US20090071873A1 - Methods for transforming organic compounds using a liquefied metal alloy and related apparatus - Google Patents

Methods for transforming organic compounds using a liquefied metal alloy and related apparatus Download PDF

Info

Publication number
US20090071873A1
US20090071873A1 US12/089,615 US8961506A US2009071873A1 US 20090071873 A1 US20090071873 A1 US 20090071873A1 US 8961506 A US8961506 A US 8961506A US 2009071873 A1 US2009071873 A1 US 2009071873A1
Authority
US
United States
Prior art keywords
alloy
organic compound
metal alloy
canceled
exposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/089,615
Inventor
Alexandr Ivanovich Vygonyaylo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairstock Tech Corp
Original Assignee
Fairstock Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from UAA200509452A external-priority patent/UA74762C2/en
Priority claimed from UAA200509544A external-priority patent/UA74763C2/en
Application filed by Fairstock Tech Corp filed Critical Fairstock Tech Corp
Assigned to FAIRSTOCK TECHNOLOGIES CORPORATION reassignment FAIRSTOCK TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VYGONYAYLO, ALEXANDR IVANOVICH
Publication of US20090071873A1 publication Critical patent/US20090071873A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step

Definitions

  • the present invention relates to methods and apparatuses for transforming organic compounds and more particularly to methods and apparatuses for transforming organic compounds utilizing a liquefied metal alloy.
  • Natural gas is a major source of methane.
  • Other sources of methane have been considered for fuel supply, e.g., the methane present in coal deposits or formed during mining operations. Relatively small amounts of methane are also produced in various petroleum processes.
  • the composition of natural gas at the wellhead varies, but its major hydrocarbon is methane.
  • methane content of natural gas may vary within the range from about 40 to about 95 volume percent.
  • Other constituents of natural gas include ethane, propane, butanes, pentane (and heavier hydrocarbons), hydrogen sulfide, carbon dioxide, helium and nitrogen.
  • Natural gas is classified as dry or wet depending upon the amount of condensable hydrocarbons that is contains.
  • Condensable hydrocarbons generally comprise hydrocarbons having 3 or more carbon atoms, although some ethane may be included.
  • Gas conditioning is required to alter the composition of wellhead gas, with processing facilities usually being located in or near the production fields. Conventional processing of wellhead natural gas yields processed natural gas containing at least a major amount of methane.
  • a common method for methane conversion is a steam methane reforming performed at a high temperature of 600° C. to 840° C. at a high pressure of about 5 to 100 atmospheres in the presence of nickel or other metal based catalyst.
  • the disadvantages of the steam methane reforming include the use of the catalyst, high pressure and temperature, which a) are costly to produce and b) require a sturdy reaction apparatus, and low yield of the method.
  • U.S. Pat. No. 5,093,542 discloses an alternative method of methane conversion, in which a gas containing methane and a gaseous oxidant is contacted with a nonacidic catalyst at temperatures within the range of about 700° to 1200° C. in the presence of a halogen promoter and in the substantial absence of alkali metals or their compounds.
  • U.S. Pat. No. 4,962,261 discloses another alternative method of methane conversion to higher molecular weight hydrocarbons in a process using a catalyst containing boron, tin and zinc at temperatures ranging from 500 to 1000° C.
  • a method for transforming at least one organic compound comprises initiating a second order phase transition in a liquefied metal alloy; and exposing the at least one organic compound to an energy of the second order phase transition, wherein the exposing results in transforming the at least one organic compound.
  • a method of transforming at least one organic compound comprises passing a heat flow through a liquefied metal alloy; and then exposing the at least one organic compound to the heat flow, wherein the exposing results in transforming the at least one organic compounds.
  • the invention provides an apparatus comprising a heat source; a liquefied metal alloy in thermal contact with the heat source; and a vessel containing at least one organic compound, wherein the at least one organic compound is in thermal contact with the alloy and wherein a heat flow from the heat source passes through the alloy to transform the at least one organic compound.
  • the invention provides an apparatus comprising a heat source; a liquefied metal alloy in thermal contact with the heat source; and means for passing at least one organic compound, wherein a heat flow from the heat source passes through the alloy to melt the alloy and to transform the at least one organic compound.
  • the invention provides a method of producing hydrogen, comprising passing a heat flow through a liquefied metal alloy, and then exposing at least one organic compound to the heat flow, wherein the exposing results in producing hydrogen from the at least one organic compound.
  • FIG. 1 schematically illustrates one embodiment of an apparatus for transforming organic compounds.
  • the inventor has discovered that a heat flow passed through a melted metal alloy can transform the organic compound.
  • organic compounds can be transformed by being exposed to an energy of the second order phase transition initiated in a melted metal alloy.
  • the transformation of the organic compounds in the above methods occurs without contacting them with a metal catalyst, without directly exposing the organic compounds to high temperatures above 500° C. and without exposing the organic compounds to an excessive pressure above the atmospheric pressure.
  • the metal alloy can be a metal alloy with a low melting temperature.
  • the melting temperature of the alloy can be below 200° C., such as below 150° C.
  • the melting temperature can be either liquidus temperature of the alloy or solidus temperature of the alloy.
  • the metal alloy can be an alloy comprising one or more metals selected from metals of the 5th period of the periodic table, such as Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd. Ag, Cd, In, Sn, Sb, Te, and I, and metals having an atomic number higher than 79, such as Hg, Ti, Pb and Bi.
  • the metal alloy does not comprise radioactive isotopes.
  • the metal alloy comprises one or metals of the 5 th period of the periodic table and one or more metals having an atomic number ranging from 80 to 83.
  • the metal alloy can comprise Bi and Sn. In some embodiments, the metal alloy can further comprise Pb. Examples of such alloys include Wood's alloy (50% Bi, 13.3% Sn, 26.7% Pb, 10% Cd), which has a melting temperature around 70° C. and Rose's alloy (50% Bi, 25% Sn, 25% Pb), which has a melting temperature around 100° C. Other alloys that comprise Bi and Sn can also be used.
  • Initiating a second order transition in the metal can involve heating the alloy above its melting temperature.
  • the initiation of the second order transition can further include stirring the metal alloy.
  • Passing a heat flow through the metal alloy can involve heating the metal alloy above its melting temperature to a temperature above 60° C.
  • the temperature of the metal alloy can be from about 80° C. to about 175° C.
  • the temperature of the alloy can be above 175° C.
  • the temperature of alloy can be, for example, from 300° C. to 450° C. or from 320° C. to 400° C. or from 360° C. to 410° C.
  • the organic compound can be any organic compound.
  • the organic compound can be an organic compound having an unsaturated C—H bond. Examples of such organic compounds are a hydrocarbons such as alkanes or cycloalkanes.
  • the transformation of an organic compound means that, as the result of the exposure to the heat flow passed through the metal alloy, one or more products that have a chemical structure different from the starting organic compound are formed.
  • the transformation of an organic compound can be direct or indirect, i.e. the transformation can be a direct or indirect result of exposing the organic compound to the heat flow that passed through the metal alloy.
  • the transformation of hydrocarbons such as alkanes or cycloalkanes, can involve their decomposition into products that comprise hydrogen as a direct result of the exposure to the heat flow that passed through the metal alloy.
  • the products of the direct transformation can be used for transforming one or more additional organic compounds.
  • hydrogen formed in the hydrocarbon transformation can be used for transforming a substituted nitrocompound into a substituted aminocompound.
  • Such a transformation is an example of the indirect transformation.
  • the organic compound or compounds to be transformed can be a raw hydrocarbon material, such as raw oil or natural gas.
  • the exposure of the hydrocarbon material can last from 0.1 to 50 seconds or from 0.2 to 12 seconds or from 2 to 40 seconds.
  • the raw hydrocarbon material When exposed to the heat flow that passed through the metal alloy, the raw hydrocarbon material can be in a liquid phase at a temperature ranging from 80 to 175° C.
  • the raw hydrocarbon material can provided in a zone of exposure to the heat flow together with ballast materials that can increase the heat and mass transfer of the raw hydrocarbon material.
  • the ballast materials can be metals, ceramics or other inert materials that do not react with the raw hydrocarbon material.
  • the ballast materials do not change a viscosity of the raw hydrocarbon material.
  • the products of the raw hydrocarbon material transformation can have a molecular weight different that the starting hydrocarbons.
  • the products can comprise a light fraction, i.e. hydrocarbons having a molecular weight lighter than the starting raw material and enriched with hydrogen, and a heavy fraction, i.e. hydrocarbons having a molecular weight heavier than the starting raw material.
  • the former can be evaporated and then condensed using an appropriate cooling system in a separate volume.
  • the heavy fraction can be removed from an area of exposure to the heat flow in a liquid state.
  • the exposure to the heat flow that passed through the liquefied metal alloy can be periodic or continuous.
  • the continuous exposure means that an entire amount of organic compounds to be transformed is supplied to a zone of exposure to the heat flow that passed through the metal alloy continuously, i.e. without interruptions.
  • the periodic exposure means that the exposure includes at least two exposure periods separated by a non-exposure period, i.e. a period when the organic compound is not exposed to the heat flow passed through the metal alloy.
  • the periodic exposure can be accomplished by interrupting the organic compounds' supply to an area exposed to the heat flow.
  • the apparatus for transforming at least organic compound includes a heat source, a metal alloy in thermal contact with a heat source and a device for passing the at least one organic compound.
  • the device for passing the at least one organic compound can be any vessel, conduit or chamber that can expose the organic compound passing through to the heat flow that passed through the metal alloy.
  • the vessel or conduit that has an inlet for supplying one or more organic compounds to be transformed and an outlet for removing the products of transformation.
  • a vessel or conduit can be, for example, a pipe.
  • the pipe can have a spiral shape.
  • the vessel can be immersed in the liquefied metal alloy.
  • the organic compound and the metal alloy are not in direct physical contact.
  • the organic compound passing through the vessel can be separated from the metal alloy by one or more vessel walls.
  • Such vessel walls can be made of non-magnetic metal comprising steel, copper or copper alloys such as brass.
  • the walls do not comprise materials that are permanent magnets.
  • the thickness of the walls can range from 0.1 to 10 mm.
  • the vessel can have any volume chosen depending on an amount of organic compounds desired to be transformed.
  • the melted metal alloy in the apparatus can be protected from a surrounding environment.
  • the metal alloy can be sealed in the apparatus from the surrounding environment.
  • the heat source can be a heat source of any type.
  • the heat source can have an intensity of at least 30 kW/m 2 , preferably of at least 35 kW/m 2 .
  • the heat source can be a jacket heated by burner gases.
  • the heat source may also comprise resistance heater(s), heat lamp(s), radio frequency heating coil(s) etc.
  • the heat source can be separated from the alloy by, for example, a wall.
  • the material of such a wall can be, for example, steel.
  • the wall can also comprise any non-ferromagnetic material.
  • the thickness of the wall can range from about 0.1 to about 10 mm.
  • the apparatus can further comprise a stirrer immersed in the metal alloy.
  • a stirrer can be an anchor stirrer or nozzle equipped impeller.
  • the apparatus can further comprise a cooling system coupled to the vessel.
  • the cooling system can be used for condensing an evaporated fraction of transformation products.
  • FIG. 1 schematically illustrates an apparatus for methane transformation into water and carbon.
  • reactor vessel 1 has a volume ranging from 0.5 to 10 liters and steel walls with a thickness ranging from 0.1 to 10 mm.
  • a spiral pipe 2 is placed at the bottom of the reactor 1 .
  • the spiral pipe 2 can be made of steel.
  • the spiral pipe can also be made of any non-ferromagnetic material.
  • the reactor 1 is filled with the metal alloy 5 .
  • the twisted part of the spiral pipe 2 is completely immersed in the metal alloy.
  • a thickness of the metal alloy above the last twisted segment of the spiral pipe is preferably no less than 0.04 m.
  • the reactor 1 is hermetically sealed because moisture in the surrounding air can cause oxidation of the metal alloy 5 .
  • a heating gas conduit 3 is placed at the outer side of the reactor 1 .
  • the stirrer 4 After heating up the metal alloy 5 to a temperature of 80 to 175° C. to melt the alloy, the stirrer 4 located underneath the spiral pipe 2 is turned on.
  • the stirrer 4 can be an anchor stirrer having a frequency ranging from 60 to 120 Hz, or a nozzle equipped impeller having a frequency ranging from 150 to 300 Hz.
  • methane is introduced into the spiral pipe 2 through inlet 6 .
  • Methane supply rate is selected to be such that methane can pass through the spiral pipe in 0.2-12 seconds.
  • heating and stirring is believed to cause an imitation of a phase transition in the metal alloy.
  • the energy of the phase transition is believed transform methane into carbon and hydrogen (CH 4 ->2H 2 +C), which are removed through pipe outlet 7 .
  • the apparatus depicted in FIG. 1 can be also used for transforming orthonitrotoluene into orthoaminotoluene.
  • a mixture that includes 1.5 mole of methane per 1 mole of orthonitrotoluene is introduced in the inlet 6 of the pipe 2 after heating the metal alloy to a temperature ranging from 80 to 175° C. and stirring the metal alloy for 15 minutes.
  • the transformation products of the mixture include 2 moles of water, 1 mole of ortho-aminotoluene and 1 mole of carbon per one mole of orthonitrotoluene in the mixture.

Abstract

An organic compound can be transformed by an exposure to a heat flow that passed through a liquefied metal alloy. Provided are methods for transforming organic compounds and related apparatuses.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • The present application claims priority to Ukrainian Patent Application No. a200509452 filed Oct. 10, 2005, and published as a publication No. UA 74,762 C2 on Jan. 16, 2006, both of which are incorporated herein by reference in their entirety. The present application also claims priority to Ukrainian Patent Application No. a200509544 filed Oct. 11, 2005, and published as a publication No. UA 74,763 C2 on Jan. 16, 2006, both of which are incorporated herein by reference in their entirety.
  • FIELD
  • The present invention relates to methods and apparatuses for transforming organic compounds and more particularly to methods and apparatuses for transforming organic compounds utilizing a liquefied metal alloy.
  • BACKGROUND
  • Natural gas is a major source of methane. Other sources of methane have been considered for fuel supply, e.g., the methane present in coal deposits or formed during mining operations. Relatively small amounts of methane are also produced in various petroleum processes.
  • The composition of natural gas at the wellhead varies, but its major hydrocarbon is methane. For example, the methane content of natural gas may vary within the range from about 40 to about 95 volume percent. Other constituents of natural gas include ethane, propane, butanes, pentane (and heavier hydrocarbons), hydrogen sulfide, carbon dioxide, helium and nitrogen.
  • Natural gas is classified as dry or wet depending upon the amount of condensable hydrocarbons that is contains. Condensable hydrocarbons generally comprise hydrocarbons having 3 or more carbon atoms, although some ethane may be included. Gas conditioning is required to alter the composition of wellhead gas, with processing facilities usually being located in or near the production fields. Conventional processing of wellhead natural gas yields processed natural gas containing at least a major amount of methane.
  • Large scale use of natural gas often requires a sophisticated and extensive pipeline system. Liquefaction has also been employed as a transportation means, but processes for liquefying, transporting, and revaporizing natural gas are complex, energy-intensive and require extensive safety precautions. Transport of natural gas has been a continuing problem in the exploitation of natural gas resources. It would be extremely valuable to be able to convert methane (e.g., natural gas) to more readily handleable or transportable products. Moreover, direct conversion to olefins, such as ethylene or propylene would be extremely valuable to the chemical industry.
  • A common method for methane conversion is a steam methane reforming performed at a high temperature of 600° C. to 840° C. at a high pressure of about 5 to 100 atmospheres in the presence of nickel or other metal based catalyst. The disadvantages of the steam methane reforming include the use of the catalyst, high pressure and temperature, which a) are costly to produce and b) require a sturdy reaction apparatus, and low yield of the method.
  • U.S. Pat. No. 5,093,542 discloses an alternative method of methane conversion, in which a gas containing methane and a gaseous oxidant is contacted with a nonacidic catalyst at temperatures within the range of about 700° to 1200° C. in the presence of a halogen promoter and in the substantial absence of alkali metals or their compounds. U.S. Pat. No. 4,962,261 discloses another alternative method of methane conversion to higher molecular weight hydrocarbons in a process using a catalyst containing boron, tin and zinc at temperatures ranging from 500 to 1000° C.
  • US 2004/0120887, US 2005/0045467, US 2003/0182862, U.S. Pat. No. 6,413,491 and GB 2,265,382 disclose other alternative methods of methane conversion.
  • Still, a need exists to develop low temperature methods for transforming methane and other organic compounds that do not necessarily require a metal catalyst, nor subject the organic compounds to excessive pressure.
  • SUMMARY
  • According to one embodiment, a method for transforming at least one organic compound comprises initiating a second order phase transition in a liquefied metal alloy; and exposing the at least one organic compound to an energy of the second order phase transition, wherein the exposing results in transforming the at least one organic compound.
  • According to another embodiment, a method of transforming at least one organic compound comprises passing a heat flow through a liquefied metal alloy; and then exposing the at least one organic compound to the heat flow, wherein the exposing results in transforming the at least one organic compounds.
  • Yet in another embodiment the invention provides an apparatus comprising a heat source; a liquefied metal alloy in thermal contact with the heat source; and a vessel containing at least one organic compound, wherein the at least one organic compound is in thermal contact with the alloy and wherein a heat flow from the heat source passes through the alloy to transform the at least one organic compound.
  • And in yet another embodiment, the invention provides an apparatus comprising a heat source; a liquefied metal alloy in thermal contact with the heat source; and means for passing at least one organic compound, wherein a heat flow from the heat source passes through the alloy to melt the alloy and to transform the at least one organic compound.
  • And yet in another embodiment, the invention provides a method of producing hydrogen, comprising passing a heat flow through a liquefied metal alloy, and then exposing at least one organic compound to the heat flow, wherein the exposing results in producing hydrogen from the at least one organic compound.
  • DRAWINGS
  • FIG. 1 schematically illustrates one embodiment of an apparatus for transforming organic compounds.
  • DETAILED DESCRIPTION
  • Unless otherwise specified “a” or “an” means one or more.
  • The inventor has discovered that a heat flow passed through a melted metal alloy can transform the organic compound.
  • The inventor has also discovered that organic compounds can be transformed by being exposed to an energy of the second order phase transition initiated in a melted metal alloy.
  • The transformation of the organic compounds in the above methods occurs without contacting them with a metal catalyst, without directly exposing the organic compounds to high temperatures above 500° C. and without exposing the organic compounds to an excessive pressure above the atmospheric pressure.
  • Metal Alloy
  • The metal alloy can be a metal alloy with a low melting temperature. For instance, the melting temperature of the alloy can be below 200° C., such as below 150° C. The melting temperature can be either liquidus temperature of the alloy or solidus temperature of the alloy.
  • The metal alloy can be an alloy comprising one or more metals selected from metals of the 5th period of the periodic table, such as Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd. Ag, Cd, In, Sn, Sb, Te, and I, and metals having an atomic number higher than 79, such as Hg, Ti, Pb and Bi. Preferably, the metal alloy does not comprise radioactive isotopes. Preferably, the metal alloy comprises one or metals of the 5th period of the periodic table and one or more metals having an atomic number ranging from 80 to 83.
  • In some embodiments, the metal alloy can comprise Bi and Sn. In some embodiments, the metal alloy can further comprise Pb. Examples of such alloys include Wood's alloy (50% Bi, 13.3% Sn, 26.7% Pb, 10% Cd), which has a melting temperature around 70° C. and Rose's alloy (50% Bi, 25% Sn, 25% Pb), which has a melting temperature around 100° C. Other alloys that comprise Bi and Sn can also be used.
  • Initiating a second order transition in the metal can involve heating the alloy above its melting temperature. The initiation of the second order transition can further include stirring the metal alloy.
  • Passing a heat flow through the metal alloy can involve heating the metal alloy above its melting temperature to a temperature above 60° C. In some embodiments, the temperature of the metal alloy can be from about 80° C. to about 175° C. Yet, in some cases the temperature of the alloy can be above 175° C. The temperature of alloy can be, for example, from 300° C. to 450° C. or from 320° C. to 400° C. or from 360° C. to 410° C.
  • Organic Compound
  • The organic compound can be any organic compound. The organic compound can be an organic compound having an unsaturated C—H bond. Examples of such organic compounds are a hydrocarbons such as alkanes or cycloalkanes.
  • The transformation of an organic compound means that, as the result of the exposure to the heat flow passed through the metal alloy, one or more products that have a chemical structure different from the starting organic compound are formed. The transformation of an organic compound can be direct or indirect, i.e. the transformation can be a direct or indirect result of exposing the organic compound to the heat flow that passed through the metal alloy. For example, the transformation of hydrocarbons, such as alkanes or cycloalkanes, can involve their decomposition into products that comprise hydrogen as a direct result of the exposure to the heat flow that passed through the metal alloy. The products of the direct transformation can be used for transforming one or more additional organic compounds. For example, hydrogen formed in the hydrocarbon transformation can be used for transforming a substituted nitrocompound into a substituted aminocompound. Such a transformation is an example of the indirect transformation.
  • In some embodiments, the organic compound or compounds to be transformed can be a raw hydrocarbon material, such as raw oil or natural gas. For such a transformation, the exposure of the hydrocarbon material can last from 0.1 to 50 seconds or from 0.2 to 12 seconds or from 2 to 40 seconds.
  • When exposed to the heat flow that passed through the metal alloy, the raw hydrocarbon material can be in a liquid phase at a temperature ranging from 80 to 175° C. In some embodiments, the raw hydrocarbon material can provided in a zone of exposure to the heat flow together with ballast materials that can increase the heat and mass transfer of the raw hydrocarbon material. The ballast materials can be metals, ceramics or other inert materials that do not react with the raw hydrocarbon material. Preferably, the ballast materials do not change a viscosity of the raw hydrocarbon material.
  • The products of the raw hydrocarbon material transformation can have a molecular weight different that the starting hydrocarbons. The products can comprise a light fraction, i.e. hydrocarbons having a molecular weight lighter than the starting raw material and enriched with hydrogen, and a heavy fraction, i.e. hydrocarbons having a molecular weight heavier than the starting raw material. To separate the light fraction from the heavy one, the former can be evaporated and then condensed using an appropriate cooling system in a separate volume. The heavy fraction can be removed from an area of exposure to the heat flow in a liquid state.
  • The exposure to the heat flow that passed through the liquefied metal alloy can be periodic or continuous. The continuous exposure means that an entire amount of organic compounds to be transformed is supplied to a zone of exposure to the heat flow that passed through the metal alloy continuously, i.e. without interruptions. The periodic exposure means that the exposure includes at least two exposure periods separated by a non-exposure period, i.e. a period when the organic compound is not exposed to the heat flow passed through the metal alloy. The periodic exposure can be accomplished by interrupting the organic compounds' supply to an area exposed to the heat flow.
  • Apparatus
  • The apparatus for transforming at least organic compound includes a heat source, a metal alloy in thermal contact with a heat source and a device for passing the at least one organic compound. The device for passing the at least one organic compound can be any vessel, conduit or chamber that can expose the organic compound passing through to the heat flow that passed through the metal alloy. For example, the vessel or conduit that has an inlet for supplying one or more organic compounds to be transformed and an outlet for removing the products of transformation. Such a vessel or conduit can be, for example, a pipe. In some embodiments, to maximize the exposure of the organic compound to the heat flow, the pipe can have a spiral shape. In some embodiments, the vessel can be immersed in the liquefied metal alloy. In some embodiments, the organic compound and the metal alloy are not in direct physical contact. For example, the organic compound passing through the vessel can be separated from the metal alloy by one or more vessel walls. Such vessel walls can be made of non-magnetic metal comprising steel, copper or copper alloys such as brass. Preferably, the walls do not comprise materials that are permanent magnets. The thickness of the walls can range from 0.1 to 10 mm.
  • The vessel can have any volume chosen depending on an amount of organic compounds desired to be transformed.
  • To prevent it from oxidation, the melted metal alloy in the apparatus can be protected from a surrounding environment. For example, the metal alloy can be sealed in the apparatus from the surrounding environment.
  • The heat source can be a heat source of any type. The heat source can have an intensity of at least 30 kW/m2, preferably of at least 35 kW/m2. In some embodiments, the heat source can be a jacket heated by burner gases. The heat source may also comprise resistance heater(s), heat lamp(s), radio frequency heating coil(s) etc.
  • The heat source can be separated from the alloy by, for example, a wall. The material of such a wall can be, for example, steel. The wall can also comprise any non-ferromagnetic material. The thickness of the wall can range from about 0.1 to about 10 mm.
  • In some embodiments, the apparatus can further comprise a stirrer immersed in the metal alloy. Such a stirrer can be an anchor stirrer or nozzle equipped impeller.
  • In some embodiments, the apparatus can further comprise a cooling system coupled to the vessel. The cooling system can be used for condensing an evaporated fraction of transformation products.
  • The invention is further illustrated by, though in no way limited to, the following examples.
  • WORKING EXAMPLES Transformation of Methane
  • FIG. 1 schematically illustrates an apparatus for methane transformation into water and carbon. In FIG. 1, reactor vessel 1 has a volume ranging from 0.5 to 10 liters and steel walls with a thickness ranging from 0.1 to 10 mm. A spiral pipe 2 is placed at the bottom of the reactor 1. The spiral pipe 2 can be made of steel. The spiral pipe can also be made of any non-ferromagnetic material. The reactor 1 is filled with the metal alloy 5. The twisted part of the spiral pipe 2 is completely immersed in the metal alloy. A thickness of the metal alloy above the last twisted segment of the spiral pipe is preferably no less than 0.04 m. Preferably, the reactor 1 is hermetically sealed because moisture in the surrounding air can cause oxidation of the metal alloy 5. A heating gas conduit 3 is placed at the outer side of the reactor 1.
  • After heating up the metal alloy 5 to a temperature of 80 to 175° C. to melt the alloy, the stirrer 4 located underneath the spiral pipe 2 is turned on. The stirrer 4 can be an anchor stirrer having a frequency ranging from 60 to 120 Hz, or a nozzle equipped impeller having a frequency ranging from 150 to 300 Hz.
  • After letting the stirrer 4 run for approximately 15 minutes in the heated reactor 1, methane is introduced into the spiral pipe 2 through inlet 6. Methane supply rate is selected to be such that methane can pass through the spiral pipe in 0.2-12 seconds. Although the present invention is not limited by a particular theory, heating and stirring is believed to cause an imitation of a phase transition in the metal alloy. The energy of the phase transition is believed transform methane into carbon and hydrogen (CH4->2H2+C), which are removed through pipe outlet 7.
  • Transformation of Orthonitrotoluene
  • The apparatus depicted in FIG. 1 can be also used for transforming orthonitrotoluene into orthoaminotoluene. For performing this transformation, a mixture that includes 1.5 mole of methane per 1 mole of orthonitrotoluene is introduced in the inlet 6 of the pipe 2 after heating the metal alloy to a temperature ranging from 80 to 175° C. and stirring the metal alloy for 15 minutes. The transformation products of the mixture include 2 moles of water, 1 mole of ortho-aminotoluene and 1 mole of carbon per one mole of orthonitrotoluene in the mixture.
  • Although the foregoing refers to particular preferred embodiments, it will be understood that the present invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the present invention.
  • All of the publications, patent applications and patents cited in this specification are incorporated herein by reference in their entirety.

Claims (45)

1. A method for transforming at least one organic compound, comprising
(A) initiating a second order phase transition in a melted metal alloy; and
(B) exposing the at least one organic compound to an energy of the second order phase transition, wherein the exposing results in transforming the at least one organic compound.
2. The method of claim 1, wherein the alloy comprises one or more metals selected from metals of the 5th period of the periodic table and non-radioactive elements having an atomic number higher than 79.
3. The method of claim 2, wherein the alloy is an alloy comprising Bi and Sn.
4. The method of claim 2, wherein the alloy is Wood's alloy or Rose's alloy.
5. (canceled)
6. The method of claim 1, wherein the initiating comprises heating the alloy to a temperature ranging from 80° C. to 175° C. to melt the alloy.
7. The method of claim 6, wherein the initiating further comprises stirring the alloy.
8. (canceled)
9. The method of claim 1, wherein the at least one organic compound comprises at least one alkane.
10. The method of claim 9, wherein the at least one organic compound comprises methane.
11. The method of claim 10, wherein the at least one organic compound further comprises an aromatic nitrocompound.
12. The method of claim 11, wherein the aromatic nitrocompound is ortho-nitrotoluene and wherein the transforming comprises transforming the aromatic nitrocompound into an aromatic aminocompound upon the exposing.
13. The method of claim 1, wherein the exposing results in decomposing said at least one organic compound into products comprising hydrogen.
14. The method of claim 1, wherein the at least one organic compound and the metal alloy are not in direct physical contact.
15. The method of claim 14, wherein, during the exposing, said metal alloy is separated from said at least one organic compound by a steel wall having a thickness ranging from 0.1 mm to 10 mm.
16. The method of claim 1, wherein said at least one organic compound is not exposed to a metal catalyst.
17. The method of claim 1, said at least one organic compound is not subjected to an additional pressure.
18-21. (canceled)
22. A method of transforming at least one organic compound, comprising
passing a heat flow through a melted metal alloy; and then
exposing the at least one organic compound to the heat flow to transform the at least one organic compound.
23. The method of claim 22, wherein the metal alloy comprises one or more metals selected from metals of the 5th period of the periodic table and non-radioactive elements having an atomic number higher than 79.
24. The method of claim 23, wherein the alloy is an alloy comprising Bi and Sn.
25. The method of claim 24, wherein the metal alloy is Wood's alloy or Rose's alloy.
26-27. (canceled)
28. The method of claim 22, wherein the at least one organic compound comprises at least one alkane.
29. The method of claim 28, wherein the at least one organic compound comprises methane.
30. The method of claim 29, wherein the at least one organic compound further comprises an aromatic nitrocompound.
31. The method of claim 30, wherein the aromatic nitrocompound is ortho-nitrotoluene and the aromatic nitrocompound transforms into an aromatic aminocompound upon the exposing.
32. The method of claim 22, wherein the exposing the at least one organic compound results in decomposing the at least one organic compound in products comprising hydrogen.
33. The method of claim 22, wherein the at least one organic compound and the metal alloy are not in direct physical contact.
34. The method of claim 33, wherein the alloy is separated from the at least one organic compound by a steel wall having a thickness ranging from 0.1 mm to 10 mm.
35. The method of claim 22, wherein the at least one or more organic compound material are not exposed to a metal catalyst.
36. The method of claim 22, wherein the at least one organic compound is not subjected to an additional pressure.
37-38. (canceled)
39. An apparatus comprising
a heat source;
a low melting temperature metal alloy in thermal contact with the heat source; and
a vessel adapted to provide at least one organic compound, wherein in use the at least one organic compound is in thermal contact with the alloy and wherein a heat flow from the heat source passes through the alloy to transform the at least one organic compound.
40. The apparatus of claim 39, wherein the alloy comprises one or more metals selected from metals of the 5th period of the periodic table and non-radioactive elements having an atomic number higher than 79.
41. The apparatus of claim 40, wherein the alloy is an alloy comprising Bi and Sn.
42. The apparatus of claim 40, wherein the metal alloy is Wood's alloy or Rose's alloy.
43-44. (canceled)
45. The apparatus of claim 39, wherein the alloy and the at least one organic compound are not in direct physical contact.
46. The apparatus of claim 45, wherein the alloy and the at least one organic material are separated by a wall having a thickness ranging from 0.1 mm to 10 mm.
47. (canceled)
48. The apparatus of claim 39, the vessel is a pipe immersed into the alloy.
49. (canceled)
50. The apparatus of claim 39, further comprising a stirrer immersed into the alloy.
51-79. (canceled)
US12/089,615 2005-10-10 2006-10-10 Methods for transforming organic compounds using a liquefied metal alloy and related apparatus Abandoned US20090071873A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
UA200509452 2005-10-10
UAA200509452A UA74762C2 (en) 2005-10-10 2005-10-10 A method for obtaining hydrogen
UA200509544 2005-10-11
UAA200509544A UA74763C2 (en) 2005-10-11 2005-10-11 A method for obtaining ortho-aminotoluene
PCT/US2006/039269 WO2007044592A2 (en) 2005-10-10 2006-10-10 Methods for transforming organic compounds using a liquefied metal alloy and related apparatus

Publications (1)

Publication Number Publication Date
US20090071873A1 true US20090071873A1 (en) 2009-03-19

Family

ID=37943425

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/089,615 Abandoned US20090071873A1 (en) 2005-10-10 2006-10-10 Methods for transforming organic compounds using a liquefied metal alloy and related apparatus

Country Status (7)

Country Link
US (1) US20090071873A1 (en)
EP (1) EP1945565A4 (en)
JP (1) JP2009514805A (en)
KR (1) KR20080090385A (en)
CA (1) CA2625579A1 (en)
EA (1) EA200801064A1 (en)
WO (1) WO2007044592A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344300A (en) * 2015-11-16 2016-02-24 徐海恩 Raw material circulation mixing reactor

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850742A (en) * 1971-10-05 1974-11-26 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US3852188A (en) * 1971-10-05 1974-12-03 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US4780109A (en) * 1986-12-24 1988-10-25 Ashland Oil, Inc. Coal water suspensions involving carbon black
US4962261A (en) * 1988-06-20 1990-10-09 Uop Process for upgrading methane to higher carbon number hydrocarbons
US5000101A (en) * 1989-05-25 1991-03-19 Wagner Anthony S Hazardous waste reclamation process
US5093542A (en) * 1985-05-24 1992-03-03 Atlantic Richfield Company Methane conversion process
US5244565A (en) * 1990-08-17 1993-09-14 Uop Integrated process for the production of distillate hydrocarbon
US5286380A (en) * 1990-05-14 1994-02-15 Petroleum Technology Corporation Apparatus for contaminated oil reclamation
US5302282A (en) * 1990-08-17 1994-04-12 Uop Integrated process for the production of high quality lube oil blending stock
US5322547A (en) * 1992-05-05 1994-06-21 Molten Metal Technology, Inc. Method for indirect chemical reduction of metals in waste
US5435814A (en) * 1992-08-13 1995-07-25 Ashland Inc. Molten metal decomposition apparatus
US5447628A (en) * 1993-11-15 1995-09-05 Texaco Inc. Reconstituting lubricating oil
US5577346A (en) * 1990-06-21 1996-11-26 Ashland Inc. Multi-zone molten-metal hydrogen and fuel gas generation process
US5619806A (en) * 1996-02-26 1997-04-15 Warren; David W. Drying of fiber webs
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
US5755839A (en) * 1995-04-19 1998-05-26 Ashland, Inc. Molten metal reactor swing system and process
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US6048447A (en) * 1998-02-19 2000-04-11 Marathon Ashland Petroleum Llc Asphalt compositions containing solvent deasphalted bottoms and rerefined lube oil bottoms, and their preparation
US6068759A (en) * 1998-02-19 2000-05-30 Marathon Ashland Petroleum Llc Process for recovering lube oil base stocks from used motor oil formulations, asphalt blend compositions containing used motor oil bottoms from said process, and asphalt pavement compositions containing said asphalt blend compositions
US6110239A (en) * 1996-05-31 2000-08-29 Marathon Ashland Petroleum Llc Molten metal hydrocarbon gasification process
US6231640B1 (en) * 1998-06-09 2001-05-15 Marathon Ashland Petroleum Llc Dissolving petroleum coke in molten iron to recover vanadium metal
US6235253B1 (en) * 1998-06-09 2001-05-22 Marathon Ashland Petroleum, Llc Recovering vanadium oxides from petroleum coke by melting
US6241806B1 (en) * 1998-06-09 2001-06-05 Marathon Ashland Petroleum, Llc Recovering vanadium from petroleum coke as dust
US6254652B1 (en) * 1995-04-13 2001-07-03 Marathon Ashland Petroleum Llc At least three-step molten metal decomposition process cycle
US6284214B1 (en) * 1998-06-09 2001-09-04 Marathon Ashland Petroleum Llc Low or no slag molten metal processing of coke containing vanadium and sulfur
US6315802B1 (en) * 1995-04-13 2001-11-13 Marathon Ashland Petroleum Llc H2S production from a molten metal reactor
US6350289B1 (en) * 1995-04-13 2002-02-26 Marathon Ashland Petroleum Llc Two-zone molten metal hydrogen-rich and carbon monoxide-rich gas generation process
US6402938B1 (en) * 2000-05-23 2002-06-11 Marathon Ashland Petroleum Llc Vaporization of used motor oil with non-hydrogenating recycle vapor
US6402937B1 (en) * 2000-05-22 2002-06-11 Marathon Ashland Petroleum Llc “Pumped” recycle vapor
US6413491B1 (en) * 1999-01-13 2002-07-02 Toyota Jidosha Kabushiki Kaisha Reformer, method of reforming, and fuel cell system equipped with the reformer
US6447672B1 (en) * 1998-02-19 2002-09-10 Marathon Ashland Pertoleum Llc Continuous plural stage heated vapor injection process for recovering lube oil base stocks from used motor oil formulations, and asphalt blend compositions containing used motor oil bottoms from said process
US20030182862A1 (en) * 2000-10-18 2003-10-02 Walter Jager Method for obtaining hydrogen from hydrocarbons
US6717026B2 (en) * 2001-02-27 2004-04-06 Clean Technologies International Corporation Molten metal reactor utilizing molten metal flow for feed material and reaction product entrapment
US20040120887A1 (en) * 2001-05-15 2004-06-24 Yasushi Sekine Method and apparatus for liquid-phase reforming of hydrocarbon or oxygen-containing compound
US20050045467A1 (en) * 2003-09-03 2005-03-03 King Fahd University Of Petroleum And Minerals Method for the conversion of methane into hydrogen and higher hydrocarbons using UV laser
US7052661B1 (en) * 2002-01-31 2006-05-30 Envi Res Llc Method for abatement of mercury emissions from combustion gases
US7150822B1 (en) * 2003-09-04 2006-12-19 Dtx Technologies Llc Five degrees for separation
US7220348B1 (en) * 2004-07-27 2007-05-22 Marathon Ashland Petroleum Llc Method of producing high softening point pitch
US7241377B2 (en) * 2003-09-04 2007-07-10 Dtx Technologies, Llc Salt bath refining
US7318890B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Pitch fractionation and high softening point pitch
US7318891B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Noah's pitch process
US7341656B1 (en) * 2004-07-26 2008-03-11 Marathon Ashland Petroleum Co. Llc Continuous oxidation and distillation process of heavier hydrocarbon materials

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927843B1 (en) * 1969-02-17 1974-07-22
BE789722A (en) * 1971-10-05 1973-04-05 Exxon Research Engineering Co PROCESS FOR CRACKING A HYDROCARBON CHARGE
JPS5844108B2 (en) * 1978-04-28 1983-09-30 三井造船株式会社 Method and apparatus for thermal decomposition of hydrocarbons
JPS5815587A (en) * 1981-07-20 1983-01-28 Mitsui Eng & Shipbuild Co Ltd Reaction tube arrangement in pyrolysis furnace
DE3207475A1 (en) * 1982-03-02 1983-09-15 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING AROMATIC AMINES
DE4428017A1 (en) * 1994-08-08 1996-02-15 Bayer Ag Process for the preparation of aromatic amines
US5767165A (en) * 1995-03-16 1998-06-16 Steinberg; Meyer Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions
AU1081197A (en) * 1996-11-22 1998-06-10 Ashland Inc. Molten metal reactor and process
JP2000093547A (en) * 1998-09-21 2000-04-04 Ngk Insulators Ltd Method for rendering chlorine-containing organic matter harmless
CN100358880C (en) * 2001-11-20 2008-01-02 国际壳牌研究有限公司 A process and systems for the epoxidation of an olefin
JP2004074061A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852188A (en) * 1971-10-05 1974-12-03 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US3850742A (en) * 1971-10-05 1974-11-26 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US5093542A (en) * 1985-05-24 1992-03-03 Atlantic Richfield Company Methane conversion process
US4780109A (en) * 1986-12-24 1988-10-25 Ashland Oil, Inc. Coal water suspensions involving carbon black
US4962261A (en) * 1988-06-20 1990-10-09 Uop Process for upgrading methane to higher carbon number hydrocarbons
US5000101A (en) * 1989-05-25 1991-03-19 Wagner Anthony S Hazardous waste reclamation process
US5556548A (en) * 1990-05-14 1996-09-17 Interline Hydrocarbon Inc. Process for contaminated oil reclamation
US5286380A (en) * 1990-05-14 1994-02-15 Petroleum Technology Corporation Apparatus for contaminated oil reclamation
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US5577346A (en) * 1990-06-21 1996-11-26 Ashland Inc. Multi-zone molten-metal hydrogen and fuel gas generation process
US5244565A (en) * 1990-08-17 1993-09-14 Uop Integrated process for the production of distillate hydrocarbon
US5302282A (en) * 1990-08-17 1994-04-12 Uop Integrated process for the production of high quality lube oil blending stock
US5322547A (en) * 1992-05-05 1994-06-21 Molten Metal Technology, Inc. Method for indirect chemical reduction of metals in waste
US5435814A (en) * 1992-08-13 1995-07-25 Ashland Inc. Molten metal decomposition apparatus
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
US5447628A (en) * 1993-11-15 1995-09-05 Texaco Inc. Reconstituting lubricating oil
US6315802B1 (en) * 1995-04-13 2001-11-13 Marathon Ashland Petroleum Llc H2S production from a molten metal reactor
US6254652B1 (en) * 1995-04-13 2001-07-03 Marathon Ashland Petroleum Llc At least three-step molten metal decomposition process cycle
US6350289B1 (en) * 1995-04-13 2002-02-26 Marathon Ashland Petroleum Llc Two-zone molten metal hydrogen-rich and carbon monoxide-rich gas generation process
US5755839A (en) * 1995-04-19 1998-05-26 Ashland, Inc. Molten metal reactor swing system and process
US5619806A (en) * 1996-02-26 1997-04-15 Warren; David W. Drying of fiber webs
US6110239A (en) * 1996-05-31 2000-08-29 Marathon Ashland Petroleum Llc Molten metal hydrocarbon gasification process
US6447672B1 (en) * 1998-02-19 2002-09-10 Marathon Ashland Pertoleum Llc Continuous plural stage heated vapor injection process for recovering lube oil base stocks from used motor oil formulations, and asphalt blend compositions containing used motor oil bottoms from said process
US6068759A (en) * 1998-02-19 2000-05-30 Marathon Ashland Petroleum Llc Process for recovering lube oil base stocks from used motor oil formulations, asphalt blend compositions containing used motor oil bottoms from said process, and asphalt pavement compositions containing said asphalt blend compositions
US6048447A (en) * 1998-02-19 2000-04-11 Marathon Ashland Petroleum Llc Asphalt compositions containing solvent deasphalted bottoms and rerefined lube oil bottoms, and their preparation
US6270657B1 (en) * 1998-02-19 2001-08-07 Marathon Ashland Petroleum Llc Asphalt blend compositions containing used motor oil and asphalt pavement compositions containing said asphalt blend compositions
US6235253B1 (en) * 1998-06-09 2001-05-22 Marathon Ashland Petroleum, Llc Recovering vanadium oxides from petroleum coke by melting
US6284214B1 (en) * 1998-06-09 2001-09-04 Marathon Ashland Petroleum Llc Low or no slag molten metal processing of coke containing vanadium and sulfur
US6241806B1 (en) * 1998-06-09 2001-06-05 Marathon Ashland Petroleum, Llc Recovering vanadium from petroleum coke as dust
US6231640B1 (en) * 1998-06-09 2001-05-15 Marathon Ashland Petroleum Llc Dissolving petroleum coke in molten iron to recover vanadium metal
US6413491B1 (en) * 1999-01-13 2002-07-02 Toyota Jidosha Kabushiki Kaisha Reformer, method of reforming, and fuel cell system equipped with the reformer
US6402937B1 (en) * 2000-05-22 2002-06-11 Marathon Ashland Petroleum Llc “Pumped” recycle vapor
US6402938B1 (en) * 2000-05-23 2002-06-11 Marathon Ashland Petroleum Llc Vaporization of used motor oil with non-hydrogenating recycle vapor
US20030182862A1 (en) * 2000-10-18 2003-10-02 Walter Jager Method for obtaining hydrogen from hydrocarbons
US6717026B2 (en) * 2001-02-27 2004-04-06 Clean Technologies International Corporation Molten metal reactor utilizing molten metal flow for feed material and reaction product entrapment
US20040120887A1 (en) * 2001-05-15 2004-06-24 Yasushi Sekine Method and apparatus for liquid-phase reforming of hydrocarbon or oxygen-containing compound
US7052661B1 (en) * 2002-01-31 2006-05-30 Envi Res Llc Method for abatement of mercury emissions from combustion gases
US20050045467A1 (en) * 2003-09-03 2005-03-03 King Fahd University Of Petroleum And Minerals Method for the conversion of methane into hydrogen and higher hydrocarbons using UV laser
US7150822B1 (en) * 2003-09-04 2006-12-19 Dtx Technologies Llc Five degrees for separation
US7241377B2 (en) * 2003-09-04 2007-07-10 Dtx Technologies, Llc Salt bath refining
US7318890B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Pitch fractionation and high softening point pitch
US7318891B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Noah's pitch process
US7341656B1 (en) * 2004-07-26 2008-03-11 Marathon Ashland Petroleum Co. Llc Continuous oxidation and distillation process of heavier hydrocarbon materials
US7220348B1 (en) * 2004-07-27 2007-05-22 Marathon Ashland Petroleum Llc Method of producing high softening point pitch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344300A (en) * 2015-11-16 2016-02-24 徐海恩 Raw material circulation mixing reactor

Also Published As

Publication number Publication date
EA200801064A1 (en) 2009-02-27
WO2007044592A2 (en) 2007-04-19
WO2007044592A3 (en) 2007-08-16
CA2625579A1 (en) 2007-04-19
EP1945565A2 (en) 2008-07-23
JP2009514805A (en) 2009-04-09
EP1945565A4 (en) 2011-04-13
KR20080090385A (en) 2008-10-08

Similar Documents

Publication Publication Date Title
Kosinov et al. Reactivity, selectivity, and stability of zeolite‐based catalysts for methane dehydroaromatization
US6130260A (en) Method for converting natural gas to liquid hydrocarbons
US7282603B2 (en) Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds
JP2010520211A (en) Production of higher hydrocarbons from methane and bromine.
US20150158789A1 (en) Methods and Systems for Producing Liquid Hydrocarbons
RU2125538C1 (en) Method of producing synthetic gas (versions)
US20080161591A1 (en) Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds
US4982023A (en) Oxidation of methane to methanol
NL7907590A (en) METHOD FOR CONVERTING METHANE.
AU2015358565B2 (en) Direct incorporation of natural gas into hydrocarbon liquid fuels
US20080206129A1 (en) Methods for transforming compounds using a metal alloy and related apparatus
US20090071873A1 (en) Methods for transforming organic compounds using a liquefied metal alloy and related apparatus
US2762768A (en) Photochemical reaction of hydrocarbons
US7125913B2 (en) Partial oxidation reactors and syngas coolers using nickel-containing components
Olahova et al. Thermal decomposition of sulfur compounds and their role in coke formation during steam cracking of heptane
CA2557316A1 (en) Process and apparatus for the conversion of methane gas to higher hydrocarbons
US5214226A (en) Method and apparatus for the homogeneous conversion of methane
AU2002342075B2 (en) High temperature hydrocarbon cracking
EP2262733B1 (en) Method, apparatus and system for manufacture of a cyanide
Quah et al. Pyrolysis of liquefied petroleum gas assisted by radicals desorbed from mesh catalyst surface
CA2931610C (en) Methods and systems for producing liquid hydrocarbons
EP1720831A1 (en) Manufacture of higher hydrocarbons from methane, via methanesulfonic acid, sulfene, and other pathways
Vastola et al. Reactions of coal with atomic species
AU2004287874A1 (en) Manufacture of higher hydrocarbons from methane, via methanesulfonic acid, sulfene, and other pathways
JPH02221234A (en) Production of olefin

Legal Events

Date Code Title Description
AS Assignment

Owner name: FAIRSTOCK TECHNOLOGIES CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VYGONYAYLO, ALEXANDR IVANOVICH;REEL/FRAME:021578/0978

Effective date: 20080410

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION