this is true of a glycosyl residue linked to a threonine or a serine.
  • Other objects and advantages of the invention will be apparent to those of skill in the art from the detailed description that follows.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is the structure of Factor IX, showing the presence and location of potential glycosylation sites at Asn 157, Asn 167; Ser 53, Ser 61, Thr 159, Thr 169, and Thr 172.
  • FIG. 2 is a scheme showing an exemplary embodiment of the invention in which a carbohydrate residue on a Factor IX peptide is remodeled and glycopegylated: (A) sialic acid moieties are removed by sialidase and the resulting galactose residues are glycopegylated with the sialic acid derivative of FIG. 5; (B) a mannose residue is glycopegylated with the sialic acid PEG; (C) a sialic acid moiety of an N-glycan is glycopegylated with the sialic acid PEG (a′ and a″ are independently selected from 0 and 1-at least one of a′ and a″ is 1); The figure is exemplary in that any glycosylated Factor IX molecule may comprise any mixture of mono-, bi- tri-, or tetra-antennary N-linked glycosyl residues and any one or more of the branches may further comprise a modified sialic acid moiety of the invention. Moreover, the figure illustrates that the modified glycan can be positioned at any one or more N- or O-linked glycosylation site without limitation.
  • FIG. 3 is a plot comparing the in vivo residence lifetimes of unglycosylated Factor IX and enzymatically glycoPEGylated Factor IX.
  • FIG. 4 is a table comparing the activities of the species shown in FIG. 3.
  • FIG. 5 is the amino acid sequence of Factor IX.
  • FIG. 6 is a graphic presentation of the pharmacokinetic properties of various glycoPEGylated Factor IX molecules compared to a non-pegylated Factor IX. LS refers to “low substitution” (the peptide is glycoPEGylated using ST3Gal3 without desialylation). HS refers to high substitution (the peptide is glycoPEGylated using ST3Gal3, following desialylation). Unmodified Gal residues are optionally capped with Sia.
  • FIG. 7 is a synthetic scheme for producing an exemplary PEG-glycosyl linking group precursor (modified sugar) of us in preparing the conjugates of the invention.
  • FIG. 8 is a table of sialyl transferases of use to transfer onto an acceptor a modified sialic acid moiety, such as those set forth herein and unmodified sialic acid moieties.
  • FIG. 9 shows an exemplary O-linked glycan structure on a Factor IX glycoconjugate of the invention. Each index n is independently selected.
  • FIG. 10 shows an exemplary N-linked glycan structure on a mutant Factor IX glycoconjugate of the invention expressed in insect cells (and remodeled and glycopegylated) in which the mutant includes one or more N-linked glycosylation sites.
  • FIG. 11 shows an exemplary N-linked glycan structure on a mutant Factor IX glycoconjugate of the invention expressed in mammalian cells (and glycopegylated) in which the mutant includes one or more N-linked glycosylation sites: A) N-linked glycans of Factor IX expressed in CHO; B) N-linked glycans of CHO-derived Factor IX glycoPEGylated with CST-II or α2,8 sialyltransferase; C)N-linked glycans of CHO-derived Factor IX glycoPEGylated with CST-II and/or ST3Gal3. A glycine linker can be interposed between the linear and/or branched PEG species such as discussed herein.
  • FIG. 12 illustrates exemplary modified sialic acid nucleotides useful in the practice of the invention. A. Structure of exemplary branched (e.g., 30 kDa, 40 kDa) CMP-sialic acid-PEG sugar nucleotides. B. Structure of linear CMP-sialic acid-PEG (e.g., 10 kDa).
  • DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENTS Abbreviations
  • PEG, poly(ethylene glycol); PPG, poly(propylene glycol); Ara, arabinosyl; Fru, fructosyl; Fuc, fucosyl; Gal, galactosyl; GalNAc, N-acetylgalactosaminyl; Glc, glucosyl; GlcNAc, N-acetylglucosaminyl; Man, mannosyl; ManAc, mannosaminyl acetate; Xyl, xylosyl; NeuAc (N-acetylneuraminyl), Sia (sialyl); M6P, mannose-6-phosphate.
  • DEFINITIONS
  • Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Generally, the nomenclature used herein and the laboratory procedures in cell culture, molecular genetics, organic chemistry and nucleic acid chemistry and hybridization are those well known and commonly employed in the art. Standard techniques are used for nucleic acid and peptide synthesis. The techniques and procedures are generally performed according to conventional methods in the art and various general references (see generally, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., which is incorporated herein by reference), which are provided throughout this document. The nomenclature used herein and the laboratory procedures in analytical chemistry, and organic synthetic described below are those well known and commonly employed in the art. Standard techniques, or modifications thereof, are used for chemical syntheses and chemical analyses.
  • All oligosaccharides described herein are described with the name or abbreviation for the non-reducing saccharide (i.e., Gal), followed by the configuration of the glycosidic bond (α or β), the ring bond (1 or 2), the ring position of the reducing saccharide involved in the bond (2, 3, 4, 6 or 8), and then the name or abbreviation of the reducing saccharide (i.e., GlcNAc). Each saccharide is preferably a pyranose. For a review of standard glycobiology nomenclature, see, Essentials of Glycobiology Varki et al. eds. CSHL Press (1999).
  • Oligosaccharides are considered to have a reducing end and a non-reducing end, whether or not the saccharide at the reducing end is in fact a reducing sugar. In accordance with accepted nomenclature, oligosaccharides are depicted herein with the non-reducing end on the left and the reducing end on the right.
  • The term “sialic acid” refers to any member of a family of nine-carbon carboxylated sugars. The most common member of the sialic acid family is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid (often abbreviated as Neu5Ac, NeuAc, or NANA). A second member of the family is N-glycolyl-neuraminic acid (Neu5Gc or NeuGc), in which the N-acetyl group of NeuAc is hydroxylated. A third sialic acid family member is 2-keto-3-deoxy-nonulosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J. Biol. Chem. 265: 21811-21819 (1990)). Also included are 9-substituted sialic acids such as a 9-O—C1-C6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-acetyl-Neu5Ac, 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac. For review of the sialic acid family, see, e.g., Varki, Glycobiology 2: 25-40 (1992); Sialic Acids: Chemistry, Metabolism and Function, R. Schauer, Ed. (Springer-Verlag, New York (1992)). The synthesis and use of sialic acid compounds in a sialylation procedure is disclosed in international application WO 92/16640, published Oct. 1, 1992.
  • “Peptide” refers to a polymer in which the monomers are amino acids and are joined together through amide bonds, alternatively referred to as a polypeptide. Additionally, unnatural amino acids, for example, β-alanine, phenylglycine and homoarginine are also included. Amino acids that are not gene-encoded may also be used in the present invention. Furthermore, amino acids that have been modified to include reactive groups, glycosylation sites, polymers, therapeutic moieties, biomolecules and the like may also be used in the invention. All of the amino acids used in the present invention may be either the D- or L-isomer. The L-isomer is generally preferred. In addition, other peptidomimetics are also useful in the present invention. As used herein, “peptide” refers to both glycosylated and unglycosylated peptides. Also included are peptides that are incompletely glycosylated by a system that expresses the peptide. For a general review, see, Spatola, A. F., in CHEMISTRY AND BIOCHEMISTRY OF AMINO ACIDS, PEPTIDES AND PROTEINS, B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983).
  • The term “peptide conjugate,” refers to species of the invention in which a peptide is conjugated with a modified sugar as set forth herein.
  • The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function in a manner similar to a naturally occurring amino acid.
  • As used herein, the term “modified sugar,” refers to a naturally- or non-naturally-occurring carbohydrate that is enzymatically added onto an amino acid or a glycosyl residue of a peptide in a process of the invention. The modified sugar is selected from enzyme substrates including, but not limited to sugar nucleotides (mono-, di-, and tri-phosphates), activated sugars (e.g., glycosyl halides, glycosyl mesylates) and sugars that are neither activated nor nucleotides. The “modified sugar” is covalently functionalized with a “modifying group.” Useful modifying groups include, but are not limited to, PEG moieties, therapeutic moieties, diagnostic moieties, biomolecules and the like. The modifying group is preferably not a naturally occurring, or an unmodified carbohydrate. The locus of functionalization with the modifying group is selected such that it does not prevent the “modified sugar” from being added enzymatically to a peptide.
  • The term “water-soluble” refers to moieties that have some detectable degree of solubility in water. Methods to detect and/or quantify water solubility are well known in the art. Exemplary water-soluble polymers include peptides, saccharides, poly(ethers), poly(amines), poly(carboxylic acids) and the like. Peptides can have mixed sequences of be composed of a single amino acid, e.g., poly(lysine). An exemplary polysaccharide is poly(sialic acid). An exemplary poly(ether) is poly(ethylene glycol). Poly(ethylene imine) is an exemplary polyamine, and poly(acrylic) acid is a representative poly(carboxylic acid).
  • The polymer backbone of the water-soluble polymer can be poly(ethylene glycol) (i.e. PEG). However, it should be understood that other related polymers are also suitable for use in the practice of this invention and that the use of the term PEG or poly(ethylene glycol) is intended to be inclusive and not exclusive in this respect. The term PEG includes poly(ethylene glycol) in any of its forms, including alkoxy PEG, difunctional PEG, multiarmed PEG, forked PEG, branched PEG, pendent PEG (i.e. PEG or related polymers having one or more functional groups pendent to the polymer backbone), or PEG with degradable linkages therein.
  • The polymer backbone can be linear or branched. Branched polymer backbones are generally known in the art. Typically, a branched polymer has a central branch core moiety and a plurality of linear polymer chains linked to the central branch core. PEG is commonly used in branched forms that can be prepared by addition of ethylene oxide to various polyols, such as glycerol, pentaerythritol and sorbitol. The central branch moiety can also be derived from several amino acids, such as lysine. The branched poly(ethylene glycol) can be represented in general form as R(-PEG-OH)m in which R represents the core moiety, such as glycerol or pentaerythritol, and m represents the number of arms. Multi-armed PEG molecules, such as those described in U.S. Pat. No. 5,932,462, which is incorporated by reference herein in its entirety, can also be used as the polymer backbone.
  • Many other polymers are also suitable for the invention. Polymer backbones that are non-peptidic and water-soluble, with from 2 to about 300 termini, are particularly useful in the invention. Examples of suitable polymers include, but are not limited to, other poly(alkylene glycols), such as poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxypropylmethacrylamide), poly(α-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), such as described in U.S. Pat. No. 5,629,384, which is incorporated by reference herein in its entirety, and copolymers, terpolymers, and mixtures thereof. Although the molecular weight of each chain of the polymer backbone can vary, it is typically in the range of from about 100 Da to about 100,000 Da, often from about 6,000 Da to about 80,000 Da.
  • The “area under the curve” or “AUC”, as used herein in the context of administering a peptide drug to a patient, is defined as total area under the curve that describes the concentration of drug in systemic circulation in the patient as a function of time from zero to infinity.
  • The term “half-life” or “t½”, as used herein in the context of administering a peptide drug to a patient, is defined as the time required for plasma concentration of a drug in a patient to be reduced by one half. There may be more than one half-life associated with the peptide drug depending on multiple clearance mechanisms, redistribution, and other mechanisms well known in the art. Usually, alpha and beta half-lives are defined such that the alpha phase is associated with redistribution, and the beta phase is associated with clearance. However, with protein drugs that are, for the most part, confined to the bloodstream, there can be at least two clearance half-lives. For some glycosylated peptides, rapid beta phase clearance may be mediated via receptors on macrophages, or endothelial cells that recognize terminal galactose, N-acetylgalactosamine, N-acetylglucosamine, mannose, or fucose. Slower beta phase clearance may occur via renal glomerular filtration for molecules with an effective radius <2 nm (approximately 68 kD) and/or specific or non-specific uptake and metabolism in tissues. GlycoPEGylation may cap terminal sugars (e.g., galactose or N-acetylgalactosamine) and thereby block rapid alpha phase clearance via receptors that recognize these sugars. It may also confer a larger effective radius and thereby decrease the volume of distribution and tissue uptake, thereby prolonging the late beta phase. Thus, the precise impact of glycoPEGylation on alpha phase and beta phase half-lives will vary depending upon the size, state of glycosylation, and other parameters, as is well known in the art. Further explanation of “half-life” is found in Pharmaceutical Biotechnology (1997, DFA Crommelin and RD Sindelar, eds., Harwood Publishers, Amsterdam, pp 101-120).
  • The term “glycoconjugation,” as used herein, refers to the enzymatically mediated conjugation of a modified sugar species to an amino acid or glycosyl residue of a polypeptide, e.g., a Factor IX peptide of the present invention. A subgenus of “glycoconjugation” is “glycol-PEGylation,” in which the modifying group of the modified sugar is poly(ethylene glycol), and alkyl derivative (e.g., m-PEG) or reactive derivative (e.g., H2N-PEG, HOOC-PEG) thereof.
  • The terms “large-scale” and “industrial-scale” are used interchangeably and refer to a reaction cycle that produces at least about 250 mg, preferably at least about 500 mg, and more preferably at least about 1 gram of glycoconjugate at the completion of a single reaction cycle.
  • The term, “glycosyl linking group,” as used herein refers to a glycosyl residue to which a modifying group (e.g., PEG moiety, therapeutic moiety, biomolecule) is covalently attached; the glycosyl linking group joins the modifying group to the remainder of the conjugate. In the methods of the invention, the “glycosyl linking group” becomes covalently attached to a glycosylated or unglycosylated peptide, thereby linking the agent to an amino acid and/or glycosyl residue on the peptide. A “glycosyl linking group” is generally derived from a “modified sugar” by the enzymatic attachment of the “modified sugar” to an amino acid and/or glycosyl residue of the peptide. The glycosyl linking group can be a saccharide-derived structure that is degraded during formation of modifying group-modified sugar cassette (e.g., oxidation→Schiff base formation→reduction), or the glycosyl linking group may be intact. An “intact glycosyl linking group” refers to a linking group that is derived from a glycosyl moiety in which the saccharide monomer that links the modifying group and to the remainder of the conjugate is not degraded, e.g., oxidized, e.g., by sodium metaperiodate. “Intact glycosyl linking groups” of the invention may be derived from a naturally occurring oligosaccharide by addition of glycosyl unit(s) or removal of one or more glycosyl unit from a parent saccharide structure.
  • The term “targeting moiety,” as used herein, refers to species that will selectively localize in a particular tissue or region of the body. The localization is mediated by specific recognition of molecular determinants, molecular size of the targeting agent or conjugate, ionic interactions, hydrophobic interactions and the like. Other mechanisms of targeting an agent to a particular tissue or region are known to those of skill in the art. Exemplary targeting moieties include antibodies, antibody fragments, transferrin, HS-glycoprotein, coagulation factors, serum proteins, β-glycoprotein, G-CSF, GM-CSF, M-CSF, EPO and the like.
  • As used herein, “therapeutic moiety” means any agent useful for therapy including, but not limited to, antibiotics, anti-inflammatory agents, anti-tumor drugs, cytotoxins, and radioactive agents. “Therapeutic moiety” includes prodrugs of bioactive agents, constructs in which more than one therapeutic moiety is bound to a carrier, e.g, multivalent agents. Therapeutic moiety also includes proteins and constructs that include proteins. Exemplary proteins include, but are not limited to, Granulocyte Colony Stimulating Factor (GCSF), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interferon (e.g., Interferon-α, -β, -γ), Interleukin (e.g., Interleukin II), serum proteins (e.g., Factors VII, VIIa, VIII, IX, and X), Human Chorionic Gonadotropin (HCG), Follicle Stimulating Hormone (FSH) and Lutenizing Hormone (LH) and antibody fusion proteins (e.g. Tumor Necrosis Factor Receptor ((TNFR)/Fc domain fusion protein)).
  • As used herein, “pharmaceutically acceptable carrier” includes any material, which when combined with the conjugate retains the conjugates' activity and is non-reactive with the subject's immune systems. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Other carriers may also include sterile solutions, tablets including coated tablets and capsules. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Compositions comprising such carriers are formulated by well known conventional methods.
  • As used herein, “administering,” means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular, intralesional, intranasal or subcutaneous administration, or the implantation of a slow-release device e.g., a mini-osmotic pump, to the subject. Administration is by any route including parenteral, and transmucosal (e.g., oral, nasal, vaginal, rectal, or transdermal). Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial. Moreover, where injection is to treat a tumor, e.g., induce apoptosis, administration may be directly to the tumor and/or into tissues surrounding the tumor. Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transdermal patches, etc.
  • The term “ameliorating” or “ameliorate” refers to any indicia of success in the treatment of a pathology or condition, including any objective or subjective parameter such as abatement, remission or diminishing of symptoms or an improvement in a patient's physical or mental well-being. Amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination and/or a psychiatric evaluation.
  • The term “therapy” refers to “treating” or “treatment” of a disease or condition including preventing the disease or condition from occurring in an animal that may be predisposed to the disease but does not yet experience or exhibit symptoms of the disease (prophylactic treatment), inhibiting the disease (slowing or arresting its development), providing relief from the symptoms or side-effects of the disease (including palliative treatment), and relieving the disease (causing regression of the disease).
  • The term “effective amount” or “an amount effective to” or a “therapeutically effective amount” or any grammatically equivalent term means the amount that, when administered to an animal for treating a disease, is sufficient to effect treatment for that disease.
  • The term “isolated” refers to a material that is substantially or essentially free from components, which are used to produce the material. For peptide conjugates of the invention, the term “isolated” refers to material that is substantially or essentially free from components which normally accompany the material in the mixture used to prepare the peptide conjugate. “Isolated” and “pure” are used interchangeably. Typically, isolated peptide conjugates of the invention have a level of purity preferably expressed as a range. The lower end of the range of purity for the peptide conjugates is about 60%, about 70% or about 80% and the upper end of the range of purity is about 70%, about 80%, about 90% or more than about 90%.
  • When the peptide conjugates are more than about 90% pure, their purities are also preferably expressed as a range. The lower end of the range of purity is about 90%, about 92%, about 94%, about 96% or about 98%. The upper end of the range of purity is about 92%, about 94%, about 96%, about 98% or about 100% purity.
  • Purity is determined by any art-recognized method of analysis (e.g., band intensity on a silver stained gel, polyacrylamide gel electrophoresis, HPLC, or a similar means).
  • “Essentially each member of the population,” as used herein, describes a characteristic of a population of peptide conjugates of the invention in which a selected percentage of the modified sugars added to a peptide are added to multiple, identical acceptor sites on the peptide. “Essentially each member of the population” speaks to the “homogeneity” of the sites on the peptide conjugated to a modified sugar and refers to conjugates of the invention, which are at least about 80%, preferably at least about 90% and more preferably at least about 95% homogenous.
  • “Homogeneity,” refers to the structural consistency across a population of acceptor moieties to which the modified sugars are conjugated. Thus, in a peptide conjugate of the invention in which each modified sugar moiety is conjugated to an acceptor site having the same structure as the acceptor site to which every other modified sugar is conjugated, the peptide conjugate is said to be about 100% homogeneous. Homogeneity is typically expressed as a range. The lower end of the range of homogeneity for the peptide conjugates is about 60%, about 70% or about 80% and the upper end of the range of purity is about 70%, about 80%, about 90% or more than about 90%.
  • When the peptide conjugates are more than or equal to about 90% homogeneous, their homogeneity is also preferably expressed as a range. The lower end of the range of homogeneity is about 90%, about 92%, about 94%, about 96% or about 98%. The upper end of the range of purity is about 92%, about 94%, about 96%, about 98% or about 100% homogeneity. The purity of the peptide conjugates is typically determined by one or more methods known to those of skill in the art, e.g., liquid chromatography-mass spectrometry (LC-MS), matrix assisted laser desorption mass time of flight spectrometry (MALDITOF), capillary electrophoresis, and the like.
  • “Substantially uniform glycoform” or a “substantially uniform glycosylation pattern,” when referring to a glycopeptide species, refers to the percentage of acceptor moieties that are glycosylated by the glycosyltransferase of interest (e.g., fucosyltransferase). For example, in the case of a α1,2 fucosyltransferase, a substantially uniform fucosylation pattern exists if substantially all (as defined below) of the Galβ1,4-GlcNAc-R and sialylated analogues thereof are fucosylated in a peptide conjugate of the invention. It will be understood by one of skill in the art, that the starting material may contain glycosylated acceptor moieties (e.g., fucosylated Galβ1,4-GlcNAc-R moieties). Thus, the calculated percent glycosylation will include acceptor moieties that are glycosylated by the methods of the invention, as well as those acceptor moieties already glycosylated in the starting material.
  • The term “substantially” in the above definitions of “substantially uniform” generally means at least about 40%, at least about 70%, at least about 80%, or more preferably at least about 90%, and still more preferably at least about 95% of the acceptor moieties for a particular glycosyltransferase are glycosylated.
  • Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH2O— is intended to also recite —OCH2—.
  • The term “alkyl,” by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C1-C10 means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term “alkyl,” unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups that are limited to hydrocarbon groups are termed “homoalkyl”.
  • The term “alkylene” by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH2CH2CH2CH2—, and further includes those groups described below as “heteroalkylene.” Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • The terms “alkoxy,” “alkylamino” and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
  • The term “heteroalkyl,” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, —CH2—CH2—O—CH3, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)—CH3, —CH2—S—CH2—CH3, —CH2—CH2, —S(O)—CH3, —CH2—CH2-S(O)2—CH3, —CH═CH—O—CH3, —Si(CH3)3, —CH2—CH═N—OCH3, and —CH═CH—N(CH3)—CH3. Up to two heteroatoms may be consecutive, such as, for example, —CH2—NH—OCH3 and —CH2—O—Si(CH3)3. Similarly, the term “heteroalkylene” by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH2—CH2—S—CH2—CH2— and —CH2—S—CH2—CH2—NH—CH2—. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O)2R′— represents both —C(O)2R′— and —R′C(O)2—.
  • The terms “cycloalkyl” and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • The terms “halo” or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl. For example, the term “halo(C1-C4)alkyl” is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
  • The term “aryl” means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently. The term “heteroaryl” refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, tetrazolyl, benzo[b]furanyl, benzo[b]thienyl, 2,3-dihydrobenzo[1,4]dioxin-6-yl, benzo[1,3]dioxol-5-yl and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.
  • For brevity, the term “aryl” when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term “arylalkyl” is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
  • Each of the above terms (e.g., “alkyl,” “heteroalkyl,” “aryl” and “heteroaryl”) is meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
  • Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generically referred to as “alkyl group substituents,” and they can be one or more of a variety of groups selected from, but not limited to: —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)=NR″″, —NR—C(NR′R″)=NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2 in a number ranging from zero to (2m′+1), where m′ is the total number of carbon atoms in such radical. R′, R″, R′″ and R″″each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, —NR′R″ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term “alkyl” is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF3 and —CH2CF3) and acyl (e.g., —C(O)CH3, —C(O)CF3, —C(O)CH2OCH3, and the like).
  • Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents.” The substituents are selected from, for example: halogen, —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)═NR″″, —NR—C(NR′R″)═NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2, —R′, —N3, —CH(Ph)2, fluoro(C1-C4)alkoxy, and fluoro(C1-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R′, R″, R′″ and R″″ are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. In the schemes that follow, the symbol X represents “R” as described above.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′)q-U-, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r—B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O)2—, —S(O)2NR′— or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′)s—X—(CR″R′″)d—, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O)2—, or —S(O)2NR′—. The substituents R, R′, R″ and R′″ are preferably independently selected from hydrogen or substituted or unsubstituted (C1-C6)alkyl.
  • As used herein, the term “heteroatom” is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • Introduction
  • As described above, Factor IX is vital in the blood coagulation cascade. The structure and sequence of Factor IX is provided in FIG. 1 and FIG. 5. A deficiency of Factor IX in the body characterizes a type of hemophilia (type B). Treatment of this disease is usually limited to intravenous transfusion of human plasma protein concentrates of Factor IX. However, in addition to the practical disadvantages of time and expense, transfusion of blood concentrates involves the risk of transmission of viral hepatitis, acquired immune deficiency syndrome or thromboembolic diseases to the recipient.
  • While Factor IX is an important and useful compound for therapeutic applications, present methods for the production of Factor IX from recombinant cells (U.S. Pat. No. 4,770,999) result in a product with a rather short biological half-life and an inaccurate glycosylation pattern that could potentially lead to immunogenicity, loss of function, an increased need for both larger and more frequent doses in order to achieve the same effect, and the like.
  • To improve the effectiveness of recombinant Factor IX used for therapeutic purposes, the present invention provides conjugates of glycosylated and unglycosylated Factor IX peptides with polymers, e.g., PEG (m-PEG), PPG (m-PPG), etc. The conjugates may be additionally or alternatively modified by further conjugation with diverse species such as therapeutic moieties, diagnostic moieties, targeting moieties and the like.
  • The conjugates of the invention are formed by the enzymatic attachment of a modified sugar to the glycosylated or unglycosylated peptide. A glycosylation site and/or a glycosyl residue provides a locus for conjugating a sugas bearing a modifying group to the peptide, e.g., by glycoconjugation. An exemplary modifying group is a water-soluble polymer, such as poly(ethylene glycol), e.g., methoxy-poly(ethylene glycol). Modification of the Factor IX peptides, e.g., with a water-soluble peptide can improve the stability and retention time of the recombinant Factor IX in a patient's circulation, and/or reduce the antigenicity of recombinant Factor IX.
  • The methods of the invention make it possible to assemble peptides and glycopeptides that have a substantially homogeneous derivatization pattern. The enzymes used in the invention are generally selective for a particular amino acid residue, combination of amino acid residues, or particular glycosyl residues of the peptide. The methods are also practical for large-scale production of modified peptides and glycopeptides. Thus, the methods of the invention provide a practical means for large-scale preparation of glycopeptides having preselected uniform derivatization patterns.
  • The present invention also provides conjugates of glycosylated and unglycosylated peptides with increased therapeutic half-life due to, for example, reduced clearance rate, or reduced rate of uptake by the immune or reticuloendothelial system (RES). Moreover, the methods of the invention provide a means for masking antigenic determinants on peptides, thus reducing or eliminating a host immune response against the peptide. Selective attachment of targeting agents can also be used to target a peptide to a particular tissue or cell surface receptor that is specific for the particular targeting agent.
  • The Conjugates
  • In a first aspect, the present invention provides a conjugate between a selected modifying group and an Factor IX peptide.
  • The link between the peptide and the modifying moiety includes a glycosyl linking group interposed between the peptide and the selected moiety. As discussed herein, the selected modifying moiety is essentially any species that can be attached to a saccharide unit, resulting in a “modified sugar” that is recognized by an appropriate transferase enzyme, which appends the modified sugar onto the peptide, or a glycosyl residue attached thereto. The saccharide component of the modified sugar, when interposed between the peptide and a selected moiety, becomes a “glycosyl linking group,” e.g., an “intact glycosyl linking group.” The glycosyl linking group is formed from any mono- or oligo-saccharide that, after modification with the modifying group, is a substrate for an enzyme that adds the modified sugar to an amino acid or glycosyl residue of a peptide.
  • The glycosyl linking group can be, or can include, a saccharide moiety that is degradatively modified before or during the addition of the modifying group. For example, the glycosyl linking group can be derived from a saccharide residue that is produced by oxidative degradation of an intact saccharide to the corresponding aldehyde, e.g., via the action of metaperiodate, and subsequently converted to a Schiff base with an appropriate amine, which is then reduced to the corresponding amine.
  • The conjugates of the invention will typically correspond to the general structure:
  • Figure US20090081188A1-20090326-C00009
  • in which the symbols a, b, c, d and s represent a positive, non-zero integer; and t is either 0 or a positive integer. The “agent” is a therapeutic agent, a bioactive agent, a detectable label, water-soluble moiety (e.g., PEG, m-PEG, PPG, and m-PPG) or the like. The “agent” can be a peptide, e.g., enzyme, antibody, antigen, etc. The linker can be any of a wide array of linking groups, infra. Alternatively, the linker may be a single bond or a “zero order linker.”
  • In an exemplary embodiment, the selected modifying group is a water-soluble polymer, e.g., m-PEG. The water-soluble polymer is covalently attached to the peptide via a glycosyl linking group. The glycosyl linking group is covalently attached to an amino acid residue or a glycosyl residue of the peptide. The invention also provides conjugates in which an amino acid residue and a glycosyl residue are modified with a glycosyl linking group.
  • An exemplary water-soluble polymer is poly(ethylene glycol), e.g., methoxy-poly(ethylene glycol). The poly(ethylene glycol) used in the present invention is not restricted to any particular form or molecular weight range. For unbranched poly(ethylene glycol) molecules the molecular weight is preferably between 500 and 100,000. A molecular weight of 2000-60,000 is preferably used and preferably of from about 5,000 to about 30,000.
  • In another embodiment the poly(ethylene glycol) is a branched PEG having more than one PEG moiety attached. Examples of branched PEGs are described in U.S. Pat. No. 5,932,462; U.S. Pat. No. 5,342,940; U.S. Pat. No. 5,643,575; U.S. Pat. No. 5,919,455; U.S. Pat. No. 6,113,906; U.S. Pat. No. 5,183,660; WO 02/09766; Kodera Y., Bioconjugate Chemistry 5: 283-288 (1994); and Yamasaki et al., Agric. Biol. Chem., 52: 2125-2127, 1998. In a preferred embodiment the molecular weight of each poly(ethylene glycol) of the branched PEG is less than or equal to 40,000 daltons.
  • In addition to providing conjugates that are formed through an enzymatically added glycosyl linking group, the present invention provides conjugates that are highly homogenous in their substitution patterns. Using the methods of the invention, it is possible to form peptide conjugates in which essentially all of the modified sugar moieties across a population of conjugates of the invention are attached to a structurally identical amino acid or glycosyl residue. Thus, in a second aspect, the invention provides a peptide conjugate having a population of water-soluble polymer moieties, which are covalently bound to the peptide through a glycosyl linking group, e.g., an intact glycosyl linking group. In a preferred conjugate of the invention, essentially each member of the population is bound via the glycosyl linking group to a glycosyl residue of the peptide, and each glycosyl residue of the peptide to which the glycosyl linking group is attached has the same structure.
  • Also provided is a peptide conjugate having a population of water-soluble polymer moieties covalently bound thereto through a glycosyl linking group. In a preferred embodiment, essentially every member of the population of water soluble polymer moieties is bound to an amino acid residue of the peptide via a glycosyl linking group, and each amino acid residue having a glycosyl linking group attached thereto has the same structure.
  • The present invention also provides conjugates analogous to those described above in which the peptide is conjugated to a therapeutic moiety, diagnostic moiety, targeting moiety, toxin moiety or the like via an intact glycosyl linking group. Each of the above-recited moieties can be a small molecule, natural polymer (e.g., polypeptide) or synthetic polymer. When the modifying moiety is attached to a sialic acid, it is generally preferred that the modifying moiety is substantially non-fluorescent.
  • In an exemplary embodiment, in which the glycosyl residue has the structure set forth above, it is conjugated to one or both Asn 157 and Asn 167.
  • Factor IX has been cloned and sequenced. Essentially any Factor IX peptide having any sequence is of use as the Factor IX peptide component of the conjugates of the present invention. In an exemplary embodiment, the peptide has the sequence presented herein as SEQ ID NO:1:
  • YNSGKLEEFVQGNLERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQ
    CESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCK
    NSADNKVVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAEAVF
    PDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPWQVVLNG
    KVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNV
    IRIIPHHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYTNIFL
    KFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNNMFC
    AGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTK
    VSRYVNWIKEKTKLT.
  • The present invention is in no way limited to the sequence set forth herein. Factor IX variants are well known in the art, as described in, for example, U.S. Pat. Nos. 4,770,999, 5,521,070 in which a tyrosine is replaced by an alanine in the first position, U.S. Pat. No. 6,037,452, in which Factor XI is linked to an alkylene oxide group, and U.S. Pat. No. 6,046,380, in which the DNA encoding Factor IX is modified in at least one splice site. As demonstrated herein, variants of Factor IX are well known in the art, and the present disclosure encompasses those variants known or to be developed or discovered in the future.
  • Methods for determining the activity of a mutant or modified Factor IX can be carried out using the methods described in the art, such as a one stage activated partial thromboplastin time assay as described in, for example, Biggs (1972, Human Blood Coagulation Homeostasis and Thrombosis (Ed. 1), Oxford, Blackwell, Scientific, pg. 614). Briefly, to assay the biological activity of a Factor IX molecule developed according to the methods of the present invention, the assay can be performed with equal volumes of activated partial thromboplastin reagent, Factor IX deficient plasma isolated from a patient with hemophilia B using sterile phlebotomy techniques well known in the art, and normal pooled plasma as standard, or the sample. In this assay, one unit of activity is defined as that amount present in one milliliter of normal pooled plasma. Further, an assay for biological activity based on the ability of Factor IX to reduce the clotting time of plasma from Factor IX-deficient patients to normal can be performed as described in, for example, Proctor and Rapaport (Amer. J. Clin. Path. 36: 212 (1961).
  • The peptides of the invention include at least one N-linked or O-linked glycosylation site, at least one of which is conjugated to a glycosyl residue that includes a PEG moiety. The PEG is covalently attached to the peptide via an intact glycosyl linking group. The glycosyl linking group is covalently attached to either an amino acid residue or a glycosyl residue of the peptide. Alternatively, the glycosyl linking group is attached to one or more glycosyl units of a glycopeptide. The invention also provides conjugates in which the glycosyl linking group is attached to both an amino acid residue and a glycosyl residue.
  • The PEG moiety is attached to an intact glycosyl linker directly, or via a non-glycosyl linker, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl.
  • Preferably, neither the amino nor the carboxy terminus of the Factor IX peptide is derivatized with a polymeric modifying moiety.
  • The peptides of the invention include at least one N-linked or O-linked glycosylation site, which is glycosylated with a glycosyl residue that includes a polymeric modifying moiety, e.g., a PEG moiety. In an exemplary embodiment, the PEG is covalently attached to the peptide via an intact glycosyl linking group. The glycosyl linking group is covalently attached to either an amino acid residue or a glycosyl residue of the peptide. Alternatively, the glycosyl linking group is attached to one or more glycosyl units of a glycopeptide. The invention also provides conjugates in which a glycosyl linking group is attached to both an amino acid residue and a glycosyl residue.
  • The PEG moiety is attached to an intact glycosyl linker directly, or via a non-glycosyl linker, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl.
  • In an exemplary embodiment, the invention utilizes a modified sugar amine that has the formula:
  • Figure US20090081188A1-20090326-C00010
  • in which J is a glycosyl moiety (e.g., a nucleotide sugar), L is a bond or a linker and R1 is the modifying group, e.g., a polymeric modifying moiety. Exemplary bonds are those that are formed between an NH2 moiety on the glycosyl moiety and a group of complementary reactivity on the modifying group. For example, when R1 includes a carboxylic acid moiety, this moiety may be activated and coupled with the NH2 moiety on the glycosyl residue affording a bond having the structure NHC(O)R1. J is preferably a glycosyl moiety that is “intact”, not having been degraded by exposure to conditions that cleave the pyranose or furanose structure, e.g. oxidative conditions, e.g., sodium periodate.
  • Exemplary linkers include alkyl and heteroalkyl moieties. The linkers include linking groups, for example acyl-based linking groups, e.g., —C(O)NH—, —OC(O)NH—, and the like. The linking groups are bonds formed between components of the species of the invention, e.g., between the glycosyl moiety and the linker (L), or between the linker and the modifying group (R1). Other exemplary linking groups are ethers, thioethers and amines. For example, in one embodiment, the linker is an amino acid residue, such as a glycine residue. The carboxylic acid moiety of the glycine is converted to the corresponding amide by reaction with an amine on the glycosyl residue, and the amine of the glycine is converted to the corresponding amide or urethane by reaction with an activated carboxylic acid or carbonate of the modifying group.
  • Another exemplary linker is a PEG moiety, e.g., a PEG moiety that is functionalized with an amino acid residue. The PEG linker is conjugated to the glycosyl group through the amino acid residue at one PEG terminus and bound to R1 through the other PEG terminus. Alternatively, the amino acid residue is bound to R1 and the PEG terminus, which is not bound to the amino acid, is bound to the glycosyl group.
  • An exemplary species of NH-L-R1 has the formula: —NH{C(O)(CH2)nNH}s{C(O)(CH2)b(OCH2CH2)c—O—(CH2)dNH}tR1, in which the indices s and t are independently 0 or 1. The indices a, b and d are independently integers from 0 to 20, and c is an integer from 1 to 2500. Other similar linkers are based on species in which an —NH moiety is replaced by another group, for example, —S, —O or —CH2. As those of skill will appreciate one or more of the bracketed moieties corresponding to indices s and t can be replaced with a substituted or unsubstituted alkyl or heteroalkyl moiety.
  • More particularly, the invention utilizes compounds in which NH-L-R1 is: NHC(O)(CH2)aNHC(O)(CH2)b(OCH2CH2)c—O—(CH2)dNHR1, NHC(O)(CH2)b(OCH2CH2)c—O—(CH2)dNHR1, NHC(O)O(CH2)b(OCH2CH2)c—O—(CH2)dNHR1, NH(CH2)aNHC(O)(CH2)b(OCH2CH2)c—O—(CH2)dNHR1, NHC(O)(CH2)aNHR1, NH(CH2)aNHR1, and NHR1. In these formulae, the indices a, b and d are independently selected from the integers from 0 to 20, preferably from 1 to 5. The index c is an integer from 1 to about 2500.
  • In an exemplary embodiment, c is selected such that the PEG moiety is approximately 1 kD, 5 kD, 10, kD, 15 kD, 20 kD or 30 kD.
  • In the discussion that follows, the invention is illustrated by reference to the use of selected derivatives of furanose and pyranose. Those of skill in the art will recognize that the focus of the discussion is for clarity of illustration and that the structures and compositions set forth are generally applicable across the genus of saccharide groups, modified saccharide groups, activated modified saccharide groups and conjugates of modified saccharide groups.
  • In an exemplary embodiment, the invention provides a glycopeptide that is conjugated to a polymeric modifying moiety through an intact glycosyl linking group having a formula that is selected from:
  • Figure US20090081188A1-20090326-C00011
  • In Formulae I R2 is H, CH2OR7, COOR7 or OR7, in which R7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl. When COOR7 is a carboxylic acid or carboxylate, both forms are represented by the designation of the single structure COO or COOH. In Formulae I and II, the symbols R3, R4, R5, R6 and R6′ independently represent H, substituted or unsubstituted alkyl, OR8, NHC(O)R9. The index d is 0 or 1. R8 and R9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, sialic acid or polysialic acid. At least one of R3, R4, R5, R6 or R6′ includes the polymeric modifying moiety e.g., PEG, linked through a bond or a linking group. In an exemplary embodiment, R6 and R6, together with the carbon to which they are attached are components of the pyruvyl side chain of sialic acid. In a further exemplary embodiment, this side chain is functionalized with the polymeric modifying moiety. In another exemplary embodiment, R6 and R6′, together with the carbon to which they are attached are components of the side chain of sialic acid and the polymeric modifying moiety is a component of R5.
  • In a further exemplary embodiment, the polymeric modifying moiety is bound to the sugar core, generally through a heteroatom, e.g, nitrogen, on the core through a linker, L, as shown below:
  • Figure US20090081188A1-20090326-C00012
  • R1 is the polymeric moiety and L is selected from a bond and a linking group. The index w represents an integer selected from 1-6, preferably 1-3 and more preferably 1-2. Exemplary linking groups include substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl moieties and sialic acid. An exemplary component of the linker is an acyl moiety.
  • An exemplary compound according to the invention has a structure according to Formulae I or II, in which at least one of R2, R3, R4, R5, R6 or R6′ has the formula:
  • Figure US20090081188A1-20090326-C00013
  • In another example according to this embodiment at least one of R2, R3, R4, R5, R6 or R6′ has the formula:
  • Figure US20090081188A1-20090326-C00014
  • in which s is an integer from 0 to 20 and R1 is a linear polymeric modifying moiety.
  • In an exemplary embodiment, the polymeric modifying moiety-linker construct is a branched structure that includes two or more polymeric chains attached to central moiety. In this embodiment, the construct has the formula:
  • Figure US20090081188A1-20090326-C00015
  • in which R1 and L are as discussed above and w′ is an integer from 2 to 6, preferably from 2 to 4 and more preferably from 2 to 3.
  • When L is a bond it is formed between a reactive functional group on a precursor of R1 and a reactive functional group of complementary reactivity on the saccharyl core. When L is a non-zero order linker, a precursor of L can be in place on the glycosyl moiety prior to reaction with the R1 precursor. Alternatively, the precursors of R1 and L can be incorporated into a preformed cassette that is subsequently attached to the glycosyl moiety. As set forth herein, the selection and preparation of precursors with appropriate reactive functional groups is within the ability of those skilled in the art. Moreover, coupling the precursors proceeds by chemistry that is well understood in the art.
  • In an exemplary embodiment, L is a linking group that is formed from an amino acid, or small peptide (e.g., 1-4 amino acid residues) providing a modified sugar in which the polymeric modifying moiety is attached through a substituted alkyl linker. Exemplary linkers include glycine, lysine, serine and cysteine. The PEG moiety can be attached to the amine moiety of the linker through an amide or urethane bond. The PEG is linked to the sulfur or oxygen atoms of cysteine and serine through thioether or ether bonds, respectively.
  • In an exemplary embodiment, R5 includes the polymeric modifying moiety. In another exemplary embodiment, R5 includes both the polymeric modifying moiety and a linker, L, joining the modifying moiety to the remainder of the molecule. As discussed above, L can be a linear or branched structure. Similarly, the polymeric modifying can be branched or linear.
  • In one embodiment, the present invention provides an Factor IX peptide comprising the moiety:
  • Figure US20090081188A1-20090326-C00016
  • wherein D is a member selected from —OH and R1-L-HN—; G is a member selected from H and R1-L- and —C(O)(C1-C6)alkyl; R1 is a moiety comprising a straight-chain or branched poly(ethylene glycol) residue; and L is a linker, e.g., a bond (“zero order”), substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl. In exemplary embodiments, when D is OH, G is R1-L-, and when G is —C(O)(C1-C6)alkyl, D is R1-L-NH—.
  • In another exemplary embodiment, the invention provides a conjugate formed between a modified sugar of the invention and a substrate Factor IX peptide. In this embodiment, the sugar moiety of the modified sugar becomes a glycosyl linking group interposed between the peptide substrate and the modifying group. An exemplary glycosyl linking group is an intact glycosyl linking group, in which the glycosyl moiety or moieties forming the linking group are not degraded by chemical (e.g., sodium metaperiodate) or enzymatic (e.g., oxidase) processes. Selected conjugates of the invention include a modifying group that is attached to the amine moiety of an amino-saccharide, e.g., mannosamine, glucosamine, galactosamine, sialic acid etc. Exemplary modifying group-intact glycosyl linking group cassettes according to this motif are based on a sialic acid structure, such as those having the formulae:
  • Figure US20090081188A1-20090326-C00017
  • In the formulae above, R1 and L are as described above. Further detail about the structure of exemplary R1 groups is provided below.
  • In still a further exemplary embodiment, the conjugate is formed between a substrate Factor IX and a saccharyl moiety in which the modifying group is attached through a linker at the 6-carbon position of the saccharyl moiety. Thus, illustrative conjugates according to this embodiment have the formula:
  • Figure US20090081188A1-20090326-C00018
  • in which the radicals are as discussed above. Such saccharyl moieties include, without limitation, glucose, glucosamine, N-acetyl-glucosamine, galactose, galactosamine, N-acetyl-galactosamine, mannose, mannosamine, N-acetyl-mannosamine, and the like.
  • Due to the versatility of the methods available for modifying glycosyl residues on a therapeutic peptide such as Factor IX, the glycosyl structures on the peptide conjugates of the invention can have substantially any structure. Moreover, the glycans can be O-linked or N-linked. As exemplified in the discussion below, each of the pyranose and furanose derivatives discussed above can be a component of a glycosyl moiety of a peptide.
  • The invention provides a modified Factor IX peptide that includes a glycosyl group having the formula:
  • Figure US20090081188A1-20090326-C00019
  • In other embodiments, the group has the formula:
  • Figure US20090081188A1-20090326-C00020
  • In a still further exemplary embodiment, the group has the formula:
  • Figure US20090081188A1-20090326-C00021
  • In yet another embodiment, the group has the formula:
  • Figure US20090081188A1-20090326-C00022
  • in which the index p represents and integer from 1 to 10; and c is either 0 or 1.
  • In an exemplary embodiment according to each of the formulae set forth above, the PEG-glycosyl linking group is attached at Serine 61 (Ser 61) of Factor IX.
  • In an exemplary embodiment, a glycoPEGylated Factor IX peptide of the invention includes at least one N-linked glycosyl residue selected from the glycosyl residues set forth below:
  • Figure US20090081188A1-20090326-C00023
  • In the formulae above, the index t is 0 or 1 and the index p is an integer from 1 to 10. The symbol R15 represents H, OH (e.g., Gal-OH), a sialyl moiety, a polymer modified sialyl moiety (i.e., glycosyl linking group-polymeric modifying moiety (Sia-L-R1)) or a sialyl moiety to which is bound a polymer modified sialyl moiety (e.g., Sia-Sia-L-R1) (“Sia-Siap”). Exemplary polymer modified saccharyl moieties have a structure according to Formulae I and II. An exemplary Factor IX peptide of the invention will include at least one glycan having a R15′ that includes a structure according to Formulae I or II. The oxygen, with the open valence, of Formulae I and II is preferably attached through a glycosidic linkage to a carbon of a Gal or GalNAc moiety. In a further exemplary embodiment, the oxygen is attached to the carbon at position 3 of a galactose residue. In an exemplary embodiment, the modified sialic acid is linked α2,3-to the galactose residue. In another exemplary embodiment, the sialic acid is linked α2,6-to the galactose residue.
  • In another exemplary embodiment, the invention provides an Factor IX peptide conjugate that includes a glycosyl linking group, such as those set forth above, that is covalently attached to an amino acid residue of the peptide. In one embodiment according to this motif, the glycosyl linking moiety is linked to a galactose residue through a Sia residue:
  • Figure US20090081188A1-20090326-C00024
  • An exemplary species according to this motif is prepared by conjugating Sia-L-R1 to a terminal sialic acid of a glycan using an enzyme that forms Sia-Sia bonds, e.g., CST-II, ST8Sia-II, ST8Sia-III and ST8Sia-IV.
  • In another exemplary embodiment, the glycans have a formula that is selected from the group:
  • Figure US20090081188A1-20090326-C00025
  • and combinations thereof.
  • The glycans of this group generally correspond to those found on an Factor IX peptide that is produced by insect (e.g., Sf-9) cells, following remodeling according to the methods set forth herein. For example insect-derived Factor IX that is expressed with a tri-mannosyl core is subsequently contacted with a GlcNAc donor and a GlcNAc transferase and a Gal donor and a Gal transferase. Appending GlcNAc and Gal to the tri-mannosyl core is accomplished in either two steps or a single step. A modified sialic acid is added to at least one branch of the glycosyl moiety as discussed herein. Those Gal moieties that are not functionalized with the modified sialic acid are optionally “capped” by reaction with a sialic acid donor in the presence of a sialyl transferase.
  • In an exemplary embodiment, the glycosyl linking group is attached to a member selected from Asn 157, Asn 167 and combinations thereof.
  • In an exemplary embodiment, at least 60% of terminal Gal moieties in a population of peptides is capped with sialic acid, preferably at least 70%, more preferably, at least 80%, still more preferably at least 90% and even more preferably at least 95%, 96%, 97%, 98% or 99% are capped with sialic acid.
  • In each of the formulae above, R15/R15′ is as discussed above. Moreover, an exemplary modified Factor IX peptide of the invention will include at least one glycan with an R15/R15′ moiety having a structure according to Formulae I or II.
  • In an exemplary embodiment, the glycosyl linking moiety has the formula:
  • Figure US20090081188A1-20090326-C00026
  • in which b is 0 or 1. The index s represents and integer from 1 to 10; and f represents and integer from 1 to 2500. Generally preferred is the use of a PEG moiety that has a molecular weight of about 20 kDa. Also preferred is the attachment of the glycosyl linking group a member selected from Ser 61, Ser 63, Thr 159, Thr 169, Thr 172 and combinations thereof.
  • In another exemplary embodiment, the Factor IX is derived from insect cells, remodeled by adding GlcNAc and Gal to the mannose core and glycopegylated using a sialic acid bearing a linear PEG moiety, affording an Factor IX peptide that comprises at least one moiety having the formula:
  • Figure US20090081188A1-20090326-C00027
  • in which s represents and integer from 1 to 10; and f represents and integer from 1 to 2500.
  • As discussed herein, the PEG of use in the conjugates of the invention can be linear or branched. An exemplary precursor of use to form the branched conjugates according to this embodiment of the invention has the formula:
  • Figure US20090081188A1-20090326-C00028
  • The branched polymer species according to this formula are essentially pure water-soluble polymers. X3′ is a moiety that includes an ionizable, e.g., OH, COOH, H2PO4, HSO3, HPO3, and salts thereof, etc.) or other reactive functional group, e.g., infra. C is carbon. X5 is preferably a non-reactive group (e.g., H, unsubstituted alkyl, unsubstituted heteroalkyl), and can be a polymeric arm. R16 and R17 are independently selected polymeric arms, e.g., nonpeptidic, nonreactive polymeric arms (e.g., PEG)). X2 and X4 are linkage fragments that are preferably essentially non-reactive under physiological conditions, which may be the same or different. An exemplary linker includes neither aromatic nor ester moieties. Alternatively, these linkages can include one or more moiety that is designed to degrade under physiologically relevant conditions, e.g., esters, disulfides, etc. X2 and X4 join polymeric arms R16 and R17 to C. When X3′ is reacted with a reactive functional group of complementary reactivity on a linker, sugar or linker-sugar cassette, X3′ is converted to a component of linkage fragment X3
  • Exemplary linkage fragments for X2, X3 and X4 are independently selected and include S, SC(O)NH, HNC(O)S, SC(O)O, O, NH, NHC(O), (O)CNH and NHC(O)O, and OC(O)NH, CH2S, CH2O, CH2CH2O, CH2CH2S, (CH2)oO, (CH2)oS or (CH2)oY′-PEG wherein, Y′ is S, NH, NHC(O), C(O)NH, NHC(O)O, OC(O)NH, or O and o is an integer from 1 to 50. In an exemplary embodiment, the linkage fragments X2 and X4 are different linkage fragments.
  • In an exemplary embodiment, the precursor (III), or an activated derivative thereof, is reacted with, and thereby bound to a sugar, an activated sugar or a sugar nucleotide through a reaction between X3′ and a group of complementary reactivity on the sugar moiety, e.g., an amine. Alternatively, X3′ reacts with a reactive functional group on a precursor to linker, L. One or more of R2, R3, R4, R5 R6 or R6′ of Formulae I and II can include the branched polymeric modifying moiety, or this moiety bound through L.
  • In an exemplary embodiment, the moiety:
  • Figure US20090081188A1-20090326-C00029
  • is the linker arm, L. In this embodiment, an exemplary linker is derived from a natural or unnatural amino acid, amino acid analogue or amino acid mimetic, or a small peptide formed from one or more such species. For example, certain branched polymers found in the compounds of the invention have the formula:
  • Figure US20090081188A1-20090326-C00030
  • Xa is a linkage fragment that is formed by the reaction of a reactive functional group, e.g., X3′, on a precursor of the branched polymeric modifying moiety and a reactive functional group on the sugar moiety, or a precursor to a linker. For example, when X3′ is a carboxylic acid, it can be activated and bound directly to an amine group pendent from an amino-saccharide (e.g., Sia, GalNH2, GlcNH2, ManNH2, etc.), forming an Xa that is an amide. Additional exemplary reactive functional groups and activated precursors are described hereinbelow. The index c represents an integer from 1 to 10. The other symbols have the same identity as those discussed above.
  • In another exemplary embodiment, Xa is a linking moiety formed with another linker:
  • Figure US20090081188A1-20090326-C00031
  • in which Xb is a second linkage fragment and is independently selected from those groups set forth for Xa, and, similar to L, L1 is a bond, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl.
  • Exemplary species for Xa and Xb include S, SC(O)NH, HNC(O)S, SC(O)O, O, NH, NHC(O), C(O)NH and NHC(O)O, and OC(O)NH.
  • In another exemplary embodiment, X4 is a peptide bond to R17, which is an amino acid, di-peptide (e.g., Lys-Lys) or tri-peptide (E.G., Lys-Lys-Lys) in which the alpha-amine moiety(ies) and/or side chain heteroatom(s) are modified with a polymeric modifying moiety.
  • In a further exemplary embodiment, the conjugates of the invention include a moiety, e.g., an R15/R15′ moiety that has a formula that is selected from:
  • Figure US20090081188A1-20090326-C00032
  • in which the identity of the radicals represented by the various symbols is the same as that discussed hereinabove. La is a bond or a linker as discussed above for L and L1, e.g., substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl moiety. In an exemplary embodiment, La is a moiety of the side chain of sialic acid that is functionalized with the polymeric modifying moiety as shown. Exemplary La moieties include substituted or unsubstituted alkyl chains that include one or more OH or NH2.
  • In yet another exemplary embodiment, the invention provides conjugates having a moiety, e.g., an R15/R15′ moiety with formula:
  • Figure US20090081188A1-20090326-C00033
  • The identity of the radicals represented by the various symbols is the same as that discussed hereinabove. As those of skill will appreciate, the linker arm in Formulae VI and VII is equally applicable to other modified sugars set forth herein. In exemplary embodiment, the species of Formulae VI and VII are the R15 moieties attached to the glycan structures set forth herein.
  • In yet another exemplary embodiment, the Factor IX peptide includes an R15′ moiety with the formula:
  • Figure US20090081188A1-20090326-C00034
  • in which the identities of the radicals are as discussed above. An exemplary species for La is —(CH2)jC(O)NH(CH2)hC(O)NH—, in which h and j are independently selected integers from 0 to 10. A further exemplary species is —C(O)NH—.
  • The embodiments of the invention set forth above are further exemplified by reference to species in which the polymer is a water-soluble polymer, particularly poly(ethylene glycol) (“PEG”), e.g., methoxy-poly(ethylene glycol). Those of skill will appreciate that the focus in the sections that follow is for clarity of illustration and the various motifs set forth using PEG as an exemplary polymer are equally applicable to species in which a polymer other than PEG is utilized.
  • PEG of any molecular weight, e.g. 1 kDa, 2 kDa, 5 kDa, 10 kDa, 15 kDa, 20 kDa, 30 kDa and 40 kDa is of use in the present invention.
  • In an exemplary embodiment, the R15 moiety has a formula that is a member selected from the group:
  • Figure US20090081188A1-20090326-C00035
  • In each of the structures above, the linker fragment —NH(CH2)a— can be present or absent. In other exemplary embodiments, the conjugate includes an R15 moiety selected from the group:
  • Figure US20090081188A1-20090326-C00036
  • In each of the formulae above, the indices e and f are independently selected from the integers from 1 to 2500. In further exemplary embodiments, e and f are selected to provide a PEG moiety that is about 1 kD, 2 kD, 10 kD, 15 kD, 20 kD, 30 kD or 40 kD. The symbol Q represents substituted or unsubstituted alkyl (e.g., C1-C6 alkyl, e.g., methyl), substituted or unsubstituted heteroalkyl or H.
  • Other branched polymers have structures based on di-lysine (Lys-Lys) peptides, e.g.:
  • Figure US20090081188A1-20090326-C00037
  • and tri-lysine peptides (Lys-Lys-Lys), e.g.:
  • Figure US20090081188A1-20090326-C00038
  • In each of the figures above, e, f, f′ and f″ represent integers independently selected from 1 to 2500. The indices q, q′ and q″ represent integers independently selected from 1 to 20.
  • In another exemplary embodiment, the Factor IX peptide comprises a glycosyl moiety selected from the formulae:
  • Figure US20090081188A1-20090326-C00039
  • in which La is a bond or a linker as described herein; the index t represents 0 or 1; and the index c represents 0 or 1. Each of these groups can be included as components of the mono-, bi-, tri- and tetra-antennary saccharide structures set forth above.
  • In yet another embodiment, the conjugates of the invention include a modified glycosyl residue that includes the substructure selected from:
  • Figure US20090081188A1-20090326-C00040
  • in which the index a and the linker La are as discussed above. The index p is an integer from 1 to 10. The index c represents 0 or 1. Each of these groups can be included as components of the mono-, bi-, tri- and tetra-antennary saccharide structures set forth above.
  • In a further exemplary embodiment, the invention utilizes modified sugars in which the 6-hydroxyl position is converted to the corresponding amine moiety, which bears a linker-modifying group cassette such as those set forth above. Exemplary saccharyl groups that can be used as the core of these modified sugars include Gal, GalNAc, Glc, GlcNAc, Fuc, Xyl, Man, and the like. A representative modified sugar according to this embodiment has the formula:
  • Figure US20090081188A1-20090326-C00041
  • in which R11-R14 are members independently selected from H, OH, C(O)CH3, NH, and NH C(O)CH3. R10 is a link to another glycosyl residue (—O-glycosyl) or to an amino acid of the Factor IX peptide (—NH-(Factor IX)). R14 is OR1, NHR1 or NH-L-R1. R1 and NH-L-R1 are as described above.
  • Selected conjugates according to this motif are based on mannose, galactose or glucose, or on species having the stereochemistry of mannose, galactose or glucose. The general formulae of these conjugates are:
  • Figure US20090081188A1-20090326-C00042
  • As discussed above, the invention provides saccharides bearing a modifying group, activated analogues of these species and conjugates formed between species such as peptides and lipids and a modified saccharide of the invention.
  • Modified Sugars
  • The present invention uses modified sugars and modified sugar nucleotides to form conjugates of the modified sugars. In modified sugar compounds of use in the invention, the sugar moiety is preferably a saccharide, a deoxy-saccharide, an amino-saccharide, or an N-acyl saccharide. The term “saccharide” and its equivalents, “saccharyl,” “sugar,” and “glycosyl” refer to monomers, dimers, oligomers and polymers. The sugar moiety is also functionalized with a modifying group. The modifying group is conjugated to the sugar moiety, typically, through conjugation with an amine, sulfhydryl or hydroxyl, e.g., primary hydroxyl, moiety on the sugar. In an exemplary embodiment, the modifying group is attached through an amine moiety on the sugar, e.g., through an amide, a urethane or a urea that is formed through the reaction of the amine with a reactive derivative of the modifying group.
  • Any sugar can be utilized as the sugar core of the glycosyl linking group of the conjugates of the invention. Exemplary sugar cores that are useful in forming the compositions of the invention include, but are not limited to, glucose, galactose, mannose, fucose, and sialic acid. Other useful sugars include amino sugars such as glucosamine, galactosamine, mannosamine, the 5-amine analogue of sialic acid and the like. The sugar core can be a structure found in nature or it can be modified to provide a site for conjugating the modifying group. For example, in one embodiment, the invention provides a sialic acid derivative in which the 9-hydroxy moiety is replaced with an amine. The amine is readily derivatized with an activated analogue of a selected modifying group.
  • Exemplary modified sugars are modified with water-soluble or water-insoluble polymers. Examples of useful polymer are further exemplified below.
  • Water-Soluble Polymers
  • Many water-soluble polymers are known to those of skill in the art and are useful in practicing the present invention. The term water-soluble polymer encompasses species such as saccharides (e.g., dextran, amylose, hyalouronic acid, poly(sialic acid), heparans, heparins, etc.); poly (amino acids), e.g., poly(aspartic acid) and poly(glutamic acid); nucleic acids; synthetic polymers (e.g., poly(acrylic acid), poly(ethers), e.g., poly(ethylene glycol); peptides, proteins, and the like. The present invention may be practiced with any water-soluble polymer with the sole limitation that the polymer must include a point at which the remainder of the conjugate can be attached.
  • Methods for activation of polymers can also be found in WO 94/17039, U.S. Pat. No. 5,324,844, WO 94/18247, WO 94/04193, U.S. Pat. No. 5,219,564, U.S. Pat. No. 5,122,614, WO 90/13540, U.S. Pat. No. 5,281,698, and more WO 93/15189, and for conjugation between activated polymers and peptides, e.g. Coagulation Factor VIII (WO 94/15625), hemoglobin (WO 94/09027), oxygen carrying molecule (U.S. Pat. No. 4,412,989), ribonuclease and superoxide dismutase (Veronese at al., App. Biochem. Biotech. 11: 141-45 (1985)).
  • Preferred water-soluble polymers are those in which a substantial proportion of the polymer molecules in a sample of the polymer are of approximately the same molecular weight; such polymers are “homodisperse.”
  • The present invention is further illustrated by reference to a poly(ethylene glycol) conjugate. Several reviews and monographs on the functionalization and conjugation of PEG are available. See, for example, Harris, Macronol. Chem. Phys. C25: 325-373 (1985); Scouten, Methods in Enzymology 135: 30-65 (1987); Wong et al., Enzyme Microb. Technol. 14: 866-874 (1992); Delgado et al., Critical Reviews in Therapeutic Drug Carrier Systems 9: 249-304 (1992); Zalipsky, Bioconjugate Chem. 6: 150-165 (1995); and Bhadra, et al., Pharmazie, 57:5-29 (2002). Routes for preparing reactive PEG molecules and forming conjugates using the reactive molecules are known in the art. For example, U.S. Pat. No. 5,672,662 discloses a water soluble and isolatable conjugate of an active ester of a polymer acid selected from linear or branched poly(alkylene oxides), poly(oxyethylated polyols), poly(olefinic alcohols), and poly(acrylomorpholine).
  • U.S. Pat. No. 6,376,604 sets forth a method for preparing a water-soluble 1-benzotriazolylcarbonate ester of a water-soluble and non-peptidic polymer by reacting a terminal hydroxyl of the polymer with di(1-benzotriazoyl)carbonate in an organic solvent. The active ester is used to form conjugates with a biologically active agent such as a protein or peptide.
  • WO 99/45964 describes a conjugate comprising a biologically active agent and an activated water soluble polymer comprising a polymer backbone having at least one terminus linked to the polymer backbone through a stable linkage, wherein at least one terminus comprises a branching moiety having proximal reactive groups linked to the branching moiety, in which the biologically active agent is linked to at least one of the proximal reactive groups. Other branched poly(ethylene glycols) are described in WO 96/21469, U.S. Pat. No. 5,932,462 describes a conjugate formed with a branched PEG molecule that includes a branched terminus that includes reactive functional groups. The free reactive groups are available to react with a biologically active species, such as a protein or peptide, forming conjugates between the poly(ethylene glycol) and the biologically active species. U.S. Pat. No. 5,446,090 describes a bifunctional PEG linker and its use in forming conjugates having a peptide at each of the PEG linker termini.
  • Conjugates that include degradable PEG linkages are described in WO 99/34833; and WO 99/14259, as well as in U.S. Pat. No. 6,348,558. Such degradable linkages are applicable in the present invention.
  • The art-recognized methods of polymer activation set forth above are of use in the context of the present invention in the formation of the branched polymers set forth herein and also for the conjugation of these branched polymers to other species, e.g., sugars, sugar nucleotides and the like.
  • The modified sugars are prepared by reacting the glycosyl core (or a linker on the core) with a polymeric modifying moiety (or a linker on the polymeric modifying moiety). The discussion that follows provides examples of selected polymeric modifying moieties of use in the invention. For example, representative polymeric modifying moieties include structures that are based on side chain-containing amino acids, e.g., serine, cysteine, lysine, and small peptides, e.g., lys-lys. Exemplary structures include:
  • Figure US20090081188A1-20090326-C00043
  • Those of skill will appreciate that the free amine in the di-lysine structures can also be pegylated through an amide or urethane bond with a PEG moiety.
  • In yet another embodiment, the branched PEG moiety is based upon a tri-lysine peptide. The tri-lysine can be mono-, di-, tri-, or tetra-PEG-ylated. Exemplary species according to this embodiment have the formulae:
  • Figure US20090081188A1-20090326-C00044
  • in which e, f and f′ are independently selected integers from 1 to 2500; and q, q′ and q″ are independently selected integers from 1 to 20.
  • As will be apparent to those of skill, the branched polymers of use in the invention include variations on the themes set forth above. For example the di-lysine-PEG conjugate shown above can include three polymeric subunits, the third bonded to the α-amine shown as unmodified in the structure above. Similarly, the use of a tri-lysine functionalized with three or four polymeric subunits labeled with the polymeric modifying moiety in a desired manner is within the scope of the invention.
  • The polymeric modifying moieties can be activated for reaction with the glycosyl core. Exemplary structures of activated species (e.g., carbonates and active esters) include:
  • Figure US20090081188A1-20090326-C00045
  • Other activating, or leaving groups, appropriate for activating linear and branched PEGs of use in preparing the compounds set forth herein include, but are not limited to the species:
  • Figure US20090081188A1-20090326-C00046
  • PEG molecules that are activated with these and other species and methods of making the activated PEGs are set forth in WO 04/083259.
  • Those of skill in the art will appreciate that one or more of the m-PEG arms of the branched polymers shown above can be replaced by a PEG moiety with a different terminus, e.g., OH, COOH, NH2, C2-C10-alkyl, etc. Moreover, the structures above are readily modified by inserting alkyl linkers (or removing carbon atoms) between the α-carbon atom and the functional group of the amino acid side chain. Thus, “homo” derivatives and higher homologues, as well as lower homologues are within the scope of cores for branched PEGs of use in the present invention.
  • The branched PEG species set forth herein are readily prepared by methods such as that set forth in the scheme below:
  • Figure US20090081188A1-20090326-C00047
  • in which Xd is O or S and r is an integer from 1 to 5. The indices e and f are independently selected integers from 1 to 2500. In an exemplary embodiment, one or both of these indices are selected such that the polymer is about 10 kD, 15 kD or 20 kD in molecular weight.
  • Thus, according to this scheme, a natural or unnatural amino acid is contacted with an activated m-PEG derivative, in this case the tosylate, forming 1 by alkylating the side-chain heteroatom Xd. The mono-functionalize m-PEG amino acid is submitted to N-acylation conditions with a reactive m-PEG derivative, thereby assembling branched m-PEG 2. As one of skill will appreciate, the tosylate leaving group can be replaced with any suitable leaving group, e.g., halogen, mesylate, triflate, etc. Similarly, the reactive carbonate utilized to acylate the amine can be replaced with an active ester, e.g., N-hydroxysuccinimide, etc., or the acid can be activated in situ using a dehydrating agent such as dicyclohexylcarbodiimide, carbonyldiimidazole, etc.
  • In other exemplary embodiments, the urea moiety is replaced by a group such as a amide.
  • In an illustrative embodiment, the modified sugar is sialic acid and selected modified sugar compounds of use in the invention have the formulae:
  • Figure US20090081188A1-20090326-C00048
  • The indices a, b and d are integers from 0 to 20. The index c is an integer from 1 to 2500. The structures set forth above can be components of R15.
  • In another illustrative embodiment, a primary hydroxyl moiety of the sugar is functionalized with the modifying group. For example, the 9-hydroxyl of sialic acid can be converted to the corresponding amine and functionalized to provide a compound according to the invention. Formulae according to this embodiment include:
  • Figure US20090081188A1-20090326-C00049
  • The structures set forth above can be components of R15/R15′.
  • As those of skill in the art will appreciate, the sialic acid moiety in the exemplary compounds above can be replaced with any other amino-saccharide including, but not limited to, glucosamine, galactosamine, mannosamine, their N-acyl derivatives, and the like.
  • Although the present invention is exemplified in the preceding sections by reference to PEG, as those of skill will appreciate, an array of polymeric modifying moieties is of use in the compounds and methods set forth herein.
  • In selected embodiments, R1 or L-R1 is a branched PEG, for example, one of the species set forth above. Illustrative modified sugars according to this embodiment include:
  • Figure US20090081188A1-20090326-C00050
  • in which X4 is a bond or O. In each of the structures above, the alkylamine linker —(CH2)aNH- can be present or absent. The structures set forth above can be components of R15/R15′.
  • As discussed herein, the polymer-modified sialic acids of use in the invention may also be linear structures. Thus, the invention provides for conjugates that include a sialic acid moiety derived from a structure such as:
  • Figure US20090081188A1-20090326-C00051
  • in which q and e are as discussed above.
  • Water-Insoluble Polymers
  • In another embodiment, analogous to those discussed above, the modified sugars include a water-insoluble polymer, rather than a water-soluble polymer. The conjugates of the invention may also include one or more water-insoluble polymers. This embodiment of the invention is illustrated by the use of the conjugate as a vehicle with which to deliver a therapeutic peptide in a controlled manner. Polymeric drug delivery systems are known in the art. See, for example, Dunn et al., Eds. POLYMERIC DRUGS AND DRUG DELIVERY SYSTEMS, ACS Symposium Series Vol. 469, American Chemical Society, Washington, D.C. 1991. Those of skill in the art will appreciate that substantially any known drug delivery system is applicable to the conjugates of the present invention.
  • The motifs forth above for R1, L-R1, R15, R15′ and other radicals are equally applicable to water-insoluble polymers, which may be incorporated into the linear and branched structures without limitation utilizing chemistry readily accessible to those of skill in the art.
  • Representative water-insoluble polymers include, but are not limited to, polyphosphazines, poly(vinyl alcohols), polyamides, polycarbonates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) polyethylene, polypropylene, poly(ethylene glycol), poly(ethylene oxide), poly (ethylene terephthalate), poly(vinyl acetate), polyvinyl chloride, polystyrene, polyvinyl pyrrolidone, pluronics and polyvinylphenol and copolymers thereof.
  • Synthetically modified natural polymers of use in conjugates of the invention include, but are not limited to, alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, and nitrocelluloses. Particularly preferred members of the broad classes of synthetically modified natural polymers include, but are not limited to, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, cellulose sulfate sodium salt, and polymers of acrylic and methacrylic esters and alginic acid.
  • These and the other polymers discussed herein can be readily obtained from commercial sources such as Sigma Chemical Co. (St. Louis, Mo.), Polysciences (Warrenton, Pa.), Aldrich (Milwaukee, Wis.), Fluka (Ronkonkoma, N.Y.), and BioRad (Richmond, Calif.), or else synthesized from monomers obtained from these suppliers using standard techniques.
  • Representative biodegradable polymers of use in the conjugates of the invention include, but are not limited to, polylactides, polyglycolides and copolymers thereof, poly(ethylene terephthalate), poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), poly(lactide-co-glycolide), polyanhydrides, polyorthoesters, blends and copolymers thereof. Of particular use are compositions that form gels, such as those including collagen, pluronics and the like.
  • The polymers of use in the invention include “hybrid” polymers that include water-insoluble materials having within at least a portion of their structure, a bioresorbable molecule. An example of such a polymer is one that includes a water-insoluble copolymer, which has a bioresorbable region, a hydrophilic region and a plurality of crosslinkable functional groups per polymer chain.
  • For purposes of the present invention, “water-insoluble materials” includes materials that are substantially insoluble in water or water-containing environments. Thus, although certain regions or segments of the copolymer may be hydrophilic or even water-soluble, the polymer molecule, as a whole, does not to any substantial measure dissolve in water.
  • For purposes of the present invention, the term “bioresorbable molecule” includes a region that is capable of being metabolized or broken down and resorbed and/or eliminated through normal excretory routes by the body. Such metabolites or break down products are preferably substantially non-toxic to the body.
  • The bioresorbable region may be either hydrophobic or hydrophilic, so long as the copolymer composition as a whole is not rendered water-soluble. Thus, the bioresorbable region is selected based on the preference that the polymer, as a whole, remains water-insoluble. Accordingly, the relative properties, i.e., the kinds of functional groups contained by, and the relative proportions of the bioresorbable region, and the hydrophilic region are selected to ensure that useful bioresorbable compositions remain water-insoluble.
  • Exemplary resorbable polymers include, for example, synthetically produced resorbable block copolymers of poly(α-hydroxy-carboxylic acid)/poly(oxyalkylene, (see, Cohn et al., U.S. Pat. No. 4,826,945). These copolymers are not crosslinked and are water-soluble so that the body can excrete the degraded block copolymer compositions. See, Younes et al., J. Biomed. Mater. Res. 21: 1301-1316 (1987); and Cohn et al., J. Biomed. Mater. Res. 22: 993-1009 (1988).
  • Presently preferred bioresorbable polymers include one or more components selected from poly(esters), poly(hydroxy acids), poly(lactones), poly(amides), poly(ester-amides), poly (amino acids), poly(anhydrides), poly(orthoesters), poly(carbonates), poly(phosphazines), poly(phosphoesters), poly(thioesters), polysaccharides and mixtures thereof. More preferably still, the biosresorbable polymer includes a poly(hydroxy) acid component. Of the poly(hydroxy) acids, polylactic acid, polyglycolic acid, polycaproic acid, polybutyric acid, polyvaleric acid and copolymers and mixtures thereof are preferred.
  • In addition to forming fragments that are absorbed in vivo (“bioresorbed”), preferred polymeric coatings for use in the methods of the invention can also form an excretable and/or metabolizable fragment.
  • Higher order copolymers can also be used in the present invention. For example, Casey et al., U.S. Pat. No. 4,438,253, which issued on Mar. 20, 1984, discloses tri-block copolymers produced from the transesterification of poly(glycolic acid) and an hydroxyl-ended poly(alkylene glycol). Such compositions are disclosed for use as resorbable monofilament sutures. The flexibility of such compositions is controlled by the incorporation of an aromatic orthocarbonate, such as tetra-p-tolyl orthocarbonate into the copolymer structure.
  • Other polymers based on lactic and/or glycolic acids can also be utilized. For example, Spinu, U.S. Pat. No. 5,202,413, which issued on Apr. 13, 1993, discloses biodegradable multi-block copolymers having sequentially ordered blocks of polylactide and/or polyglycolide produced by ring-opening polymerization of lactide and/or glycolide onto either an oligomeric diol or a diamine residue followed by chain extension with a di-functional compound, such as, a diisocyanate, diacylchloride or dichlorosilane.
  • Bioresorbable regions of coatings useful in the present invention can be designed to be hydrolytically and/or enzymatically cleavable. For purposes of the present invention, “hydrolytically cleavable” refers to the susceptibility of the copolymer, especially the bioresorbable region, to hydrolysis in water or a water-containing environment. Similarly, “enzymatically cleavable” as used herein refers to the susceptibility of the copolymer, especially the bioresorbable region, to cleavage by endogenous or exogenous enzymes.
  • When placed within the body, the hydrophilic region can be processed into excretable and/or metabolizable fragments. Thus, the hydrophilic region can include, for example, polyethers, polyalkylene oxides, polyols, poly(vinyl pyrrolidine), poly(vinyl alcohol), poly(alkyl oxazolines), polysaccharides, carbohydrates, peptides, proteins and copolymers and mixtures thereof. Furthermore, the hydrophilic region can also be, for example, a poly(alkylene) oxide. Such poly(alkylene) oxides can include, for example, poly(ethylene) oxide, poly(propylene) oxide and mixtures and copolymers thereof.
  • Polymers that are components of hydrogels are also useful in the present invention. Hydrogels are polymeric materials that are capable of absorbing relatively large quantities of water. Examples of hydrogel forming compounds include, but are not limited to, polyacrylic acids, sodium carboxymethylcellulose, polyvinyl alcohol, polyvinyl pyrrolidine, gelatin, carrageenan and other polysaccharides, hydroxyethylenemethacrylic acid (HEMA), as well as derivatives thereof, and the like. Hydrogels can be produced that are stable, biodegradable and bioresorbable. Moreover, hydrogel compositions can include subunits that exhibit one or more of these properties.
  • Bio-compatible hydrogel compositions whose integrity can be controlled through crosslinking are known and are presently preferred for use in the methods of the invention. For example, Hubbell et al., U.S. Pat. Nos. 5,410,016, which issued on Apr. 25, 1995 and 5,529,914, which issued on Jun. 25, 1996, disclose water-soluble systems, which are crosslinked block copolymers having a water-soluble central block segment sandwiched between two hydrolytically labile extensions. Such copolymers are further end-capped with photopolymerizable acrylate functionalities. When crosslinked, these systems become hydrogels. The water soluble central block of such copolymers can include poly(ethylene glycol); whereas, the hydrolytically labile extensions can be a poly(α-hydroxy acid), such as polyglycolic acid or polylactic acid. See, Sawhney et al., Macromolecules 26: 581-587 (1993).
  • In another preferred embodiment, the gel is a thermoreversible gel. Thermoreversible gels including components, such as pluronics, collagen, gelatin, hyalouronic acid, polysaccharides, polyurethane hydrogel, polyurethane-urea hydrogel and combinations thereof are presently preferred.
  • In yet another exemplary embodiment, the conjugate of the invention includes a component of a liposome. Liposomes can be prepared according to methods known to those skilled in the art, for example, as described in Eppstein et al., U.S. Pat. No. 4,522,811. For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its pharmaceutically acceptable salt is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • The above-recited microparticles and methods of preparing the microparticles are offered by way of example and they are not intended to define the scope of microparticles of use in the present invention. It will be apparent to those of skill in the art that an array of microparticles, fabricated by different methods, is of use in the present invention.
  • The structural formats discussed above in the context of the water-soluble polymers, both straight-chain and branched are generally applicable with respect to the water-insoluble polymers as well. Thus, for example, the cysteine, serine, dilysine, and trilysine branching cores can be functionalized with two water-insoluble polymer moieties. The methods used to produce these species are generally closely analogous to those used to produce the water-soluble polymers.
  • The Methods
  • In addition to the conjugates discussed above, the present invention provides methods for preparing these and other conjugates. Moreover, the invention provides methods of preventing, curing or ameliorating a disease state by administering a conjugate of the invention to a subject at risk of developing the disease or a subject that has the disease.
  • In exemplary embodiments, the conjugate is formed between a polymeric modifying moiety and a glycosylated or non-glycosylated peptide. The polymer is conjugated to the peptide via a glycosyl linking group, which is interposed between, and covalently linked to both the peptide (or glycosyl residue) and the modifying group (e.g., water-soluble polymer). The method includes contacting the peptide with a mixture containing a modified sugar and an enzyme, e.g., a glycosyltransferase that conjugates the modified sugar to the substrate. The reaction is conducted under conditions appropriate to form a covalent bond between the modified sugar and the peptide. The sugar moiety of the modified sugar is preferably selected from nucleotide sugars.
  • In an exemplary embodiment, the modified sugar, such as those set forth above, is activated as the corresponding nucleotide sugars. Exemplary sugar nucleotides that are used in the present invention in their modified form include nucleotide mono-, di- or triphosphates or analogs thereof. In a preferred embodiment, the modified sugar nucleotide is selected from a UDP-glycoside, CMP-glycoside, or a GDP-glycoside. Even more preferably, the sugar nucleotide portion of the modified sugar nucleotide is selected from UDP-galactose, UDP-galactosamine, UDP-glucose, UDP-glucosamine, GDP-mannose, GDP-fucose, CMP-sialic acid, or CMP-NeuAc. In an exemplary embodiment, the nucleotide phosphate is attached to C-1.
  • Thus, in an illustrative embodiment in which the glycosyl moiety is sialic acid, the method of the invention utilizes compounds having the formulae:
  • Figure US20090081188A1-20090326-C00052
  • in which L-R1 is as discussed above, and L1-R1 represents a linker bound to the modifying group. As with L, exemplary linker species according to L1 include a bond, alkyl or heteroalkyl moieties.
  • Moreover, as discussed above, the present invention provides for the use of nucleotide sugars that are modified with a water-soluble polymer, which is either straight-chain or branched. For example, compounds having the formula shown below are of use to prepare conjugates within the scope of the present invention:
  • Figure US20090081188A1-20090326-C00053
  • in which X4 is O or a bond.
  • The invention also provides for the use of sugar nucleotides modified with L-R1 at the 6-carbon position. Exemplary species according to this embodiment include:
  • Figure US20090081188A1-20090326-C00054
  • in which the R groups, and L, represent moieties as discussed above. The index “y” is 0, 1 or 2. In an exemplary embodiment, L is a bond between NH and R1. The base is a nucleic acid base.
  • Exemplary nucleotide sugars of use in the invention in which the carbon at the 6-position is modified include species having the stereochemistry of GDP mannose, e.g.:
  • Figure US20090081188A1-20090326-C00055
  • in which X5 is a bond or O. The index i represents 0 or 1. The index a represents an integer from 1 to 20. The indices e and f independently represent integers from 1 to 2500. Q, as discussed above, is H or substituted or unsubstituted C1-C6 alkyl. As those of skill will appreciate, the serine derivative, in which S is replaced with 0 also falls within this general motif.
  • In a still further exemplary embodiment, the invention provides a conjugate in which the modified sugar is based on the stereochemistry of UDP galactose. An exemplary nucleotide sugar of use in this invention has the structure:
  • Figure US20090081188A1-20090326-C00056
  • In another exemplary embodiment, the nucleotide sugar is based on the stereochemistry of glucose. Exemplary species according to this embodiment have the formulae:
  • Figure US20090081188A1-20090326-C00057
  • In general, the sugar moiety or sugar moiety-linker cassette and the PEG or PEG-linker cassette groups are linked together through the use of reactive groups, which are typically transformed by the linking process into a new organic functional group or unreactive species. The sugar reactive functional group(s), is located at any position on the sugar moiety. Reactive groups and classes of reactions useful in practicing the present invention are generally those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive sugar moieties are those, which proceed under relatively mild conditions. These include, but are not limited to nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are discussed in, for example, March, ADVANCED ORGANIC CHEMISTRY, 3rd Ed., John Wiley & Sons, New York, 1985; Hermanson, BIOCONJUGATE TECHNIQUES, Academic Press, San Diego, 1996; and Feeney et al., MODIFICATION OF PROTEINS; Advances in Chemistry Series, Vol. 198, American Chemical Society, Washington, D.C., 1982.
  • Useful reactive functional groups pendent from a sugar nucleus or modifying group include, but are not limited to:
      • (a) carboxyl groups and various derivatives thereof including, but not limited to, N-hydroxysuccinimide esters, N-hydroxybenztriazole esters, acid halides, acyl imidazoles, thioesters, p-nitrophenyl esters, alkyl, alkenyl, alkynyl and aromatic esters;
      • (b) hydroxyl groups, which can be converted to, e.g., esters, ethers, aldehydes, etc.
      • (c) haloalkyl groups, wherein the halide can be later displaced with a nucleophilic group such as, for example, an amine, a carboxylate anion, thiol anion, carbanion, or an alkoxide ion, thereby resulting in the covalent attachment of a new group at the functional group of the halogen atom;
      • (d) dienophile groups, which are capable of participating in Diels-Alder reactions such as, for example, maleimido groups;
      • (e) aldehyde or ketone groups, such that subsequent derivatization is possible via formation of carbonyl derivatives such as, for example, imines, hydrazones, semicarbazones or oximes, or via such mechanisms as Grignard addition or alkyllithium addition;
      • (f) sulfonyl halide groups for subsequent reaction with amines, for example, to form sulfonamides;
      • (g) thiol groups, which can be, for example, converted to disulfides or reacted with acyl halides;
      • (h) amine or sulfhydryl groups, which can be, for example, acylated, alkylated or oxidized;
      • (i) alkenes, which can undergo, for example, cycloadditions, acylation, Michael addition, etc; and
      • (j) epoxides, which can react with, for example, amines and hydroxyl compounds.
  • The reactive functional groups can be chosen such that they do not participate in, or interfere with, the reactions necessary to assemble the reactive sugar nucleus or modifying group. Alternatively, a reactive functional group can be protected from participating in the reaction by the presence of a protecting group. Those of skill in the art understand how to protect a particular functional group such that it does not interfere with a chosen set of reaction conditions. For examples of useful protecting groups, see, for example, Greene et al., PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, John Wiley & Sons, New York, 1991.
  • In the discussion that follows, a number of specific examples of modified sugars that are useful in practicing the present invention are set forth. In the exemplary embodiments, a sialic acid derivative is utilized as the sugar nucleus to which the modifying group is attached. The focus of the discussion on sialic acid derivatives is for clarity of illustration only and should not be construed to limit the scope of the invention. Those of skill in the art will appreciate that a variety of other sugar moieties can be activated and derivatized in a manner analogous to that set forth using sialic acid as an example. For example, numerous methods are available for modifying galactose, glucose, N-acetylgalactosamine and fucose to name a few sugar substrates, which are readily modified by art recognized methods. See, for example, Elhalabi et al., Curr. Med. Chem. 6: 93 (1999); and Schafer et al., J. Org. Chem. 65: 24 (2000)).
  • In an exemplary embodiment, the modified sugar is based upon a 6-amino-N-acetyl-glycosyl moiety. As shown in FIG. 5 for N-acetylgalactosamine, the 6-amino-sugar moiety is readily prepared by standard methods.
  • In the scheme above, the index n represents an integer from 1 to 2500. In an exemplary embodiment, this index is selected such that the polymer is about 10 kD, 15 kD or 20 kD in molecular weight. The symbol “A” represents an activating group, e.g., a halo, a component of an activated ester (e.g., a N-hydroxysuccinimide ester), a component of a carbonate (e.g., p-nitrophenyl carbonate) and the like. Those of skill in the art will appreciate that other PEG-amide nucleotide sugars are readily prepared by this and analogous methods.
  • The acceptor peptide is typically synthesized de novo, or recombinantly expressed in a prokaryotic cell (e.g., bacterial cell, such as E. coli) or in a eukaryotic cell such as a mammalian, yeast, insect, fungal or plant cell. The peptide can be either a full-length protein or a fragment. Moreover, the peptide can be a wild type or mutated peptide. In an exemplary embodiment, the peptide includes a mutation that adds one or more N- or O-linked glycosylation sites to the peptide sequence.
  • The method of the invention also provides for modification of incompletely glycosylated peptides that are produced recombinantly. Many recombinantly produced glycoproteins are incompletely glycosylated, exposing carbohydrate residues that may have undesirable properties, e.g., immunogenicity, recognition by the RES. Employing a modified sugar in a method of the invention, the peptide can be simultaneously further glycosylated and derivatized with, e.g., a water-soluble polymer, therapeutic agent, or the like. The sugar moiety of the modified sugar can be the residue that would properly be conjugated to the acceptor in a fully glycosylated peptide, or another sugar moiety with desirable properties.
  • Those of skill will appreciate that the invention can be practiced using substantially any peptide or glycopeptide from any source. Exemplary peptides with which the invention can be practiced are set forth in WO 03/031464, and the references set forth therein.
  • Peptides modified by the methods of the invention can be synthetic or wild-type peptides or they can be mutated peptides, produced by methods known in the art, such as site-directed mutagenesis. Glycosylation of peptides is typically either N-linked or O-linked. An exemplary N-linkage is the attachment of the modified sugar to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of a carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one sugar (e.g., N-acetylgalactosamine, galactose, mannose, GlcNAc, glucose, fucose or xylose) to the hydroxy side chain of a hydroxyamino acid, preferably serine or threonine, although unusual or non-natural amino acids, e.g., 5-hydroxyproline or 5-hydroxylysine may also be used.
  • Moreover, in addition to peptides, the methods of the present invention can be practiced with other biological structures (e.g., glycolipids, lipids, sphingoids, ceramides, whole cells, and the like, containing a glycosylation site).
  • Addition of glycosylation sites to a peptide or other structure is conveniently accomplished by altering the amino acid sequence such that it contains one or more glycosylation sites. The addition may also be made by the incorporation of one or more species presenting an —OH group, preferably serine or threonine residues, within the sequence of the peptide (for O-linked glycosylation sites). The addition may be made by mutation or by full chemical synthesis of the peptide. The peptide amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the peptide at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation(s) are preferably made using methods known in the art.
  • In an exemplary embodiment, the glycosylation site is added by shuffling polynucleotides. Polynucleotides encoding a candidate peptide can be modulated with DNA shuffling protocols. DNA shuffling is a process of recursive recombination and mutation, performed by random fragmentation of a pool of related genes, followed by reassembly of the fragments by a polymerase chain reaction-like process. See, e.g., Stemmer, Proc. Natl. Acad. Sci. USA 91:10747-10751 (1994); Stemmer, Nature 370:389-391 (1994); and U.S. Pat. Nos. 5,605,793, 5,837,458, 5,830,721 and 5,811,238.
  • Exemplary peptides with which the present invention can be practiced, methods of adding or removing glycosylation sites, and adding or removing glycosyl structures or substructures are described in detail in WO03/031464 and related U.S. and PCT applications.
  • The present invention also takes advantage of adding to (or removing from) a peptide one or more selected glycosyl residues, after which a modified sugar is conjugated to at least one of the selected glycosyl residues of the peptide. The present embodiment is useful, for example, when it is desired to conjugate the modified sugar to a selected glycosyl residue that is either not present on a peptide or is not present in a desired amount. Thus, prior to coupling a modified sugar to a peptide, the selected glycosyl residue is conjugated to the peptide by enzymatic or chemical coupling. In another embodiment, the glycosylation pattern of a glycopeptide is altered prior to the conjugation of the modified sugar by the removal of a carbohydrate residue from the glycopeptide. See, for example WO 98/31826.
  • Addition or removal of any carbohydrate moieties present on the glycopeptide is accomplished either chemically or enzymatically. An exemplary chemical deglycosylation is brought about by exposure of the polypeptide variant to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the peptide intact. Chemical deglycosylation is described by Hakimuddin et al., Arch. Biochem. Biophys. 259: 52 (1987) and by Edge et al., Anal Biochem. 118: 131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptide variants can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol. 138: 350 (1987).
  • In an exemplary embodiment, the peptide is essentially completely desialylated with neuraminidase prior to performing glycoconjugation or remodeling steps on the peptide. Following the glycoconjugation or remodeling, the peptide is optionally re-sialylated using a sialyltransferase. In an exemplary embodiment, the re-sialylation occurs at essentially each (e.g., >80%, preferably greater than 85%, greater than 90%, preferably greater than 95% and more preferably greater than 96%, 97%, 98% or 99%) terminal saccharyl acceptor in a population of sialyl acceptors. In a preferred embodiment, the saccharide has a substantially uniform sialylation pattern (i.e., substantially uniform glycosylation pattern).
  • Chemical addition of glycosyl moieties is carried out by any art-recognized method. Enzymatic addition of sugar moieties is preferably achieved using a modification of the methods set forth herein, substituting native glycosyl units for the modified sugars used in the invention. Other methods of adding sugar moieties are disclosed in U.S. Pat. Nos. 5,876,980, 6,030,815, 5,728,554, and 5,922,577.
  • Exemplary attachment points for selected glycosyl residue include, but are not limited to: (a) consensus sites for N-linked glycosylation, and sites for O-linked glycosylation; (b) terminal glycosyl moieties that are acceptors for a glycosyltransferase; (c) arginine, asparagine and histidine; (d) free carboxyl groups; (e) free sulfhydryl groups such as those of cysteine; (f) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (g) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (h) the amide group of glutamine. Exemplary methods of use in the present invention are described in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston, CRC CRIT. REV. BIOCHEM., pp. 259-306 (1981).
  • In one embodiment, the invention provides a method for linking two or more peptides through a linking group. The linking group is of any useful structure and may be selected from straight- and branched-chain structures. Preferably, each terminus of the linker, which is attached to a peptide, includes a modified sugar (i.e., a nascent intact glycosyl linking group).
  • In an exemplary method of the invention, two peptides are linked together via a linker moiety that includes a polymeric (e.g., PEG linker). The construct conforms to the general structure set forth in the cartoon above. As described herein, the construct of the invention includes two intact glycosyl linking groups (i.e., s+t=1). The focus on a PEG linker that includes two glycosyl groups is for purposes of clarity and should not be interpreted as limiting the identity of linker arms of use in this embodiment of the invention.
  • Thus, a PEG moiety is functionalized at a first terminus with a first glycosyl unit and at a second terminus with a second glycosyl unit. The first and second glycosyl units are preferably substrates for different transferases, allowing orthogonal attachment of the first and second peptides to the first and second glycosyl units, respectively. In practice, the (glycosyl)1-PEG-(glycosyl)2 linker is contacted with the first peptide and a first transferase for which the first glycosyl unit is a substrate, thereby forming (peptide)1-(glycosyl)1-PEG-(glycosyl)2. Transferase and/or unreacted peptide is then optionally removed from the reaction mixture. The second peptide and a second transferase for which the second glycosyl unit is a substrate are added to the (peptide)1-(glycosyl)1-PEG-(glycosyl)2 conjugate, forming (peptide)1-(glycosyl)1-PEG-(glycosyl)2-(peptide)2; at least one of the glycosyl residues is either directly or indirectly O-linked. Those of skill in the art will appreciate that the method outlined above is also applicable to forming conjugates between more than two peptides by, for example, the use of a branched PEG, dendrimer, poly(amino acid), polysaccharide or the like.
  • In an exemplary embodiment, the peptide that is modified by a method of the invention is a glycopeptide that is produced in mammalian cells (e.g., CHO cells) or in a transgenic animal and thus, contains N- and/or O-linked oligosaccharide chains, which are incompletely sialylated. The oligosaccharide chains of the glycopeptide lacking a sialic acid and containing a terminal galactose residue can be PEGylated, PPGylated or otherwise modified with a modified sialic acid.
  • In Scheme 1, the amino glycoside 1, is treated with the active ester of a protected amino acid (e.g., glycine) derivative, converting the sugar amine residue into the corresponding protected amino acid amide adduct. The adduct is treated with an aldolase to form α-hydroxy carboxylate 2. Compound 2 is converted to the corresponding CMP derivative by the action of CMP-SA synthetase, followed by catalytic hydrogenation of the CMP derivative to produce compound 3. The amine introduced via formation of the glycine adduct is utilized as a locus of PEG attachment by reacting compound 3 with an activated PEG or PPG derivative (e.g., PEG-C(O)NHS, PEG-OC(O)O-p-nitrophenyl), producing species such as 4 or 5, respectively.
  • Figure US20090081188A1-20090326-C00058
  • Conjugation of Modified Sugars to Peptides
  • The PEG modified sugars are conjugated to a glycosylated or non-glycosylated peptide using an appropriate enzyme to mediate the conjugation. Preferably, the concentrations of the modified donor sugar(s), enzyme(s) and acceptor peptide(s) are selected such that glycosylation proceeds until the acceptor is consumed. The considerations discussed below, while set forth in the context of a sialyltransferase, are generally applicable to other glycosyltransferase reactions.
  • A number of methods of using glycosyltransferases to synthesize desired oligosaccharide structures are known and are generally applicable to the instant invention. Exemplary methods are described, for instance, WO 96/32491, Ito et al., Pure Appl. Chem. 65: 753 (1993), U.S. Pat. Nos. 5,352,670, 5,374,541, 5,545,553, commonly owned U.S. Pat. Nos. 6,399,336, and 6,440,703, and commonly owned published PCT applications, WO 03/031464, WO 04/033651, WO 04/099231, which are incorporated herein by reference.
  • The present invention is practiced using a single glycosyltransferase or a combination of glycosyltransferases. For example, one can use a combination of a sialyltransferase and a galactosyltransferase. In those embodiments using more than one enzyme, the enzymes and substrates are preferably combined in an initial reaction mixture, or the enzymes and reagents for a second enzymatic reaction are added to the reaction medium once the first enzymatic reaction is complete or nearly complete. By conducting two enzymatic reactions in sequence in a single vessel, overall yields are improved over procedures in which an intermediate species is isolated. Moreover, cleanup and disposal of extra solvents and by-products is reduced.
  • In a preferred embodiment, each of the first and second enzyme is a glycosyltransferase. In another preferred embodiment, one enzyme is an endoglycosidase. In an additional preferred embodiment, more than two enzymes are used to assemble the modified glycoprotein of the invention. The enzymes are used to alter a saccharide structure on the peptide at any point either before or after the addition of the modified sugar to the peptide.
  • In another embodiment, the method makes use of one or more exo- or endoglycosidase. The glycosidase is typically a mutant, which is engineered to form glycosyl bonds rather than rupture them. The mutant glycanase typically includes a substitution of an amino acid residue for an active site acidic amino acid residue. For example, when the endoglycanase is endo-H, the substituted active site residues will typically be Asp at position 130, Glu at position 132 or a combination thereof. The amino acids are generally replaced with serine, alanine, asparagine, or glutamine.
  • The mutant enzyme catalyzes the reaction, usually by a synthesis step that is analogous to the reverse reaction of the endoglycanase hydrolysis step. In these embodiments, the glycosyl donor molecule (e.g., a desired oligo- or mono-saccharide structure) contains a leaving group and the reaction proceeds with the addition of the donor molecule to a GlcNAc residue on the protein. For example, the leaving group can be a halogen, such as fluoride. In other embodiments, the leaving group is a Asn, or a Asn-peptide moiety. In further embodiments, the GlcNAc residue on the glycosyl donor molecule is modified. For example, the GlcNAc residue may comprise a 1,2 oxazoline moiety.
  • In a preferred embodiment, each of the enzymes utilized to produce a conjugate of the invention are present in a catalytic amount. The catalytic amount of a particular enzyme varies according to the concentration of that enzyme's substrate as well as to reaction conditions such as temperature, time and pH value. Means for determining the catalytic amount for a given enzyme under preselected substrate concentrations and reaction conditions are well known to those of skill in the art.
  • The temperature at which an above process is carried out can range from just above freezing to the temperature at which the most sensitive enzyme denatures. Preferred temperature ranges are about 0° C. to about 55° C., and more preferably about 20° C. to about 37° C. In another exemplary embodiment, one or more components of the present method are conducted at an elevated temperature using a thermophilic enzyme.
  • The reaction mixture is maintained for a period of time sufficient for the acceptor to be glycosylated, thereby forming the desired conjugate. Some of the conjugate can often be detected after a few h, with recoverable amounts usually being obtained within 24 h or less. Those of skill in the art understand that the rate of reaction is dependent on a number of variable factors (e.g, enzyme concentration, donor concentration, acceptor concentration, temperature, solvent volume), which are optimized for a selected system.
  • The present invention also provides for the industrial-scale production of modified peptides. As used herein, an industrial scale generally produces at least one gram of finished, purified conjugate.
  • In the discussion that follows, the invention is exemplified by the conjugation of modified sialic acid moieties to a glycosylated peptide. The exemplary modified sialic acid is labeled with PEG. The focus of the following discussion on the use of PEG-modified sialic acid and glycosylated peptides is for clarity of illustration and is not intended to imply that the invention is limited to the conjugation of these two partners. One of skill understands that the discussion is generally applicable to the additions of modified glycosyl moieties other than sialic acid. Moreover, the discussion is equally applicable to the modification of a glycosyl unit with agents other than PEG including other PEG moieties, therapeutic moieties, and biomolecules.
  • An enzymatic approach can be used for the selective introduction of PEGylated or PPGylated carbohydrates onto a peptide or glycopeptide. The method utilizes modified sugars containing PEG, PPG, or a masked reactive functional group, and is combined with the appropriate glycosyltransferase or glycosynthase. By selecting the glycosyltransferase that will make the desired carbohydrate linkage and utilizing the modified sugar as the donor substrate, the PEG or PPG can be introduced directly onto the peptide backbone, onto existing sugar residues of a glycopeptide or onto sugar residues that have been added to a peptide.
  • In an exemplary embodiment, an acceptor for a sialyltransferase is present on the peptide to be modified either as a naturally occurring structure or it is placed there recombinantly, enzymatically or chemically. Suitable acceptors, include, for example, galactosyl acceptors such as Galβ1,4GlcNAc, Galβ1,4GalNAc, Galβ1,3GalNAc, lacto-N-tetraose, Galβ1,3GlcNAc, Galβ1,3Ara, Galβ1,6GlcNAc, Galβ1,4Glc (lactose), and other acceptors known to those of skill in the art (see, e.g., Paulson et al., J. Biol. Chem. 253: 5617-5624 (1978)). Exemplary sialyltransferases are set forth herein.
  • In one embodiment, an acceptor for the sialyltransferase is present on the glycopeptide to be modified upon in vivo synthesis of the glycopeptide. Such glycopeptides can be sialylated using the claimed methods without prior modification of the glycosylation pattern of the glycopeptide. Alternatively, the methods of the invention can be used to sialylate a peptide that does not include a suitable acceptor; one first modifies the peptide to include an acceptor by methods known to those of skill in the art. In an exemplary embodiment, a GalNAc residue is added by the action of a GalNAc transferase.
  • In an exemplary embodiment, the galactosyl acceptor is assembled by attaching a galactose residue to an appropriate acceptor linked to the peptide, e.g., a GlcNAc. The method includes incubating the peptide to be modified with a reaction mixture that contains a suitable amount of a galactosyltransferase (e.g., Galβ1,3 or Galβ1,4), and a suitable galactosyl donor (e.g., UDP-galactose). The reaction is allowed to proceed substantially to completion or, alternatively, the reaction is terminated when a preselected amount of the galactose residue is added. Other methods of assembling a selected saccharide acceptor will be apparent to those of skill in the art.
  • In yet another embodiment, glycopeptide-linked oligosaccharides are first “trimmed,” either in whole or in part, to expose either an acceptor for the sialyltransferase or a moiety to which one or more appropriate residues can be added to obtain a suitable acceptor. Enzymes such as glycosyltransferases and endoglycosidases (see, for example U.S. Pat. No. 5,716,812) are useful for the attaching and trimming reactions. In another embodiment of this method, the sialic acid moieties of the peptide are essentially completely removed (e.g., at least 90, at least 95 or at least 99%), exposing an acceptor for a modified sialic acid.
  • In the discussion that follows, the method of the invention is exemplified by the use of modified sugars having a PEG moiety attached thereto. The focus of the discussion is for clarity of illustration. Those of skill will appreciate that the discussion is equally relevant to those embodiments in which the modified sugar bears a therapeutic moiety, biomolecule or the like.
  • In an exemplary embodiment of the invention in which a carbohydrate residue is “trimmed” prior to the addition of the modified sugar high mannose is trimmed back to the first generation biantennary structure. A modified sugar bearing a PEG moiety is conjugated to one or more of the sugar residues exposed by the “trimming back.” In one example, a PEG moiety is added via a GlcNAc moiety conjugated to the PEG moiety. The modified GlcNAc is attached to one or both of the terminal mannose residues of the biantennary structure. Alternatively, an unmodified GlcNAc can be added to one or both of the termini of the branched species.
  • In another exemplary embodiment, a PEG moiety is added to one or both of the terminal mannose residues of the biantennary structure via a modified sugar having a galactose residue, which is conjugated to a GlcNAc residue added onto the terminal mannose residues. Alternatively, an unmodified Gal can be added to one or both terminal GlcNAc residues.
  • In yet a further example, a PEG moiety is added onto a Gal residue using a modified sialic acid such as those discussed above.
  • In another exemplary embodiment, a high mannose structure is “trimmed back” to the mannose from which the biantennary structure branches. In one example, a PEG moiety is added via a GlcNAc modified with the polymer. Alternatively, an unmodified GlcNAc is added to the mannose, followed by a Gal with an attached PEG moiety. In yet another embodiment, unmodified GlcNAc and Gal residues are sequentially added to the mannose, followed by a sialic acid moiety modified with a PEG moiety.
  • A high mannose structure can also be trimmed back to the elementary tri-mannosyl core.
  • In a further exemplary embodiment, high mannose is “trimmed back” to the GlcNAc to which the first mannose is attached. The GlcNAc is conjugated to a Gal residue bearing a PEG moiety. Alternatively, an unmodified Gal is added to the GlcNAc, followed by the addition of a sialic acid modified with a water-soluble sugar. In yet a further example, the terminal GlcNAc is conjugated with Gal and the GlcNAc is subsequently fucosylated with a modified fucose bearing a PEG moiety.
  • High mannose may also be trimmed back to the first GlcNAc attached to the Asn of the peptide. In one example, the GlcNAc of the GlcNAc-(Fuc)a residue is conjugated with ha GlcNAc bearing a water soluble polymer. In another example, the GlcNAc of the GlcNAc-(Fuc)a residue is modified with Gal, which bears a water soluble polymer. In a still further embodiment, the GlcNAc is modified with Gal, followed by conjugation to the Gal of a sialic acid modified with a PEG moiety.
  • Other exemplary embodiments are set forth in commonly owned U.S. Patent application Publications: 20040132640; 20040063911; 20040137557; U.S. patent application Ser. Nos. 10/369,979; 10/410,913; 10/360,770; 10/410,945 and PCT/US02/32263 each of which is incorporated herein by reference.
  • The Examples set forth above provide an illustration of the power of the methods set forth herein. Using the methods described herein, it is possible to “trim back” and build up a carbohydrate residue of substantially any desired structure. The modified sugar can be added to the termini of the carbohydrate moiety as set forth above, or it can be intermediate between the peptide core and the terminus of the carbohydrate.
  • In an exemplary embodiment, an existing sialic acid is removed from a glycopeptide using a sialidase, thereby unmasking all or most of the underlying galactosyl residues. Alternatively, a peptide or glycopeptide is labeled with galactose residues, or an oligosaccharide residue that terminates in a galactose unit. Following the exposure of or addition of the galactose residues, an appropriate sialyltransferase is used to add a modified sialic acid.
  • In another exemplary embodiment, an enzyme that transfers sialic acid onto sialic acid is utilized. This method can be practiced without treating a sialylated glycan with a sialidase to expose glycan residues beneath the sialic acid. An exemplary polymer-modified sialic acid is a sialic acid modified with poly(ethylene glycol). Other exemplary enzymes that add sialic acid and modified sialic acid moieties onto glycans that include a sialic acid residue or exchange an existing sialic acid residue on a glycan for these species include ST3Gal3, CST-II, ST8Sia-II, ST8Sia-III and ST8Sia-IV.
  • In yet a further approach, a masked reactive functionality is present on the sialic acid. The masked reactive group is preferably unaffected by the conditions used to attach the modified sialic acid to the Factor IX. After the covalent attachment of the modified sialic acid to the peptide, the mask is removed and the peptide is conjugated with an agent such as PEG. The agent is conjugated to the peptide in a specific manner by its reaction with the unmasked reactive group on the modified sugar residue.
  • Any modified sugar can be used with its appropriate glycosyltransferase, depending on the terminal sugars of the oligosaccharide side chains of the glycopeptide. As discussed above, the terminal sugar of the glycopeptide required for introduction of the PEGylated structure can be introduced naturally during expression or it can be produced post expression using the appropriate glycosidase(s), glycosyltransferase(s) or mix of glycosidase(s) and glycosyltransferase(s).
  • In a further exemplary embodiment, UDP-galactose-PEG is reacted with β1,4-galactosyltransferase, thereby transferring the modified galactose to the appropriate terminal N-acetylglucosamine structure. The terminal GlcNAc residues on the glycopeptide may be produced during expression, as may occur in such expression systems as mammalian, insect, plant or fungus, but also can be produced by treating the glycopeptide with a sialidase and/or glycosidase and/or glycosyltransferase, as required.
  • In another exemplary embodiment, a GlcNAc transferase, such as GNT1-5, is utilized to transfer PEGylated-GlcNAc to a terminal mannose residue on a glycopeptide. In a still further exemplary embodiment, an the N- and/or O-linked glycan structures are enzymatically removed from a glycopeptide to expose an amino acid or a terminal glycosyl residue that is subsequently conjugated with the modified sugar. For example, an endoglycanase is used to remove the N-linked structures of a glycopeptide to expose a terminal GlcNAc as a GlcNAc-linked-Asn on the glycopeptide. UDP-Gal-PEG and the appropriate galactosyltransferase is used to introduce the PEG-galactose functionality onto the exposed GlcNAc.
  • In an alternative embodiment, the modified sugar is added directly to the peptide backbone using a glycosyltransferase known to transfer sugar residues to the peptide backbone. Exemplary glycosyltransferases useful in practicing the present invention include, but are not limited to, GalNAc transferases (GalNAc T1-14), GlcNAc transferases, fucosyltransferases, glucosyltransferases, xylosyltransferases, mannosyltransferases and the like. Use of this approach allows the direct addition of modified sugars onto peptides that lack any carbohydrates or, alternatively, onto existing glycopeptides. In both cases, the addition of the modified sugar occurs at specific positions on the peptide backbone as defined by the substrate specificity of the glycosyltransferase and not in a random manner as occurs during modification of a protein's peptide backbone using chemical methods. An array of agents can be introduced into proteins or glycopeptides that lack the glycosyltransferase substrate peptide sequence by engineering the appropriate amino acid sequence into the polypeptide chain.
  • In each of the exemplary embodiments set forth above, one or more additional chemical or enzymatic modification steps can be utilized following the conjugation of the modified sugar to the peptide. In an exemplary embodiment, an enzyme (e.g., fucosyltransferase) is used to append a glycosyl unit (e.g., fucose) onto the terminal modified sugar attached to the peptide. In another example, an enzymatic reaction is utilized to “cap” sites to which the modified sugar failed to conjugate. Alternatively, a chemical reaction is utilized to alter the structure of the conjugated modified sugar. For example, the conjugated modified sugar is reacted with agents that stabilize or destabilize its linkage with the peptide component to which the modified sugar is attached. In another example, a component of the modified sugar is deprotected following its conjugation to the peptide. One of skill will appreciate that there is an array of enzymatic and chemical procedures that are useful in the methods of the invention at a stage after the modified sugar is conjugated to the peptide. Further elaboration of the modified sugar-peptide conjugate is within the scope of the invention.
  • Enzymes and reaction conditions for preparing the conjugates of the present invention are discussed in detail in the parent of the instant application as well as co-owned published PCT patent applications WO 03/031464, WO 04/033651, WO 04/099231.
  • In a selected embodiment, a Factor IX peptide, expressed in insect cells, is remodeled such that glycans on the remodeled glycopeptide include a GlcNAc-Gal glycosyl residue. The addition of GlcNAc and Gal can occur as separate reactions or as a single reaction in a single vessel. In this example, GlcNAc-transferase I and Gal-transferase I are used. The modified sialyl moiety is added using ST3Gal-III.
  • In another embodiment, the addition of GlcNAc, Gal and modified Sia can also occur in a single reaction vessel, using the enzymes set forth above. Each of the enzymatic remodeling and glycoPEGylation steps are carried out individually.
  • When the peptide is expressed in mammalian cells, different methods are of use. In one embodiment, the peptide is conjugated without need for remodeling prior to conjugation by contacting the peptide with a sialyltransferase that transfers the modified sialic acid directly onto a sialic acid on the peptide forming Sia-Sia-L-R1, or exchanges a sialic acid on the peptide for the modified sialic acid, forming Sia-L-R1. An exemplary enzyme of use in this method is CST-II. Other enzymes that add sialic acid to sialic acid are known to those of skill in the art and examples of such enzymes are set forth the figures appended hereto.
  • In yet another method of preparing the conjugates of the invention, the peptide expressed in a mammalian system is desialylated using a sialidase. The exposed Gal residue is sialylated with a modified sialic acid using a sialyltransferase specific for O-linked glycans, providing an Factor IX peptide with an O-linked modified glycan. The desialylated, modified Factor IX peptide is optionally partially or fully re-sialylated by using a sialyltransferase such as ST3GalIII. Using ST3GalIII with the desialylated peptide, both O and N-linked sites are glycoPEGylated. Using ST3GalI, one or more of the O-linked sites (e.g., Thr159, Thr169, Thr172 of FIG. 1) are essentially selectively glycoPEGylated. The use of CST-II provides a route to essentially selectively glycoPEGylate one or more N-linked site (e.g., Asn 157, Asn 167 of FIG. 1).
  • In an exemplary embodiment, the Factor IX of the invention includes at least one linear 2 kDa PEG moiety covalently attached thereto through an intact glycosyl linking group. A presently preferred Factor IX peptide conjugate of the invention includes up to 9 2 kDa PEG moieties attached to both N- and O-linked sites through an intact glycosyl linking group, more preferably from 5-9 PEG moieties. In another exemplary embodiment, the Factor IX of the invention includes at least one linear 30 kDa PEG moiety covalently attached thereto through an intact glycosyl linking group. In a presently preferred embodiment, the Factor IX peptide conjugate of the invention includes from 1 to 3 PEG moieties.
  • In another aspect, the invention provides a method of making a PEGylated Factor IX of the invention. The method includes: (a) contacting a substrate Factor IX peptide comprising a glycosyl group selected from:
  • Figure US20090081188A1-20090326-C00059
  • with a PEG-sialic acid donor having the formula:
  • Figure US20090081188A1-20090326-C00060
  • and an enzyme that transfers PEG-sialic acid from said donor onto a member selected from the GalNAc, Gal and the Sia of said glycosyl group, under conditions appropriate for said transfer. An exemplary modified sialic acid donor is CMP-sialic acid modified, through a linker moiety, with a polymer, e.g., a straight chain or branched poly(ethylene glycol) moiety. As discussed herein, the peptide is optionally glycosylated with GalNAc and/or Gal and/or Sia (“Remodeled”) prior to attaching the modified sugar. The remodeling steps can occur in sequence in the same vessel without purification of the glycosylated peptide between steps. Alternatively, following one or more remodeling step, the glycosylated peptide can be purified prior to submitting it to the next glycosylation or glycPEGylation step.
  • As illustrated in the examples and discussed further below, placement of an acceptor moiety for the PEG-sugar is accomplished in any desired number of steps. For example, in one embodiment, the addition of GalNAc to the peptide can be followed by a second step in which the PEG-sugar is conjugated to the GalNAc in the same reaction vessel. Alternatively, these two steps can be carried out in a single vessel approximately simultaneously.
  • In an exemplary embodiment, the PEG-sialic acid donor has the formula:
  • Figure US20090081188A1-20090326-C00061
  • In another exemplary embodiment, the PEG-sialic acid donor has the formula:
  • Figure US20090081188A1-20090326-C00062
  • In a further exemplary embodiment, the Factor IX peptide is expressed in an appropriate expression system prior to being glycopegylated or remodeled. Exemplary expression systems include Sf-9/baculovirus and Chinese Hamster Ovary (CHO) cells.
  • Purification of Factor IX Conjugates
  • The products produced by the above processes can be used without purification. However, it is usually preferred to recover the product and one or more of the intermediates, e.g., nucleotide sugars, branched and linear PEG species, modified sugars and modified nucleotide sugars. Standard, well-known techniques for recovery of glycosylated saccharides such as thin or thick layer chromatography, column chromatography, ion exchange chromatography, or membrane filtration can be used. It is preferred to use membrane filtration, more preferably utilizing a reverse osmotic membrane, or one or more column chromatographic techniques for the recovery as is discussed hereinafter and in the literature cited herein. For instance, membrane filtration wherein the membranes have molecular weight cutoff of about 3000 to about 10,000 can be used to remove proteins such as glycosyl transferases.
  • If the peptide is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed. Following glycoPEGylation, the PEGylated peptide is purified by art-recognized methods, for example, by centrifugation or ultrafiltration; optionally, the protein may be concentrated with a commercially available protein concentration filter, followed by separating the polypeptide variant from other impurities by one or more steps selected from immunoaffinity chromatography, ion-exchange column fractionation (e.g., on diethylaminoethyl (DEAE) or matrices containing carboxymethyl or sulfopropyl groups), chromatography on Blue-Sepharose, CM Blue-Sepharose, MONO-Q, MONO-S, lentil lectin-Sepharose, WGA-Sepharose, Con A-Sepharose, Ether Toyopearl, Butyl Toyopearl, Phenyl Toyopearl, or protein A Sepharose, SDS-PAGE chromatography, silica chromatography, chromatofocusing, reverse phase HPLC (e.g., silica gel with appended aliphatic groups), gel filtration using, e.g., Sephadex molecular sieve or size-exclusion chromatography, chromatography on columns that selectively bind the polypeptide, and ethanol or ammonium sulfate precipitation.
  • Modified glycopeptides produced in culture are usually isolated by initial extraction from cells, enzymes, etc., followed by one or more concentration, salting-out, aqueous ion-exchange, or size-exclusion chromatography steps. Additionally, the modified glycoprotein may be purified by affinity chromatography. Finally, HPLC may be employed for final purification steps.
  • A protease inhibitor, e.g., methylsulfonylfluoride (PMSF) may be included in any of the foregoing steps to inhibit proteolysis and antibiotics or preservatives may be included to prevent the growth of adventitious contaminants.
  • Within another embodiment, supernatants from systems which produce the modified glycopeptide of the invention are first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate may be applied to a suitable purification matrix. For example, a suitable affinity matrix may comprise a ligand for the peptide, a lectin or antibody molecule bound to a suitable support. Alternatively, an anion-exchange resin may be employed, for example, a matrix or substrate having pendant DEAE groups. Suitable matrices include acrylamide, agarose, dextran, cellulose, or other types commonly employed in protein purification. Alternatively, a cation-exchange step may be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are particularly preferred.
  • Other methods of use in purification include size exclusion chromatography (SEC), hydroxyapatite chromatography, hydrophobic interaction chromatography and chromatography on Blue Sepharose. These and other useful methods are illustrated in co-assigned U.S. Provisional Patent No. (Attorney Docket No. 40853-01-5168-PI, filed May 6, 2005).
  • One or more RP-HPLC steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, may be employed to further purify a polypeptide conjugate composition. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous or essentially homogeneous modified glycoprotein.
  • The modified glycopeptide of the invention resulting from a large-scale fermentation may be purified by methods analogous to those disclosed by Urdal et al., J. Chromatog. 296: 171 (1984). This reference describes two sequential, RP-HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column. Alternatively, techniques such as affinity chromatography may be utilized to purify the modified glycoprotein.
  • Pharmaceutical Compositions
  • In another aspect, the invention provides a pharmaceutical composition. The pharmaceutical composition includes a pharmaceutically acceptable diluent and a covalent conjugate between a non-naturally-occurring, PEG moiety, therapeutic moiety or biomolecule and a glycosylated or non-glycosylated peptide. The polymer, therapeutic moiety or biomolecule is conjugated to the peptide via an intact glycosyl linking group interposed between and covalently linked to both the peptide and the polymer, therapeutic moiety or biomolecule.
  • Pharmaceutical compositions of the invention are suitable for use in a variety of drug delivery systems. Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, Pa., 17th ed. (1985). For a brief review of methods for drug delivery, see, Langer, Science 249:1527-1533 (1990).
  • The pharmaceutical compositions may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.
  • Commonly, the pharmaceutical compositions are administered parenterally, e.g., intravenously. Thus, the invention provides compositions for parenteral administration that include the compound dissolved or suspended in an acceptable carrier, preferably an aqueous carrier, e.g., water, buffered water, saline, PBS and the like. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents, detergents and the like.
  • These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 and 8.
  • In some embodiments the glycopeptides of the invention can be incorporated into liposomes formed from standard vesicle-forming lipids. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9: 467 (1980), U.S. Pat. Nos. 4,235,871, 4,501,728 and 4,837,028. The targeting of liposomes using a variety of targeting agents (e.g., the sialyl galactosides of the invention) is well known in the art (see, e.g., U.S. Pat. Nos. 4,957,773 and 4,603,044).
  • Standard methods for coupling targeting agents to liposomes can be used. These methods generally involve incorporation into liposomes of lipid components, such as phosphatidylethanolamine, which can be activated for attachment of targeting agents, or derivatized lipophilic compounds, such as lipid-derivatized glycopeptides of the invention.
  • Targeting mechanisms generally require that the targeting agents be positioned on the surface of the liposome in such a manner that the target moieties are available for interaction with the target, for example, a cell surface receptor. The carbohydrates of the invention may be attached to a lipid molecule before the liposome is formed using methods known to those of skill in the art (e.g., alkylation or acylation of a hydroxyl group present on the carbohydrate with a long chain alkyl halide or with a fatty acid, respectively). Alternatively, the liposome may be fashioned in such a way that a connector portion is first incorporated into the membrane at the time of forming the membrane. The connector portion must have a lipophilic portion, which is firmly embedded and anchored in the membrane. It must also have a reactive portion, which is chemically available on the aqueous surface of the liposome. The reactive portion is selected so that it will be chemically suitable to form a stable chemical bond with the targeting agent or carbohydrate, which is added later. In some cases it is possible to attach the target agent to the connector molecule directly, but in most instances it is more suitable to use a third molecule to act as a chemical bridge, thus linking the connector molecule which is in the membrane with the target agent or carbohydrate which is extended, three dimensionally, off of the vesicle surface.
  • The compounds prepared by the methods of the invention may also find use as diagnostic reagents. For example, labeled compounds can be used to locate areas of inflammation or tumor metastasis in a patient suspected of having an inflammation. For this use, the compounds can be labeled with 125I, 14C, or tritium.
  • The active ingredient used in the pharmaceutical compositions of the present invention is glycopegylated Factor IX and its derivatives having the biological properties of participating in the blood coagulation cascade. The formulation of the present invention is useful as a parenteral formulation in treating coagulation disorders characterized by low or defective coagulation such as various forms of hemophilia. Preferably, the Factor IX composition of the present invention is administered parenterally (e.g. IV, IM, SC or IP). Effective dosages are expected to vary considerably depending on the condition being treated and the route of administration but are expected to be in the range of about 0.1 to 1000 μg/kg body weight of the active material. Preferable doses for treatment of coagulation disorders are about 50 to about 3000 μg/kg three times a week. More preferably, about 500 to about 2000 μg/kg three times a week. More preferrably, about 750 to about 1500 μg/kg three times a week, and more preferrably about 1000 μg/kg three times a week. Because the present invention provides a Factor IX with an enhanced in vivo residence time, the stated dosages are optionally lowered when a composition of the invention is administered.
  • The following examples are provided to illustrate the conjugates, and methods and of the present invention, but not to limit the claimed invention.
  • Preparative methods for species of use in preparing the compositions of the invention are generally set forth in various patent publications, e.g., US 20040137557; WO 04/083258; and WO 04/033651. The following examples are provided to illustrate the conjugates, and methods and of the present invention, but not to limit the claimed invention.
  • The following examples are provided to illustrate the conjugates, and methods and of the present invention, but not to limit the claimed invention.
  • EXAMPLES Example 1 Preparation of Cysteine-PEG2 (2)
  • Figure US20090081188A1-20090326-C00063
  • 1.1 Synthesis of (1)
  • Potassium hydroxide (84.2 mg, 1.5 mmol, as a powder) was added to a solution of L-cysteine (93.7 mg, 0.75 mmol) in anhydrous methanol (20 mL) under argon. The mixture was stirred at room temperature for 30 min, and then mPEG-O-tosylate of molecular mass 20 kilodalton (Ts; 1.0 g, 0.05 mmol) was added in several portions over 2 hours. The mixture was stirred at room temperature for 5 days, and concentrated by rotary evaporation. The residue was diluted with water (30 mL), and stirred at room temperature for 2 hours to destroy any excess 20 kilodalton mPEG-O-tosylate. The solution was then neutralized with acetic acid, the pH adjusted to pH 5.0 and loaded onto a reverse phase chromatography (C-18 silica) column. The column was eluted with a gradient of methanol/water (the product elutes at about 70% methanol), product elution monitored by evaporative light scattering, and the appropriate fractions collected and diluted with water (500 mL). This solution was chromatographed (ion exchange, XK 50 Q, BIG Beads, 300 mL, hydroxide form; gradient of water to water/acetic acid-0.75N) and the pH of the appropriate fractions lowered to 6.0 with acetic acid. This solution was then captured on a reversed phase column (C-18 silica) and eluted with a gradient of methanol/water as described above. The product fractions were pooled, concentrated, redissolved in water and freeze-dried to afford 453 mg (44%) of a white solid (1). Structural data for the compound were as follows: 1H-NMR (500 MHz; D2O) δ 2.83 (t, 2H, O—C—CH 2—S), 3.05 (q, 1H, S—CHH—CHN), 3.18 (q, 1H, (q, 1H, S—CHH—CHN), 3.38 (s, 3H, CH 3O), 3.7 (t, OCH 2CH 2O), 3.95 (q, 1H, CHN). The purity of the product was confirmed by SDS PAGE.
  • 1.2 Synthesis of (2)
  • Triethylamine (˜0.5 mL) was added dropwise to a solution of 1 (440 mg, 22 μmol) dissolved in anhydrous CH2Cl2 (30 mL) until the solution was basic. A solution of 20 kilodalton mPEG-O-p-nitrophenyl carbonate (660 mg, 33 μmol) and N-hydroxysuccinimide (3.6 mg, 30.8 μmol) in CH2Cl2 (20 mL) was added in several portions over 1 h at room temperature. The reaction mixture was stirred at room temperature for 24 h. The solvent was then removed by rotary evaporation, the residue was dissolved in water (100 mL), and the pH adjusted to 9.5 with 1.0 N NaOH. The basic solution was stirred at room temperature for 2 h and was then neutralized with acetic acid to a pH 7.0. The solution was then loaded onto a reversed phase chromatography (C-18 silica) column. The column was eluted with a gradient of methanol/water (the product elutes at about 70% methanol), product elution monitored by evaporative light scattering, and the appropriate fractions collected and diluted with water (500 mL). This solution was chromatographed (ion exchange, XK 50 Q, BIG Beads, 300 mL, hydroxide form; gradient of water to water/acetic acid-0.75N) and the pH of the appropriate fractions lowered to 6.0 with acetic acid. This solution was then captured on a reversed phase column (C-18 silica) and eluted with a gradient of methanol/water as described above. The product fractions were pooled, concentrated, redissolved in water and freeze-dried to afford 575 mg (70%) of a white solid (2). Structural data for the compound were as follows: 1H-NMR (500 MHz; D2O) δ 2.83 (t, 2H, O—C—CH 2—S), 2.95 (t, 2H, O—C—CH 2—S), 3.12 (q, 1H, S—CHH—CHN), 3.39 (s, 3H CH 3O), 3.71 (t, OCH 2CH 2O). The purity of the product was confirmed by SDS PAGE.
  • Example 2 GlycoPEGylation of Factor IX Produced in CHO Cells
  • This example sets forth the preparation of asialoFactor IX and its sialylation with CMP-sialic acid-PEG.
  • 2. 1 Desialylation of rFactor IX
  • A recombinant form of Coagulation Factor IX (rFactor IX) was made in CHO cells. 6000 IU of rFactor IX were dissolved in a total of 12 mL USP H2O. This solution was transferred to a Centricon Plus 20, PL-10 centrifugal filter with another 6 mL USP H2O. The solution was concentrated to 2 mL and then diluted with 15 mL 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 5 mM CaCl2, 0.05% NaN3 and then reconcentrated. The dilution/concentration was repeated 4 times to effectively change the buffer to a final volume of 3.0 mL. Of this solution, 2.9 mL (about 29 mg of rFactor IX) was transferred to a small plastic tube and to it was added 530 mU α2-3,6,8-Neuraminidase-agarose conjugate (Vibrio cholerae, Calbiochem, 450 μL). The reaction mixture was rotated gently for 26.5 hours at 32° C. The mixture was centrifuged 2 minutes at 10,000 rpm and the supernatant was collected. The agarose beads (containing neuraminidase) were washed 6 times with 0.5 mL 50 mM Tris-HCl pH 7.12, 1 M NaCl, 0.05% NaN3. The pooled washings and supernatants were centrifuged again for 2 minutes at 10,000 rpm to remove any residual agarose resin. The pooled, desialylated protein solution was diluted to 19 mL with the same buffer and concentrated down to ˜2 mL in a Centricon Plus 20 PL-10 centrifugal filter. The solution was twice diluted with 15 mL of 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 0.05% NaN3 and reconcentrated to 2 mL. The final desialyated rFactor IX solution was diluted to 3 mL final volume (˜10 mg/mL) with the Tris Buffer. Native and desialylated rFactor IX samples were analyzed by IEF-Electrophoresis. Isoelectric Focusing Gels (pH 3-7) were run using 1.5 μL (15 μg) samples first diluted with 10 μL Tris buffer and mixed with 12 μL sample loading buffer. Gels were loaded, run and fixed using standard procedures. Gels were stained with Colloidal Blue Stain (FIG. 154), showing a band for desialylated Factor IX.
  • Example 3 Preparation of PEG (1 kDa and 10 kDa)-SA-Factor IX
  • Desialylated rFactor-IX (29 mg, 3 mL) was divided into two 1.5 mL (14.5 mg) samples in two 15 mL centrifuge tubes. Each solution was diluted with 12.67 mL 50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 0.05% NaN3 and either CMP-SA-PEG-1k or 10k (7.25 μmol) was added. The tubes were inverted gently to mix and 2.9 U ST3Gal3 (326 μL) was added (total volume 14.5 mL). The tubes were inverted again and rotated gently for 65 hours at 32° C. The reactions were stopped by freezing at −20° C. 10 μg samples of the reactions were analyzed by SDS-PAGE. The PEGylated proteins were purified on a Toso Haas Biosep G3000SW (21.5×30 cm, 13 um) HPLC column with Dulbecco's Phosphate Buffered Saline, pH 7.1 (Gibco), 6 mL/min. The reaction and purification were monitored using SDS Page and IEF gels. Novex Tris-Glycine 4-20% 1 mm gels were loaded with 10 μL (10 μg) of samples after dilution with 2 μL of 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% NaN3 buffer and mixing with 12 μL sample loading buffer and 1 μL 0.5 M DTT and heated for 6 minutes at 85° C. Gels were stained with Colloidal Blue Stain (FIG. 155) showing a band for PEG (1 kDa and 10 kDa)-SA-Factor IX.
  • Example 4 Direct Sialyl-GlycoPEGylation of Factor IX
  • This example sets forth the preparation of sialyl-PEGylation of Factor IX without prior sialidase treatment.
  • 4.1 Sialyl-PEGylation of Factor-IX with CMP-SA-PEG-(10 KDa)
  • Factor IX (1100 IU), which was expressed in CHO cells and was fully sialylated, was dissolved in 5 mL of 20 mM histidine, 520 mM glycine, 2% sucrose, 0.05% NaN3 and 0.01% polysorbate 80, pH 5.0. The CMP-SA-PEG-(10 kDa) (27 mg, 2.5 μmol) was then dissolved in the solution and 1 U of ST3Gal3 was added. The reaction was complete after gently mixing for 28 hours at 32° C. The reaction was analyzed by SDS-PAGE as described by Invitrogen. The product protein was purified on an Amersham Superdex 200 (10×300 mm, 13 μm) HPLC column with phosphate buffered saline, pH 7.0 (PBS), 1 mL/min. Rt=9.5 min.
  • Example 5 Sialyl-PEGylation of Factor-IX with CMP-SA-PEG-(20 kDa)
  • Factor IX (1100 IU), which was expressed in CHO cells and was fully sialylated, was dissolved in 5 mL of 20 mM histidine, 520 mM glycine, 2% sucrose, 0.05% NaN3 and 0.01% polysorbate 80, pH 5.0. The CMP-SA-PEG-(20 kDa) (50 mg, 2.3 μmol) was then dissolved in the solution and CST-II was added. The reaction mixture was complete after gently mixing for 42 hours at 32° C. The reaction was analyzed by SDS-PAGE as described by Invitrogen.
  • The product protein was purified on an Amersham Superdex 200 (10×300 mm, 13 μm) HPLC column with phosphate buffered saline, pH 7.0 (Fisher), 1 mL/min. Rt=8.6 min.
  • Example 6 Sialic Acid Capping of GlycoPEGylated Factor IX
  • This examples sets forth the procedure for sialic acid capping of sialyl-glycoPEGylated peptides. Here, Factor-IX is the exemplary peptide.
  • 6.1 Sialic Acid Capping of N-Linked and O-Linked Glycans of Factor-IX-SA-PEG (10 kDa)
  • Purified r-Factor-IX-PEG (10 kDa) (2.4 mg) was concentrated in a Centricon® Plus 20 PL-10 (Millipore Corp., Bedford, Mass.) centrifugal filter and the buffer was changed to 50 mM Tris-HCl pH 7.2, 0.15 M NaCl, 0.05% NaN3 to a final volume of 1.85 mL. The protein solution was diluted with 372 μL of the same Tris buffer and 7.4 mg CMP-SA (12 μmol) was added as a solid. The solution was inverted gently to mix and 0.1 U ST3Gall and 0.1 U ST3Gal3 were added. The reaction mixture was rotated gently for 42 hours at 32° C.
  • A 10 μg sample of the reaction was analyzed by SDS-PAGE. Novex Tris-Glycine 4-12% 1 mm gels were performed and stained using Colloidal Blue as described by Invitrogen. Briefly, samples, 10 μL (10 μg), were mixed with 12 μL sample loading buffer and 1 μL 0.5 M DTT and heated for 6 minutes at 85° C. (FIG. 156, lane 4).
  • Example 7 Glycopegylated Factor IX Pharmacokinetic Study
  • Four glycoPEGylated FIX variants (PEG-9 variants) were tested in a PK study in normal mice. The activity of the four compounds had previously been established in vitro by clot, endogenous thrombin potential (ETP), and thromboelastograph (TEG) assays. The activity results are summarized in Table I.
  • ETP TEG
    Clot activity (relative (relative
    Compound (% of plasma) specific activity specific activity
    BeneFIX 45% 1.0 1.0
    PEG-9-2K (LS) 27% 0.3 0.2
    PEG-9-2K (HS) 20% 0.2 0.1
    PEG-9-10K 11% 0.6 0.3
    PEG-9-30K 14% 0.9 0.4
  • To assess the prolongation of activity of the four PEG-9 compounds in circulation, a PK study was designed and performed. Non-hemophilic mice were used, 2 animal per time point, 3 samples per animal. Sampling time points were 0, 0.08, 0.17, 0.33, 1, 3, 5, 8, 16, 24, 30, 48, 64, 72, and 96 h post compound administration. Blood samples were centrifuged and stored in two aliquots; one for clot analysis and one for ELISA. Due to material restrictions, the PEG-9 compounds were dosed in different amounts: BeneFIX 250 U/kg; 2K(low substitution: “LS” (1-2 PEG substitutions per peptide molecule) 200 U/kg; 2K(high substitution: “HS” (3-4 PEG substitutions per peptide molecule) 200 U/kg; 10K 100 U/kg; 30K 100 U/kg. All doses were based on measured clotting assay units.
  • The results are outlined in FIG. 6 and Table II.
  • TABLE II
    Dose Cmax AUC CL
    Compound (U/kg) (U/mL) (h-U/mL (mL/h/kg)
    BeneFIX 250 0.745 1.34 187
    PEG-9-2K (LS) 200 0.953 4.69 42.7
    PEG-9-2K (HS) 200 0.960 9.05 22.1
    PEG-9-10K 100 0.350 2.80 35.7
    PEG-9-30K 100 1.40 8.83 11.3
  • The results demonstrate a trend towards prolongation for all the PEG-9 compounds. The values of AUC and Cmax were not compared directly. However, clearance (CL) was compared and CL is lower for the PEG-9 compounds compared to BeneFIX, indicating a longer residence time in the mice. The time for the last detectable clot activity is increased for the PEG-9 compounds compared to BeneFIX, even though BeneFIX was administered at the highest dose.
  • Example 8 Preparation of Ls and Hs Glycopegylated Factor IX
  • GlycoPEGylated Factor IX with a low degree of substitution with PEG were prepared from native Factor IX by an exchange reaction catalyzed by ST3Gal-III. The reactions were performed in a buffer of 10 mM histidine, 260 mM glycine, 1% sucrose and 0.02% Tween 80, pH 7.2. For PEGylation with CMPSA-PEG (2 kD and 10 kD), Factor IX (0.5 mg/mL) was incubated with ST3GalIII (50 mU/mL) and CMP-SA-PEG (0.5 mM) for 16 h at 32° C. For PEGylation with CMP-SA-PEG 30 kD, the concentration of Factor IX was increased to 1.0 mg/mL, and the concentration of CMP-SA-PEG was decreased to 0.17 mM. Under these conditions, more than 90% of the Factor IX molecules were substituted with at least one PEG moiety.
  • GlycoPEGylated Factor IX with a high degree of substitution with PEG were prepared by enzymatic desialylation of native Factor IX. The Factor IX peptide was buffer exchanged into 50 mM mES, pH 6.0, using a PD10 column, adjusted to a concentration of 0.66 mg/mL and treated with AUS sialidase (5 mU/mL) for 16 h at 32° C. Desialylation was verified by SDS-PAGE, HPLC and MALDI glycan analysis. Asialo Factor IX was purified on Q Sepharose FF to remove the sialidase. The CaCl2 fraction was concentrated using an Ultra15 concentrator and buffer exchanged into MES, pH 6.0 using a PD10 column.
  • 2 kD and 10 kD PEGylation of asialo-Factor IX (0.5 mg/mL) was carried out by incubation with ST3Gal-III (50 mU/mL) and CMP-SA-PEG (0.5 mM) at 32° C. for 16 h. For PEGylation with CMPSA-PEG-30 kD, the concentration of Factor IX was increased to 1.0 mg/mL and the concentration of CMP-SA-PEG was decreased to 0.17 mM. After 16 h of PEGylation, glycans with terminal galactose were capped with sialic acid by adding 1 mM CMP-SA and continuing the incubation for an additional 8 h at 32° C. Under these conditions, more than 90% of the Factor IX molecules were substituted with at least one PEG moiety. Factor IX produced by this method has a higher apparent molecular weight in SDS-PAGE.
  • Example 9 Preparation of O-Glycopegylated Factor IX
  • O-glycan chains were introduced de novo into native Factor IX (1 mg/mL) by incubation of the peptide with GalNAcT-II (25 mU/mL) and 1 mM UDP-GalNAc at 32° C. After 4 h of incubation, the PEGylation reaction was initiated by adding CMPSA-PEG (2 Kd or 10 Kd at 0.5 mM or 30 kDd at 0.17 mM) and ST6GalNAc-I (25 mU/mL) and incubating for an additional 20 h.
  • It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims (41)

1. A Factor IX peptide conjugate comprising a glycosyl linking group attached to an amino acid residue of said peptide, said glycosyl linking group comprising a modified sialyl residue having the formula:
Figure US20090081188A1-20090326-C00064
wherein
R2 is H, CH2OR7, COOR7 or OR7
wherein
R7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl;
R3 and R4 are members independently selected from H, substituted or unsubstituted alkyl, OR8, NHC(O)R9
wherein
R8 and R9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl or sialic acid;
La is a linker selected from a bond, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl
R16 and R17 are independently selected polymeric arms;
X2 and X4 are independently selected linkage fragments joining polymeric moieties R16 and R17 to C; and
X5 is a non-reactive group.
2. The peptide conjugate according to claim 1, wherein the moiety:
Figure US20090081188A1-20090326-C00065
has a formula that is a member selected from:
Figure US20090081188A1-20090326-C00066
wherein
Q is selected from H and substituted or unsubstituted C1-C6 alkyl;
e and f are integers independently selected from 1 to 2500; and
q is an integer from 0 to 20.
3. The peptide conjugate according to claim 2, wherein said moiety has a formula that is a member selected from:
Figure US20090081188A1-20090326-C00067
wherein
Q is selected from H and substituted or unsubstituted C1-C6 alkyl;
e, f and f′ are integers independently selected from 1 to 2500; and
q and q′ are integers independently selected from 1 to 20.
4. The peptide conjugate according to claim 1, wherein said glycosyl linking group has a formula selected from:
Figure US20090081188A1-20090326-C00068
5. The peptide conjugate according to claim 4, wherein said glycosyl linking group has the formula:
Figure US20090081188A1-20090326-C00069
6. The peptide conjugate according to claim 5, wherein said glycosyl linking group attached to said amino acid residue has the formula:
Figure US20090081188A1-20090326-C00070
wherein
AA is said amino acid residue of said peptide.
7. The peptide conjugate according to claim 6, wherein said amino acid residue is a member selected from serine or threonine.
8. The peptide conjugate according to claim 1, wherein said peptide has the amino acid sequence of SEQ. ID. NO: 1.
9. The peptide according to claim 8, wherein said amino acid residue is a serine at position 61 of SEQ. ID. NO:1.
10. The peptide conjugate according to claim 1, wherein said peptide comprises at least one glycosyl linking group comprising a substructure having the formula:
Figure US20090081188A1-20090326-C00071
wherein
R15 is said modified sialyl residue; and
p is an integer from 1 to 10.
11. The peptide conjugate according to claim 10, wherein said at least one glycosyl linking group attached to an amino acid of said peptide has a formula selected from:
Figure US20090081188A1-20090326-C00072
and combinations thereof
wherein
AA is said amino acid residue of said peptide;
t is an integer equal to 0 or 1;
p is an integer from 1 to 10; and
R15′ is a member selected from H, OH, sialic acid, said modified sialyl residue and Sia-Siap
wherein
Siap is said modified sialyl residue,
wherein at least one R15′ is selected from said modified sialyl residue and Sia-Siap.
12. The peptide conjugate according to claim 11, wherein said amino acid residue is an asparagine residue.
13. The peptide conjugate according to claim 12, wherein said peptide has the amino acid sequence of SEQ ID NO: 1.
14. The peptide conjugate according to claim 13, wherein said glycosyl residue is attached to a member selected from Asn 157, Asn 167 and combinations thereof.
15. A method of preparing a peptide conjugate according to claim 1, said method comprising:
(a) contacting a substrate Factor IX peptide comprising a glycosyl moiety selected from:
Figure US20090081188A1-20090326-C00073
with a PEG-sialic acid donor having the formula:
Figure US20090081188A1-20090326-C00074
wherein
c is 0 or 1; and
(b) contacting said Factor IX and said PEG-sialic acid donor with an enzyme that transfers PEG-sialic acid from said donor onto said glycosyl moiety, under conditions appropriate for said transfer.
16. The method of claim 15, further comprising, prior to step (a):
(b) expressing said substrate Factor IX peptide in a suitable host.
17. The method of claim 16, wherein said host is selected from an insect cell and a mammalian cell.
18. The method of claim 17, wherein said insect cell is a Spodoptera frugiperda cell line.
19. A method of stimulating blood coagulation in a mammal, said method comprising administering to said mammal a peptide conjugate according to claim 1 in an amount sufficient to stimulate said blood coagulation.
20. A method of treating hemophilia in a subject, said method comprising administering to said subject a peptide conjugate according to claim 1 in an amount effective to treat said hemophilia.
21. A pharmaceutical formulation comprising the Factor IX peptide conjugate according to claim 1, and a pharmaceutically acceptable carrier.
22. A Factor IX peptide conjugate comprising a glycosyl linking group attached to an amino acid residue of said peptide, said glycosyl linking group comprising a modified sialyl residue having the formula:
Figure US20090081188A1-20090326-C00075
wherein
R2 is H, CH2OR7, COOR7, COO or OR7
wherein
R7 represents H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl;
R3 and R4 are members independently selected from H, substituted or unsubstituted alkyl, OR8, NHC(O)R9
wherein
R8 and R9 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl or sialic acid;
s is an integer from 1 to 20;
f is an integer from 1 to 2500; and
Q is a member selected from H and substituted or unsubstituted C1-C6 alkyl.
23. The peptide conjugate according to claim 22, wherein said modified sialyl residue has the formula:
Figure US20090081188A1-20090326-C00076
24. The peptide conjugate according to claim 23, wherein Q is selected from H and CH3.
25. The peptide conjugate according to claim 22, wherein said peptide comprises at least one glycosyl linking group comprising a substructure having the formula:
Figure US20090081188A1-20090326-C00077
wherein
R15 is said modified sialyl residue; and
p is an integer from 1 to 10.
26. The peptide conjugate according to claim 25, wherein said at least one glycosyl linking group attached to an amino acid of said peptide has a formula selected from:
Figure US20090081188A1-20090326-C00078
and combinations thereof
wherein
AA is said amino acid residue of said peptide;
t is an integer equal to 0 or 1;
p is an integer from 1 to 10; and
R15′ is a member selected from H, OH, sialic acid, said modified sialyl residue and Sia-Siap
wherein
Siap is said modified sialyl residue,
wherein at least one R15′ is selected from said modified sialyl residue and Sia-Siap.
27. The peptide conjugate according to claim 22, wherein said amino acid residue is asparagine.
28. The peptide conjugate according to claim 27, wherein said peptide has the amino acid sequence of SEQ ID NO: 1.
29. The peptide conjugate according to claim 28, wherein said glycosyl residue is attached to a member selected from Asn 157, Asn 167 and combinations thereof.
30. The peptide conjugate according to claim 22, wherein said glycosyl linking group comprises the formula:
Figure US20090081188A1-20090326-C00079
in which
b is 0 or 1.
31. The peptide conjugate according to claim 30, wherein s is 1; and f is an integer from about 200 to about 300.
32. The peptide conjugate according to claim 22, wherein said amino acid residue is a member selected from serine or threonine.
33. The peptide conjugate according to claim 32, wherein said peptide has the amino acid sequence of SEQ. ID. NO:1.
34. The peptide conjugate according to claim 33, wherein said amino acid residue is a serine at position 61 of SEQ. ID. NO:1.
35. A method of preparing the peptide conjugate according to claim 22, said method comprising:
(a) contacting a substrate Factor IX peptide comprising a glycosyl moiety selected from:
Figure US20090081188A1-20090326-C00080
with a PEG-sialic acid donor having the formula:
Figure US20090081188A1-20090326-C00081
wherein
c is 0 or 1;
r is 0 or 1; and
(b) contacting Factor IX and said PEG-sialic acid donor with an enzyme that transfers PEG-sialic acid from said donor onto said glycosyl moiety, under conditions appropriate for said transfer.
36. The method of claim 35, further comprising, prior to step (a):
(b) expressing said substrate Factor IX peptide in a suitable host.
37. The method of claim 36, wherein said host an insect cell.
38. The method of claim 37, wherein said insect cell is a Spodoptera frugiperda cell line.
39. A method of stimulating blood coagulation in a mammal, said method comprising administering to said mammal a peptide conjugate according to claim 22 in an amount sufficient to stimulate said blood coagulation.
40. A method of treating hemophilia in a subject, said method comprising administering to said subject a peptide conjugate according to claim 22 in an amount effective to treat said hemophilia.
41. A pharmaceutical formulation comprising the Factor IX peptide conjugate according to claim 22, and a pharmaceutically acceptable carrier.
US12/184,956 2003-12-03 2008-08-01 Glycopegylated factor ix Abandoned US20090081188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/184,956 US20090081188A1 (en) 2003-12-03 2008-08-01 Glycopegylated factor ix
US12/851,651 US8632770B2 (en) 2003-12-03 2010-08-06 Glycopegylated factor IX

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US52708903P 2003-12-03 2003-12-03
US53938704P 2004-01-26 2004-01-26
US59274404P 2004-07-29 2004-07-29
US61451804P 2004-09-29 2004-09-29
US62338704P 2004-10-29 2004-10-29
USPCT/US2004/041070 2004-12-03
PCT/US2004/041070 WO2005055950A2 (en) 2003-12-03 2004-12-03 Glycopegylated factor ix
US68472905P 2005-05-25 2005-05-25
US11/166,028 US20060040856A1 (en) 2003-12-03 2005-06-23 Glycopegylated factor IX
US12/184,956 US20090081188A1 (en) 2003-12-03 2008-08-01 Glycopegylated factor ix

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/166,028 Continuation US20060040856A1 (en) 2003-12-03 2005-06-23 Glycopegylated factor IX

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/851,651 Continuation US8632770B2 (en) 2003-12-03 2010-08-06 Glycopegylated factor IX

Publications (1)

Publication Number Publication Date
US20090081188A1 true US20090081188A1 (en) 2009-03-26

Family

ID=35910388

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/166,028 Abandoned US20060040856A1 (en) 2003-12-03 2005-06-23 Glycopegylated factor IX
US12/184,956 Abandoned US20090081188A1 (en) 2003-12-03 2008-08-01 Glycopegylated factor ix
US12/851,651 Active 2025-08-28 US8632770B2 (en) 2003-12-03 2010-08-06 Glycopegylated factor IX

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/166,028 Abandoned US20060040856A1 (en) 2003-12-03 2005-06-23 Glycopegylated factor IX

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/851,651 Active 2025-08-28 US8632770B2 (en) 2003-12-03 2010-08-06 Glycopegylated factor IX

Country Status (1)

Country Link
US (3) US20060040856A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US20080050772A1 (en) * 2001-10-10 2008-02-28 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US20080176790A1 (en) * 2004-10-29 2008-07-24 Defrees Shawn Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf)
US20080187955A1 (en) * 2001-10-10 2008-08-07 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US20080253992A1 (en) * 2006-10-03 2008-10-16 Neose Technologies, Inc. Methods for the purification of polypeptide conjugates
US20080280818A1 (en) * 2006-07-21 2008-11-13 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US20080300173A1 (en) * 2004-07-13 2008-12-04 Defrees Shawn Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1]
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US20090143292A1 (en) * 2007-08-29 2009-06-04 Neose Technologies, Inc. Liquid Formulation of G-CSF Conjugate
US20090169509A1 (en) * 2004-01-08 2009-07-02 Defrees Shawn O-linked glycosylation of peptides
US20090203579A1 (en) * 2005-01-10 2009-08-13 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US20100015684A1 (en) * 2001-10-10 2010-01-21 Neose Technologies, Inc. Factor vii: remodeling and glycoconjugation of factor vii
US20100041872A1 (en) * 2006-10-04 2010-02-18 Defrees Shawn Glycerol linked pegylated sugars and glycopeptides
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US20100174059A1 (en) * 2007-06-12 2010-07-08 Novo Nordisk A/S Process for the production of nucleotide sugars
US20100261872A1 (en) * 2001-10-10 2010-10-14 Neose Technologies, Inc. Factor VIII: remodeling and glycoconjugation of factor VIII
US20100286067A1 (en) * 2008-01-08 2010-11-11 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases
US20100330060A1 (en) * 2003-12-03 2010-12-30 Novo Nordisk A/S Glycopegylated factor ix
US20100330645A1 (en) * 2005-08-19 2010-12-30 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US20100331489A1 (en) * 2003-03-14 2010-12-30 Biogenerix Ag Branched water-soluble polymers and their conjugates
WO2011017055A2 (en) 2009-07-27 2011-02-10 Baxter International Inc. Blood coagulation protein conjugates
US20110177029A1 (en) * 2007-06-04 2011-07-21 Novo Nordisk A/S O-linked glycosylation using n-acetylglucosaminyl transferases
WO2012016131A1 (en) 2010-07-30 2012-02-02 Baxter International Inc. Nucleophilic catalysts for oxime linkage
EP2461821A1 (en) * 2009-07-31 2012-06-13 Bayer HealthCare LLC Modified factor ix polypeptides and uses thereof
WO2012087838A1 (en) 2010-12-22 2012-06-28 Baxter International Inc. Materials and methods for conjugating a water soluble fatty acid derivative to a protein
WO2012166622A1 (en) 2011-05-27 2012-12-06 Baxter International Inc. Therapeutic proteins with increased half-life and methods of preparing same
US8404809B2 (en) 2005-05-25 2013-03-26 Novo Nordisk A/S Glycopegylated factor IX
WO2013173543A1 (en) 2012-05-16 2013-11-21 Baxter International Inc. Nucleophilic catalysts for oxime linkage
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
US8853161B2 (en) 2003-04-09 2014-10-07 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US8916360B2 (en) 2003-11-24 2014-12-23 Novo Nordisk A/S Glycopegylated erythropoietin
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
EP3093029A1 (en) 2009-07-27 2016-11-16 Baxalta GmbH Blood coagulation protein conjugates
WO2017096383A1 (en) 2015-12-03 2017-06-08 Baxalta Incorporated Factor viii with extended half-life and reduced ligand-binding properties

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056760A2 (en) * 2003-12-03 2005-06-23 Neose Technologies, Inc. Glycopegylated follicle stimulating hormone
EP1893632B1 (en) * 2005-06-17 2015-08-12 Novo Nordisk Health Care AG Selective reduction and derivatization of engineered factor vii proteins comprising at least one non-native cysteine
US7855279B2 (en) 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof
EP1951740B1 (en) * 2005-11-10 2014-07-16 James Paulson High affinity siglec ligands
MX2008014685A (en) * 2006-05-24 2008-11-27 Novo Nordisk Healthcare Ag Factor ix analogues having prolonged in vivo half life.
US20090285780A1 (en) * 2006-05-24 2009-11-19 Chyi Lee Peg linker compounds and biologically active conjugates thereof
EP2084274A2 (en) * 2006-06-19 2009-08-05 Nautilus Technology LLC Modified coagulation factor ix polypeptides and use thereof for treatment
WO2008119815A1 (en) * 2007-04-02 2008-10-09 Novo Nordisk A/S Subcutaneous administration of coagulation factor ix
AU2008245524A1 (en) * 2007-04-26 2008-11-06 Cnj Holdings, Inc. Recombinant vitamin K dependent proteins with high sialic acid content and methods of preparing same
RU2010131189A (en) * 2007-12-27 2012-02-10 Бакстер Интернэшнл Инк. (Us) CHEMICALLY MODIFIED FACTOR IX
SG189790A1 (en) * 2008-04-16 2013-05-31 Bayer Healthcare Llc Modified factor ix polypeptides and uses thereof
UA101497C2 (en) * 2008-04-24 2013-04-10 Селтик Фарма Пег Лтд. Conjugates of factor ix with increased half-life
EP2149603A1 (en) 2008-07-28 2010-02-03 DRK-Blutspendedienst Baden-Württemberg-Hessen gGmbH Factor IX variants with clotting activity in absence of their cofactor and their use for treating bleeding disorders
FI3581650T3 (en) 2008-09-15 2023-03-23 Uniqure Biopharma B V Factor ix polypeptide mutant, its uses and a method for its production
LT2393828T (en) 2009-02-03 2017-01-25 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
EP2470559B1 (en) * 2009-08-24 2017-03-22 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
CN102639553A (en) 2009-11-24 2012-08-15 诺沃—诺迪斯克保健股份有限公司 Method of purifying pegylated proteins
RS63870B1 (en) 2012-02-15 2023-01-31 Bioverativ Therapeutics Inc Factor viii compositions and methods of making and using same
WO2013123457A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
US20150259665A1 (en) 2012-10-15 2015-09-17 Novo Nordisk Health Care Ag Factor vii conjugates
TW201519900A (en) * 2013-04-28 2015-06-01 Bayer Healthcare Llc Compositions and methods for inducing immune tolerance to coagulation factor proteins
TWI667255B (en) 2013-08-14 2019-08-01 美商生物化學醫療公司 Factor viii-xten fusions and uses thereof
CN105637088A (en) 2013-10-15 2016-06-01 诺和诺德保健股份有限公司 COAGULATION FACTOR VII polypeptides
CN103713136B (en) * 2013-12-09 2016-02-24 宁波普瑞柏生物技术有限公司 Immunity five detects basic agent
UA126016C2 (en) 2015-08-03 2022-08-03 Біовератів Терапеутікс Інк. Factor ix fusion proteins and methods of making and using same
TW202015723A (en) 2018-05-18 2020-05-01 美商百歐維拉提夫治療公司 Methods of treating hemophilia a

Family Cites Families (293)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1479268A (en) * 1973-07-05 1977-07-13 Beecham Group Ltd Pharmaceutical compositions
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
CH596313A5 (en) * 1975-05-30 1978-03-15 Battelle Memorial Institute
US4385260A (en) * 1975-09-09 1983-05-24 Beckman Instruments, Inc. Bargraph display
US4414147A (en) * 1981-04-17 1983-11-08 Massachusetts Institute Of Technology Methods of decreasing the hydrophobicity of fibroblast and other interferons
JPS57206622A (en) * 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4438253A (en) * 1982-11-12 1984-03-20 American Cyanamid Company Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4565653A (en) * 1984-03-30 1986-01-21 Pfizer Inc. Acyltripeptide immunostimulants
US4879236A (en) * 1984-05-16 1989-11-07 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
US5206344A (en) * 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
JPS6238172A (en) * 1985-08-12 1987-02-19 株式会社 高研 Production of anti-thrombotic medical material
IT1213029B (en) * 1986-01-30 1989-12-07 Bracco Ind Chimica Spa PARAMAGNETIC METAL ION CHELATES.
US4925796A (en) * 1986-03-07 1990-05-15 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
DK323587D0 (en) 1987-06-25 1987-06-25 Novo Industri As PROTEIN
IL82834A (en) * 1987-06-09 1990-11-05 Yissum Res Dev Co Biodegradable polymeric materials based on polyether glycols,processes for the preparation thereof and surgical artiicles made therefrom
US4904584A (en) * 1987-12-23 1990-02-27 Genetics Institute, Inc. Site-specific homogeneous modification of polypeptides
US5153265A (en) * 1988-01-20 1992-10-06 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US4847325A (en) * 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
GB8810808D0 (en) * 1988-05-06 1988-06-08 Wellcome Found Vectors
US5169933A (en) * 1988-08-15 1992-12-08 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
US5218092A (en) 1988-09-29 1993-06-08 Kyowa Hakko Kogyo Co., Ltd. Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains
US5104651A (en) * 1988-12-16 1992-04-14 Amgen Inc. Stabilized hydrophobic protein formulations of g-csf
US5047335A (en) * 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US6166183A (en) 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
ATE135370T1 (en) * 1988-12-22 1996-03-15 Kirin Amgen Inc CHEMICALLY MODIFIED GRANULOCYTE COLONY EXCITING FACTOR
US5194376A (en) * 1989-02-28 1993-03-16 University Of Ottawa Baculovirus expression system capable of producing foreign gene proteins at high levels
US5122614A (en) * 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5324844A (en) * 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
ES2247656T3 (en) 1989-04-19 2006-03-01 Enzon, Inc. A PROCESS TO FORM A MODIFIED POLYPEPTIDE THAT INCLUDES A POLYPEPTIDE AND A POLYCHYLENE OXIDE.
US5166322A (en) * 1989-04-21 1992-11-24 Genetics Institute Cysteine added variants of interleukin-3 and chemical modifications thereof
US5342940A (en) * 1989-05-27 1994-08-30 Sumitomo Pharmaceuticals Company, Limited Polyethylene glycol derivatives, process for preparing the same
US5182107A (en) * 1989-09-07 1993-01-26 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5154924A (en) * 1989-09-07 1992-10-13 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5527527A (en) * 1989-09-07 1996-06-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5672683A (en) * 1989-09-07 1997-09-30 Alkermes, Inc. Transferrin neuropharmaceutical agent fusion protein
US5977307A (en) * 1989-09-07 1999-11-02 Alkermes, Inc. Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins
US5032519A (en) * 1989-10-24 1991-07-16 The Regents Of The Univ. Of California Method for producing secretable glycosyltransferases and other Golgi processing enzymes
US5580560A (en) * 1989-11-13 1996-12-03 Novo Nordisk A/S Modified factor VII/VIIa
US5312808A (en) 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
IL96477A0 (en) * 1989-12-01 1991-08-16 Amgen Inc Megakaryocyte production
DE69131292T2 (en) 1990-01-29 1999-09-30 Zymogenetics, Inc. ANTICOAGULATING PROTEINS
US5595900A (en) 1990-02-14 1997-01-21 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
US5324663A (en) * 1990-02-14 1994-06-28 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
DE4009630C2 (en) * 1990-03-26 1995-09-28 Reinhard Prof Dr Dr Brossmer CMP-activated fluorescent sialic acids and processes for their preparation
US5583042A (en) 1990-04-16 1996-12-10 Neose Pharmaceuticals, Inc. Apparatus for the synthesis of saccharide compositions
GB9107846D0 (en) 1990-04-30 1991-05-29 Ici Plc Polypeptides
US5951972A (en) * 1990-05-04 1999-09-14 American Cyanamid Company Stabilization of somatotropins and other proteins by modification of cysteine residues
US5399345A (en) * 1990-05-08 1995-03-21 Boehringer Mannheim, Gmbh Muteins of the granulocyte colony stimulating factor
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
SK386392A3 (en) 1990-07-10 1994-08-10 Boehringer Ingelheim Int Interferon alpha
US5529914A (en) * 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5492821A (en) * 1990-11-14 1996-02-20 Cargill, Inc. Stabilized polyacrylic saccharide protein conjugates
US5861374A (en) * 1991-02-28 1999-01-19 Novo Nordisk A/S Modified Factor VII
US5997864A (en) * 1995-06-07 1999-12-07 Novo Nordisk A/S Modified factor VII
DE69231467T2 (en) 1991-05-10 2001-01-25 Genentech, Inc. SELECTION OF AGONISTS AND ANTAGONISTS OF LIGANDS
CA2110797C (en) * 1991-06-10 2001-02-20 Andre P. Venot Modified sialyl lewis x compounds
US5374655A (en) * 1991-06-10 1994-12-20 Alberta Research Council Methods for the synthesis of monofucosylated oligosaccharides terminating in di-N-acetyllactosaminyl structures
US5352670A (en) * 1991-06-10 1994-10-04 Alberta Research Council Methods for the enzymatic synthesis of alpha-sialylated oligosaccharide glycosides
KR950014915B1 (en) * 1991-06-19 1995-12-18 주식회사녹십자 Asialoglycoprotein-conjugated compounds
US5281698A (en) * 1991-07-23 1994-01-25 Cetus Oncology Corporation Preparation of an activated polymer ester for protein conjugation
US6319695B1 (en) 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
IT1260468B (en) 1992-01-29 1996-04-09 METHOD FOR MAINTAINING THE ACTIVITY OF PROTEOLYTIC ENZYMES MODIFIED WITH POLYETHYLENGLYCOL
US5962294A (en) * 1992-03-09 1999-10-05 The Regents Of The University Of California Compositions and methods for the identification and synthesis of sialyltransferases
US5858751A (en) * 1992-03-09 1999-01-12 The Regents Of The University Of California Compositions and methods for producing sialyltransferases
US6037452A (en) 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
US5614184A (en) * 1992-07-28 1997-03-25 New England Deaconess Hospital Recombinant human erythropoietin mutants and therapeutic methods employing them
JPH08503125A (en) 1992-08-07 1996-04-09 プロジェニクス・ファーマスーティカルス・インコーポレーテッド CD4-gamma2 and CD4-IgG2 immunoconjugates complexed with non-peptidyl components and uses thereof
WO1994004193A1 (en) 1992-08-21 1994-03-03 Enzon, Inc. Novel attachment of polyalkylene oxides to bio-effecting substances
US5349001A (en) 1993-01-19 1994-09-20 Enzon, Inc. Cyclic imide thione activated polyalkylene oxides
US5321095A (en) 1993-02-02 1994-06-14 Enzon, Inc. Azlactone activated polyalkylene oxides
US5202413A (en) * 1993-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Alternating (ABA)N polylactide block copolymers
SG49117A1 (en) 1993-03-29 1998-05-18 Kyowa Hakko Kogyo Kk Alfa -1, 3-fucosyltransferase
US5374541A (en) * 1993-05-04 1994-12-20 The Scripps Research Institute Combined use of β-galactosidase and sialyltransferase coupled with in situ regeneration of CMP-sialic acid for one pot synthesis of oligosaccharides
WO1994026906A2 (en) 1993-05-14 1994-11-24 The Upjohn Company CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE
WO1994028024A1 (en) 1993-06-01 1994-12-08 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
US5621039A (en) * 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
DE4325317C2 (en) 1993-07-29 1998-05-20 Univ Dresden Tech Process for the radioactive labeling of immunoglobulins
JPH0770195A (en) * 1993-08-23 1995-03-14 Yutaka Mizushima Sugar-modified interferon
US5874075A (en) * 1993-10-06 1999-02-23 Amgen Inc. Stable protein: phospholipid compositions and methods
US5919455A (en) 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5643575A (en) * 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5446090A (en) * 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
US5443953A (en) * 1993-12-08 1995-08-22 Immunomedics, Inc. Preparation and use of immunoconjugates
US5369017A (en) * 1994-02-04 1994-11-29 The Scripps Research Institute Process for solid phase glycopeptide synthesis
US5837458A (en) * 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5605793A (en) * 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5492841A (en) * 1994-02-18 1996-02-20 E. I. Du Pont De Nemours And Company Quaternary ammonium immunogenic conjugates and immunoassay reagents
US5432059A (en) * 1994-04-01 1995-07-11 Specialty Laboratories, Inc. Assay for glycosylation deficiency disorders
US5646113A (en) * 1994-04-07 1997-07-08 Genentech, Inc. Treatment of partial growth hormone insensitivity syndrome
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5545553A (en) 1994-09-26 1996-08-13 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US5824784A (en) 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
US5834251A (en) * 1994-12-30 1998-11-10 Alko Group Ltd. Methods of modifying carbohydrate moieties
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
IL116730A0 (en) 1995-01-13 1996-05-14 Amgen Inc Chemically modified interferon
US5922577A (en) * 1995-04-11 1999-07-13 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US6030815A (en) * 1995-04-11 2000-02-29 Neose Technologies, Inc. Enzymatic synthesis of oligosaccharides
US5728554A (en) * 1995-04-11 1998-03-17 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US5876980A (en) * 1995-04-11 1999-03-02 Cytel Corporation Enzymatic synthesis of oligosaccharides
CA2227326A1 (en) 1995-05-15 1996-11-21 Philip Dehazya Carbohydrate-mediated coupling of peptides to immunoglobulins
US6015555A (en) * 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5824864A (en) * 1995-05-25 1998-10-20 Pioneer Hi-Bred International, Inc. Maize gene and protein for insect control
US5858752A (en) 1995-06-07 1999-01-12 The General Hospital Corporation Fucosyltransferase genes and uses thereof
US6251864B1 (en) 1995-06-07 2001-06-26 Glaxo Group Limited Peptides and compounds that bind to a receptor
US6127153A (en) 1995-06-07 2000-10-03 Neose Technologies, Inc. Method of transferring at least two saccharide units with a polyglycosyltransferase, a polyglycosyltransferase and gene encoding a polyglycosyltransferase
US5672662A (en) * 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5770420A (en) * 1995-09-08 1998-06-23 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
AU718439B2 (en) 1995-09-21 2000-04-13 Genentech Inc. Human growth hormone variants
SE9503380D0 (en) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
US5716812A (en) * 1995-12-12 1998-02-10 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
WO1997032889A1 (en) 1996-03-08 1997-09-12 The Regents Of The University Of Michigan MURINE α(1,3)FUCOSYLTRANSFERASE Fuc-TVII, DNA ENCODING THE SAME, METHOD FOR PREPARING THE SAME, ANTIBODIES RECOGNIZING THE SAME, IMMUNOASSAYS FOR DETECTING THE SAME, PLASMIDS CONTAINING SUCH DNA, AND CELLS CONTAINING SUCH A PLASMID
EP0953354A4 (en) 1996-08-13 2002-10-23 Fujisawa Pharmaceutical Co Hematopoietic stem cell proliferating agents
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
JP2001502005A (en) 1996-10-10 2001-02-13 サイテル コーポレイション Purification of carbohydrates using ultrafiltration, reverse osmosis and nanofiltration
WO1998016240A1 (en) 1996-10-15 1998-04-23 The Liposome Company, Inc. Peptide-lipid conjugates, liposomes and liposomal drug delivery
US6117651A (en) 1996-11-08 2000-09-12 Neose Technologies, Inc. Expression vectors
JP2001507215A (en) 1997-01-16 2001-06-05 サイテル コーポレイション Practical in vitro sialylation of recombinant glycoproteins
US5945314A (en) * 1997-03-31 1999-08-31 Abbott Laboratories Process for synthesizing oligosaccharides
EP0979102A4 (en) 1997-04-30 2005-11-23 Enzon Inc Polyalkylene oxide-modified single chain polypeptides
US6183738B1 (en) 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
US6075134A (en) 1997-05-15 2000-06-13 The Regents Of The University Of California Glycoconjugates and methods
WO1998055630A2 (en) 1997-06-06 1998-12-10 The Governors Of The University Of Alberta Alpha-1,3-fucosyltransferase of helicobacter pylori
US20030027257A1 (en) 1997-08-21 2003-02-06 University Technologies International, Inc. Sequences for improving the efficiency of secretion of non-secreted protein from mammalian and insect cells
JP3863265B2 (en) 1997-10-16 2006-12-27 富士通株式会社 Optical receiver and clock extraction circuit
AU744303B2 (en) * 1997-12-01 2002-02-21 Neose Technologies, Inc. Enzymatic synthesis of gangliosides
EP0924298A1 (en) 1997-12-18 1999-06-23 Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) Protein expression in baculovirus vector expression systems
CA2316834C (en) 1998-01-07 2006-01-03 Shearwater Polymers, Inc. Degradable heterobifunctional poly(ethylene glycol) acrylates and gels and conjugates derived therefrom
DK1061954T3 (en) 1998-03-12 2004-10-18 Nektar Therapeutics Al Corp Polyethylene glycol derivatives with proximal reactive groups
CA2324616A1 (en) 1998-03-25 1999-09-30 Sloan-Kettering Institute For Cancer Research Trimeric antigenic o-linked glycopeptide conjugates, methods of preparation and uses thereof
ATE399567T1 (en) 1998-04-28 2008-07-15 Serono Lab PEG CONJUGATES OF LHRH ANALOGUE
US20030166525A1 (en) 1998-07-23 2003-09-04 Hoffmann James Arthur FSH Formulation
EP2599503B1 (en) 1998-10-16 2017-05-17 Biogen MA Inc. Polymer conjugates of interferon beta-1A and uses thereof
US7304150B1 (en) 1998-10-23 2007-12-04 Amgen Inc. Methods and compositions for the prevention and treatment of anemia
CN1325443A (en) 1998-10-30 2001-12-05 诺沃奇梅兹有限公司 Glycosylated proteins having reduced allergenicity
JP2002530071A (en) 1998-11-13 2002-09-17 クラウセン、ヘンリク UDP galactose: β-N-acetyl-glucosamine β1,3 galactosyltransferase, β3Gal-T5
DE19852729A1 (en) 1998-11-16 2000-05-18 Werner Reutter Recombinant glycoproteins, processes for their preparation, medicaments containing them and their use
CA2351022A1 (en) 1998-11-18 2000-05-25 Neose Technologies, Inc. Low cost manufacture of oligosaccharides
US6465220B1 (en) 1998-12-21 2002-10-15 Glycozym Aps Glycosylation using GalNac-T4 transferase
US6949372B2 (en) 1999-03-02 2005-09-27 The Johns Hopkins University Engineering intracellular sialylation pathways
CA2370469A1 (en) 1999-04-22 2000-11-02 Astrazeneca Ab Assay for detecting phospho-n-acetylmuramyl-pentapeptide translocase activity
JO2291B1 (en) 1999-07-02 2005-09-12 اف . هوفمان لاروش ايه جي Erythopintin derivatives
US6261805B1 (en) 1999-07-15 2001-07-17 Boyce Thompson Institute For Plant Research, Inc. Sialyiation of N-linked glycoproteins in the baculovirus expression vector system
AU6357900A (en) 1999-07-20 2001-02-05 Amgen, Inc. Hyaluronic acid-protein conjugates, pharmaceutical compositions and related methods
JP4451514B2 (en) 1999-08-24 2010-04-14 財団法人化学及血清療法研究所 Blood coagulation factor VII variant
US6537785B1 (en) 1999-09-14 2003-03-25 Genzyme Glycobiology Research Institute, Inc. Methods of treating lysosomal storage diseases
AUPQ296799A0 (en) 1999-09-20 1999-10-14 Unisearch Limited A cell-membrane impermeable trivalent organoarsenical derivative and use thereof
US6716626B1 (en) 1999-11-18 2004-04-06 Chiron Corporation Human FGF-21 nucleic acids
EP1234033B1 (en) 1999-12-02 2011-12-28 ZymoGenetics, Inc. Methods for targeting cells that express fibroblast growth factor receptor-3 or-2
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
EP1259563B2 (en) 1999-12-22 2016-08-10 Nektar Therapeutics Method for the preparation of 1-benzotriazolyl carbonate esters of water soluble polymers.
JP4593048B2 (en) 1999-12-24 2010-12-08 協和発酵キリン株式会社 Branched polyalkylene glycols
AU2352201A (en) 1999-12-30 2001-07-16 Maxygen Aps Improved lysosomal enzymes and lysosomal enzyme activators
US6646110B2 (en) 2000-01-10 2003-11-11 Maxygen Holdings Ltd. G-CSF polypeptides and conjugates
US6555660B2 (en) 2000-01-10 2003-04-29 Maxygen Holdings Ltd. G-CSF conjugates
AR027509A1 (en) 2000-01-10 2003-04-02 Maxygen Aps G-CSF CONJUGATES
AU783512B2 (en) 2000-02-11 2005-11-03 Bayer Healthcare Llc Factor VII or VIIa-like molecules
WO2001058493A1 (en) 2000-02-11 2001-08-16 Maxygen Aps Conjugates of follicle stimulating hormones
AU2001232337A1 (en) 2000-02-18 2001-08-27 Kanagawa Academy Of Science And Technology Pharmaceutical composition, reagent and method for intracerebral delivery of pharmaceutically active ingredient or labeling substance
ATE329925T1 (en) 2000-03-16 2006-07-15 Univ California CHEMOSELEVANT ATTACHMENT USING A PHOSPHINE
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
US6905683B2 (en) 2000-05-03 2005-06-14 Novo Nordisk Healthcare A/G Human coagulation factor VII variants
DE60143292D1 (en) 2000-05-03 2010-12-02 Novo Nordisk Healthcare Ag Variants of human coagulation factor VII
US7338932B2 (en) 2000-05-11 2008-03-04 Glycozym Aps Methods of modulating functions of polypeptide GalNAc-transferases and of screening test substances to find agents herefor, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments
AU2001263149A1 (en) 2000-05-12 2001-11-26 Neose Technologies, Inc. In vitro fucosylation recombinant glycopeptides
DK1311285T4 (en) 2000-05-15 2017-07-24 Hoffmann La Roche Liquid pharmaceutical composition containing an erythropoietin derivative
WO2002000879A2 (en) 2000-06-28 2002-01-03 Glycofi, Inc. Methods for producing modified glycoproteins
US6423826B1 (en) 2000-06-30 2002-07-23 Regents Of The University Of Minnesota High molecular weight derivatives of vitamin K-dependent polypeptides
WO2002002597A2 (en) 2000-06-30 2002-01-10 Maxygen Aps Peptide extended glycosylated polypeptides
AU2001285020A1 (en) 2000-08-17 2002-02-25 Synapse Technologies, Inc. P97-active agent conjugates and their methods of use
AU2001283740A1 (en) 2000-08-17 2002-02-25 University Of British Columbia Chemotherapeutic agents conjugated to p97 and their methods of use in treating neurological tumours
KR100880624B1 (en) 2000-10-02 2009-01-30 노보 노르디스크 헬스 케어 악티엔게젤샤프트 Method for the production of vitamin k-dependent proteins
WO2002044196A1 (en) 2000-11-28 2002-06-06 University Of Massachusetts Methods and reagents for introducing a sulfhydryl group into the 5'-terminus of rna
AU3323002A (en) 2000-12-20 2002-07-01 Hoffmann La Roche Erythropoietin conjugates
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
PA8536201A1 (en) 2000-12-29 2002-08-29 Kenneth S Warren Inst Inc PROTECTION AND IMPROVEMENT OF CELLS, FABRICS AND ORGANS RESPONDING TO Erythropoietin
US6531121B2 (en) 2000-12-29 2003-03-11 The Kenneth S. Warren Institute, Inc. Protection and enhancement of erythropoietin-responsive cells, tissues and organs
MXPA03007619A (en) 2001-02-27 2003-12-04 Maxygen Aps New interferon beta-like molecules.
US7235638B2 (en) 2001-03-22 2007-06-26 Novo Nordisk Healthcare A/G Coagulation factor VII derivatives
IL157842A0 (en) 2001-03-22 2004-03-28 Novo Nordisk Healthcare Ag Coagulation factor vii derivatives
EP1392350A2 (en) 2001-05-11 2004-03-03 Aradigm Corporation Optimization of the molecular properties and formulation of proteins delivered by inhalation
US7271150B2 (en) 2001-05-14 2007-09-18 United States Of America, Represented By The Secretary, Department Of Health And Human Services Modified growth hormone
KR100453877B1 (en) 2001-07-26 2004-10-20 메덱스젠 주식회사 METHOD OF MANUFACTURING Ig-FUSION PROTEINS BY CONCATAMERIZATION, TNFR/Fc FUSION PROTEINS MANUFACTURED BY THE METHOD, DNA CODING THE PROTEINS, VECTORS INCLUDING THE DNA, AND CELLS TRANSFORMED BY THE VECTOR
AU2002330968B2 (en) 2001-08-17 2007-03-22 Neose Technologies, Inc. Chemo-enzymatic synthesis of sialylated oligosaccharides
AU2002326805B2 (en) 2001-08-29 2009-01-22 Seneb Biosciences, Inc. Novel synthetic ganglioside derivatives and compositions thereof
EP1432794B1 (en) 2001-09-27 2011-11-09 Novo Nordisk Health Care AG Human coagulation factor vii polypeptides
US7052868B2 (en) 2001-09-27 2006-05-30 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
CN102180944A (en) * 2001-10-10 2011-09-14 诺和诺德公司 Remodeling and glycoconjugation of peptides
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
AU2004236174B2 (en) 2001-10-10 2011-06-02 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US6784154B2 (en) 2001-11-01 2004-08-31 University Of Utah Research Foundation Method of use of erythropoietin to treat ischemic acute renal failure
ES2490590T3 (en) 2001-11-02 2014-09-04 Novo Nordisk Health Care Ag Human coagulation factor VII polypeptides
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
JP2005510229A (en) 2001-11-28 2005-04-21 ネオーズ テクノロジーズ, インコーポレイテッド Remodeling of glycoproteins using amidases
US20060035224A1 (en) 2002-03-21 2006-02-16 Johansen Jack T Purification methods for oligonucleotides and their analogs
US6786755B2 (en) 2002-03-27 2004-09-07 Molex Incorporated Differential signal connector assembly with improved retention capabilities
JP4634145B2 (en) 2002-06-21 2011-02-16 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト Pegylated Factor VII glycoform
MXPA04012496A (en) 2002-06-21 2005-09-12 Novo Nordisk Healthcare Ag Pegylated factor vii glycoforms.
DE10232916B4 (en) 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for characterizing an information signal
AU2003254139A1 (en) 2002-07-23 2004-02-09 Neose Technologies, Inc. H. Pylori FUCOSYLTRANSFERASES
MXPA05002476A (en) 2002-09-05 2005-10-19 Gi Company Inc Modified asialo-interferons and uses thereof.
EP1539210A4 (en) 2002-09-06 2006-06-07 Bayer Pharmaceuticals Corp Modified glp-1 receptor agonists and their pharmacological methods of use
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
CA2502162C (en) 2002-09-30 2014-04-15 Maxygen Holdings Ltd. Fvii or fviia variants having increased clotting activity
AU2003275952A1 (en) 2002-11-08 2004-06-07 Glycozym Aps Inactivated ga1 - nac - transferases, methods for inhibitors of such transferases and their use
JP4412461B2 (en) 2002-11-20 2010-02-10 日油株式会社 Modified bio-related substance, production method thereof and intermediate
US20050064540A1 (en) 2002-11-27 2005-03-24 Defrees Shawn Ph.D Glycoprotein remodeling using endoglycanases
EP1424344A1 (en) 2002-11-29 2004-06-02 Aventis Behring Gesellschaft mit beschränkter Haftung Modified cDNA factor VIII and its derivates
SI1428878T1 (en) 2002-12-13 2009-02-28 Bioceuticals Arzneimittel Ag Process for the production and purification of erythropoietin
GEP20084486B (en) 2002-12-26 2008-09-25 Mountain View Pharmaceuticals Polymer conjugates of interferon-beta with enhanced biological potency
US7041635B2 (en) 2003-01-28 2006-05-09 In2Gen Co., Ltd. Factor VIII polypeptide
LT1596887T (en) 2003-02-26 2022-04-25 Nektar Therapeutics Polymer-factor viii moiety conjugates
US7803777B2 (en) 2003-03-14 2010-09-28 Biogenerix Ag Branched water-soluble polymers and their conjugates
EP1603954A4 (en) 2003-03-18 2006-04-12 Neose Technologies Inc Activated forms of water-soluble polymers
MXPA05009940A (en) 2003-03-19 2005-12-05 Lilly Co Eli Polyethelene glycol link glp-1 compounds.
EP1613261A4 (en) 2003-04-09 2011-01-26 Novo Nordisk As Intracellular formation of peptide conjugates
US7718363B2 (en) 2003-04-25 2010-05-18 The Kenneth S. Warren Institute, Inc. Tissue protective cytokine receptor complex and assays for identifying tissue protective compounds
CA2524936A1 (en) 2003-05-09 2004-12-02 Neose Technologies, Inc. Compositions and methods for the preparation of human growth hormone glycosylation mutants
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
US20060198819A1 (en) 2003-08-08 2006-09-07 Novo Nordisk Healthcare A/G Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest
BRPI0409650A (en) 2003-09-09 2006-04-25 Warren Pharmaceuticals Inc methods for regulating hematocrit and human levels, artificial erythropoietin products, methods for preparing an erythropoietin product and for treating anemia in patients at risk of tissue damage, and, pharmaceutical composition
US7524813B2 (en) 2003-10-10 2009-04-28 Novo Nordisk Health Care Ag Selectively conjugated peptides and methods of making the same
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US7405198B2 (en) 2003-11-24 2008-07-29 Neose Technologies, Inc. Glycopegylated erythropoietin
WO2005072371A2 (en) 2004-01-26 2005-08-11 Neose Technologies, Inc. Branched polymeric sugars and nucleotides thereof
US20080318850A1 (en) * 2003-12-03 2008-12-25 Neose Technologies, Inc. Glycopegylated Factor Ix
EP1694315A4 (en) 2003-12-03 2009-10-28 Novo Nordisk As Glycopegylated factor ix
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20060040856A1 (en) 2003-12-03 2006-02-23 Neose Technologies, Inc. Glycopegylated factor IX
WO2005056760A2 (en) 2003-12-03 2005-06-23 Neose Technologies, Inc. Glycopegylated follicle stimulating hormone
KR101237884B1 (en) 2003-12-03 2013-02-27 바이오제너릭스 에이지 Glycopegylated granulocyte colony stimulating factor
ES2560657T3 (en) 2004-01-08 2016-02-22 Ratiopharm Gmbh O-linked glycosylation of G-CSF peptides
WO2005067601A2 (en) 2004-01-09 2005-07-28 Neose Technologies, Inc. Vectors for recombinant protein expression in e.coli
US20070105770A1 (en) 2004-01-21 2007-05-10 Novo Nordisk A/S Transglutaminase mediated conjugation of peptides
WO2005091944A2 (en) 2004-03-17 2005-10-06 Eli Lilly And Company Glycol linked fgf-21 compounds
US20070037966A1 (en) 2004-05-04 2007-02-15 Novo Nordisk A/S Hydrophobic interaction chromatography purification of factor VII polypeptides
WO2005111225A1 (en) 2004-05-04 2005-11-24 Novo Nordisk Health Care Ag O-linked glycoforms of polypeptides and method to manufacture them
JP2008512085A (en) 2004-06-03 2008-04-24 ネオス テクノロジーズ インコーポレイティッド Cleaved GalNAcT2 polypeptides and nucleic acids
EP1765993A4 (en) 2004-06-03 2008-08-20 Neose Technologies Inc Truncated st6galnaci polypeptides and nucleic acids
EP1771190A4 (en) 2004-07-02 2009-07-22 Kenneth S Warren Inst Inc Method of producing fully carbamylated erythropoietin
WO2006014466A2 (en) 2004-07-02 2006-02-09 The Kenneth S. Warren Institute, Inc. Novel carbamylated epo and method for its production
US20080300173A1 (en) 2004-07-13 2008-12-04 Defrees Shawn Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1]
WO2006020372A2 (en) 2004-07-23 2006-02-23 Neose Technologies, Inc. Enzymatic modification of glycopeptides
US20060024286A1 (en) 2004-08-02 2006-02-02 Paul Glidden Variants of tRNA synthetase fragments and uses thereof
US20090176967A1 (en) 2004-08-02 2009-07-09 Novo Nordisk Healthcare A/G Conjugation of FVII
EP1799249A2 (en) 2004-09-10 2007-06-27 Neose Technologies, Inc. Glycopegylated interferon alpha
EP1797192A1 (en) 2004-09-29 2007-06-20 Novo Nordisk Health Care AG Modified proteins
DK2586456T3 (en) 2004-10-29 2016-03-21 Ratiopharm Gmbh Conversion and glycopegylation of fibroblast growth factor (FGF)
US20090054623A1 (en) 2004-12-17 2009-02-26 Neose Technologies, Inc. Lipo-Conjugation of Peptides
WO2006074279A1 (en) 2005-01-06 2006-07-13 Neose Technologies, Inc. Glycoconjugation using saccharyl fragments
EP1858543B1 (en) 2005-01-10 2013-11-27 BioGeneriX AG Glycopegylated granulocyte colony stimulating factor
WO2006078645A2 (en) 2005-01-19 2006-07-27 Neose Technologies, Inc. Heterologous polypeptide expression using low multiplicity of infection of viruses
MX2007011801A (en) 2005-03-24 2008-02-19 Neose Technologies Inc Expression of soluble, active eukaryotic glycosyltransferases in prokaryotic organisms.
US20060246544A1 (en) 2005-03-30 2006-11-02 Neose Technologies,Inc. Manufacturing process for the production of peptides grown in insect cell lines
EP2386571B1 (en) 2005-04-08 2016-06-01 ratiopharm GmbH Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
ES2353814T3 (en) 2005-05-11 2011-03-07 Eth Zuerich RECOMBINANT N-GLYCOSILATED PROTEINS OF PROCEDURAL CELLS.
EP1888098A2 (en) 2005-05-25 2008-02-20 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
US20110003744A1 (en) 2005-05-25 2011-01-06 Novo Nordisk A/S Glycopegylated Erythropoietin Formulations
US20080255026A1 (en) 2005-05-25 2008-10-16 Glycopegylated Factor 1X Glycopegylated Factor Ix
EP1893632B1 (en) 2005-06-17 2015-08-12 Novo Nordisk Health Care AG Selective reduction and derivatization of engineered factor vii proteins comprising at least one non-native cysteine
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
CN102719508A (en) 2005-08-19 2012-10-10 诺和诺德公司 Glycopegylated factor VII and factor VIIA
EP1926817A2 (en) 2005-09-14 2008-06-04 Novo Nordisk Health Care AG Human coagulation factor vii polypeptides
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
DE202006020194U1 (en) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
MX2008014685A (en) 2006-05-24 2008-11-27 Novo Nordisk Healthcare Ag Factor ix analogues having prolonged in vivo half life.
EP2049144B8 (en) 2006-07-21 2015-02-18 ratiopharm GmbH Glycosylation of peptides via o-linked glycosylation sequences
ITMI20061624A1 (en) 2006-08-11 2008-02-12 Bioker Srl SINGLE-CONJUGATE SITE-SPECIFIC OF G-CSF
EP2059527B1 (en) 2006-09-01 2014-12-03 Novo Nordisk Health Care AG Modified glycoproteins
US20100075375A1 (en) 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
LT2068907T (en) 2006-10-04 2018-01-10 Novo Nordisk A/S Glycerol linked pegylated sugars and glycopeptides
WO2008073620A2 (en) 2006-11-02 2008-06-19 Neose Technologies, Inc. Manufacturing process for the production of polypeptides expressed in insect cell-lines
CN101796063B (en) 2007-04-03 2017-03-22 拉蒂奥法姆有限责任公司 methods of treatment using glycopegylated G-CSF
US20090053167A1 (en) 2007-05-14 2009-02-26 Neose Technologies, Inc. C-, S- and N-glycosylation of peptides
EP2162535A4 (en) 2007-06-04 2011-02-23 Novo Nordisk As O-linked glycosylation using n-acetylglucosaminyl transferases
ES2551123T3 (en) 2007-06-12 2015-11-16 Ratiopharm Gmbh Improved process for the production of nucleotide sugars
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
CA2711503A1 (en) 2008-01-08 2009-07-16 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015684A1 (en) * 2001-10-10 2010-01-21 Neose Technologies, Inc. Factor vii: remodeling and glycoconjugation of factor vii
US8076292B2 (en) 2001-10-10 2011-12-13 Novo Nordisk A/S Factor VIII: remodeling and glycoconjugation of factor VIII
US20080050772A1 (en) * 2001-10-10 2008-02-28 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US20080187955A1 (en) * 2001-10-10 2008-08-07 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8716239B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Granulocyte colony stimulating factor: remodeling and glycoconjugation G-CSF
US8716240B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US20100261872A1 (en) * 2001-10-10 2010-10-14 Neose Technologies, Inc. Factor VIII: remodeling and glycoconjugation of factor VIII
US20100331489A1 (en) * 2003-03-14 2010-12-30 Biogenerix Ag Branched water-soluble polymers and their conjugates
US8247381B2 (en) 2003-03-14 2012-08-21 Biogenerix Ag Branched water-soluble polymers and their conjugates
US8853161B2 (en) 2003-04-09 2014-10-07 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US8916360B2 (en) 2003-11-24 2014-12-23 Novo Nordisk A/S Glycopegylated erythropoietin
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US20100210507A9 (en) * 2003-11-24 2010-08-19 Novo Nordisk A/S Glycopegylated erythropoietin
US8632770B2 (en) * 2003-12-03 2014-01-21 Novo Nordisk A/S Glycopegylated factor IX
US20100330060A1 (en) * 2003-12-03 2010-12-30 Novo Nordisk A/S Glycopegylated factor ix
US20090169509A1 (en) * 2004-01-08 2009-07-02 Defrees Shawn O-linked glycosylation of peptides
US8361961B2 (en) 2004-01-08 2013-01-29 Biogenerix Ag O-linked glycosylation of peptides
US20080300173A1 (en) * 2004-07-13 2008-12-04 Defrees Shawn Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1]
US8791066B2 (en) 2004-07-13 2014-07-29 Novo Nordisk A/S Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1]
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
US9200049B2 (en) 2004-10-29 2015-12-01 Novo Nordisk A/S Remodeling and glycopegylation of fibroblast growth factor (FGF)
US10874714B2 (en) 2004-10-29 2020-12-29 89Bio Ltd. Method of treating fibroblast growth factor 21 (FGF-21) deficiency
US20080176790A1 (en) * 2004-10-29 2008-07-24 Defrees Shawn Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf)
US9029331B2 (en) 2005-01-10 2015-05-12 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20090203579A1 (en) * 2005-01-10 2009-08-13 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
US8404809B2 (en) 2005-05-25 2013-03-26 Novo Nordisk A/S Glycopegylated factor IX
US20100330645A1 (en) * 2005-08-19 2010-12-30 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US8911967B2 (en) 2005-08-19 2014-12-16 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
US20080280818A1 (en) * 2006-07-21 2008-11-13 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US9187532B2 (en) 2006-07-21 2015-11-17 Novo Nordisk A/S Glycosylation of peptides via O-linked glycosylation sequences
US20080253992A1 (en) * 2006-10-03 2008-10-16 Neose Technologies, Inc. Methods for the purification of polypeptide conjugates
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
US20100041872A1 (en) * 2006-10-04 2010-02-18 Defrees Shawn Glycerol linked pegylated sugars and glycopeptides
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US9050304B2 (en) 2007-04-03 2015-06-09 Ratiopharm Gmbh Methods of treatment using glycopegylated G-CSF
US20110177029A1 (en) * 2007-06-04 2011-07-21 Novo Nordisk A/S O-linked glycosylation using n-acetylglucosaminyl transferases
US20100174059A1 (en) * 2007-06-12 2010-07-08 Novo Nordisk A/S Process for the production of nucleotide sugars
US9493499B2 (en) 2007-06-12 2016-11-15 Novo Nordisk A/S Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography
US20090143292A1 (en) * 2007-08-29 2009-06-04 Neose Technologies, Inc. Liquid Formulation of G-CSF Conjugate
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
US20100286067A1 (en) * 2008-01-08 2010-11-11 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
EP3093029A1 (en) 2009-07-27 2016-11-16 Baxalta GmbH Blood coagulation protein conjugates
WO2011017055A2 (en) 2009-07-27 2011-02-10 Baxter International Inc. Blood coagulation protein conjugates
EP2461821A1 (en) * 2009-07-31 2012-06-13 Bayer HealthCare LLC Modified factor ix polypeptides and uses thereof
CN102573890A (en) * 2009-07-31 2012-07-11 拜耳医药保健有限公司 Modified factor ix polypeptides and uses thereof
EP2461821A4 (en) * 2009-07-31 2013-07-03 Bayer Healthcare Llc Modified factor ix polypeptides and uses thereof
US8945897B2 (en) 2010-07-26 2015-02-03 Baxter International Inc. Materials and methods for conjugating a water soluble fatty acid derivative to a protein
EP3505186A1 (en) 2010-07-30 2019-07-03 Baxalta GmbH Nucleophilic catalysts for oxime linkage
WO2012016131A1 (en) 2010-07-30 2012-02-02 Baxter International Inc. Nucleophilic catalysts for oxime linkage
EP4023247A1 (en) 2010-07-30 2022-07-06 Takeda Pharmaceutical Company Limited Nucleophilic catalysts for oxime linkage
EP3673921A1 (en) 2010-12-22 2020-07-01 Baxalta GmbH Materials and methods for conjugating a water soluble fatty acid derivative to a protein
WO2012087838A1 (en) 2010-12-22 2012-06-28 Baxter International Inc. Materials and methods for conjugating a water soluble fatty acid derivative to a protein
WO2012166622A1 (en) 2011-05-27 2012-12-06 Baxter International Inc. Therapeutic proteins with increased half-life and methods of preparing same
EP3412314A1 (en) 2011-05-27 2018-12-12 Baxalta GmbH Therapeutic proteins conjugated to polysialic acid and methods of preparing same
EP3808378A1 (en) 2011-05-27 2021-04-21 Baxalta GmbH Therapeutic proteins with increased half-life and methods of preparing same
WO2013173557A1 (en) 2012-05-16 2013-11-21 Baxter International Inc. Nucleophilic catalysts for oxime linkage and use of nmr analyses of the same
WO2013173543A1 (en) 2012-05-16 2013-11-21 Baxter International Inc. Nucleophilic catalysts for oxime linkage
EP4019049A1 (en) 2012-05-16 2022-06-29 Takeda Pharmaceutical Company Limited Methods for preparing therapeutic protein-polymer conjugates
WO2017096383A1 (en) 2015-12-03 2017-06-08 Baxalta Incorporated Factor viii with extended half-life and reduced ligand-binding properties

Also Published As

Publication number Publication date
US8632770B2 (en) 2014-01-21
US20060040856A1 (en) 2006-02-23
US20100330060A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
US8632770B2 (en) Glycopegylated factor IX
US8404809B2 (en) Glycopegylated factor IX
US8911967B2 (en) One pot desialylation and glycopegylation of therapeutic peptides
US8633157B2 (en) Glycopegylated erythropoietin
US8916360B2 (en) Glycopegylated erythropoietin
US7842661B2 (en) Glycopegylated erythropoietin formulations
US7956032B2 (en) Glycopegylated granulocyte colony stimulating factor
US20170281785A1 (en) Glycerol linked pegylated sugars and glycopeptides
US9029331B2 (en) Glycopegylated granulocyte colony stimulating factor
AU2004296860B2 (en) Glycopegylated factor IX
US8268967B2 (en) Glycopegylated interferon α
US20090305967A1 (en) Glycopegylated factor vii and factor viia
US20110003744A1 (en) Glycopegylated Erythropoietin Formulations
US20080318850A1 (en) Glycopegylated Factor Ix
US8791070B2 (en) Glycopegylated factor IX
US20130344050A1 (en) Glycopegylated Factor IX
US20130137157A1 (en) Glycopegylated factor vii and factor viia

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVO NORDISK A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEOSE TECHNOLOGIES, INC.;REEL/FRAME:022441/0937

Effective date: 20090127

Owner name: NOVO NORDISK A/S,DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEOSE TECHNOLOGIES, INC.;REEL/FRAME:022441/0937

Effective date: 20090127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION