US20090062812A1 - Detachable Coil Incorporating Stretch Resistance - Google Patents

Detachable Coil Incorporating Stretch Resistance Download PDF

Info

Publication number
US20090062812A1
US20090062812A1 US12/180,834 US18083408A US2009062812A1 US 20090062812 A1 US20090062812 A1 US 20090062812A1 US 18083408 A US18083408 A US 18083408A US 2009062812 A1 US2009062812 A1 US 2009062812A1
Authority
US
United States
Prior art keywords
implant
tether
stretch
coil
detachable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/180,834
Other languages
English (en)
Inventor
Matthew Fitz
Cathy Lei
Joseph Gulachenski
Maricruz Castaneda
Gary Currie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MicroVention Inc
Original Assignee
MicroVention Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40408664&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090062812(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MicroVention Inc filed Critical MicroVention Inc
Priority to US12/180,834 priority Critical patent/US20090062812A1/en
Assigned to MICROVENTION reassignment MICROVENTION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FITZ, MATTHEW, LEI, CATHY, CASTANEDA, MARICRUZ, CURRIE, GARY, GULACHENSKI, JOSEPH
Publication of US20090062812A1 publication Critical patent/US20090062812A1/en
Priority to US15/081,065 priority patent/US10076338B2/en
Priority to US16/103,838 priority patent/US11045205B2/en
Priority to US17/332,966 priority patent/US11918230B2/en
Priority to US18/594,849 priority patent/US20240197335A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/12Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12154Coils or wires having stretch limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/12Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/12Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/12Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12068Details concerning the detachment of the occluding device from the introduction device detachable by heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument

Definitions

  • the present invention relates to systems and methods for delivering implant devices to a target site or location within the body of a patient.
  • the present invention also relates to systems and methods for delivering a stretch-resistant implant and a method for attaching and detaching the implant to and from a delivery system.
  • vascular embolization has been used to control vascular bleeding, to occlude the blood supply to tumors, to occlude fallopian tubes, and to occlude vascular aneurysms, particularly intracranial aneurysms.
  • vascular embolization for the treatment of aneurysms has received much attention.
  • Microcoils work by filling an aneurysm causing the bloodflow through the aneurysm to slow or stop, thereby inducing thrombosis within the aneurysm.
  • Microcoils are extremely flexible and have very little structural integrity. In order to make them easier to retrieve and reposition, recent efforts have been directed to making them stretch-resistant.
  • a stretch-resistant embolic coil having a stretch-resistant member passing through the interior lumen of the coil is described in U.S. Pat. No. 5,582,619 to Ken.
  • US Patent Publication No. 2004/0034363 to Wilson also discloses an embolic coil with a stretch resistant member having a distal end attached near the distal end of the coil and a proximal end of the member attached to a delivery catheter.
  • the present invention is an implant delivery and detachment system used to position and deploy implantable devices such as coils, stents, filters, and the like within a body cavity including, but not limited to, blood vessels, fallopian tubes, malformations such as fistula and aneurysms, heart defects (e.g. left atrial appendages and sepal openings), and other luminal organs.
  • implantable devices such as coils, stents, filters, and the like within a body cavity including, but not limited to, blood vessels, fallopian tubes, malformations such as fistula and aneurysms, heart defects (e.g. left atrial appendages and sepal openings), and other luminal organs.
  • the system comprises an implant, a delivery catheter (generically referred to as the pusher or delivery pusher), a detachable joint for coupling the implant to the pusher, a heat generating apparatus (generically referred to as the heater), and a power source to apply energy to the heater.
  • a delivery catheter generically referred to as the pusher or delivery pusher
  • a detachable joint for coupling the implant to the pusher
  • a heat generating apparatus generatorically referred to as the heater
  • a power source to apply energy to the heater.
  • the present invention also includes an apparatus for delivering a stretch-resistant embolic coil and a method for attaching and detaching the coil to a delivery system.
  • the apparatus incorporates a coil and a stretch-resistant member with a distal end and a proximal end. In addition to providing stretch resistance, the member serves to detachably couple the implant coil to the delivery catheter.
  • the present invention may also be used in conjunction with the delivery mechanism disclosed in U.S. patent application Ser. No. 11/212,830 filed Aug. 25, 2005 entitled “Thermal detachment system for implanting devices,” which is incorporated by reference herein in its entirety.
  • the implant is coupled to the pusher using a tether, string, thread, wire, filament, fiber, or the like. Generically this is referred to as the tether.
  • the tether may be in the form of a monofilament, rod, ribbon, hollow tube, or the like.
  • One class of materials are polymers such as polyolefin, polyolefin elastomer such as those made by Dow marketed under the trade name Engage or Exxon marketed under the trade name Affinity, polyethylene, polyester (PET), polyamide (Nylon), polyurethane, polypropylene, block copolymer such as PEBAX or Hytrel, and ethylene vinyl alcohol (EVA); or rubbery materials such as silicone, latex, and Kraton.
  • the polymer may also be cross-linked with radiation to manipulate its tensile strength and melt temperature.
  • metals such as nickel titanium alloy (Nitinol), gold, and steel. The selection of the material depends on the capacity of the material to store potential energy, the melting or softening temperature, the power used for detachment, and the body treatment site.
  • the tether may be joined to the implant and/or the pusher by welding, knot tying, soldering, adhesive bonding, or other means known in the art.
  • the tether may run through the inside lumen of the coil and be attached to the distal end of the coil. This design not only joins the implant to the pusher, but also imparts stretch resistance to the coil without the use of a secondary stretch resistant member.
  • the implant is a coil, stent, or filter; the tether is attached to the proximal end of the implant.
  • the tether detachably coupling the implant to the pusher acts as a reservoir of potential energy that is released during detachment. This advantageously lowers the time and energy required to detach the implant because it allows the tether to be severed by application of heat without necessarily fully melting the material.
  • the stored energy also may exert a force on the implant that pushes it away from the delivery catheter. This separation tends to make the system more reliable because it may prevent the tether from re-solidifying and holding the implant after detachment.
  • a spring is disposed between the implant and pusher.
  • the spring is compressed when the implant is attached to the pusher by joining one end of the tether to one of either the pusher or implant, pulling the free end of the tether until the spring is at least partially compressed, then affixing the free end of the tether to the other of the implant or the pusher. Since both ends of the tether are restrained, potential energy in the form of tension on the tether (or compression in the spring) is stored within the system.
  • one end of the tether is fixed as in the previous embodiment, and then the tether is placed in tension by pulling on the free end of the tether with a pre-determined force or displacement.
  • the free end of the tether is then affixed, the elongation (i.e. elastic deformation) of the tether material itself stores energy.
  • a heater is disposed on or within the pusher, typically, but not necessarily, near the distal end of the pusher.
  • the heater may be attached to the pusher by, for example, soldering, welding, adhesive bonding, mechanical boding, or other techniques known in the art.
  • the heater may be in the form of a wound coil, heat pipe, hollow tube, band, hypotube, solid bar, toroid, or similar shape.
  • the heater may be made from a variety of materials such as steel, chromium cobalt alloy, platinum, silver, gold, tantalum, tungsten, mangalin, chromium nickel alloy available from California Fine Wire Company under the trade name Stable Ohm, conductive polymer, or the like.
  • the tether is disposed in proximity to the heater.
  • the tether may pass through the lumen of a hollow or coil-type heater or may be wrapped around the heater. Although the tether may be disposed in direct contact with the heater, this is not necessary. For ease of assembly, the tether may be disposed be in proximity to, but not actually touching, the heater.
  • the delivery catheter or pusher is an elongate member with distal and proximal ends adapted to allow the implant to be maneuvered to the treatment site.
  • the pusher comprises a core mandrel and one or more electrical leads to supply power to the heater.
  • the pusher may taper in dimension and/or stiffness along the length, with the distal end usually being more flexible than the proximal end.
  • the pusher is adapted to be telescopically disposed within a delivery conduit such as a guide catheter or microcatheter.
  • the pusher contains an inner lumen allowing it to be maneuvered over a guide wire.
  • the pusher can be maneuvered directly to the treatment site without a secondary device.
  • the pusher may have a radiopaque marking system visible with fluoroscopy that allows it to be used in conjunction with radiopaque markings on the microcatheter or other adjunctive devices.
  • the core mandrel is in the form of a solid or hollow shaft, wire, tube, hypotube, coil, ribbon, or combination thereof.
  • the core mandrel may be made from plastic materials such as PEEK, acrylic, polyamide, polyimide, Teflon, acrylic, polyester, block copolymer such as PEBAX, or the like.
  • the plastic member(s) may be selectively stiffened along the length with reinforcing fibers or wires made from metal, glass, carbon fiber, braid, coils, or the like.
  • metallic materials such as stainless steel, tungsten, chromium cobalt alloy, silver, copper, gold, platinum, titanium, nickel titanium alloy (Nitinol), and the like may be used to form the core mandrel.
  • ceramic components such as glass, optical fiber, zirconium, or the like may be used to form the core mandrel.
  • the core mandrel may also be a composite of materials.
  • the core mandrel comprises an inner core of radiopaque material such as platinum or tantalum and an outer covering of kink-resistant material such as steel or chromium cobalt.
  • radiopaque identifiers can be provided on the pusher without using secondary markers.
  • a core material for example stainless steel, with desirable material properties such as kink resistance and/or compressive strength is selectively covered (by, for example, plating, drawing, or similar methods known in the art) with a low electrical resistance material such as copper, aluminum, gold, or silver to enhance its electrical conductivity, thus allowing the core mandrel to be used as an electrical conductor.
  • a core material for example, glass or optical fiber, with desirable properties such as compatibility with Magnetic Resonance Imaging (MRI), is covered with a plastic material such as PEBAX or polyimide to prevent the glass from fracturing or kinking.
  • MRI Magnetic Resonance Imaging
  • the heater is attached to the pusher, and then one or more electrical conductors are attached to the heater.
  • a pair of conductive wires runs substantially the length of the pusher and is coupled to the heater near the distal end of the pusher and to electrical connectors near the proximal end of the pusher.
  • one conductive wire runs the substantially the length of the pusher and the core mandrel itself is made from a conductive material or coated with a conductive material to act as a second electrical lead. The wire and the mandrel are coupled to the heater near the distal end and to one or more connectors near the proximal end of the pusher.
  • a bipolar conductor is coupled to the heater and is used in conjunction with radiofrequency (RF) energy to power the heater.
  • the conductor(s) may run in parallel to the core mandrel or may pass through the inner lumen of a substantially hollow core mandrel (for example, a hypotube).
  • an electrical and/or thermally insulating cover or sleeve may be placed over the heater.
  • the sleeve may be made from insulating materials such as polyester (PET), Teflon, block copolymer, silicone, polyimide, polyamide, and the like.
  • electrical connector(s) are disposed near the proximal end of the pusher so that the heater can be electrically connected to a power source through the conductors.
  • the connectors are in the form of a plug with one or more male or female pins.
  • the connector(s) are tubes, pins, or foil that can be connected with clip-type connectors.
  • the connector(s) are tubes, pins, or foil that are adapted to mate with an external power supply.
  • the pusher connects to an external power source so that the heater is electrically coupled to the power source.
  • the power source may be from battery(s) or connected to the electrical grid by a wall outlet.
  • the power source supplies current in the form of direct current (DC), alternating current (AC), modulated direct current, or radiofrequency (RF) at either high or low frequency.
  • the power source may be a control box that operates outside of the sterile field or may be a hand-held device adapted to operate within a sterile field.
  • the power source may be disposable, rechargeable, or may be reusable with disposable or rechargeable battery(s).
  • the power source may comprise an electronic circuit that assists the user with detachment.
  • the circuit detects detachment of the implant and provides a signal to the user when detachment has occurred.
  • the circuit comprises a timer that provides a signal to the user when a pre-set length of time has elapsed.
  • the circuit monitors the number of detachments and provides a signal or performs an operation such as locking the system off when a pre-set number of detachments have been performed.
  • the circuit comprises a feedback loop that monitors the number of attachment attempts and increases the current, voltage, and/or detachment time in order to increase the likelihood of a successful detachment.
  • the construction of the system allows for extremely short detachment time.
  • the detachment time is less than 1 second.
  • the construction of the system minimizes the surface temperature of the device during detachment.
  • the surface temperature at the heater during detachment is under 50° C. In another embodiment, the surface temperature at the heater during detachment is under 42° C.
  • the implant device includes both a stretch-resistant attribute and the ability to detachably couple the device to the delivery catheter. This aspect of the present invention advantageously reduces the number of components and assembly steps required to build a stretch-resistant implant device.
  • tension is placed on a coupling portion of a stretch-resistant implant device while minimizing tension in a stretch-resistant portion of the same device.
  • tension may be placed on the device as described in U.S. patent application Ser. No. 11/212,830 during attachment of the implant device to the delivery catheter without placing excessive tension, which might distort the shape of the implant device (e.g., embolic coil), on the portion of the implant device that provides stretch-resistance.
  • FIG. 1 illustrates a cross-sectional side view of a first embodiment of a detachment system according to the present invention
  • FIG. 2 illustrates a cross-sectional side view of a second embodiment of a detachment system according to the present invention
  • FIG. 3A illustrates example direct signaling current according to the present invention
  • FIG. 3B illustrates example alternating signaling current according to the present invention
  • FIG. 4 illustrates a cross-sectional side view of a third embodiment of a detachment system according to the present invention
  • FIG. 5 illustrates example temperature data of the surface of a detachment system according to the present invention
  • FIG. 6 illustrates a cross-sectional side view of an electrical connector of a detachment system according to the present invention
  • FIG. 7 illustrates a cross-sectional side view of radiopaque layers of a detachment system according to the present invention.
  • FIG. 8 illustrates a cross-sectional side view of a detachment system including a stent according to the present invention
  • FIG. 9 illustrates a side elevation view of an embodiment of an implant according to the present invention.
  • the detachment system 100 includes a pusher 102 that is preferably flexible.
  • the pusher 102 is configured for use in advancing an implant device 112 into and within the body of a patient and, specifically, into a target cavity site for implantation and delivery of the implant device 112 .
  • Potential target cavity sites include but are not limited to blood vessels and vascular sites (e.g., aneurysms and fistula), heart openings and defects (e.g., the left atrial appendage), and other luminal organs (e.g., fallopian tubes).
  • a stretch-resistant tether 104 detachably couples the implant 112 to the pusher 102 .
  • the tether 104 is a plastic tube that is bonded to the pusher 102 .
  • a substantially solid cylinder could also be a design choice for the tether 104 .
  • the stretch resistant tether 104 extends at least partially through the interior lumen of an implant device 112 .
  • a heater 106 is disposed in proximity to the stretch resistant tether 104 .
  • the heater 106 may be wrapped around the stretch resistant tether 104 such that the heater 106 is exposed to or otherwise in direct contact with the blood or the environment, or alternatively may be insulated by a sleeve, jacket, epoxy, adhesive, or the like.
  • the pusher 102 comprises a pair of electrical wires, positive electrical wire 108 and negative electrical wire 110 .
  • the wires 108 and 110 are coupled to the heater 106 by any suitable means, such as, e.g., by welding or soldering.
  • the electrical wires 108 , 110 are capable of being coupled to a source of electrical power (not shown). As illustrated the negative electrical wire 110 is coupled to the distal end of the heater 106 and the positive electrical wire 108 is coupled to the proximal end of the heater 106 . In another embodiment, this configuration may be reversed, i.e., the negative electrical wire 110 is coupled to the proximal end of the heater 106 while the positive electrical wire 108 is coupled to the distal end of the heater 106 .
  • Energy is applied to the heater 106 from the electrical wires 108 , 110 in order to sever the portion of the tether 104 in the proximity of the heater 106 . It is not necessary for the heater 106 to be in direct contact with the tether 104 . The heater 106 merely should be in sufficient proximity to the tether 104 so that heat generated by the heater 106 causes the tether 104 to sever. As a result of activating the heater 106 , the section of the stretch resistant tether 104 that is approximately distal from the heater 106 and within the lumen of an implant device 112 is released from the pusher 102 along with the implant device 112 .
  • the implant device 112 is an embolic coil.
  • An embolic coil suitable for use as the implant device 112 may comprise a suitable length of wire formed into a helical microcoil.
  • the coil may be formed from a biocompatible material including platinum, rhodium, palladium, rhenium, tungsten, gold, silver, tantalum, and various alloys of these metals, as well as various surgical grade stainless steels. Specific materials include the platinum/tungsten alloy known as Platinum 479 (92% Pt, 8% W, available from Sigmund Cohn, of Mount Vernon, N.Y.) and nickel/titanium alloys (such as the nickel/titanium alloy known as Nitinol).
  • bimetallic wire comprising a highly elastic metal with a highly radiopaque metal.
  • a bimetallic wire would also be resistant to permanent deformation.
  • An example of such a bimetallic wire is a product comprising a Nitinol outer layer and an inner core of pure reference grade platinum, available from Sigmund Cohn, of Mount Vernon, N.Y., and Anomet Products, of Shrewsbury, Mass.
  • U.S. Pat. No. 6,605,101 provides a further description of embolic coils suitable for use as the implant device 112 , including coils with primary and secondary configurations wherein the secondary configuration minimizes the degree of undesired compaction of the coil after deployment.
  • the disclosure of U.S. Pat. No. 6,605,101 is fully incorporated herein by reference.
  • the implant device 112 may optionally be coated or covered with a hydrogel or a bioactive coating known in the art.
  • the coil-type implant device 112 resists unwinding because the stretch resistant tether 104 that extends through the lumen of the implant device 112 requires substantially more force to plastically deform than the implant device 112 itself.
  • the stretch resistant tether 104 therefore assists in preventing the implant device 112 from unwinding in situations in which the implant device 112 would otherwise unwind.
  • an optional spring 116 is placed between the heater 106 and the implant device 112 .
  • the spring is compressed during assembly and the distal end of the tether 104 may be tied or coupled to the distal end of the implant device 112 , or may be melted or otherwise formed into an atraumatic distal end 114 .
  • the stretch resistant tether 104 is made from a material such as a polyolefin elastomer, polyethylene, or polypropylene.
  • One end of the tether 104 is attached to the pusher 102 and the free end of the tether 104 is pulled through the implant 112 with the proximal end of the implant 112 flush to either the heater 106 (if no spring 116 is present) or to the compressed spring 116 .
  • a pre-set force or displacement is used to pre-tension the tether 104 , thus storing energy in an axial orientation (i.e. co-linear or parallel to the long axis of the pusher 102 ) within the tether 104 .
  • the force or displacement depends on the tether material properties, the length of the tether 104 (which itself depends on the tether's attachment point on the pusher and the length of the implant). Generally, the force is below the elastic limit of the tether material, but sufficient to cause the tether to sever quickly when heat is applied.
  • the tether has a diameter within the range of approximately 0.001 to 0.007 inches.
  • the size of the tether can be changed to accommodate different types and sizes of other implants as necessary.
  • FIG. 2 another embodiment of a detachment system of the present invention, detachment system 200 , is illustrated.
  • Detachment system 200 shares several common elements with detachment system 100 .
  • the same devices usable as the implant device 112 with detachment system 100 are also usable as the implant device 112 with detachment system 200 . These include, e.g., various embolic microcoils and coils.
  • the implant device 112 has been previously described with respect to detachment system 100 .
  • the same identification numbers are used to identify other elements/components of detachment system 100 that may correspond to elements/components of detachment system 200 . Reference is made to the description of these elements in the description of detachment system 100 as that description also applies to these common elements in detachment system 200 .
  • an interior heating element 206 is used to separate a section of a stretch resistant tube 104 and an associated implant device 112 from the detachment system 200 .
  • Detachment system 200 includes a delivery pusher 202 that incorporates a core mandrel 218 .
  • the detachment system 200 further includes a positive electrical wire 208 and a negative electrical wire 210 that extend through the lumen of the delivery pusher 202 .
  • the positive electrical wire 208 and the negative electrical wire 210 may be coupled to the core mandrel 218 of the delivery pusher 202 .
  • the electrical wires 208 , 210 are coupled to a distal portion of the core mandrel 218 .
  • the positive electrical wire 208 is coupled to a first distal location on the core wire 218
  • the negative electrical wire 210 is coupled to a second distal location on the core mandrel 218 , with the second distal location being proximal to the first distal location.
  • the configuration is reversed, i.e., the positive electrical wire 208 is coupled to the second distal location and the negative electrical wire 210 is coupled to the first distal location on the core mandrel 218 .
  • the distal portion of the core mandrel 218 forms a circuit that is the interior heating element 206 .
  • the heater 206 increases in temperature when a current is applied from a power source (not shown) that is coupled to the positive electrical wire 208 and the negative electrical wire 210 .
  • a power source not shown
  • the portion of the stretch resistant tether 104 in proximity to the heater 206 severs and is detached from the detachment system 200 along with the implant device 112 .
  • the heater 206 is located within the lumen of the tube-shaped tether 104 , the heater 206 is insulated from the body of the patient. As a result, the possibility of inadvertent damage to the surrounding body tissue due to the heating of the heater 206 may be reduced.
  • the proximal end of the stretch resistant tether 104 (or the distal end of a larger tube (not shown) coupled to the proximal end of the stretch resistant tether 104 ) may be flared in order to address size constraints and facilitate the assembly of the detachment system 200 .
  • energy may be stored within the system with, for example, an optional compressive spring 116 or by pre-tensioning the tether 104 during assembly as previously described.
  • the release of potential energy stored in the system operates to apply additional pressure to separate the implant device 112 , and the portion of the stretch resistant tether 104 to which the implant device 112 is coupled, away from the heater 206 when the implant device 112 is deployed. This advantageously lowers the required detachment time and temperature by causing the tether 104 to sever and break.
  • the distal end of the stretch resistant tether 104 of detachment system 200 may be tied or coupled to the distal end of the implant device 112 , or may be melted or otherwise formed into an atraumatic distal end 114 .
  • FIG. 4 illustrates another preferred embodiment of a detachment system 300 .
  • the detachment system 300 is similar to the detachment system 200 shown in FIG. 2 and detachment system 100 shown in FIG. 1 .
  • the detachment system 300 includes a delivery pusher 301 containing a heater 306 that detaches an implant device 302 .
  • Detachment system 300 also utilizes a tether 310 to couple the implant device 302 to the delivery pusher 301 .
  • a distal end of the delivery pusher 301 is seen to have a coil-shaped heater 306 that is electrically coupled to electrical wires 308 and 309 .
  • These wires 308 , 309 are disposed within the delivery pusher 301 , exiting at a proximal end of the delivery pusher 301 and coupling to a power supply (not shown).
  • the tether 310 is disposed in proximity to the heater 306 , having a proximal end fixed within the delivery pusher 301 and a distal end coupled to the implant device 302 . As current is applied through wires 308 and 309 , the heater 306 increases in temperature until the tether 310 breaks, releasing the implant device 302 .
  • an insulating cover 304 is included around at least the distal end of the outer surface of the delivery pusher 301 .
  • the thermal insulating properties also increase.
  • increased thickness also brings increased stiffness and a greater diameter to the delivery pusher 301 that could increase the difficulty of performing a delivery procedure.
  • the cover 304 is designed with a thickness that provides sufficient thermal insulating properties without overly increasing its stiffness.
  • the implant device 302 may include a collar member 322 welded to the implant device 302 at weld 318 and sized to fit within the outer reinforced circumference 312 of the delivery pusher 301 .
  • the tether 310 ties around the proximal end of the implant device 302 to form knot 316 . Further reinforcement is provided by an adhesive 314 that is disposed around the knot 316 to prevent untying or otherwise unwanted decoupling.
  • energy may be stored within the system with, for example, an optional compressive spring (similar to compressive spring 116 in FIG. 1 but not shown in FIG. 4 ) or by axially pre-tensioning the tether 104 during assembly.
  • an optional compressive spring similar to compressive spring 116 in FIG. 1 but not shown in FIG. 4
  • one end of the tether 310 is attached near the proximal end of the implant device 302 as previously described.
  • the free end of the tether 310 is threaded through a distal portion of the delivery pusher 301 until it reaches an exit point (not shown) of the delivery pusher 301 .
  • Tension is applied to the tether 310 in order to store energy in the form of elastic deformation within the tether material by, for example, placing a pre-determined force on the free end of the tether 310 or moving the taut tether 310 a pre-determined displacement.
  • the free end of the tether 310 is then joined to the delivery pusher 301 by, for example, tying a knot, applying adhesive, or similar methods known in the art.
  • the release of potential energy stored in the system operates to apply additional pressure to separate the implant device 302 , and the portion of the tether 310 to which the implant device 302 is coupled, away from the heater 306 when the implant device 302 is deployed. This advantageously lowers the required detachment time and temperature by causing the tether 310 to sever and break.
  • the present invention also provides for methods of using detachment systems such as detachment systems 100 , 200 , or 300 .
  • detachment systems 100 , 200 , or 300 The following example relates to the use of detachment system 100 , 200 , or 300 for occluding cerebral aneurysms. It will, however, be appreciated that modifying the dimensions of the detachment system 100 , 200 , or 300 and the component parts thereof and/or modifying the implant device 112 , 302 configuration will allow the detachment system 100 , 200 , or 300 to be used to treat a variety of other malformations within a body.
  • the delivery pusher 102 , 202 , or 301 of the detachment system 100 , 200 , or 300 may be approximately 0.010 inches to 0.030 inches in diameter.
  • the tether 104 , 310 that is coupled near the distal end of the delivery pusher 102 , 202 , or 301 and is coupled the implant device 112 , 302 may be 0.0002 inches to 0.020 inches in diameter.
  • the implant device 112 , 302 which may be a coil, may be approximately 0.005 inches to 0.020 inches in diameter and may be wound from 0.0005 inch to 0.005 inch wire.
  • the force used to separate the implant device 112 , 302 typically ranges up to 250 grams.
  • the delivery pusher 102 , 202 , or 301 may comprise a core mandrel 218 and at least one electrically conductive wire 108 , 110 , 208 , 210 , 308 , or 309 .
  • the core mandrel 218 may be used as an electrical conductor, or a pair of conductive wires may be used, or a bipolar wire may be used as previously described.
  • FIG. 8 illustrates the detachment system 300 as previously described in FIG. 4 having an implant that is a stent 390 .
  • This stent 390 could similarly be detached by a similar method as previously described in regards to the detachment systems 100 , 200 , and 300 .
  • the detachment systems 100 , 200 , or 300 may be used to deliver a filter, mesh, scaffolding or other medical implant suitable for delivery within a patient.
  • FIG. 7 presents an embodiment of a delivery pusher 350 , which could be used in any of the embodiments as delivery pusher 102 , 202 , or 301 , which includes radiopaque materials to communicate the position of the delivery pusher 350 to the user.
  • the radiopaque marker material is integrated into the delivery pusher 350 and varied in thickness at a desired location, facilitating easier and more precise manufacturing of the final delivery pusher 350 .
  • Prior delivery pusher designs such as those seen in U.S. Pat. No. 5,895,385 to Guglielmi, rely on high-density material such as gold, tantalum, tungsten, or platinum in the form of an annular band or coil.
  • the radiopaque marker is then bonded to other, less dense materials, such as stainless steel, to differentiate the radiopaque section. Since the radiopaque marker is a separate element placed at a specified distance (often about 3 cm) from the tip of the delivery pusher, the placement must be exact or the distal tip of the delivery pusher 350 can result in damage to the aneurysm or other complications. For example, the delivery pusher 350 may be overextended from the microcatheter to puncture an aneurysm. Additionally, the manufacturing process to make a prior delivery pusher can be difficult and expensive, especially when bonding dissimilar materials.
  • the radiopaque system of the present invention overcomes these disadvantages by integrating a first radiopaque material into most of the delivery pusher 350 while varying the thickness of a second radiopaque material, thus eliminating the need to bond multiple sections together.
  • the delivery pusher 350 comprises a core mandrel 354 (i.e. the first radiopaque material), preferably made from radiopaque material such as tungsten, tantalum, platinum, or gold (as opposed to the mostly radiolucent materials of the prior art designs such as steel, Nitinol, and Elgiloy).
  • the delivery pusher 350 also includes a second, outer layer 352 , having a different radiopaque level.
  • outer layer 352 is composed of a material having a lower radiopaque value than the core mandrel 354 , such as Elgiloy, Nitinol, or stainless steel (commercially available from Fort Wayne Metals under the trade name DFT).
  • both the core mandrel 354 and the outer layer 352 are visible and distinguishable from each other under fluoroscopy.
  • the outer layer 352 varies in thickness along the length of the delivery pusher 350 to provide increased flexibility and differentiation in radio-density. Thus the thicker regions of the outer layer 352 are more apparent to the user than the thinner regions under fluoroscopy.
  • the transitions in thickness of the outer layer 352 can be precisely created at desired locations with automated processes such as grinding, drawing, or forging. Such automated processes eliminate the need for hand measuring and placement of markers and further eliminates the need to bond a separate marker element to other radiolucent sections, thus reducing the manufacturing cost and complexity of the system.
  • the delivery pusher 350 includes three main indicator regions of the outer layer 352 .
  • a proximal region 356 is the longest of the three at 137 cm, while a middle region 358 is 10 cm and a distal region 360 is 3 cm.
  • the length of each region can be determined based on the use of the delivery pusher 350 .
  • the 3 cm distal region 360 may be used during a coil implant procedure, as known in the art, allowing the user to align the proximal edge of the distal region 360 with a radiopaque marker on the microcatheter within which the delivery pusher 350 is positioned.
  • the diameter of each of the regions depends on the application and size of the implant.
  • the proximal region 356 may typically measure 0.005-0.015 inches
  • the middle region 358 may typically measure 0.001-0.008 inches
  • the distal region 360 may typically measure 0.0005-0.010 inches.
  • the core mandrel 354 will typically comprise between about 10-80% of the total diameter of the delivery pusher 350 at any point.
  • the delivery pusher 350 may include any number of different regions greater than or less than the three shown in FIG. 7 .
  • the radiopaque material of the core mandrel 354 may only extend partially through the delivery pusher 350 .
  • the radiopaque material could extend from the proximal end of the core mandrel 354 to three centimeters from the distal end of the delivery pusher 350 , providing yet another predetermined position marker visible under fluoroscopy.
  • the regions 356 , 358 , and 360 of delivery pusher 350 provide a more precise radiopaque marking system that is easily manufactured, yet is readily apparent under fluoroscopy. Further, the increased precision of the markers may decrease complications relating to improper positioning of the delivery pusher during a procedure.
  • the microcatheter is positioned within a patient so that a distal end of the microcatheter is near a target area or lumen.
  • the delivery pusher 350 is inserted into the proximal end of the microcatheter and the core mandrel 354 and outer layer 352 are viewed under fluoroscopy.
  • the user aligns a radiopaque marker on the microcatheter with the beginning of the distal region 360 , which communicates the location of the implant 112 , 302 relative to the tip of the microcatheter.
  • the user may position the proximal end of the implant slightly within the distal end of the microcatheter during detachment. The user then may push the proximal end of the implant 112 , 302 out of the microcatheter with the next coil, an adjunctive device such as guidewire, or the delivery pusher 102 , 202 , 301 , or 350 . In another embodiment, the user may use the radiopaque marking system to locate the distal end of the delivery pusher outside the distal end of the microcatheter.
  • the operator may repeatedly reposition the implant device 112 , 302 as necessary or desired.
  • the electrical power source for the energy may be any suitable source, such as, e.g., a wall outlet, a capacitor, a battery, and the like.
  • electricity with a potential of approximately 1 volt to 100 volts is used to generate a current of 1 milliamp to 5000 milliamps, depending on the resistance of the detachment system 100 , 200 , or 300 .
  • the connector system 400 includes an electrically conductive core mandrel 412 having a proximal end surrounded by an insulating layer 404 .
  • the insulating layer 404 is an insulating sleeve such as a plastic shrink tube of polyolefin, PET, Nylon, PEEK, Teflon, or polyimide.
  • the insulating layer 404 may also be a coating such as polyurethane, silicone, Teflon, paralyene.
  • An electrically conductive band 406 is disposed on top of the insulating layer 404 and secured in place by molding bands 414 , adhesive, or epoxy.
  • the conductive band 406 is preferably composed of any electrically conductive material, such as silver, gold, platinum, steel, copper, conductive polymer, conductive adhesive, or similar materials, and can be a band, coil, or foil.
  • Gold is especially preferred as the conductive material of the conductive band 406 because of the ability of gold to be drawn into a thin wall and its ready availability.
  • the core mandrel 412 has been previously described and may be plated with, for example, gold, silver, copper, or aluminum to enhance its electrical conductivity.
  • the connector system 400 also includes two electrical wires 408 and 410 which connect to the conductive band 406 and core member 412 , respectively, and to a heating element at the distal end of a delivery system such as those described in FIGS. 1 , 2 , and 4 (not shown in FIG. 6 ). These wires 408 and 410 are preferably connected by soldering, brazing, welding, laser bonding, or conductive adhesive, or similar techniques.
  • a first electrical clip or connector from a power source is connected to a non-insulated section 402 of the core mandrel 412 and a second electrical clip or connector from the power source is connected to the conductive band 406 .
  • Electrical power is applied to the first and second electrical clips, forming an electrical circuit within the detachment system 100 , 200 , or 300 , causing the heater 106 , 206 , or 306 to increase in temperature and sever the tether 104 , 310 .
  • the user may apply a voltage or current as previously described. This causes the heater 106 , 206 , or 306 to increase in temperature. When heated, the pre-tensioned tether 104 , 310 will tend to recover to its unstressed (shorter) length due to heat-induced creep. In this respect, when the tether 104 , 310 is heated by the heater 106 , 206 , or 306 ; its overall size shrinks. However, since each end of the tether 104 , 310 is fixed in place as previously described, the tether 104 , 310 is unable to shorten in length, ultimately breaking to release the implant device 112 , 302 .
  • the amount of shrinkage required to break the tether 104 , 310 is less than that of a system without a pre-tensioned tether. Thus, the temperature and time required to free the implant device 112 , 302 is lower.
  • FIG. 5 is a graph showing the temperatures at the surface of PET cover 304 of the detachment system 300 .
  • the surface temperature of the detachment system 300 during detachment does not vary linearly with time. Specifically, it only takes just under 1 second for the heat generated by the heating coil 306 to penetrate the insulating cover 304 . After 1 second, the surface temperature of the insulating cover 304 dramatically increases. Although different outer insulating material may slightly increase or decrease this 1-second surface temperature window, the necessarily small diameter of the detachment system 100 , 200 , or 300 prevents providing a thick insulating layer that may more significantly delay a surface temperature increase.
  • the embodiments of the detachment system 100 , 200 , or 300 include a variety of possible constructions.
  • the insulating cover 304 may be composed of Teflon, PET, polyamide, polyimide, silicone, polyurethane, PEEK, or materials with similar characteristics.
  • the typical thickness of the insulating cover is 0.0001-0.040 inches. This thickness will tend to increase when the device is adapted for use in, for example, proximal malformations, and decrease when the device is adapted for use in more distal, tortuous locations such as, for example, cerebral aneurysms.
  • the present invention detaches the implant device 112 , 302 before the surface temperature begins to significantly increase.
  • the implant device 112 , 302 is detached in less than a second, and more preferably, in less than 0.75 seconds. This prevents the surface temperature from exceeding 50° C. (122° F.), and more preferably, from exceeding 42° C. (107° F.).
  • the circuitry integrated into the power source may be used to determine whether or not the detachment has been successful.
  • an initial signaling current is provided prior to applying a detachment current (i.e. current to activate the heater 106 , 206 , or 306 to detach an implant 112 , 302 ).
  • the signaling current is used to determine the inductance in the system before the user attempts to detach the implant and therefore has a lower value than the detachment current, so as not to cause premature detachment.
  • a similar signaling current is used to determine a second inductance value that is compared to the initial inductance value.
  • a substantial difference between the initial inductance and the second inductance value indicates that the implant 112 , 302 has successfully been detached, while the absence of such a difference indicates unsuccessful detachment.
  • the user can easily determine if the implant 112 , 302 has been detached, even for delivery systems that utilize nonconductive temperature sensitive polymers to attach an implant, such as those seen in FIGS. 1 , 2 , and 4 .
  • current and “electrical current” are used in the most general sense and are understood to encompass alternating current (AC), direct current (DC), and radiofrequency current (RF) unless otherwise noted.
  • changing is defined as any change in current with a frequency above zero, including both high frequency and low frequency.
  • wire windings and toroid shapes carry a broad meaning and include a variety of geometries such as circular, elliptical, spherical, quadrilateral, triangular, and trapezoidal shapes.
  • Inductance (L) in a coil wound around a core is dependant on the number of turns (N), the cross-sectional area of the core (A), the magnetic permeability of the core ( ⁇ ), and length of the coil (I) according to equation 1 below:
  • the heater 106 or 306 is formed from a wound coil with proximal and distal electrically conductive wires 108 , 110 , 308 , or 309 attached to a power source.
  • the tether 104 , 310 has a magnetic permeability ⁇ 1 and is positioned through the center of the resistive heater, having a length 1 , cross sectional area A, and N winds, forming a core as described in the previous equation.
  • a changing signaling current i 1 such as the waveforms shown in FIGS. 3A and 3B , with frequency f 1 , is sent through the coil windings. This signaling current is generally insufficient to detach the implant.
  • the inductive resistance XL i.e. the electrical resistance due to the inductance within the system
  • an electronic circuit such as an ohmmeter
  • This initial value of the inductance L 1 depends on the magnetic permeability ⁇ 1 of the core of the tether 104 , 310 according to Equation 1, and is saved for reference.
  • a higher current and/or a current with a different frequency than the signaling current is applied through the resistive heater coil, causing the tether 104 , 310 to release the implant 112 , 302 as previously described.
  • the tether 104 , 310 will no longer be present within the heater 106 , 306 and the inside of the heater 106 , 306 will fill with another material such as the patient's blood, contrast media, saline solution, or air.
  • This material now within the heater core will have a magnetic permeability ⁇ 2 that is different than the tether core magnetic permeability ⁇ 1 .
  • a second signaling current and frequency f 2 is sent through the heater 106 , 306 and is preferably the same as the first signaling current and frequency, although one or both may be different without affecting the operation of the system.
  • a second inductance L 2 is calculated. If the detachment was successful, the second inductance L 2 will be different (higher or lower) than the first inductance L 1 due to the difference in the core magnetic permeabilities ⁇ 1 and ⁇ 2 . If the detachment was unsuccessful, the inductance values should remain relatively similar (with some tolerance for measurement error).
  • an alarm or signal can be activated to communicate successful detachment to the user.
  • the alarm might include a beep or an indicator light.
  • the delivery system 100 , 300 used according to this invention connects to a device that automatically measures inductance at desired times, performs required calculations, and signals to the user when the implant device has detached from the delivery catheter.
  • a device that automatically measures inductance at desired times, performs required calculations, and signals to the user when the implant device has detached from the delivery catheter.
  • the inductance between the attached and detached states can also preferably be determined without directly calculating the inductance.
  • the inductive resistance XL can be measured and compared before and after detachment.
  • the detachment can be determined by measuring and comparing the time constant of the system, which is the time required for the current to reach a predetermined percentage of its nominal value. Since the time constant depends on the inductance, a change in the time constant would similarly indicate a change in inductance.
  • the present invention may also include a feedback algorithm that is used in conjunction with the detachment detection described above.
  • the algorithm automatically increases the detachment voltage or current automatically after the prior attempt fails to detach the implant device. This cycle of measurement, attempted detachment, measurement, and increased detachment voltage/current continues until detachment is detected or a predetermined current or voltage limit is attained. In this respect, a low power detachment could be first attempted, followed automatically by increased power or time until detachment has occurred. Thus, battery life for a mechanism providing the detachment power is increased while the average coil detachment time is greatly reduced.
  • the implant 500 includes a coil 501 and a stretch-resistant member 502 , the stretch-resistant member 502 being configured to form a wrap or knot 503 about at least one wind of said coil 501 .
  • the coil 501 of an implant 500 may be formed from winds of, for example, metal or plastic wire. Although shown in a straight configuration in FIG. 9 , a coil may also be formed into a different configuration, such as a helical wind, flower shape, sphere, box or similar complex shape (not shown).
  • the stretch-resistant member 502 of an implant 500 may be formed from a variety of materials such as polyolefin, polyethylene, polyolefin elastomers such as ethylene-octene copolymer, biodegradable materials such as PGLA, hydrogel materials based on, for example, acrylamide or polyethylene glycol (PEG), polyethylene terephthalate (PET), Nylon or amide-based polymers or block copolymers such as PEBAX, polypropylene, etc.
  • materials such as polyolefin, polyethylene, polyolefin elastomers such as ethylene-octene copolymer, biodegradable materials such as PGLA, hydrogel materials based on, for example, acrylamide or polyethylene glycol (PEG), polyethylene terephthalate (PET), Nylon or amide-based polymers or block copolymers such as PEBAX, polypropylene, etc.
  • the stretch-resistant member 502 has a distal end and a proximal end and runs through the interior lumen of the coil 501 and, preferably, exits the winds of the coil 501 near the proximal end of the coil 501 .
  • the stretch-resistant member 502 is then configured to wrap or tie around one or more winds of the coil 501 near the proximal end of the coil 501 .
  • the stretch-resistant member 502 is then preferably attached near the distal end of a coil 501 by wrapping or tying a knot ( 503 , as shown in FIG. 9 ), adhesive bonding, melting the end of the stretch-resistant member 502 to form a ball, or a combination of the methods.
  • the wrap or knot 503 may be made formed from a variety of techniques including an overhand knot, a half stitch, a surgeon's knot, or a combination of wraps and knots.
  • the stretch-resistant member 502 is configured such that it does not wrap around itself. In such a configuration, the tensile strength of the stretch-resistant member 502 is increased.
  • a free (proximal) end of the stretch-resistant member 502 remains.
  • the portion of the member 502 distal to the wrap or knot 503 up to the distal attachment point will provide stretch resistance to the proximal end of the member because the knot or wrap 503 (along with any adhesive used) is configured to reduce or prevent slipping.
  • the coil 501 will substantially retain its original configuration as formed prior to introduction of the stretch-resistant member 502 .
  • the proximal end of the stretch-resistant member 502 is then passed through, around and/or in proximity to a heater element and tension is then placed on the proximal portion of the stretch-resistant member 502 as described in U.S. patent Ser. No. 11/212,830 (as earlier described and incorporated by reference herein). Since the distal portion of the stretch-resistant member 502 is at least partially isolated from the proximal portion of the stretch-resistant member 502 by the wrap or knot 503 , the tension in the distal portion of the stretch-resistant member 502 that is distal to the wrap or knot 503 will be less than the tension in the proximal portion of the stretch-resistant member 502 that is proximal to the wrap or knot 503 .
  • the proximal end or a proximal segment of the stretch-resistant member 502 is then tied, bonded or otherwise attached to the delivery catheter.
  • the implant 500 is then introduced into a body and positioned by methods known in the art.
  • the heating element is activated as described in U.S. patent application Ser. No. 11/212,830 and the member 502 is severed at or near the heater element.
  • the distal end of the member 502 remains bonded to the implant 500 and the proximal end of the member 502 remains bonded to the delivery catheter after the coil 501 is detached.
  • a preferred embodiment of the present invention includes a hydrogel material 504 , which may be placed in proximity to the stretch-resistant member 502 .
  • the hydrogel material runs substantially parallel to the stretch-resistant member 502 .
  • the hydrogel material may be wrapped, tied around or otherwise intertwined with the stretch-resistant member and/or the coil (not shown).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)
US12/180,834 2007-07-27 2008-07-28 Detachable Coil Incorporating Stretch Resistance Abandoned US20090062812A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/180,834 US20090062812A1 (en) 2007-07-27 2008-07-28 Detachable Coil Incorporating Stretch Resistance
US15/081,065 US10076338B2 (en) 2007-07-27 2016-03-25 Detachable coil incorporating stretch resistance
US16/103,838 US11045205B2 (en) 2007-07-27 2018-08-14 Detachable coil incorporating stretch resistance
US17/332,966 US11918230B2 (en) 2007-07-27 2021-05-27 Detachable coil incorporating stretch resistance
US18/594,849 US20240197335A1 (en) 2007-07-27 2024-03-04 Detachable Coil Incorporating Stretch Resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95252007P 2007-07-27 2007-07-27
US12/180,834 US20090062812A1 (en) 2007-07-27 2008-07-28 Detachable Coil Incorporating Stretch Resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/081,065 Continuation US10076338B2 (en) 2007-07-27 2016-03-25 Detachable coil incorporating stretch resistance

Publications (1)

Publication Number Publication Date
US20090062812A1 true US20090062812A1 (en) 2009-03-05

Family

ID=40408664

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/180,834 Abandoned US20090062812A1 (en) 2007-07-27 2008-07-28 Detachable Coil Incorporating Stretch Resistance
US15/081,065 Active 2029-02-21 US10076338B2 (en) 2007-07-27 2016-03-25 Detachable coil incorporating stretch resistance
US16/103,838 Active 2028-11-27 US11045205B2 (en) 2007-07-27 2018-08-14 Detachable coil incorporating stretch resistance
US17/332,966 Active 2029-04-10 US11918230B2 (en) 2007-07-27 2021-05-27 Detachable coil incorporating stretch resistance
US18/594,849 Pending US20240197335A1 (en) 2007-07-27 2024-03-04 Detachable Coil Incorporating Stretch Resistance

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/081,065 Active 2029-02-21 US10076338B2 (en) 2007-07-27 2016-03-25 Detachable coil incorporating stretch resistance
US16/103,838 Active 2028-11-27 US11045205B2 (en) 2007-07-27 2018-08-14 Detachable coil incorporating stretch resistance
US17/332,966 Active 2029-04-10 US11918230B2 (en) 2007-07-27 2021-05-27 Detachable coil incorporating stretch resistance
US18/594,849 Pending US20240197335A1 (en) 2007-07-27 2024-03-04 Detachable Coil Incorporating Stretch Resistance

Country Status (8)

Country Link
US (5) US20090062812A1 (enExample)
EP (1) EP2175782B1 (enExample)
JP (3) JP5847399B2 (enExample)
KR (1) KR101564790B1 (enExample)
CN (1) CN101917911B (enExample)
AU (1) AU2008359873B8 (enExample)
CA (1) CA2692962C (enExample)
WO (1) WO2010014075A1 (enExample)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287291A1 (en) * 2008-04-21 2009-11-19 Becking Frank P Embolic Device Delivery Systems
US20100234872A1 (en) * 2009-03-13 2010-09-16 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
US20100268204A1 (en) * 2009-04-15 2010-10-21 Microvention, Inc. Implant Delivery System
US20100268252A1 (en) * 2009-04-16 2010-10-21 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
WO2011130081A1 (en) * 2010-04-14 2011-10-20 Microvention, Inc. Implant delivery device
US8777978B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8795313B2 (en) 2011-09-29 2014-08-05 Covidien Lp Device detachment systems with indicators
US8945171B2 (en) 2011-09-29 2015-02-03 Covidien Lp Delivery system for implantable devices
US20150150563A1 (en) * 2008-05-02 2015-06-04 Sequent Medical Inc. Filamentary devices for treatment of vascular defects
WO2015109007A1 (en) * 2014-01-14 2015-07-23 Penumbra, Inc. Soft embolic implant
US9198670B2 (en) 2013-08-16 2015-12-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9220506B2 (en) 2010-06-16 2015-12-29 DePuy Synthes Products, Inc. Occlusive device with stretch resistant member and anchor filament
US9241718B2 (en) 2012-11-16 2016-01-26 Sequent Medical, Inc. Delivery and detachment systems and methods for vascular implants
US9259337B2 (en) 2007-06-04 2016-02-16 Sequent Medical, Inc. Methods and devices for treatment of vascular defects
US9314250B2 (en) 2009-04-16 2016-04-19 Stryker Corporation Electrical contact for occlusive device delivery system
CN105530874A (zh) * 2013-08-20 2016-04-27 斯瑞克公司 血管闭塞装置输送系统
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
WO2017049195A1 (en) 2015-09-18 2017-03-23 Microvention, Inc. Implant retention, detachment, and delivery system
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US9814562B2 (en) 2009-11-09 2017-11-14 Covidien Lp Interference-relief type delivery detachment systems
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US10076336B2 (en) 2013-03-15 2018-09-18 Covidien Lp Delivery and detachment mechanisms for vascular implants
US10548606B2 (en) 2011-09-30 2020-02-04 Penumbra, Inc. Occlusive coil
US11291453B2 (en) 2019-03-15 2022-04-05 Sequent Medical, Inc. Filamentary devices having a flexible joint for treatment of vascular defects
US11317921B2 (en) 2019-03-15 2022-05-03 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
CN114709072A (zh) * 2019-08-31 2022-07-05 深圳硅基仿生科技有限公司 平面线圈的绕制装置
US11439404B2 (en) 2017-09-12 2022-09-13 Kaneka Corporation Indwelling device for embolization and method for manufacturing the same
US11504131B2 (en) 2017-07-31 2022-11-22 Kaneka Corporation In-vivo indwelling instrument, in-vivo indwelling instrument delivering system and method for producing in-vivo indwelling instrument
US11559309B2 (en) 2019-03-15 2023-01-24 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP4366629A1 (en) 2021-07-07 2024-05-15 Microvention, Inc. Stretch resistant embolic coil
US12023034B2 (en) 2020-03-11 2024-07-02 Microvention, Inc. Devices for treatment of vascular defects
US12070220B2 (en) 2020-03-11 2024-08-27 Microvention, Inc. Devices having multiple permeable shells for treatment of vascular defects
US12114863B2 (en) 2018-12-05 2024-10-15 Microvention, Inc. Implant delivery system
US12408925B2 (en) 2020-03-11 2025-09-09 Microvention, Inc. Multiple layer devices for treatment of vascular defects
US12446891B2 (en) 2021-08-30 2025-10-21 Microvention, Inc. Devices for treatment of vascular defects

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055163B2 (ja) * 2010-07-27 2016-12-27 アクセスポイント テクノロジーズ有限会社 ステント
WO2013022796A2 (en) 2011-08-05 2013-02-14 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
CN103284773B (zh) * 2013-05-31 2016-04-27 威海维心医疗设备有限公司 热熔解脱弹簧圈系统
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US10339269B2 (en) * 2014-03-31 2019-07-02 Covidien Lp Hand-held spherical antenna system to detect transponder tagged objects, for example during surgery
US10806905B2 (en) * 2014-08-05 2020-10-20 Cardiovascular Systems, Inc. Reformable guidewire tip
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
EP3253437B1 (en) 2015-02-04 2019-12-04 Route 92 Medical, Inc. Rapid aspiration thrombectomy system
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
CN113368367B (zh) 2016-02-24 2024-03-29 禾木(中国)生物工程有限公司 柔性增强的神经血管导管
CN109310844A (zh) * 2016-06-24 2019-02-05 波士顿科学国际有限公司 抗拉伸线圈
JP7264581B2 (ja) 2017-01-06 2023-04-25 インセプト、リミテッド、ライアビリティ、カンパニー 動脈瘤治療装置向けの抗血栓性コーティング
AU2018208460B2 (en) 2017-01-10 2023-03-16 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
CN119908793A (zh) 2017-01-20 2025-05-02 92号医疗公司 用于进入颅内神经脉管系统的快速交换微导管和系统
CN107374690A (zh) * 2017-08-16 2017-11-24 微创神通医疗科技(上海)有限公司 栓塞线圈输送装置及其制备方法
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
CN119405388A (zh) 2018-05-01 2025-02-11 因赛普特有限责任公司 用于从血管内部位去除闭塞性物质的装置和方法
ES3009763T3 (en) 2018-05-17 2025-03-31 Route 92 Medical Inc Aspiration catheter systems
WO2020010310A1 (en) 2018-07-06 2020-01-09 Imperative Care, Inc. Sealed neurovascular extendable catheter
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
CN108927797A (zh) * 2018-08-28 2018-12-04 北京化工大学 一种刚柔并济机械臂
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
CN112447392B (zh) * 2019-08-31 2021-11-16 深圳硅基仿生科技有限公司 具有生物相容性的线圈的绕制方法
AU2020366348A1 (en) 2019-10-15 2022-05-12 Imperative Care, Inc. Systems and methods for multivariate stroke detection
CN111110302B (zh) * 2019-12-16 2021-06-25 先健科技(深圳)有限公司 输送系统
US11439799B2 (en) 2019-12-18 2022-09-13 Imperative Care, Inc. Split dilator aspiration system
CA3162704A1 (en) 2019-12-18 2021-06-24 Imperative Care, Inc. Methods and systems for treating venous thromboembolic disease
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
CN118925025A (zh) 2020-03-10 2024-11-12 因普瑞缇夫护理公司 增强的柔韧性的神经血管导管
CN113749718B (zh) * 2020-06-05 2024-01-26 微创神通医疗科技(上海)有限公司 解脱装置、解脱系统及解脱方法、治疗装置
CN113749717B (zh) * 2020-06-05 2023-09-29 微创神通医疗科技(上海)有限公司 解脱装置、系统及方法、治疗装置
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
US20220111177A1 (en) 2020-10-09 2022-04-14 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US20230047098A1 (en) 2021-08-12 2023-02-16 Imperative Care, Inc. Multi catheter method of performing a robotic neurovascular procedure
USD1077996S1 (en) 2021-10-18 2025-06-03 Imperative Care, Inc. Inline fluid filter
CN117379129B (zh) * 2023-11-15 2024-05-24 上海形状记忆合金材料有限公司 一种可解锁左心耳封堵器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6193728B1 (en) * 1995-06-30 2001-02-27 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US20040002733A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Integrated anchor coil in stretch-resistant vaso-occlusive coils
US20040034363A1 (en) * 2002-07-23 2004-02-19 Peter Wilson Stretch resistant therapeutic device
US20060052815A1 (en) * 2004-08-25 2006-03-09 Microvention, Inc. Thermal detachment system for implantable devices
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link
US20080103585A1 (en) * 2004-09-22 2008-05-01 Dendron Gmbh Micro-Spiral Implantation Device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346712A (en) 1979-04-06 1982-08-31 Kuraray Company, Ltd. Releasable balloon catheter
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
CN2228330Y (zh) * 1995-04-19 1996-06-05 开滦矿务局医院 医用手术电动打结器
US5582619A (en) 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5984957A (en) * 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6500149B2 (en) 1998-08-31 2002-12-31 Deepak Gandhi Apparatus for deployment of micro-coil using a catheter
US6605101B1 (en) 2000-09-26 2003-08-12 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
JP2004261234A (ja) * 2003-02-20 2004-09-24 Kaneka Medix Corp 塞栓形成用体内留置具
US7419498B2 (en) * 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7645292B2 (en) * 2003-10-27 2010-01-12 Boston Scientific Scimed, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20050149109A1 (en) * 2003-12-23 2005-07-07 Wallace Michael P. Expanding filler coil
WO2005113035A2 (en) * 2004-05-21 2005-12-01 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
CA2843097C (en) * 2005-05-24 2015-10-27 Inspire M.D Ltd. Stent apparatuses for treatment via body lumens and methods of use
US7799052B2 (en) * 2005-06-02 2010-09-21 Codman & Shurtleff, Inc. Stretch resistant embolic coil delivery system with mechanical release mechanism
US8034073B2 (en) * 2006-08-18 2011-10-11 Codman & Shurtleff, Inc. Stretch resistant embolic coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6193728B1 (en) * 1995-06-30 2001-02-27 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US20040002733A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Integrated anchor coil in stretch-resistant vaso-occlusive coils
US20040034363A1 (en) * 2002-07-23 2004-02-19 Peter Wilson Stretch resistant therapeutic device
US20060052815A1 (en) * 2004-08-25 2006-03-09 Microvention, Inc. Thermal detachment system for implantable devices
US20080103585A1 (en) * 2004-09-22 2008-05-01 Dendron Gmbh Micro-Spiral Implantation Device
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dictionary definition of "Unitary". *

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864790B2 (en) 2006-04-17 2014-10-21 Covidien Lp System and method for mechanically positioning intravascular implants
US8795320B2 (en) 2006-04-17 2014-08-05 Covidien Lp System and method for mechanically positioning intravascular implants
US8795321B2 (en) 2006-04-17 2014-08-05 Covidien Lp System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8777978B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US11179159B2 (en) 2007-06-04 2021-11-23 Sequent Medical, Inc. Methods and devices for treatment of vascular defects
US9259337B2 (en) 2007-06-04 2016-02-16 Sequent Medical, Inc. Methods and devices for treatment of vascular defects
US20090287291A1 (en) * 2008-04-21 2009-11-19 Becking Frank P Embolic Device Delivery Systems
US10610231B2 (en) 2008-05-02 2020-04-07 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US12082821B2 (en) 2008-05-02 2024-09-10 Microvention, Inc. Filamentary devices for treatment of vascular defects
US9597087B2 (en) 2008-05-02 2017-03-21 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US20150150563A1 (en) * 2008-05-02 2015-06-04 Sequent Medical Inc. Filamentary devices for treatment of vascular defects
US20100234872A1 (en) * 2009-03-13 2010-09-16 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
US9717500B2 (en) * 2009-04-15 2017-08-01 Microvention, Inc. Implant delivery system
US12295583B2 (en) 2009-04-15 2025-05-13 Microvention, Inc. Implant delivery system
US11857196B2 (en) 2009-04-15 2024-01-02 Microvention, Inc. Implant delivery system
EP2419166A4 (en) * 2009-04-15 2015-10-28 Microvention Inc IMPLANT PLACEMENT SYSTEM
US20100268204A1 (en) * 2009-04-15 2010-10-21 Microvention, Inc. Implant Delivery System
US9314250B2 (en) 2009-04-16 2016-04-19 Stryker Corporation Electrical contact for occlusive device delivery system
US8398671B2 (en) * 2009-04-16 2013-03-19 Stryker Corporation Electrical contact for occlusive device delivery system
US20100268252A1 (en) * 2009-04-16 2010-10-21 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
US9814562B2 (en) 2009-11-09 2017-11-14 Covidien Lp Interference-relief type delivery detachment systems
CN103037776B (zh) * 2010-04-14 2017-07-04 微排放器公司 植入物输送装置
WO2011130081A1 (en) * 2010-04-14 2011-10-20 Microvention, Inc. Implant delivery device
US11357513B2 (en) 2010-04-14 2022-06-14 Microvention, Inc. Implant delivery device
JP2013523391A (ja) * 2010-04-14 2013-06-17 マイクロベンション インコーポレイテッド インプラント送達デバイス
US12114864B2 (en) * 2010-04-14 2024-10-15 Microvention, Inc. Implant delivery device
CN103037776A (zh) * 2010-04-14 2013-04-10 微排放器公司 植入物输送装置
US9561125B2 (en) * 2010-04-14 2017-02-07 Microvention, Inc. Implant delivery device
AU2011240927B2 (en) * 2010-04-14 2015-07-16 Microvention, Inc. Implant delivery device
US10517604B2 (en) 2010-04-14 2019-12-31 Microvention, Inc. Implant delivery device
US20110301686A1 (en) * 2010-04-14 2011-12-08 Microvention, Inc. Implant Delivery Device
EP2558000B1 (en) * 2010-04-14 2019-09-04 MicroVention, Inc. Implant delivery device
US20220265277A1 (en) * 2010-04-14 2022-08-25 Microvention, Inc. Implant Delivery Device
US9220506B2 (en) 2010-06-16 2015-12-29 DePuy Synthes Products, Inc. Occlusive device with stretch resistant member and anchor filament
US8795313B2 (en) 2011-09-29 2014-08-05 Covidien Lp Device detachment systems with indicators
US8945171B2 (en) 2011-09-29 2015-02-03 Covidien Lp Delivery system for implantable devices
US10548606B2 (en) 2011-09-30 2020-02-04 Penumbra, Inc. Occlusive coil
US10335155B2 (en) 2011-11-30 2019-07-02 Covidien Lp Positioning and detaching implants
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US10123802B2 (en) 2012-11-16 2018-11-13 Sequent Medical, Inc. Delivery and detachment systems and methods for vascular implants
US11849955B2 (en) 2012-11-16 2023-12-26 Microvention, Inc. Delivery and detachment systems and methods for vascular implants
US9241718B2 (en) 2012-11-16 2016-01-26 Sequent Medical, Inc. Delivery and detachment systems and methods for vascular implants
US12376858B2 (en) 2012-11-16 2025-08-05 Microvention, Inc. Delivery and detachment systems and methods for vascular implants
US10932787B2 (en) 2012-11-16 2021-03-02 Sequent Medical, Inc. Delivery and detachment systems and methods for vascular implants
US10076336B2 (en) 2013-03-15 2018-09-18 Covidien Lp Delivery and detachment mechanisms for vascular implants
US10743882B2 (en) 2013-03-15 2020-08-18 Covidien Lp Delivery and detachment mechanisms for vascular implants
US11490896B2 (en) 2013-03-15 2022-11-08 Covidien Lp Delivery and detachment mechanisms for vascular implants
US9198670B2 (en) 2013-08-16 2015-12-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US10136896B2 (en) 2013-08-16 2018-11-27 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US10939914B2 (en) 2013-08-16 2021-03-09 Sequent Medical, Inc. Filamentary devices for the treatment of vascular defects
US11723667B2 (en) 2013-08-16 2023-08-15 Microvention, Inc. Filamentary devices for treatment of vascular defects
US12318091B2 (en) 2013-08-16 2025-06-03 Microvention, Inc. Filamentary devices for treatment of vascular defects
US10813645B2 (en) 2013-08-16 2020-10-27 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US12096940B2 (en) 2013-08-16 2024-09-24 Microvention, Inc. Filamentary devices for treatment of vascular defects
US9492174B2 (en) 2013-08-16 2016-11-15 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
CN105530874A (zh) * 2013-08-20 2016-04-27 斯瑞克公司 血管闭塞装置输送系统
CN106061411A (zh) * 2014-01-14 2016-10-26 半影公司 软性栓塞植入体
WO2015109007A1 (en) * 2014-01-14 2015-07-23 Penumbra, Inc. Soft embolic implant
US11224437B2 (en) 2014-01-14 2022-01-18 Penumbra, Inc. Soft embolic implant
US12226102B2 (en) 2014-04-14 2025-02-18 Microvention, Inc. Devices for therapeutic vascular procedures
US11678886B2 (en) 2014-04-14 2023-06-20 Microvention, Inc. Devices for therapeutic vascular procedures
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
WO2017049195A1 (en) 2015-09-18 2017-03-23 Microvention, Inc. Implant retention, detachment, and delivery system
US11504131B2 (en) 2017-07-31 2022-11-22 Kaneka Corporation In-vivo indwelling instrument, in-vivo indwelling instrument delivering system and method for producing in-vivo indwelling instrument
US11439404B2 (en) 2017-09-12 2022-09-13 Kaneka Corporation Indwelling device for embolization and method for manufacturing the same
US12114863B2 (en) 2018-12-05 2024-10-15 Microvention, Inc. Implant delivery system
US11317921B2 (en) 2019-03-15 2022-05-03 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US11559309B2 (en) 2019-03-15 2023-01-24 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US12082819B2 (en) 2019-03-15 2024-09-10 Microvention, Inc. Filamentary devices for treatment of vascular defects
US11291453B2 (en) 2019-03-15 2022-04-05 Sequent Medical, Inc. Filamentary devices having a flexible joint for treatment of vascular defects
CN114709072A (zh) * 2019-08-31 2022-07-05 深圳硅基仿生科技有限公司 平面线圈的绕制装置
US12070220B2 (en) 2020-03-11 2024-08-27 Microvention, Inc. Devices having multiple permeable shells for treatment of vascular defects
US12023034B2 (en) 2020-03-11 2024-07-02 Microvention, Inc. Devices for treatment of vascular defects
US12408925B2 (en) 2020-03-11 2025-09-09 Microvention, Inc. Multiple layer devices for treatment of vascular defects
EP4366629A1 (en) 2021-07-07 2024-05-15 Microvention, Inc. Stretch resistant embolic coil
US12446891B2 (en) 2021-08-30 2025-10-21 Microvention, Inc. Devices for treatment of vascular defects

Also Published As

Publication number Publication date
JP2016154946A (ja) 2016-09-01
KR101564790B1 (ko) 2015-10-30
EP2175782A4 (en) 2015-03-25
AU2008359873B8 (en) 2015-09-10
JP2011516101A (ja) 2011-05-26
US20240197335A1 (en) 2024-06-20
EP2175782A1 (en) 2010-04-21
US20210282788A1 (en) 2021-09-16
CN101917911B (zh) 2013-06-19
AU2008359873B2 (en) 2015-08-20
CN101917911A (zh) 2010-12-15
JP5847399B2 (ja) 2016-01-20
EP2175782B1 (en) 2016-09-07
WO2010014075A8 (en) 2010-06-10
US20180353188A1 (en) 2018-12-13
AU2008359873A1 (en) 2010-02-04
US11045205B2 (en) 2021-06-29
CA2692962C (en) 2016-09-13
US20160206322A1 (en) 2016-07-21
KR20100072172A (ko) 2010-06-30
JP6235075B2 (ja) 2017-11-22
US11918230B2 (en) 2024-03-05
US10076338B2 (en) 2018-09-18
CA2692962A1 (en) 2009-01-27
JP2014158980A (ja) 2014-09-04
WO2010014075A1 (en) 2010-02-04
AU2008359873A8 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
US11918230B2 (en) Detachable coil incorporating stretch resistance
US20230310006A1 (en) Thermal Detachment System For Implantable Devices
US11357513B2 (en) Implant delivery device
US8192480B2 (en) System and method of detecting implant detachment
US9717500B2 (en) Implant delivery system
AU2011204895B2 (en) Thermal detachment system for implantable devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROVENTION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FITZ, MATTHEW;LEI, CATHY;GULACHENSKI, JOSEPH;AND OTHERS;REEL/FRAME:021505/0466;SIGNING DATES FROM 20080730 TO 20080805

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION