JP2009514805A - Method and associated apparatus for converting organic compounds using liquefied metal alloys - Google Patents

Method and associated apparatus for converting organic compounds using liquefied metal alloys Download PDF

Info

Publication number
JP2009514805A
JP2009514805A JP2008535593A JP2008535593A JP2009514805A JP 2009514805 A JP2009514805 A JP 2009514805A JP 2008535593 A JP2008535593 A JP 2008535593A JP 2008535593 A JP2008535593 A JP 2008535593A JP 2009514805 A JP2009514805 A JP 2009514805A
Authority
JP
Japan
Prior art keywords
alloy
organic compound
exposure
metal alloy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008535593A
Other languages
Japanese (ja)
Other versions
JP2009514805A5 (en
Inventor
アレクサンドル イワノビッチ ビゴンヤイロ
Original Assignee
フェアストック テクノロジーズ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from UAA200509452A external-priority patent/UA74762C2/en
Priority claimed from UAA200509544A external-priority patent/UA74763C2/en
Application filed by フェアストック テクノロジーズ コーポレイション filed Critical フェアストック テクノロジーズ コーポレイション
Publication of JP2009514805A publication Critical patent/JP2009514805A/en
Publication of JP2009514805A5 publication Critical patent/JP2009514805A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

有機化合物は液化金属合金を通る熱流に曝露することにより変換することができる。有機化合物を変換するための方法および関連装置を提供する。

Figure 2009514805
Organic compounds can be converted by exposure to heat flow through the liquefied metal alloy. Methods and related apparatus for converting organic compounds are provided.
Figure 2009514805

Description

分野
本発明は、有機化合物を変換するための方法および装置に関し、より詳細には、液化金属合金を使用して有機化合物を変換するための方法および装置に関する。
FIELD The present invention relates to methods and apparatus for converting organic compounds, and more particularly to methods and apparatus for converting organic compounds using liquefied metal alloys.

関連特許出願の相互参照
本出願は、2005年10月10日に出願され、2006年1月16日に公開番号第UA 74,762 C2号として公開されたウクライナ特許出願第a200509452号(どちらも参照により全体が本明細書に組み込まれる)に対し優先権を主張する。本出願はまた、2005年10月11日に出願され、2006年1月16日に公開番号第UA 74,763 C2号として公開されたウクライナ特許出願第a200509544号(どちらも参照により全体が本明細書に組み込まれる)に対し優先権を主張する。
CROSS REFERENCE TO RELATED PATENT APPLICATIONS This application is a U.S. patent application a200509452 filed on 10 October 2005 and published as publication number UA 74,762 C2 on 16 January 2006 (both are incorporated by reference in their entirety) Are incorporated herein by reference). This application is also Ukrainian patent application a200509544 filed on 11 October 2005 and published on 16 January 2006 as publication number UA 74,763 C2, both of which are hereby incorporated by reference in their entirety. Claim priority).

背景
天然ガスは、主要なメタン源である。例えば、石炭鉱床に存在するまたは採掘作業中に形成されるメタンなどの他のメタン源が燃料供給のために考えられている。様々な石油処理においても、比較的少量のメタンが生成される。
Background Natural gas is a major source of methane. Other methane sources, such as methane present in coal deposits or formed during mining operations, are contemplated for fuel supply. In various petroleum processes, relatively small amounts of methane are produced.

坑口での天然ガス組成は変動するが、その主炭化水素はメタンである。例えば、天然ガスのメタン量は、約40〜約95体積%の範囲内で変動する可能性がある。天然ガスの他の成分はエタン、プロパン、ブタン、ペンタン(およびより重い炭化水素)、硫化水素、二酸化炭素、ヘリウムおよび窒素を含む。   The natural gas composition at the wellhead fluctuates, but its main hydrocarbon is methane. For example, the amount of methane in natural gas can vary within the range of about 40 to about 95 volume percent. Other components of natural gas include ethane, propane, butane, pentane (and heavier hydrocarbons), hydrogen sulfide, carbon dioxide, helium and nitrogen.

天然ガスは、含まれる凝縮性炭化水素の量によって乾性または湿性に分類される。凝縮性炭化水素は一般に、3またはそれ以上の炭素原子を有する炭化水素を含むが、複数のエタンを含んでもよい。坑口ガスの組成を変化させるにはガス調節が必要であり、処理施設は通常生産現場またはその付近に配置される。坑口天然ガスの従来の処理では、少なくとも多量のメタンを含む処理天然ガスが得られる。   Natural gas is classified as dry or wet depending on the amount of condensable hydrocarbons contained. Condensable hydrocarbons generally include hydrocarbons having 3 or more carbon atoms, but may include multiple ethanes. Gas regulation is required to change the composition of the wellhead gas, and processing facilities are usually located at or near the production site. Conventional treatment of wellhead natural gas provides a treated natural gas containing at least a large amount of methane.

天然ガスの大規模使用ではしばしば、精巧な広域パイプラインシステムが必要である。輸送手段として液化もまた使用されているが、天然ガスの液化、輸送、および再気化のための過程は複雑で、エネルギー集約型であり、広範な安全対策が要求される。天然ガスの輸送は、天然ガス源の開発において未だ問題となっている。メタン(例えば、天然ガス)をより容易に取り扱うことができる、または輸送できる製品に転化できることは非常に有益である。さらに、エチレンまたはプロピレンなどのオレフィンへの直接転化は化学産業にとって非常に有益である。   Often, large scale use of natural gas requires an elaborate wide area pipeline system. Although liquefaction is also used as a means of transport, the process for liquefying, transporting, and revaporizing natural gas is complex, energy intensive, and requires a wide range of safety measures. Natural gas transport remains a problem in the development of natural gas sources. It would be very beneficial to be able to convert methane (eg natural gas) into a product that can be handled more easily or transported. Furthermore, direct conversion to olefins such as ethylene or propylene is very beneficial to the chemical industry.

メタン転化のための一般的な方法は、600℃〜840℃の高温、約5〜100気圧の高圧で、ニッケルまたは他の金属ベース触媒の存在下で実行される蒸気メタン改質である。蒸気メタン改質の欠点としては、触媒の使用、(a)生成させるのにコストがかかりかつ(b)頑丈な反応装置を必要とする高圧および高温、ならびに方法の収率の低さが挙げられる。   A common method for methane conversion is steam methane reforming carried out in the presence of nickel or other metal-based catalysts at a high temperature of 600 ° C. to 840 ° C. and a high pressure of about 5 to 100 atmospheres. Disadvantages of steam methane reforming include the use of catalysts, (a) high pressures and temperatures that are expensive to produce and (b) require rugged reactors, and low process yields. .

米国特許第5,093,542号(特許文献1)は、代替的メタン転化法を開示しているが、この方法では、メタンおよびガス状酸化剤を含むガスが、約700℃〜1200℃の範囲内の温度で、ハロゲン促進剤の存在下、実質的にアルカリ金属またはそれらの化合物の非存在下で、非酸性触媒と接触する。米国特許第4,962,261号(特許文献2)は、500〜1000℃の範囲の温度で、ホウ素、スズおよび亜鉛を含む触媒を使用する過程での、より高い分子量炭化水素へのメタンの別の代替的転化法を開示する。   US Pat. No. 5,093,542 discloses an alternative methane conversion process in which the gas containing methane and a gaseous oxidant is at a temperature in the range of about 700 ° C. to 1200 ° C. In contact with the non-acidic catalyst in the presence of a halogen promoter, substantially in the absence of alkali metals or their compounds. US Pat. No. 4,962,261 is another alternative of methane to higher molecular weight hydrocarbons in the process of using catalysts containing boron, tin and zinc at temperatures in the range of 500-1000 ° C. A conversion method is disclosed.

US 2004/0120887(特許文献3)、US 2005/0045467(特許文献4)、US 2003/0182862(特許文献5)、US 6,413,491(特許文献6)およびGB 2,265,382(特許文献7)は他の代替的メタン転化法を開示する。   US 2004/0120887 (patent document 3), US 2005/0045467 (patent document 4), US 2003/0182862 (patent document 5), US 6,413,491 (patent document 6) and GB 2,265,382 (patent document 7) are other alternatives. A methane conversion process is disclosed.

金属触媒を必ずしも必要とせず、有機化合物を超過圧力に供する必要のない、メタンおよび他の有機化合物を変換するための低温法を開発する必要性が未だに存在する。   There is still a need to develop a low temperature process for converting methane and other organic compounds that does not necessarily require a metal catalyst and does not require the organic compound to be subjected to overpressure.

米国特許第5,093,542号U.S. Pat.No. 5,093,542 米国特許第4,962,261号U.S. Pat.No. 4,962,261 US 2004/0120887US 2004/0120887 US 2005/0045467US 2005/0045467 US 2003/0182862US 2003/0182862 US 6,413,491US 6,413,491 GB 2,265,382GB 2,265,382

概要
1つの態様によれば、少なくとも1つの有機化合物を変換するための方法は、液化金属合金中で二次相転移を開始する工程;および、少なくとも1つの有機化合物を二次相転移のエネルギーに曝露する工程であって、曝露により少なくとも1つの有機化合物が変換される工程を含む。
Overview
According to one embodiment, a method for converting at least one organic compound comprises initiating a second order phase transition in a liquefied metal alloy; and exposing at least one organic compound to the energy of the second order phase transition. And wherein the exposure converts at least one organic compound.

別の態様によれば、少なくとも1つの有機化合物を変換するための方法は、液化金属合金に熱流を通す工程;および、その後、少なくとも1つの有機化合物を熱流に曝露する工程であって、曝露により少なくとも1つの有機化合物が変換される工程を含む。   According to another aspect, a method for converting at least one organic compound comprises passing a heat stream through a liquefied metal alloy; and thereafter exposing the at least one organic compound to the heat stream, the exposure comprising: Including the step of converting at least one organic compound.

さらに別の態様では、本発明は、熱源;熱源と熱的接触した液化金属合金;少なくとも1つの有機化合物を含む容器を備え、少なくとも1つの有機化合物が合金と熱的接触し、少なくとも1つの化合物を変換するために熱源からの熱流を合金に通す、装置を提供する。   In yet another aspect, the invention comprises a heat source; a liquefied metal alloy in thermal contact with the heat source; a container containing at least one organic compound, wherein the at least one organic compound is in thermal contact with the alloy, and the at least one compound. An apparatus is provided for passing a heat flow from a heat source through an alloy to convert the heat.

さらに別の態様では、本発明は、熱源;熱源と熱的接触した液化金属合金;少なくとも1つの有機化合物を通すための手段を備え、合金を溶融させて少なくとも1つの化合物を変換するために熱源からの熱流が合金を通る、装置を提供する。   In yet another aspect, the present invention comprises a heat source; a liquefied metal alloy in thermal contact with the heat source; means for passing at least one organic compound, and the heat source for melting the alloy to convert at least one compound An apparatus is provided in which heat flow from is passed through the alloy.

さらに別の態様では、本発明は、熱流を液化金属合金に通す工程、およびその後、少なくとも1つの有機化合物を熱流に曝露する工程であって、曝露により少なくとも1つの有機化合物から水素が生成する工程を含む、水素を生成させる方法を提供する。   In yet another aspect, the invention includes passing a heat stream through a liquefied metal alloy and then exposing the at least one organic compound to the heat stream, wherein the exposure generates hydrogen from the at least one organic compound. A method for producing hydrogen is provided.

詳細な説明
特記されない限り「1つの(「a」)」または「ある(「an」)」は1つまたは複数を意味する。
DETAILED DESCRIPTION Unless otherwise specified, “one (“ a ”)” or “an” (“an”) means one or more.

本発明者は、溶融金属合金を通る熱流が有機化合物を変換することができることを発見した。   The inventor has discovered that heat flow through a molten metal alloy can convert organic compounds.

本発明者はまた、溶融金属合金において開始される二次相転移のエネルギーに曝露することにより有機化合物を変換できることを発見した。   The inventor has also discovered that organic compounds can be converted by exposure to the energy of a secondary phase transition initiated in the molten metal alloy.

上記方法では、有機化合物を金属触媒と接触させずに、有機化合物を500℃を超える高温に直接曝露せずに、かつ有機化合物を大気圧を超える超過圧力に曝露せずに、有機化合物の変換が起こる。   In the above method, the organic compound is converted without contacting the organic compound with a metal catalyst, without directly exposing the organic compound to a high temperature exceeding 500 ° C., and without exposing the organic compound to an overpressure exceeding atmospheric pressure. Happens.

金属合金
金属合金は、融点が低い金属合金であり得る。例えば、合金の融点は200℃未満、例えば150℃未満であり得る。融点は合金の液相線温度または合金の固相線温度のいずれかであり得る。
Metal Alloy The metal alloy can be a metal alloy having a low melting point. For example, the melting point of the alloy can be less than 200 ° C, such as less than 150 ° C. The melting point can be either the liquidus temperature of the alloy or the solidus temperature of the alloy.

金属合金は、周期表の第5周期の金属、例えば、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、TeおよびI、ならびに79より大きな原子数を有する金属、例えば、Hg、Tl、PbおよびBiから選択される1つまたは複数の金属を含む合金であり得る。好ましくは、金属合金は放射性同位体を含まない。好ましくは、金属合金は周期表の第5周期の金属の1つまたは複数および80〜83の範囲の原子数を有する金属の1つまたは複数を含む。   Metal alloys are metals in the fifth period of the periodic table, e.g., Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te and I, and It can be a metal having an atomic number greater than 79, for example an alloy comprising one or more metals selected from Hg, Tl, Pb and Bi. Preferably, the metal alloy does not contain a radioisotope. Preferably, the metal alloy comprises one or more of the metals of the fifth period of the periodic table and one or more of the metals having an atomic number in the range of 80-83.

一部の態様では、金属合金はBiおよびSnを含み得る。一部の態様では、金属合金はさらにPbを含み得る。そのような合金の例としては、約70℃の融点を有するウッド合金(50% Bi、13.3% Sn、26.7% Pb、10% Cd)、および約100℃の融点を有するローズ合金(50% Bi、25% Sn、25% Pb)が挙げられる。BiおよびSnを含む他の合金もまた使用することができる。   In some embodiments, the metal alloy can include Bi and Sn. In some embodiments, the metal alloy can further include Pb. Examples of such alloys include wood alloys (50% Bi, 13.3% Sn, 26.7% Pb, 10% Cd) having a melting point of about 70 ° C. and rose alloys (50% Bi) having a melting point of about 100 ° C. 25% Sn, 25% Pb). Other alloys including Bi and Sn can also be used.

金属における二次転移の開始は、合金のその融点より高い温度での加熱を含み得る。二次転移の開始はさらに金属合金の撹拌を含み得る。   The initiation of the second order transition in the metal can include heating at a temperature above the melting point of the alloy. Initiation of the second order transition may further include stirring of the metal alloy.

金属合金に熱流を通す工程は、金属合金をその融点より高い温度〜60℃を超える温度まで加熱する工程を含み得る。一部の態様では、金属合金の温度は約80℃〜約175℃であり得る。さらに、一部の場合では、合金の温度は175℃を超えてもよい。合金の温度は、例えば、300℃〜450℃または320℃〜400℃または360℃〜410℃であり得る。   Passing the heat flow through the metal alloy may include heating the metal alloy to a temperature above its melting point to a temperature above 60 ° C. In some embodiments, the temperature of the metal alloy can be from about 80 ° C to about 175 ° C. Further, in some cases, the temperature of the alloy may exceed 175 ° C. The temperature of the alloy can be, for example, 300 ° C to 450 ° C or 320 ° C to 400 ° C or 360 ° C to 410 ° C.

有機化合物
有機化合物は、任意の有機化合物であり得る。有機化合物は不飽和C-H結合を有する有機化合物であり得る。そのような有機化合物の例はアルカンまたはシクロアルカンなどの炭化水素である。
Organic Compound The organic compound can be any organic compound. The organic compound can be an organic compound having an unsaturated CH bond. Examples of such organic compounds are hydrocarbons such as alkanes or cycloalkanes.

有機化合物の変換とは、金属合金を通る熱流への曝露の結果として、開始有機化合物とは異なる化学構造を有する1つまたは複数の生成物が形成されることを意味する。有機化合物の変換は直接的でも間接的でもよく、すなわち、変換は金属合金を通る熱流への有機化合物の曝露の直接的または間接的な結果であり得る。例えば、アルカンまたはシクロアルカンなどの炭化水素の変換は、金属合金を通る熱流への曝露の直接の結果としての、水素を含む生成物への分解を含み得る。直接変換の生成物を、1つまたは複数の別の有機化合物を変換するために使用することができる。例えば、炭化水素変換で形成された水素を使用して置換ニトロ化合物を置換アミノ化合物に変換することができる。そのような変換は間接変換の一例である。   Conversion of the organic compound means that one or more products having a different chemical structure from the starting organic compound are formed as a result of exposure to heat flow through the metal alloy. The conversion of the organic compound may be direct or indirect, i.e., the conversion may be a direct or indirect result of exposure of the organic compound to heat flow through the metal alloy. For example, the conversion of hydrocarbons such as alkanes or cycloalkanes can involve decomposition into products containing hydrogen as a direct result of exposure to heat flow through the metal alloy. The product of direct conversion can be used to convert one or more other organic compounds. For example, hydrogen formed by hydrocarbon conversion can be used to convert a substituted nitro compound to a substituted amino compound. Such conversion is an example of indirect conversion.

一部の態様では、変換される1つまたは複数の有機化合物は原料油または天然ガスなどの炭化水素原材料であり得る。そのような変換では、炭化水素材料の曝露を0.1〜50秒間または0.2〜12秒間または2〜40秒間持続させることができる。   In some embodiments, the one or more organic compounds to be converted can be hydrocarbon feedstocks such as feedstock or natural gas. In such a conversion, the exposure of the hydrocarbon material can last for 0.1-50 seconds or 0.2-12 seconds or 2-40 seconds.

金属合金を通る熱流に曝露されると、炭化水素原材料は80〜175℃の範囲の温度で液相となりうる。一部の態様では、炭化水素原材料の熱および物質移動を増加させることができるバラスト材料と共に、炭化水素原材料を熱流への曝露ゾーン内に供給することができる。バラスト材料とは、炭化水素原材料と反応しない金属、セラミックまたは他の不活性材料であり得る。好ましくは、バラスト材料は炭化水素原材料の粘度を変化させない。   When exposed to heat flow through the metal alloy, the hydrocarbon raw material can be in the liquid phase at temperatures in the range of 80-175 ° C. In some aspects, the hydrocarbon raw material can be fed into the heat flow exposure zone along with a ballast material that can increase the heat and mass transfer of the hydrocarbon raw material. The ballast material can be a metal, ceramic or other inert material that does not react with the hydrocarbon raw material. Preferably, the ballast material does not change the viscosity of the hydrocarbon raw material.

炭化水素原材料変換の生成物は開始炭化水素とは異なる分子量を有し得る。生成物は軽質留分、すなわち開始原材料よりも軽い分子量を有し、水素に富む炭化水素および重質留分、すなわち開始原材料よりも重い分子量を有する炭化水素を含み得る。軽質留分を重質留分から分離するために、前者を蒸発させ、その後、適当な冷却システムを使用して別個の体積に凝縮させることができる。重質留分は熱流への曝露領域から液体状態で除去することができる。   The product of the hydrocarbon feedstock conversion may have a different molecular weight than the starting hydrocarbon. The product has a lighter fraction, i.e., a lighter molecular weight than the starting raw material, and may include hydrocarbons rich in hydrogen and a heavy fraction, i.e., a hydrocarbon having a higher molecular weight than the starting raw material. In order to separate the light fraction from the heavy fraction, the former can be evaporated and then condensed to a separate volume using a suitable cooling system. Heavy fractions can be removed in liquid form from areas exposed to heat flow.

液化金属合金を通った熱流への曝露は周期的または連続的であり得る。連続的曝露とは、変換されるべき有機化合物の全量が、連続して、すなわち中断なく、金属合金を通った熱流への曝露ゾーンに供給されることを意味する。周期的曝露とは、非曝露期間、すなわち有機化合物が金属合金を通った熱流に曝露されない期間により隔てられた少なくとも2つの曝露期間を含むことを意味する。周期的曝露は熱流に曝露される領域への有機化合物の供給を中断することにより達成することができる。   Exposure to heat flow through the liquefied metal alloy can be periodic or continuous. Continuous exposure means that the entire amount of organic compound to be converted is supplied continuously, ie without interruption, to the exposure zone to the heat flow through the metal alloy. Cyclic exposure is meant to include at least two exposure periods separated by a non-exposure period, i.e., a period in which the organic compound is not exposed to heat flow through the metal alloy. Periodic exposure can be achieved by interrupting the supply of organic compounds to the area exposed to the heat flow.

装置
少なくとも1つの有機化合物を変換するための装置は、熱源;熱源と熱的接触した金属合金;少なくとも1つの有機化合物を通すための装置を備える。少なくとも1つの有機化合物を通すための装置は、金属合金を通る熱流に有機化合物を曝露することができる、任意の容器、コンジット、またはチャンバであり得る。例えば、変換させるべき1つまたは複数の有機化合物を供給するための入口と、変換生成物を除去するための出口とを有する容器またはコンジット。例えば、そのような容器またはコンジットは、例えば、管であり得る。一部の態様では、有機化合物の熱流への曝露を最大にするために、管はスパイラル形状を有し得る。
Apparatus An apparatus for converting at least one organic compound comprises a heat source; a metal alloy in thermal contact with the heat source; an apparatus for passing at least one organic compound. The apparatus for passing the at least one organic compound can be any container, conduit, or chamber that can expose the organic compound to a heat flow through the metal alloy. For example, a container or conduit having an inlet for supplying one or more organic compounds to be converted and an outlet for removing conversion products. For example, such a container or conduit can be, for example, a tube. In some aspects, the tube may have a spiral shape to maximize exposure of the organic compound to the heat flow.

一部の態様では、容器を液化金属合金中に浸漬することができる。   In some embodiments, the container can be immersed in the liquefied metal alloy.

一部の態様では、有機化合物と金属合金は物理的に直接接触していない。例えば、容器を通る有機化合物は、1つまたは複数の容器壁により金属合金から分離することができる。そのような容器壁は鋼、銅または黄銅などの銅合金を含む非磁性金属から製造することができる。好ましくは、壁は、永久磁石である材料を含まない。壁の厚さは0.1〜10mmであり得る。   In some embodiments, the organic compound and the metal alloy are not in direct physical contact. For example, the organic compound passing through the container can be separated from the metal alloy by one or more container walls. Such container walls can be made from nonmagnetic metals including copper alloys such as steel, copper or brass. Preferably, the wall does not include a material that is a permanent magnet. The wall thickness can be 0.1-10 mm.

容器は、変換することが望まれる有機化合物の量に応じて、任意の体積を有し得る。   The container may have any volume depending on the amount of organic compound that it is desired to convert.

酸化を防ぐために、装置中の溶融金属合金を周囲環境から保護することができる。例えば、金属合金は装置内で周囲環境から密閉することができる。   To prevent oxidation, the molten metal alloy in the device can be protected from the surrounding environment. For example, the metal alloy can be sealed from the ambient environment within the device.

熱源は任意の種類の熱源であり得る。熱源は少なくとも30kW/m2、好ましくは少なくとも35kW/m2の強度を有し得る。一部の態様では、熱源はバーナーガスにより加熱されるジャケットであり得る。熱源はまた、抵抗ヒーター、加熱ランプ、高周波加熱コイルなどを含んでもよい。 The heat source can be any type of heat source. The heat source may have an intensity of at least 30 kW / m 2 , preferably at least 35 kW / m 2 . In some aspects, the heat source can be a jacket heated by a burner gas. The heat source may also include a resistance heater, a heating lamp, a high frequency heating coil, and the like.

熱源は、例えば、壁により合金から分離することができる。そのような壁の材料は、例えば、鋼であり得る。壁はまた、任意の非強磁性材料を含み得る。壁の厚さは、約0.1〜約10mmの範囲であり得る。   The heat source can be separated from the alloy by walls, for example. Such a wall material can be, for example, steel. The wall can also include any non-ferromagnetic material. The wall thickness can range from about 0.1 to about 10 mm.

一部の態様では、装置はさらに、金属合金中に浸漬させた撹拌機を備えることができる。そのような撹拌機は、アンカースターラーまたはノズルが取り付けられたインペラであり得る。一部の態様では、装置はさらに、容器に結合させた冷却システムを含み得る。変換生成物の蒸発留分を凝縮するために冷却システムを使用することができる。   In some aspects, the apparatus can further comprise a stirrer immersed in the metal alloy. Such a stirrer can be an anchor stirrer or an impeller fitted with a nozzle. In some aspects, the apparatus may further include a cooling system coupled to the container. A cooling system can be used to condense the evaporation fraction of the conversion product.

本発明についてさらに下記実施例により説明するが、これらの実施例に限定されるわけではない。   The present invention is further illustrated by the following examples, but is not limited to these examples.

実施例
メタンの変換
図1はメタンを水および炭素に変換するための装置の概略図である。図1では、反応容器1は0.5〜10リットルの範囲の体積および0.1〜10mmの範囲の厚さを有する鋼壁を有する。スパイラル管2を反応器1の底に配置する。スパイラル管2は鋼で製造することができる。スパイラル管はまた、任意の非強磁性材料から製造することができる。反応器1を金属合金5で満たす。スパイラル管2のねじれた部分を金属合金に完全に浸漬させる。スパイラル管の最後のねじれセグメント上の金属合金の厚さは好ましくは0.04m以上である。好ましくは、反応器1は、周囲空気中の水分が金属合金5の酸化を引き起こすことがあるため、密閉される。加熱ガスコンジット3は反応器1の外側に配置される。
Example Conversion of Methane FIG. 1 is a schematic diagram of an apparatus for converting methane to water and carbon. In FIG. 1, the reaction vessel 1 has a steel wall having a volume in the range of 0.5 to 10 liters and a thickness in the range of 0.1 to 10 mm. A spiral tube 2 is placed at the bottom of the reactor 1. The spiral tube 2 can be made of steel. The spiral tube can also be made from any non-ferromagnetic material. Fill reactor 1 with metal alloy 5. The twisted portion of the spiral tube 2 is completely immersed in the metal alloy. The thickness of the metal alloy on the last twisted segment of the spiral tube is preferably 0.04 m or more. Preferably, the reactor 1 is sealed because moisture in ambient air can cause oxidation of the metal alloy 5. The heated gas conduit 3 is disposed outside the reactor 1.

金属合金5を80〜175℃の温度まで加熱し合金を溶融させた後、スパイラル管2の下に配置された撹拌機4を作動させる。撹拌機4は60〜120Hzの範囲の周波数を有するアンカースターラー、または150〜300Hzの範囲の周波数を有するノズルが取り付けられたインペラであり得る。   After the metal alloy 5 is heated to a temperature of 80 to 175 ° C. to melt the alloy, the stirrer 4 disposed under the spiral tube 2 is operated. The stirrer 4 can be an anchor stirrer having a frequency in the range of 60-120 Hz, or an impeller fitted with a nozzle having a frequency in the range of 150-300 Hz.

撹拌機4を加熱反応器1中で約15分間作動させた後、入口6を通してメタンをスパイラル管2中に導入する。メタン供給速度は、メタンが0.2〜12秒間でスパイラル管を通ることができるように選択される。本発明は特別な理論により制限されないが、加熱および撹拌が金属合金における相転移の模倣を引き起こすと考えられる。相転移のエネルギーはメタンを炭素および水素に変換させ(CH4->2H2+C)、これが管出口7を通して除去される。 After the stirrer 4 has been operated in the heated reactor 1 for about 15 minutes, methane is introduced into the spiral tube 2 through the inlet 6. The methane feed rate is selected so that methane can pass through the spiral tube in 0.2-12 seconds. Although the present invention is not limited by any particular theory, it is believed that heating and agitation causes imitation of phase transitions in metal alloys. Phase energy transition to convert the methane into carbon and hydrogen (CH 4 -> 2H 2 + C), which is removed through a tube outlet 7.

オルトニトロトルエンの変換
図1で示した装置はまた、オルトニトロトルエンをオルトアミノトルエンに変換するために使用することができる。この変換を実施するために、金属合金を80〜175℃の範囲の温度まで加熱し、金属合金を15分間撹拌した後、オルトニトロトルエン1モルあたりメタン1.5モルを含む混合物を、管2の入口6に導入する。混合物の変換生成物は、オルトニトロトルエン1モルあたり、2モルの水、1モルのオルトアミノトルエンおよび1モルの炭素を混合物として含む。前記は特別な好ましい態様に関するが、本発明はそのように制限されないことは理解されると思われる。当業者であれば、開示した態様に対し様々な改変が可能であり、そのような改変は本発明の範囲内に含まれるものであると考えるであろう。
Orthonitrotoluene Conversion The apparatus shown in FIG. 1 can also be used to convert orthonitrotoluene to orthoaminotoluene. To carry out this transformation, the metal alloy is heated to a temperature in the range of 80-175 ° C., the metal alloy is stirred for 15 minutes, and then a mixture containing 1.5 moles of methane per mole of orthonitrotoluene is added to the inlet 6 of tube 2. To introduce. The conversion product of the mixture contains, as a mixture, 2 moles of water, 1 mole of orthoaminotoluene and 1 mole of carbon per mole of orthonitrotoluene. While the foregoing relates to particular preferred embodiments, it will be understood that the invention is not so limited. Those skilled in the art will recognize that various modifications can be made to the disclosed embodiments and that such modifications are intended to be included within the scope of the present invention.

本明細書で引用した出版物、特許出願および特許は全て、参照によりその全体が本明細書に組み入れられる。   All publications, patent applications and patents cited herein are hereby incorporated by reference in their entirety.

有機化合物を変換するための装置の1つの態様の概略図である。1 is a schematic diagram of one embodiment of an apparatus for converting organic compounds. FIG.

Claims (79)

(A)溶融金属合金において二次相転移を開始する工程;および
(B)少なくとも1つの有機化合物を二次相転移のエネルギーに曝露する工程であって、曝露により少なくとも1つの有機化合物を変換する工程
を含む、少なくとも1つの有機化合物を変換するための方法。
(A) initiating a secondary phase transition in the molten metal alloy; and
(B) A method for converting at least one organic compound comprising exposing at least one organic compound to energy of a second order phase transition, the method comprising converting at least one organic compound upon exposure.
合金が、周期表の第5周期の金属および79より大きな原子数を有する非放射性元素から選択される1つまたは複数の金属を含む、請求項1記載の方法。   2. The method of claim 1, wherein the alloy comprises one or more metals selected from metals of the fifth period of the periodic table and non-radioactive elements having an atomic number greater than 79. 合金が、BiおよびSnを含む合金である、請求項2記載の方法。   3. The method according to claim 2, wherein the alloy is an alloy containing Bi and Sn. 合金がウッド合金である、請求項2記載の方法。   The method of claim 2, wherein the alloy is a wood alloy. 合金がローズ合金である、請求項2記載の方法。   3. The method according to claim 2, wherein the alloy is a rose alloy. 開始工程が、合金を溶融させるために合金を80℃〜175℃の範囲の温度まで加熱する工程を含む、請求項1記載の方法。   The method of claim 1, wherein the initiating step comprises heating the alloy to a temperature in the range of 80 ° C. to 175 ° C. to melt the alloy. 開始工程が、合金を撹拌する工程をさらに含む、請求項6記載の方法。   The method of claim 6, wherein the initiating step further comprises the step of stirring the alloy. 開始工程が、金属合金を少なくとも35kW/m2の強度を有する熱流に曝露する工程を含む、請求項1記載の方法。 The method of claim 1, wherein the initiating step comprises exposing the metal alloy to a heat flow having a strength of at least 35 kW / m 2 . 少なくとも1つの有機化合物が少なくとも1つのアルカンを含む、請求項1記載の方法。   The method of claim 1, wherein the at least one organic compound comprises at least one alkane. 少なくとも1つの有機化合物がメタンを含む、請求項9記載の方法。   The method of claim 9, wherein the at least one organic compound comprises methane. 少なくとも1つの有機化合物が芳香族ニトロ化合物をさらに含む、請求項10記載の方法。   11. The method of claim 10, wherein the at least one organic compound further comprises an aromatic nitro compound. 芳香族ニトロ化合物がオルトニトロトルエンであり、変換が、曝露の際に芳香族ニトロ化合物を芳香族アミノ化合物に変換することを含む、請求項11記載の方法。   12. The method of claim 11, wherein the aromatic nitro compound is ortho nitrotoluene and the conversion comprises converting the aromatic nitro compound to an aromatic amino compound upon exposure. 曝露により、少なくとも1つの有機化合物が、水素を含む生成物に分解される、請求項1記載の方法。   2. The method of claim 1, wherein the exposure decomposes at least one organic compound into a product comprising hydrogen. 少なくとも1つの有機化合物と金属合金とが物理的に直接接触しない、請求項1記載の方法。   The method of claim 1, wherein the at least one organic compound and the metal alloy are not in direct physical contact. 曝露中、金属合金が、0.1mm〜10mmの厚さを有する鋼壁により少なくとも1つの有機化合物から分離される、請求項14記載の方法。   15. The method of claim 14, wherein during the exposure, the metal alloy is separated from at least one organic compound by a steel wall having a thickness of 0.1 mm to 10 mm. 少なくとも1つの有機材料が金属触媒に曝露されない、請求項1記載の方法。   The method of claim 1, wherein at least one organic material is not exposed to the metal catalyst. 少なくとも1つの有機材料がさらなる圧力に供されない、請求項1記載の方法。   The method of claim 1, wherein the at least one organic material is not subjected to further pressure. 曝露が0.2〜12秒間続く、請求項1記載の方法。   2. The method of claim 1, wherein the exposure lasts for 0.2-12 seconds. 曝露が2〜40秒間続く、請求項1記載の方法。   2. The method of claim 1, wherein the exposure lasts 2-40 seconds. 曝露が連続して実行される、請求項1記載の方法。   The method of claim 1, wherein the exposure is performed continuously. 曝露が周期的に実行される、請求項1記載の方法。   The method of claim 1, wherein the exposure is performed periodically. 溶融金属合金に熱流を通す工程;およびその後
少なくとも1つの有機化合物を変換するために少なくとも1つの有機化合物を熱流に曝露する工程
を含む、少なくとも1つの有機化合物を変換する方法。
A method of converting at least one organic compound comprising: passing a heat stream through a molten metal alloy; and then exposing the at least one organic compound to the heat stream to convert at least one organic compound.
金属合金が、周期表の第5周期の金属および79より大きな原子数を有する非放射性元素から選択される1つまたは複数の金属を含む、請求項22記載の方法。   23. The method of claim 22, wherein the metal alloy comprises one or more metals selected from metals of the fifth period of the periodic table and non-radioactive elements having an atomic number greater than 79. 合金が、BiおよびSnを含む合金である、請求項23記載の方法。   24. The method of claim 23, wherein the alloy is an alloy comprising Bi and Sn. 金属合金がウッド合金である、請求項24記載の方法。   25. The method of claim 24, wherein the metal alloy is a wood alloy. 金属合金がローズ合金である、請求項24記載の方法。   25. The method of claim 24, wherein the metal alloy is a rose alloy. 熱流が少なくとも35kW/m2の開始強度を有する、請求項22記載の方法。 Heat flow has a starting intensity of at least 35 kW / m 2, The method of claim 22. 少なくとも1つの有機化合物が少なくとも1つのアルカンを含む、請求項22記載の方法。   24. The method of claim 22, wherein the at least one organic compound comprises at least one alkane. 少なくとも1つの有機化合物がメタンを含む、請求項28記載の方法。   30. The method of claim 28, wherein the at least one organic compound comprises methane. 少なくとも1つの有機化合物が芳香族ニトロ化合物をさらに含む、請求項29記載の方法。   30. The method of claim 29, wherein the at least one organic compound further comprises an aromatic nitro compound. 芳香族ニトロ化合物がオルトニトロトルエンであり、曝露の際に、芳香族ニトロ化合物が芳香族アミノ化合物に変換される、請求項30記載の方法。   32. The method of claim 30, wherein the aromatic nitro compound is orthonitrotoluene and upon exposure, the aromatic nitro compound is converted to an aromatic amino compound. 少なくとも1つの有機化合物を曝露することにより、少なくとも1つの有機化合物が、水素を含む生成物中で分解される、請求項22記載の方法。   24. The method of claim 22, wherein the at least one organic compound is decomposed in the product comprising hydrogen by exposing the at least one organic compound. 少なくとも1つの有機化合物と金属合金とが物理的に直接接触しない、請求項22記載の方法。   24. The method of claim 22, wherein the at least one organic compound and the metal alloy are not in direct physical contact. 合金が、0.1mm〜10mmの厚さを有する鋼壁により少なくとも1つの有機化合物から分離される、請求項33記載の方法。   34. The method of claim 33, wherein the alloy is separated from at least one organic compound by a steel wall having a thickness of 0.1 mm to 10 mm. 少なくとも1つまたは複数の有機材料が金属触媒に曝露されない、請求項22記載の方法。   24. The method of claim 22, wherein at least one or more organic materials are not exposed to the metal catalyst. 少なくとも1つがさらなる圧力に供されない、請求項22記載の方法。   24. The method of claim 22, wherein at least one is not subjected to further pressure. 曝露が連続して実行される、請求項22記載の方法。   24. The method of claim 22, wherein the exposure is performed continuously. 曝露が周期的に実行される、請求項22記載の方法。   24. The method of claim 22, wherein the exposure is performed periodically. 熱源;
熱源と熱的接触した低融点金属合金;および
少なくとも1つの有機化合物を供給するように適合された容器
を備え、
使用時に少なくとも1つの有機化合物が合金と熱的接触し、少なくとも1つの有機化合物を変換するために熱源からの熱流が合金を通る、装置。
Heat source;
A low melting point metal alloy in thermal contact with a heat source; and a container adapted to supply at least one organic compound;
An apparatus wherein, in use, at least one organic compound is in thermal contact with the alloy and a heat flow from a heat source passes through the alloy to convert the at least one organic compound.
合金が、周期表の第5周期の金属および79より大きな原子数を有する非放射性元素から選択される1つまたは複数の金属を含む、請求項39記載の装置。   40. The apparatus of claim 39, wherein the alloy comprises one or more metals selected from metals of the fifth period of the periodic table and non-radioactive elements having an atomic number greater than 79. 合金が、BiおよびSnを含む合金である、請求項40記載の装置。   41. The apparatus of claim 40, wherein the alloy is an alloy comprising Bi and Sn. 金属合金がウッド合金である、請求項40記載の装置。   41. The apparatus of claim 40, wherein the metal alloy is a wood alloy. 金属合金がローズ合金である、請求項40記載の装置。   41. The apparatus of claim 40, wherein the metal alloy is a rose alloy. 動作中は熱源が少なくとも35kW/m2の強度を有する、請求項39記載の装置。 During operation the heat source has at least intensity of 35 kW / m 2, apparatus according to claim 39. 合金と少なくとも1つの有機化合物とが物理的に直接接触しない、請求項39記載の装置。   40. The apparatus of claim 39, wherein the alloy and at least one organic compound are not in direct physical contact. 合金と少なくとも1つの有機材料とが、0.1mm〜10mmの厚さを有する壁により分離される、請求項45記載の装置。   46. The apparatus of claim 45, wherein the alloy and the at least one organic material are separated by a wall having a thickness of 0.1 mm to 10 mm. 壁が鋼壁である、請求項45記載の装置。   46. The apparatus of claim 45, wherein the wall is a steel wall. 容器が合金中に浸漬された管である、請求項39記載の装置。   40. The apparatus of claim 39, wherein the container is a tube immersed in the alloy. 管がスパイラル管である、請求項40記載の装置。   41. The apparatus of claim 40, wherein the tube is a spiral tube. 合金に浸漬された撹拌機をさらに備えた、請求項39記載の装置。   40. The apparatus of claim 39, further comprising a stirrer immersed in the alloy. 撹拌機がアンカースターラーまたはインペラである、請求項50記載の装置。   51. The apparatus of claim 50, wherein the agitator is an anchor stirrer or impeller. 合金が容器内で周囲環境から密閉される、請求項39記載の装置。   40. The apparatus of claim 39, wherein the alloy is sealed from the ambient environment within the container. 熱源;
熱源と熱的接触し、動作中は溶融金属合金である、金属合金;および
少なくとも1つの有機化合物を熱源からの熱流に曝露するための手段
を備え、少なくとも1つの有機化合物を変換するために熱流を溶融合金に通す、装置。
Heat source;
A metal alloy that is in thermal contact with a heat source and is in operation a molten metal alloy; and means for exposing at least one organic compound to a heat flow from the heat source, wherein the heat flow is for converting at least one organic compound Passing the molten alloy through the equipment.
合金が、周期表の第5周期の金属および79より大きな原子数を有する非放射性元素から選択される1つまたは複数の金属を含む、請求項53記載の装置。   54. The apparatus of claim 53, wherein the alloy comprises one or more metals selected from metals of the fifth period of the periodic table and non-radioactive elements having an atomic number greater than 79. 合金が、BiおよびSnを含む合金である、請求項54記載の装置。   55. The apparatus of claim 54, wherein the alloy is an alloy comprising Bi and Sn. 合金がウッド合金である、請求項55記載の装置。   56. The apparatus of claim 55, wherein the alloy is a wood alloy. 合金がローズ合金である、請求項55記載の装置。   56. The apparatus of claim 55, wherein the alloy is a rose alloy. 動作中、熱源が少なくとも35kW/m2の強度を有する、請求項53記載の装置。 During operation, the heat source has at least intensity of 35 kW / m 2, apparatus according to claim 53, wherein. 合金と少なくとも1つの有機材料とが物理的に直接接触しない、請求項53記載の装置。   54. The apparatus of claim 53, wherein the alloy and the at least one organic material are not in direct physical contact. 合金と少なくとも1つの有機材料とが、0.1mm〜10mmの厚さを有する壁により分離される、請求項59記載の装置。   60. The apparatus of claim 59, wherein the alloy and the at least one organic material are separated by a wall having a thickness of 0.1 mm to 10 mm. 壁が鋼壁である、請求項60記載の装置。   61. The apparatus of claim 60, wherein the wall is a steel wall. 合金に浸漬された撹拌機をさらに備えた、請求項53記載の装置。   54. The apparatus of claim 53, further comprising a stirrer immersed in the alloy. 撹拌機がアンカースターラーまたはインペラである、請求項62記載の装置。   63. Apparatus according to claim 62, wherein the agitator is an anchor stirrer or impeller. 熱流を溶融金属合金に通す工程、およびその後、
少なくとも1つの有機化合物を熱流に曝露する工程であって、曝露により少なくとも1つの有機化合物から水素を生成する、工程
を含む、水素を生成する方法。
Passing the heat flow through the molten metal alloy, and then
A method of producing hydrogen, comprising exposing at least one organic compound to a heat flow, wherein the exposure generates hydrogen from the at least one organic compound.
合金が、周期表の第5周期の金属および79より大きな原子数を有する非放射性元素から選択される1つまたは複数の金属を含む、請求項64記載の方法。   65. The method of claim 64, wherein the alloy comprises one or more metals selected from metals of the fifth period of the periodic table and non-radioactive elements having an atomic number greater than 79. 合金が、BiおよびSnを含む合金である、請求項65記載の方法。   66. The method of claim 65, wherein the alloy is an alloy comprising Bi and Sn. 合金がウッド合金である、請求項66記載の方法。   68. The method of claim 66, wherein the alloy is a wood alloy. 合金がローズ合金である、請求項66記載の方法。   68. The method of claim 66, wherein the alloy is a rose alloy. 熱流が少なくとも35kW/m2の強度を有する、請求項64記載の方法。 Heat flow has at least intensity of 35 kW / m 2, The method of claim 64, wherein. 少なくとも1つの有機化合物が少なくとも1つのアルカンを含む、請求項64記載の方法。   65. The method of claim 64, wherein the at least one organic compound comprises at least one alkane. 少なくとも1つの有機化合物がメタンを含む、請求項70記載の方法。   72. The method of claim 70, wherein the at least one organic compound comprises methane. 少なくとも1つの有機化合物と金属合金とが物理的に直接接触しない、請求項64記載の方法。   65. The method of claim 64, wherein the at least one organic compound and the metal alloy are not in direct physical contact. 曝露中、複合材料が、0.1mm〜10mmの厚さを有する鋼壁により少なくとも1つの有機化合物から分離される、請求項72記載の方法。   73. The method of claim 72, wherein during the exposure, the composite material is separated from at least one organic compound by a steel wall having a thickness of 0.1 mm to 10 mm. 少なくとも1つの有機材料が金属触媒に曝露されない、請求項64記載の方法。   65. The method of claim 64, wherein at least one organic material is not exposed to the metal catalyst. 少なくとも1つの有機材料がさらなる圧力に供されない、請求項64記載の方法。   65. The method of claim 64, wherein the at least one organic material is not subjected to further pressure. 曝露が0.2〜12秒間続く、請求項64記載の方法。   65. The method of claim 64, wherein the exposure lasts for 0.2-12 seconds. 曝露が2〜40秒間続く、請求項64記載の方法。   65. The method of claim 64, wherein the exposure lasts 2-40 seconds. 曝露が連続して実行される、請求項64記載の方法。   65. The method of claim 64, wherein the exposure is performed continuously. 曝露が周期的に実行される、請求項64記載の方法。   65. The method of claim 64, wherein the exposure is performed periodically.
JP2008535593A 2005-10-10 2006-10-10 Method and associated apparatus for converting organic compounds using liquefied metal alloys Pending JP2009514805A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
UAA200509452A UA74762C2 (en) 2005-10-10 2005-10-10 A method for obtaining hydrogen
UAA200509544A UA74763C2 (en) 2005-10-11 2005-10-11 A method for obtaining ortho-aminotoluene
PCT/US2006/039269 WO2007044592A2 (en) 2005-10-10 2006-10-10 Methods for transforming organic compounds using a liquefied metal alloy and related apparatus

Publications (2)

Publication Number Publication Date
JP2009514805A true JP2009514805A (en) 2009-04-09
JP2009514805A5 JP2009514805A5 (en) 2009-12-03

Family

ID=37943425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008535593A Pending JP2009514805A (en) 2005-10-10 2006-10-10 Method and associated apparatus for converting organic compounds using liquefied metal alloys

Country Status (7)

Country Link
US (1) US20090071873A1 (en)
EP (1) EP1945565A4 (en)
JP (1) JP2009514805A (en)
KR (1) KR20080090385A (en)
CA (1) CA2625579A1 (en)
EA (1) EA200801064A1 (en)
WO (1) WO2007044592A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344300A (en) * 2015-11-16 2016-02-24 徐海恩 Raw material circulation mixing reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845504A (en) * 1971-10-05 1973-06-29
JPS4927843B1 (en) * 1969-02-17 1974-07-22
JPS54143407A (en) * 1978-04-28 1979-11-08 Mitsui Eng & Shipbuild Co Ltd Method and device for thermal cracking of hydrocarbons
JPS5815587A (en) * 1981-07-20 1983-01-28 Mitsui Eng & Shipbuild Co Ltd Reaction tube arrangement in pyrolysis furnace
JPS58159443A (en) * 1982-03-02 1983-09-21 バイエル・アクチエンゲゼルシヤフト Manufacture of aromatic amines
JPH0859570A (en) * 1994-08-08 1996-03-05 Bayer Ag Preparation of aromatic amine
JP2000093547A (en) * 1998-09-21 2000-04-04 Ngk Insulators Ltd Method for rendering chlorine-containing organic matter harmless
JP2001504431A (en) * 1996-11-22 2001-04-03 マラソン アッシュランド ペトロリウム エルエルシー Molten metal reactor and method
JP2004074061A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method
JP2005516900A (en) * 2001-11-20 2005-06-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Methods and systems for olefin epoxidation

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850742A (en) * 1971-10-05 1974-11-26 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US3852188A (en) * 1971-10-05 1974-12-03 Exxon Research Engineering Co Hydrocarbon cracking in a regenerable molten media
US5093542A (en) * 1985-05-24 1992-03-03 Atlantic Richfield Company Methane conversion process
US4780109A (en) * 1986-12-24 1988-10-25 Ashland Oil, Inc. Coal water suspensions involving carbon black
US4962261A (en) * 1988-06-20 1990-10-09 Uop Process for upgrading methane to higher carbon number hydrocarbons
US5167919A (en) * 1990-03-15 1992-12-01 Wagner Anthony S Waste treatment and metal reactant alloy composition
US5286380A (en) * 1990-05-14 1994-02-15 Petroleum Technology Corporation Apparatus for contaminated oil reclamation
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
DE69326472T2 (en) * 1990-06-21 2000-05-18 Ashland Inc., Ashland IMPROVED METAL QUICK BATH DEGREASING DEVICE AND METHOD
US5302282A (en) * 1990-08-17 1994-04-12 Uop Integrated process for the production of high quality lube oil blending stock
US5244565A (en) * 1990-08-17 1993-09-14 Uop Integrated process for the production of distillate hydrocarbon
US5324341A (en) * 1992-05-05 1994-06-28 Molten Metal Technology, Inc. Method for chemically reducing metals in waste compositions
US5435814A (en) * 1992-08-13 1995-07-25 Ashland Inc. Molten metal decomposition apparatus
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
US5447628A (en) * 1993-11-15 1995-09-05 Texaco Inc. Reconstituting lubricating oil
US5767165A (en) * 1995-03-16 1998-06-16 Steinberg; Meyer Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions
US6315802B1 (en) * 1995-04-13 2001-11-13 Marathon Ashland Petroleum Llc H2S production from a molten metal reactor
US6254652B1 (en) * 1995-04-13 2001-07-03 Marathon Ashland Petroleum Llc At least three-step molten metal decomposition process cycle
US6350289B1 (en) * 1995-04-13 2002-02-26 Marathon Ashland Petroleum Llc Two-zone molten metal hydrogen-rich and carbon monoxide-rich gas generation process
US5755839A (en) * 1995-04-19 1998-05-26 Ashland, Inc. Molten metal reactor swing system and process
US5619806A (en) * 1996-02-26 1997-04-15 Warren; David W. Drying of fiber webs
US6110239A (en) * 1996-05-31 2000-08-29 Marathon Ashland Petroleum Llc Molten metal hydrocarbon gasification process
US6068759A (en) * 1998-02-19 2000-05-30 Marathon Ashland Petroleum Llc Process for recovering lube oil base stocks from used motor oil formulations, asphalt blend compositions containing used motor oil bottoms from said process, and asphalt pavement compositions containing said asphalt blend compositions
US6447672B1 (en) * 1998-02-19 2002-09-10 Marathon Ashland Pertoleum Llc Continuous plural stage heated vapor injection process for recovering lube oil base stocks from used motor oil formulations, and asphalt blend compositions containing used motor oil bottoms from said process
US6048447A (en) * 1998-02-19 2000-04-11 Marathon Ashland Petroleum Llc Asphalt compositions containing solvent deasphalted bottoms and rerefined lube oil bottoms, and their preparation
US6241806B1 (en) * 1998-06-09 2001-06-05 Marathon Ashland Petroleum, Llc Recovering vanadium from petroleum coke as dust
US6235253B1 (en) * 1998-06-09 2001-05-22 Marathon Ashland Petroleum, Llc Recovering vanadium oxides from petroleum coke by melting
US6284214B1 (en) * 1998-06-09 2001-09-04 Marathon Ashland Petroleum Llc Low or no slag molten metal processing of coke containing vanadium and sulfur
US6231640B1 (en) * 1998-06-09 2001-05-15 Marathon Ashland Petroleum Llc Dissolving petroleum coke in molten iron to recover vanadium metal
JP2000203802A (en) * 1999-01-13 2000-07-25 Toyota Motor Corp Reformer
US6402937B1 (en) * 2000-05-22 2002-06-11 Marathon Ashland Petroleum Llc “Pumped” recycle vapor
US6402938B1 (en) * 2000-05-23 2002-06-11 Marathon Ashland Petroleum Llc Vaporization of used motor oil with non-hydrogenating recycle vapor
DE10051563A1 (en) * 2000-10-18 2002-05-02 Emitec Emissionstechnologie Process for the production of hydrogen from hydrocarbon
US6717026B2 (en) * 2001-02-27 2004-04-06 Clean Technologies International Corporation Molten metal reactor utilizing molten metal flow for feed material and reaction product entrapment
EP1391421A1 (en) * 2001-05-15 2004-02-25 Yasushi Sekine Method and apparatus for liquid phase reforming of hydrocarbon or oxygen-containing compound
US7052661B1 (en) * 2002-01-31 2006-05-30 Envi Res Llc Method for abatement of mercury emissions from combustion gases
US20050045467A1 (en) * 2003-09-03 2005-03-03 King Fahd University Of Petroleum And Minerals Method for the conversion of methane into hydrogen and higher hydrocarbons using UV laser
US7150822B1 (en) * 2003-09-04 2006-12-19 Dtx Technologies Llc Five degrees for separation
US7241377B2 (en) * 2003-09-04 2007-07-10 Dtx Technologies, Llc Salt bath refining
US7318890B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Pitch fractionation and high softening point pitch
US7318891B1 (en) * 2003-11-03 2008-01-15 Dtx Technologies Llc Noah's pitch process
US7341656B1 (en) * 2004-07-26 2008-03-11 Marathon Ashland Petroleum Co. Llc Continuous oxidation and distillation process of heavier hydrocarbon materials
US7220348B1 (en) * 2004-07-27 2007-05-22 Marathon Ashland Petroleum Llc Method of producing high softening point pitch

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927843B1 (en) * 1969-02-17 1974-07-22
JPS4845504A (en) * 1971-10-05 1973-06-29
JPS54143407A (en) * 1978-04-28 1979-11-08 Mitsui Eng & Shipbuild Co Ltd Method and device for thermal cracking of hydrocarbons
JPS5815587A (en) * 1981-07-20 1983-01-28 Mitsui Eng & Shipbuild Co Ltd Reaction tube arrangement in pyrolysis furnace
JPS58159443A (en) * 1982-03-02 1983-09-21 バイエル・アクチエンゲゼルシヤフト Manufacture of aromatic amines
JPH0859570A (en) * 1994-08-08 1996-03-05 Bayer Ag Preparation of aromatic amine
JP2001504431A (en) * 1996-11-22 2001-04-03 マラソン アッシュランド ペトロリウム エルエルシー Molten metal reactor and method
JP2000093547A (en) * 1998-09-21 2000-04-04 Ngk Insulators Ltd Method for rendering chlorine-containing organic matter harmless
JP2005516900A (en) * 2001-11-20 2005-06-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Methods and systems for olefin epoxidation
JP2004074061A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method

Also Published As

Publication number Publication date
KR20080090385A (en) 2008-10-08
EA200801064A1 (en) 2009-02-27
CA2625579A1 (en) 2007-04-19
EP1945565A4 (en) 2011-04-13
US20090071873A1 (en) 2009-03-19
WO2007044592A2 (en) 2007-04-19
EP1945565A2 (en) 2008-07-23
WO2007044592A3 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Kosinov et al. Reactivity, selectivity, and stability of zeolite‐based catalysts for methane dehydroaromatization
JP7250016B2 (en) Simultaneous reaction and separation of chemicals
Czernichowski GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases
EP1140738B1 (en) Method for converting natural gas to liquid hydrocarons
NL193831C (en) Process for the preparation of heavier hydrocarbons from light, gaseous hydrocarbons.
US20100030005A1 (en) Processes for producing higher hydrocarbons from methane and bromine
RU2125538C1 (en) Method of producing synthetic gas (versions)
CN106029613B (en) Method for producing aromatic hydrocarbons from natural gas and processing unit for implementing said method
US4249965A (en) Method of generating carrier gas
JP2021521329A (en) Methods for Producing Gas Mixtures Containing Carbon Monoxide and Carbon Dioxide for Use in Synthetic Reactions
US20080206129A1 (en) Methods for transforming compounds using a metal alloy and related apparatus
EP3127892A1 (en) System for manufacturing aromatic compound and method for manufacturing same
WO2020150005A1 (en) Methanol production process from syngas produced by catalytic partial oxidation integrated with cracking
JP2009514805A (en) Method and associated apparatus for converting organic compounds using liquefied metal alloys
JP2001354403A (en) Manufacturing method for mixture containing hydrogen and co
US7125913B2 (en) Partial oxidation reactors and syngas coolers using nickel-containing components
US20090114881A1 (en) Process for Conversion of Natural Gas to Syngas Using a Solid Oxidizing Agent
Schmidt‐Szałowski et al. Catalytic effects of metals on the conversion of methane in gliding discharges
US20140221711A1 (en) System and Process for Converting Natural Gas Into Saturated, Cyclic Hydrocarbons
Ostadi et al. Conceptual Design of a Once‐Through Gas‐to‐Liquid Process Combined with Ammonia Synthesis
RU2322385C2 (en) Method for producing synthetic gas
WO2023243547A1 (en) Liquid hydrocarbon production method and liquid hydrocarbon production device
AU2021403617B2 (en) A method for producing syngas using catalytic reverse water gas shift
Bodily et al. Microwave pyrolysis of coal and related hydrocarbons
WO2019236983A1 (en) Method for conversion of methane to ethylene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120815

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130422