US20090077802A1 - Method for making a composite airfoil - Google Patents

Method for making a composite airfoil Download PDF

Info

Publication number
US20090077802A1
US20090077802A1 US11/858,333 US85833307A US2009077802A1 US 20090077802 A1 US20090077802 A1 US 20090077802A1 US 85833307 A US85833307 A US 85833307A US 2009077802 A1 US2009077802 A1 US 2009077802A1
Authority
US
United States
Prior art keywords
core
airfoil
airfoil portion
injection molding
providing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/858,333
Other languages
English (en)
Inventor
Joseph L. Moroso
Thomas R. Tipton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/858,333 priority Critical patent/US20090077802A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOROSO, JOSEPH L., TIPTON, THOMAS R.
Priority to DE102008044500A priority patent/DE102008044500A1/de
Priority to JP2008230362A priority patent/JP2009074546A/ja
Priority to CH01474/08A priority patent/CH697915A2/de
Priority to CNA2008101490977A priority patent/CN101392661A/zh
Publication of US20090077802A1 publication Critical patent/US20090077802A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/72Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14327Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles anchoring by forcing the material to pass through a hole in the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7504Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Definitions

  • the invention relates generally to turbo-machinery.
  • the invention relates to making a turbo-machine airfoil with components of different materials.
  • Turbo-machinery may take many forms or be applied in various uses. These forms and uses may include steam turbines for power generation, gas turbines for power generation, gas turbines for aircraft propulsion and wind turbines for power generation.
  • each of the blades and vanes includes an airfoil portion attached to a mounting portion.
  • a conventional gas or stream turbine blade or vane design typically has its airfoil portion made entirely of an alloy of a metal, such as titanium, aluminum or stainless steel.
  • the conventional gas or steam turbine compressor blade or vane design may also be made entirely of a composite, such as fiber reinforced plastic.
  • the all-metal blades are relatively heavy in weight that can result in lower fuel economy and require robust mounting portions. In a gas turbine application, the lighter all-composite blades are susceptible to damage and wear from foreign object ingestion.
  • Known hybrid blades include a composite airfoil portion having a metal leading edge to protect the airfoil from wear and impact from foreign object ingestion.
  • the gas turbine first stage blades typically are the largest and the heaviest blades and are generally the first to be subject to foreign object ingestion.
  • Composite blades have typically been used in turbine applications where weight is a major concern.
  • the overall geometry is a compromise between structural and aerodynamic needs.
  • Structural needs and ability to withstand damage due to foreign object ingestion are in direct conflict with airfoil geometry optimized for aerodynamic performance.
  • an aerodynamically desirable airfoil is relatively thin with a relatively sharp leading edge.
  • a structurally desirable airfoil is relatively thick with a robust leading edge.
  • the final design is typically a compromise between the opposing structural and aerodynamic needs with neither being optimum.
  • a method of manufacturing a composite airfoil according to one aspect of the invention includes the step of providing a core made of a metal or ceramic material.
  • a plastic airfoil portion is molded to envelope at least a portion of the core.
  • Another aspect of the invention is a method of manufacturing a composite airfoil.
  • the method includes the step of providing a core made of a metal or ceramic material.
  • the core is provided with a leading edge.
  • a plastic airfoil portion is molded to envelope at least the leading edge of the core.
  • Another aspect of the invention is a method of manufacturing a composite airfoil.
  • the method includes the step of forming a metal core by die casting, investment casting or forging.
  • a plastic airfoil portion is injection molded to envelope at least a portion of the core.
  • FIG. 1 is a perspective illustration of a composite airfoil according to one aspect of the invention, with an internal component represented by dashed fines;
  • FIG. 2 is an exploded view of the composite airfoil illustrated in FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the composite airfoil of FIG. 1 , taken approximately along line 3 - 3 in FIG. 1 .
  • a composite airfoil 20 is illustrated in FIG. 1 as a part of a blade 10 for a gas turbine used in a power generation application, according to one aspect of the invention.
  • the composite airfoil 20 of the blade 10 in various aspects of the invention, may be in the form of a compressor blade, vane or turbine blade and may be used in steam turbine, gas turbine or wind turbine applications.
  • the composite airfoil 20 of the blade 10 includes a core 22 and a plastic airfoil portion 24 completely enveloping and encapsulating the core.
  • the composite airfoil 20 is made from at least two different materials in a unique manner.
  • “composite” is defined as having a plastic material form the finished airfoil portion 24 located over a relatively strong structural material that (such as, metal or ceramic) forms the core 22 .
  • the term “plastic” is defined to mean capable of being melted at a temperature relatively lower than the melting point of the material of the core 22 so it can flow and easily be molded to a final desired shape.
  • a root 26 is attached to the core 22 and is used to mount the blade to turbine structure for operation.
  • the root 26 can be attached to the core by forming the core and root integrally as a one-piece subcomponent, such as by forging or machining from a single piece of raw material, such as metal or ceramic.
  • the core 22 and root 26 could be made separately and the core could be fastened, welded or otherwise attached to the root.
  • a tip 40 is located at the axially opposite end of the composite airfoil 20 from the root 26 .
  • An axis A extends in a direction along the length of the composite airfoil 20 from the root 26 to the tip 40 .
  • “axis” A refers to reference axis and not a physical part of the blade 10 or composite airfoil 20 .
  • the blade 10 and composite airfoil 20 are a designed to operate at the typical temperature that the first few stages of a turbine compressor would be exposed to according to one aspect of the invention.
  • the “design operating temperature” is the maximum temperature the blade 10 and airfoil portion 24 is expected to experience during normal operation in the first few stages in a compressor.
  • An example of a typical gas turbine design operating temperature in the first few stages is, without limitation, generally in the range of 18° C. to 200° C.
  • Medium direction arrows M in indicate the general direction of flow.
  • the medium M typically comprises air in a gas turbine application.
  • the medium M in a gas turbine power generation application is typically controlled.
  • the medium M is inlet air filtered to remove many of the foreign objects, can be chilled or heated to a desired temperature range and routed through structure to remove moisture and salt.
  • the root 26 typically includes a dovetail portion 42 ( FIGS. 1-2 ), to mount the blade 10 to a rotor disc (not shown).
  • the airfoil portion 24 has a leading edge 44 ( FIG. 3 ) and a trailing edge 46 .
  • the direction of medium M flow is generally from the leading edge 44 to the trailing edge 46 .
  • the airfoil portion 24 of the composite airfoil 20 also has a pressure side surface 62 and a suction side surface 64 .
  • the airfoil portion 24 is a very complex surface defined by a series of points at sections spaced along the axis A.
  • the leading edge 44 and trailing edge 46 are typically round surfaces defined by relatively small radii according to one aspect of the invention.
  • the complex surface, leading edge 44 and trailing edge 46 are relatively difficult to manufacture. For aerodynamic reasons, it is generally desirable to have a leading edge 44 with as small of a radius as possible, for example 0.010 inch which has not been practical previously. It is also desirable to have an extremely smooth and precise final shape for the airfoil portion 24 that does require machinery polishing or coating, which also has not been practical previously. Being able to injection mold a plastic airfoil portion 24 to a final or near-final shape overcomes previous disadvantages.
  • the airfoil portion completely envelopes the core 22 .
  • the composite airfoil 20 is the plastic airfoil portion 24 enveloping at least a portion of the metal or ceramic core 22 . It will be apparent, however, that the core 22 does not have to be completely enveloped by the airfoil portion 24 and that the core may be partially covered according to another aspect of the invention.
  • the plastic airfoil portion 24 is molded without the need for fiber reinforcement, preferably injection molded, onto at least a portion of the core 22 .
  • the injection molding process is capable of forming precise and accurate parts of the airfoil portion 24 , such as the pressure side surface 62 , suction side surface 64 , leading edge 44 and trailing edge 46 .
  • the internal geometry of the blade 10 in the form of the core 22 can be optimized for frequency tuning and structural needs.
  • the external surface can be tailored for aerodynamic performance in the form of the injection molded plastic airfoil portion 24 .
  • the core 22 has a plurality of openings 82 extending through it between the pressure side surface 62 and suction side surface 64 of the airfoil portion 24 .
  • the openings 82 are located in areas of the core 22 that do not need a continuous solid structure for strength or function.
  • the openings 82 lighten the core 22 for lower rotating mass which is generally a desirable feature.
  • the openings 82 receive a portion 84 of the plastic material of the airfoil portion 24 during the injection molding process to retain the airfoil portion in place relative to the core 22 .
  • the openings 82 do not have to extend completely through the core 22 but have a depth sufficient to receive portion 84 of the plastic material.
  • the portion 84 of plastic material does not have to completely fill the opening 82 but extend a sufficient distance in to the opening to retain the airfoil portion 24 in place relative to the core 22 .
  • the core 22 has a tip portion 100 ( FIG. 2 ).
  • the core 22 has a leading edge 102 ( FIGS. 2 and 3 ) and a trailing edge 104 .
  • the tip 28 of the airfoil portion envelopes the tip portion 100 of the core 22 .
  • the airfoil portion 24 envelopes at least the leading edge 102 of the core 22 and preferably the entire outer surface of the core including the trailing edge 104 .
  • the airfoil portion 24 has a thickness t ( FIG. 3 ) at a location spaced away from the openings 82 such as in the range of 0.020 to 0.100 inch to where it covers the core 22 away from the openings 82 .
  • the thickness to does not have to be uniform.
  • the thickness t may gradually increase from one or both edges 44 , 46 towards the middle of the blade 10 .
  • the depth of the opening 82 is preferably greater than the thickness t of the airfoil portion 24 covering the core 22 .
  • airfoil portion 24 By creating the airfoil portion 24 from plastic, desired final airfoil shape for aerodynamic performance can be incorporated and preferably without the need form machinery, polishing or coating. Since the airfoil portion 24 is separated from the internal load carrying structure of the core 22 a design that is more tolerant to damage from ingested debris is also possible. This separation of load carrying structure of the core 22 from the airfoil portion 24 also increases the number of material options available for manufacturing the core to maximize structural features and minimizing weight.
  • Creating a smooth surface for the plastic airfoil portion 24 from injection molding will reduce accumulation of debris on the blade 10 . This reduces the need for as frequent water washes.
  • the material for the plastic airfoil portion 24 is inherently corrosion resistant. Additionally, additives such as PTFE can be introduced into the airfoil portion 24 to further enhance the repelling of the accumulation of debris on the airfoil portion.
  • the clearances relative to other turbine components can be held tighter.
  • the plastic nibs against another turbine component it is a benign event and does not compromise the structural components of the blade 10 or turbine.
  • the composite airfoil 20 compressor clearances can be held tighter for improved performance without the need of abradable surfaces or the introduction of rub compliant coating.
  • the technical advantages are numerous.
  • the composite airfoil 20 provides the opportunity to create more damage tolerant and optimized airfoil portion 24 and a structurally optimized core 22 . Additionally the opportunity to optimize aerodynamic geometry of the airfoil portion 24 results in increased performance of the gas turbine. Reduction of compressor fouling of the airfoil portion 24 reduces the level of performance degradation. There are also significant opportunities to reduce manufacturing costs.
  • the composite airfoil 20 of the blade 10 thus, provides an optimal aerodynamic shape with the injection molded plastic airfoil portion 24 and desired structural characteristics with the core 22 .
  • the plastic material of the airfoil portion 24 may be any suitable plastic material.
  • the plastic material is selected to be able to survive the design operating temperature of the particular stage of the turbine that it is selected to operate in.
  • the first stage of a gas turbine compressor operates at ambient air temperatures and at relatively low pressures compared to other later stages of the compressor.
  • the blade 10 can be manufactured according to another aspect of the invention.
  • the blade 10 is made with the composite airfoil 20 by first forming the metal core 22 by die casting, investment casting or forging.
  • the core 22 may also be made from a ceramic material cast to final shape.
  • the core 22 is formed with the root 26 and dovetail portion 42 in its final configuration.
  • the core 22 is then supported in a die 120 ( FIG. 4 ) of an injection molding apparatus (not shown).
  • the die 120 of the injection molding apparatus has a desired shape of half of the airfoil formed in the die with allowances for shrinkage and warping.
  • the core 22 is supported in a predetermined position within the die, as illustrated in FIG. 5 .
  • Locator pins 140 in the die 120 assist in properly locating the core 22 in a predetermined position relative to the airfoil shape.
  • a vent 122 extends from the interior of the die to the outside.
  • the root 26 may be located outside of the die 120 and have a surface that engages the die to locate the core 22 axially relative to the die.
  • a second die 126 ( FIG. 6 ) is provided.
  • the second die 126 of the injection molding apparatus has a desired shape of another half of the airfoil formed in the die with allowances for shrinkage and warping.
  • a vent 122 extends from the interior of the second die 126 to the outside. The second die 126 is moved to engage the die 120 and enclose the core 22 .
  • a conduit 124 is provided to direct melted material into the cavity created by the dies 120 , 126 .
  • the airfoil portion 24 is then injection molded to envelope at least a portion of the core 22 .
  • the airfoil portion 24 is made from a plastic material.
  • the plastic material is melted in the injection molding apparatus.
  • the melted plastic is forced into the dies 120 , 126 through the conduit 124 .
  • the plastic material then cools and hardens to form the desired shaped formed by the cavity of the dies 120 , 126 around the core 22 .
  • the core 22 has a plurality of voids or openings 82 formed in the core. During the injection molding process, the openings 82 in the core 22 are filled with the melted plastic material of the airfoil portion 24 . This retains the airfoil portion 24 in a position relative to the core 22 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
US11/858,333 2007-09-20 2007-09-20 Method for making a composite airfoil Abandoned US20090077802A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/858,333 US20090077802A1 (en) 2007-09-20 2007-09-20 Method for making a composite airfoil
DE102008044500A DE102008044500A1 (de) 2007-09-20 2008-09-05 Verfahren zur Herstellung eines Verbundschaufelblattes
JP2008230362A JP2009074546A (ja) 2007-09-20 2008-09-09 複合翼の製造方法
CH01474/08A CH697915A2 (de) 2007-09-20 2008-09-16 Verfahren zur Herstellung eines zusammengesetzten Schaufelblatts.
CNA2008101490977A CN101392661A (zh) 2007-09-20 2008-09-19 复合翼型件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/858,333 US20090077802A1 (en) 2007-09-20 2007-09-20 Method for making a composite airfoil

Publications (1)

Publication Number Publication Date
US20090077802A1 true US20090077802A1 (en) 2009-03-26

Family

ID=40384618

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/858,333 Abandoned US20090077802A1 (en) 2007-09-20 2007-09-20 Method for making a composite airfoil

Country Status (5)

Country Link
US (1) US20090077802A1 (de)
JP (1) JP2009074546A (de)
CN (1) CN101392661A (de)
CH (1) CH697915A2 (de)
DE (1) DE102008044500A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028615A3 (en) * 2010-09-01 2012-06-07 Batz, S.Coop. Wind turbine blade
WO2014179009A1 (en) * 2013-04-29 2014-11-06 General Electric Company Composite article including composite to metal interlock and method of fabrication
US9382801B2 (en) 2014-02-26 2016-07-05 General Electric Company Method for removing a rotor bucket from a turbomachine rotor wheel
US20170114795A1 (en) * 2015-07-22 2017-04-27 Safran Aero Boosters Sa Composite compressor vane of an axial turbine engine
US9925584B2 (en) 2011-09-29 2018-03-27 United Technologies Corporation Method and system for die casting a hybrid component
WO2020001909A1 (de) * 2018-06-26 2020-01-02 Böllhoff Verbindungstechnik GmbH Kupplungselement mit verankerungsstruktur für ein schaumbauteil
CN113458717A (zh) * 2021-06-02 2021-10-01 苏州市锐意金属制品有限公司 一种航空领域用金属件生产成型工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961866B1 (fr) * 2010-06-24 2014-09-26 Snecma Procede de realisation d’un renfort metallique d’aube de turbomachine
US8387504B2 (en) * 2011-01-06 2013-03-05 General Electric Company Fiber-reinforced Al-Li compressor airfoil and method of fabricating
JP5967883B2 (ja) * 2011-09-05 2016-08-10 三菱日立パワーシステムズ株式会社 回転機械翼
US9777579B2 (en) * 2012-12-10 2017-10-03 General Electric Company Attachment of composite article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276262A (en) * 1939-06-27 1942-03-10 United Aircraft Corp Composite propeller
US5403161A (en) * 1991-03-29 1995-04-04 Dennis T. Nealon Air foil blade and methods of making same
US5691391A (en) * 1992-08-21 1997-11-25 Mcdonnell Douglas Helicopter Process for making an injection molded fan blade
US6233823B1 (en) * 1999-08-31 2001-05-22 General Electric Company Method of making plastically formed hybrid airfoil
US20060120869A1 (en) * 2003-03-12 2006-06-08 Wilson Jack W Cooled turbine spar shell blade construction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788197A1 (de) * 2005-11-21 2007-05-23 Siemens Aktiengesellschaft Turbinenschaufel für eine Dampfturbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276262A (en) * 1939-06-27 1942-03-10 United Aircraft Corp Composite propeller
US5403161A (en) * 1991-03-29 1995-04-04 Dennis T. Nealon Air foil blade and methods of making same
US5691391A (en) * 1992-08-21 1997-11-25 Mcdonnell Douglas Helicopter Process for making an injection molded fan blade
US6233823B1 (en) * 1999-08-31 2001-05-22 General Electric Company Method of making plastically formed hybrid airfoil
US20060120869A1 (en) * 2003-03-12 2006-06-08 Wilson Jack W Cooled turbine spar shell blade construction

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028615A3 (en) * 2010-09-01 2012-06-07 Batz, S.Coop. Wind turbine blade
ES2391016A1 (es) * 2010-09-01 2012-11-20 Batz S. Coop. Pala de aerogenerador
US9925584B2 (en) 2011-09-29 2018-03-27 United Technologies Corporation Method and system for die casting a hybrid component
US10569327B2 (en) 2011-09-29 2020-02-25 United Technologies Corporation Method and system for die casting a hybrid component
WO2014179009A1 (en) * 2013-04-29 2014-11-06 General Electric Company Composite article including composite to metal interlock and method of fabrication
US9040138B2 (en) 2013-04-29 2015-05-26 General Electric Company Composite article including composite to metal interlock and method of fabrication
CN105142884A (zh) * 2013-04-29 2015-12-09 通用电气公司 包括复合材料至金属互锁件的复合物品和制作方法
CN110080825A (zh) * 2013-04-29 2019-08-02 通用电气公司 包括复合材料至金属互锁件的复合物品和制作方法
US9382801B2 (en) 2014-02-26 2016-07-05 General Electric Company Method for removing a rotor bucket from a turbomachine rotor wheel
US20170114795A1 (en) * 2015-07-22 2017-04-27 Safran Aero Boosters Sa Composite compressor vane of an axial turbine engine
WO2020001909A1 (de) * 2018-06-26 2020-01-02 Böllhoff Verbindungstechnik GmbH Kupplungselement mit verankerungsstruktur für ein schaumbauteil
CN113458717A (zh) * 2021-06-02 2021-10-01 苏州市锐意金属制品有限公司 一种航空领域用金属件生产成型工艺

Also Published As

Publication number Publication date
CN101392661A (zh) 2009-03-25
DE102008044500A1 (de) 2009-04-02
JP2009074546A (ja) 2009-04-09
CH697915A2 (de) 2009-03-31

Similar Documents

Publication Publication Date Title
US20090081032A1 (en) Composite airfoil
US20090077802A1 (en) Method for making a composite airfoil
US8146250B2 (en) Method of replacing a composite airfoil
US10392958B2 (en) Hybrid blade outer air seal for gas turbine engine
US6190133B1 (en) High stiffness airoil and method of manufacture
US9328612B2 (en) Retrofitting methods and devices for large steam turbines
CN107075959B (zh) 包括配备有加强筋的平台的复合叶片
US6991433B2 (en) Drum, in particular a drum forming a turbomachine rotor, a compressor, and a turboshaft engine including such a drum
EP3130758B1 (de) Verbundleitschaufel
CN106794545B (zh) 制造前缘护罩的方法
US10024234B2 (en) Panels of a fan of a gas turbine
US10287989B2 (en) Seal support of titanium aluminide for a turbomachine
US20180016918A1 (en) Shrouded blade of a gas turbine engine
EP3739175B1 (de) Schaufel aus verbundwerkstoff mit keramikmatrix und stossverstärkungen
CA2708982A1 (en) Rotary drum of an axial compressor having a compossite web
US20200157953A1 (en) Composite fan blade with abrasive tip
JP5599178B2 (ja) 多数翼セグメント及び鋳造方法
CN112189079B (zh) 用于保护叶片免受冲击的包括芳族聚酰胺纤维的织物
US20190055849A1 (en) Laminated airfoil for a gas turbine
US11920494B2 (en) Turbomachine rotary-fan blade, fan and turbomachine provided therewith
CN110273857B (zh) 离心式压缩机开式叶轮
CN116635177A (zh) 制造用于涡轮发动机的叶片的方法
CN115315565A (zh) 用于制造飞行器涡轮发动机风扇的复合平台的方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOROSO, JOSEPH L.;TIPTON, THOMAS R.;REEL/FRAME:019853/0984

Effective date: 20070917

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION