US20090032227A1 - Flexible Graphite Thermal Management Devices - Google Patents

Flexible Graphite Thermal Management Devices Download PDF

Info

Publication number
US20090032227A1
US20090032227A1 US12/253,073 US25307308A US2009032227A1 US 20090032227 A1 US20090032227 A1 US 20090032227A1 US 25307308 A US25307308 A US 25307308A US 2009032227 A1 US2009032227 A1 US 2009032227A1
Authority
US
United States
Prior art keywords
graphite
sheet
thermal management
shell
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/253,073
Inventor
Daniel W. Krassowski
Gray G. Chen
Thomas W. Burkett
Brian M. Ford
Jing-Wen Tzeng
Julian Norley
Martin D. Smalc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graftech International Holdings Inc
Original Assignee
Graftech International Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graftech International Holdings Inc filed Critical Graftech International Holdings Inc
Priority to US12/253,073 priority Critical patent/US20090032227A1/en
Publication of US20090032227A1 publication Critical patent/US20090032227A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: GRAFTECH INTERNATIONAL HOLDINGS INC.
Assigned to GRAFTECH INTERNATIONAL HOLDINGS INC. reassignment GRAFTECH INTERNATIONAL HOLDINGS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4857Other macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/50Flexible or elastic materials

Definitions

  • the invention relates to thermal management devices, and more particularly, to such devices, which include flexible graphite and methods of making such devices.
  • Thermal management devices such as heat pipes, are devices which are known in the art of heat transfer.
  • a heat pipe is essentially a closed system of heat transfer in which a small amount of liquid within a sealed and evacuated enclosure is cycled through an evaporation and condensation cycle. Heat entering the enclosure at one location on the casing evaporates liquid at that location, producing vapor, which moves to a cooler location on the casing where it is condensed. The movement of the vapor is motivated by a small vapor pressure differential between the evaporator and the condenser locations. The heat transfer is accomplished when the heat of vaporization, which produces the vapor, is essentially moved with the vapor to the condenser location where it is given up as the heat of condensation.
  • the condensed liquid In order for the heat transfer to continue, the condensed liquid must be returned from the condenser to the evaporator where it will again be vaporized. Although this return can be accomplished by something as simple as gravity, capillary wicks have generally been used to permit heat pipes to be relatively independent of the effects of gravity. Such a wick extends from a location near the condenser, where the liquid originates, to a location at the evaporator where it is needed for evaporation.
  • casings are traditionally made of copper or other metals, and are made with walls of sufficient thickness to assure that they are structurally sufficient to withstand the vapor pressures within the heat pipe, and that they are not porous to either the reduced vapor or non-condensable gases outside the heat pipe casing.
  • One embodiment of the invention provides thermal management devices comprising a substantially fluid impermeable shell and a wick structure inside the shell.
  • the wick comprises a mass of expanded graphite.
  • Another embodiment of the invention provides methods of making thermal management devices having a wick structure formed from a mass of expanded graphite.
  • a further embodiment of the invention provides thermal management devices having a shell constructed from flexible graphite.
  • thermal management devices having a shell constructed from flexible graphite.
  • Thermal management devices of the present invention have many advantages when compared to their conventional counterparts, some of which include excellent weight, acceptable rigidity, and satisfactory thermal conductivity. Moreover, the wick structure of the inventive device also has improved corrosion resistance as compared to conventional wicking material.
  • FIG. 1 is a plan view of the internal aspects of a cylindrical heat pipe.
  • FIG. 2 is an exploded view of the elements of a vertical heat pipe.
  • FIG. 3 is a plan view of one specific embodiment of an inventive heat pipe in a heat spreader assembly.
  • FIG. 4 is a cross sectional view of one specific embodiment of a thermal management device with fins.
  • Graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces.
  • two axes or directions are usually noted, to with, the “c” axis or direction and the “a” axes or directions.
  • the “c” axis or direction may be considered as the direction perpendicular to the carbon layers.
  • the “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the “c” direction.
  • the graphites suitable for manufacturing flexible graphite sheets possess a very high degree of orientation.
  • Natural graphites can be treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the “c” direction, and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained.
  • Graphite flake which has been greatly expanded and more particularly expanded so as to have a final thickness or “c” direction dimension which is as much as about 80 or more times the original “c” direction dimension can be formed without the use of a binder into cohesive or integrated sheets of expanded graphite, e.g., webs, papers, strips, tapes, foils, mats or the like (typically referred to as “flexible graphite”).
  • flexible graphite typically referred to as “flexible graphite”.
  • the formation of graphite particles which have been expanded to have a final thickness or “c” dimension which is as much as about 80 times or more the original “c” direction dimension into integrated flexible sheets by compression, without the use of any binding material, is believed to be possible due to the mechanical interlocking, or cohesion, which is achieved between the voluminously expanded graphite particles.
  • the sheet material has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles and graphite layers substantially parallel to the opposed faces of the sheet resulting from very high compression, e.g., roll pressing. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
  • the process of producing flexible, binderless anisotropic graphite sheet material comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a “c” direction dimension which is as much as about 80 or more times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet.
  • the expanded graphite particles that generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet.
  • the density and thickness of the sheet material can be varied by controlling the degree of compression.
  • the density of the sheet material can be within the range of from about 0.04 g/cc to about 2.0 g/cc.
  • the flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet, with the degree of anisotropy increasing upon roll pressing of the sheet material to increased density.
  • the thickness, i.e., the direction perpendicular to the opposed, parallel sheet surfaces comprises the “c” direction and the directions ranging along the length and width, i.e., along or parallel to the opposed, major surfaces comprises the “a” directions and the thermal and electrical properties of the sheet are very different, by orders of magnitude, for the “c” and “a” directions.
  • Hayward uses only unimpregnated graphite source materials, and his finished products are only formed by mixing the graphite particles with large proportions of resin and injection molding the mixture to form articles, which are then thermoset.
  • graphites are made up of layered planes of hexagonal arrays or networks of carbon atoms. These layered planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another.
  • the substantially flat, parallel equidistant sheets or layers of carbon atoms usually referred to as graphene layers or basal planes, are linked or bonded together and groups thereof are arranged in crystallites.
  • Highly ordered graphites consist of crystallites of considerable size.
  • the crystallites are highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation.
  • graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional, e.g., thermal and electrical conductivity and fluid diffusion.
  • the invention may comprise providing source materials such as flexible sheets of graphite material.
  • the source materials typically comprise graphite, a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes.
  • particles of graphite such as natural graphite flake, are typically treated with an intercalant of, e.g., a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant.
  • the treated particles of graphite are hereafter referred to as “particles of intercalated graphite.”
  • the intercalant within the graphite decomposes and volatilizes, causing the particles of intercalated graphite to expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the “c” direction, i.e., in the direction perpendicular to the crystalline planes of the graphite.
  • the exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
  • the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact.
  • Graphite starting materials for the flexible sheets suitable for use in the present invention include highly graphitic carbonaceous materials capable of intercalating organic and inorganic acids as well as halogens and then expanding when exposed to heat. These highly graphitic carbonaceous materials most preferably have a degree of graphitization of about 1.0. As used in this disclosure, the term “degree of graphitization” refers to the value g according to the formula:
  • d(002) is the spacing between the graphitic layers of the carbons in the crystal structure measured in Angstrom units.
  • the spacing “d” between graphite layers is measured by standard X-ray diffraction techniques.
  • the positions of diffraction peaks corresponding to the (002), (004) and (006) Miller Indices are measured, and standard least-squares techniques are employed to derive spacing which minimizes the total error for all of these peaks.
  • highly graphitic carbonaceous materials include natural graphites from various sources, as well as other carbonaceous materials such as carbons prepared by chemical vapor deposition and the like. In many instances, natural graphite is preferred.
  • the graphite starting materials for the flexible sheets used in the present invention may contain non-carbon components so long as the crystal structure of the starting materials maintains the required degree of graphitization and they are capable of exfoliation.
  • any carbon-containing material, the crystal structure of which possesses the required degree of graphitization and which can be exfoliated is suitable for use with the present invention.
  • Such graphite preferably has an ash content of less than twenty weight percent. In certain circumstances, the graphite employed will have a purity of at least about 94%. In other preferred circumstances, the graphite employed will have a purity of at least about 99%.
  • Shane, et al. A common method for manufacturing graphite sheet is described by Shane, et al. in U.S. Pat. No. 3,404,061, the disclosure of which is incorporated herein by reference.
  • natural graphite flakes are intercalated by dispersing the flakes in a solution containing e.g., a mixture of nitric and sulfuric acid, advantageously at a level of about 20 to about 300 parts by weight of intercalant solution per 100 parts by weight of graphite flakes (pph).
  • the intercalation solution contains oxidizing and other intercalating agents known in the art.
  • Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g., trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
  • an electric potential can be used to bring about oxidation of the graphite.
  • Chemical species that can be introduced into the graphite crystal using electrolytic oxidation include sulfuric acid as well as other acids.
  • the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e., nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like.
  • the intercalation solution may even sometimes contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
  • the quantity of intercalation solution may range from about 20 to about 150 pph, and typically from about 50 to about 120 pph. After the flakes are intercalated, any excess solution is typically drained from the flakes and the flakes are water-washed. Alternatively, the quantity of the intercalation solution may be limited to between about 10 and about 50 pph, which permits the washing step to be eliminated as taught and described in U.S. Pat. No. 4,895,713, the disclosure of which is also herein incorporated by reference.
  • the particles of graphite flake treated with intercalation solution can, optionally, be contacted, e.g., by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C.
  • a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C.
  • Suitable specific organic agents include hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1, 10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, glycerol monostearate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate, ascorbic acid and lignin-derived compounds, such as sodium lignosulfate.
  • the amount of organic reducing agent is typically from about 0.1 to 5% by weight of the particles of graphite flake.
  • an expansion aid applied prior to, during or immediately after intercalation can also provide improvements. Among these improvements can be reduced exfoliation temperature and increased expanded volume (also referred to as “worm volume”).
  • An expansion aid in this context will advantageously be an organic material sufficiently soluble in the intercalation solution to achieve an improvement in expansion. More narrowly, organic materials of this type that contain carbon, hydrogen and oxygen, preferably exclusively, may be employed. Carboxylic acids have been found especially effective.
  • a suitable carboxylic acid useful as the expansion aid can be selected from aromatic, aliphatic or cycloaliphatic, straight chain or branched chain, saturated and unsaturated monocarboxylic acids, dicarboxylic acids and polycarboxylic acids which have at least 1 carbon atom, and often times up to about 15 carbon atoms, which is soluble in the intercalation solution in amounts effective to provide a measurable improvement of one or more aspects of exfoliation.
  • Suitable organic solvents can be employed to improve solubility of an organic expansion aid in the intercalation solution.
  • saturated aliphatic carboxylic acids are acids such as those of the formula H(CH 2 ) n COOH wherein “n” is a number of from 0 to about 5, including formic, acetic, propionic, butyric, pentanoic, hexanoic, and the like.
  • the anhydrides or reactive carboxylic acid derivatives such as alkyl esters can also be employed.
  • alkyl esters are methyl formate and ethyl formate.
  • Sulfuric acid, nitric acid and other known aqueous intercalants have the ability to decompose formic acid, ultimately to water and carbon dioxide.
  • dicarboxylic acids are aliphatic dicarboxylic acids having 2-12 carbon atoms, in particular oxalic acid, fumaric acid, malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,10-decanedicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and aromatic dicarboxylic acids such as phthalic acid or terephthalic acid.
  • alkyl esters are dimethyl oxylate and diethyl oxylate.
  • Representative examples of cycloaliphatic acids is cyclohexane carboxylic acid and of aromatic carboxylic acids are benzoic acid, naphthoic acid, anthranilic acid, p-aminobenzoic acid, salicylic acid, o-, m- and p-tolyl acids, methoxy and ethoxybenzoic acids, acetoacetamidobenzoic acids and, acetamidobenzoic acids, phenylacetic acid and naphthoic acids.
  • hydroxy aromatic acids are hydroxybenzoic acid, 3-hydroxy-1-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid and 7-hydroxy-2-naphthoic acid.
  • Prominent among the polycarboxylic acids is citric acid.
  • the intercalation solution will typically be aqueous and may contain an amount of expansion aid of from about 1 to 10%, the amount being effective to enhance exfoliation.
  • the expansion aid can be admixed with the graphite by suitable means, such as a V-blender, typically in an amount of from about 0.1% to about 10% by weight of the graphite flake.
  • the blend After intercalating the graphite flake, and following the blending of the intercalant coated intercalated graphite flake with the organic reducing agent, the blend is exposed to temperatures in the range of 25° to 125° C. to promote reaction of the reducing agent and intercalant coating.
  • the heating period is up to about 20 hours, with shorter heating periods, e.g., at least about 10 minutes, for higher temperatures in the above-noted range.
  • the thus treated particles of graphite are sometimes referred to as “particles of intercalated graphite.”
  • the particles of intercalated graphite Upon exposure to high temperature, e.g., temperatures of at least about 160° C. and often times about 700° C. to 1200° C. and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e., in the direction perpendicular to the crystalline planes of the constituent graphite particles.
  • the expanded, i.e., exfoliated, graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
  • the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact as hereinafter described.
  • Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, e.g., by roll-pressing, to a thickness of about 0.05 mm to 4.00 mm and a typical density of about 0.1 to 1.5 grams per cubic centimeter (g/cc).
  • ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Pat. No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product.
  • the additives include ceramic fiber particles having a length of about 0.1 to 1.5 millimeters. The width of the particles is suitably from about 0.05 to 0.001 mm.
  • the ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about 1100° C., preferably about 1400° C. or higher.
  • Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
  • the flexible graphite sheet can also, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e., stiffness, of the flexible graphite sheet as well as “fixing” the morphology of the sheet.
  • Suitable resin content is preferably at least about 5% by weight, more preferably about 10 to 35% by weight, and suitably up to about 60% by weight.
  • Resins found especially useful in the practice of the present invention include acrylic-, epoxy- and phenolic-based resin systems, or mixtures thereof.
  • Suitable epoxy resin systems include those based on diglycidyl ether or bisphenol A (DGEBA) and other multifunctional resin systems; phenolic resins that can be employed include resole and novolac phenolics.
  • the glass transition temperature of the resin is compatible with the use temperature of the thermal heat management device. Nonetheless, the graphite sheet as prepared above may be cut and trimmed to form the desired articles.
  • Flexible graphite treated with a resin is also referred to as “resin impregnated flexible graphite” or “impregnated flexible graphite”.
  • FIG. 1 is a plan view of the internal aspects of a cylindrical heat pipe, generally designated 10 .
  • a cylindrical heat pipe 12 Depicted in FIG. 1 is a cylindrical heat pipe 12 arranged in a horizontal orientation with respect to the general path of flow of the working fluid.
  • Heat pipe 12 includes a shell 14 and wick structure 16 .
  • heat pipe 12 includes at least one fluid passage 18 external to wick structure 16 , also represented by arrows E.
  • Heat pipe 12 may also include at least one fluid passage 20 internal to wick structure 16 , also represented by arrows I.
  • Wick structure 16 may also comprise a plurality of approximately radial fluid passages, which allows the working fluid to travel at least from passage 18 , through wick structure 16 to passage 20 .
  • heat pipe 12 also includes an evaporator 22 and a condenser 26 at opposed ends of the heat pipe 12 .
  • Heat pipe 12 may include a mating element 28 for a heat source 30 .
  • mating element 28 is located on the same end of heat pipe 12 as evaporator 22 .
  • mating element 28 has a surface in contact with a surface of heat source 30 and that the surface of mating element 28 is optionally the mirror image of the surface of heat source 30 in contact with mating element 28 .
  • mating element 28 is also in contact with an external portion of heat pipe 12 .
  • the contact between mating element 28 and heat pipe 12 may enhance heat transfer from heat source 30 to heat pipe 12 .
  • Suitable materials of construction of mating element 28 comprise at least flexible graphite, copper, aluminum, and combinations thereof.
  • An example of a suitable material for mating element 28 comprises eGRAF HS 400 from Graftech Inc.
  • One example of heat source 30 is a computer chip.
  • heat pipe 12 may also include a plurality of fins 32 located on at least a portion of shell 14 .
  • fins 32 are located on at least an end of pipe 12 which condenser 26 is located.
  • preferably fins 32 are constructed from flexible graphite.
  • Other suitable materials of fins 32 may comprise copper, aluminum, and any combination of the previously identified materials. Fins 32 are not limited to the embodiment depicted in FIG. 1 .
  • Any suitable configuration of fins 32 may be used as part of the invention.
  • fins 32 may comprise a combination of elements of a base and a plurality of spaced apart fins extending vertically away from heat pipe 12 .
  • An embodiment of the invention may also include a fan to move air across fins 32 to assist with the dissipation of the heat absorbed by fins 32 .
  • heat is generated at heat source 30 .
  • the heat generated at heat source 30 is transmitted to the heat pipe 12 and evaporates the working fluid in at least evaporator 22 .
  • the vapor phase of the working fluid flows along passage 20 to condenser 26 as indicated by arrows I.
  • the vapor working fluid is condensed into a liquid form at condenser 26 and the heat removed from the working fluid as a result of condensing is transmitted to fins 32 and dissipated into the ambient environment.
  • the liquid form of the working fluid flows back to evaporator 22 along passage 18 in the direction indicated by arrows E.
  • Typical flow mechanisms to transport liquid working fluid from condenser 26 to evaporator 22 include at least gravity, capillary action, or combinations thereof.
  • heat pipe 12 may be operated at a pressure of less than atmospheric pressure.
  • the pressure inside heat pipe 12 the temperature at which the working fluid inside heat pipe 12 will vaporize may be adjusted to the specific change in temperature associated with the heat generated by heat source 30 .
  • the working fluid is water and heat pipe 12 is operating at a reduced pressure, the water will vaporize at a temperature of less than about 100° C.
  • FIG. 2 A second embodiment of a heat pipe is illustrated in FIG. 2 and is generally designated 40 .
  • heat pipe 40 may be arranged in a vertical orientation with respect to the path of travel of the working fluid.
  • heat pipe 40 may be arranged in any configuration.
  • Heat pipe 40 includes a shell, which comprises of the two sheets of material 44 u and 44 l . Sheets 44 u and 44 l are located on opposed ends of heat pipe 40 . Sheet 44 l may be referred to as an evaporator and sheet 44 u may be referred to as a condenser.
  • Heat pipe 40 also includes a wick structure 46 .
  • wick structure 46 includes four (4) different plate structures 46 a - 46 d .
  • heat pipe 40 is not limited to any particular number of plates.
  • plate structures 46 a - 46 d it is preferred that the path of flow of the working fluid is altered from one plate to the adjacent plate.
  • plates 46 a and 46 b it is shown that the flow pathway of plate 46 a is about the exact opposite of the flow pathway of the working fluid through plate 46 b .
  • plate 46 a has a central aperture and spoke like flow pathways that extend radially outward from the central aperture.
  • plate 46 b includes a central hub and spoke like support members that extend radially outward from the central hub. Furthermore, preferably plate 46 c provides a flow path that is complimentary to that of plate 46 b . The same is true between the relationship plates 46 c and 46 d . Wick structure 46 is constructed in a manner such that the working fluid is transported within heat pipe 40 by at least capillary action.
  • heat pipe 12 comprises a substantially fluid impermeable shell 14 , preferably shell 14 is a vacuum tight enclosure, and a wick structure 16 is inside shell 14 .
  • shell 14 of heat pipe 12 may be constructed from flexible graphite.
  • shell 14 is constructed from flexible graphite having a density of at least about 1.6 g/cc, typically at least about 1.7 g/cc, more typically at least about 1.9 g/cc, and even more typically at least about 2.0 g/cc.
  • the flexible graphite used to form shell 14 may or may not be resin impregnated flexible graphite. Furthermore, shell 14 may comprise more than one sheet of flexible graphite. In a further embodiment of shell 14 , an interior surface of shell 14 may include at least one channel, preferably a plurality of channels. Vacuum tight is used herein to mean that vacuum was used to remove at least some, preferably substantially all, of the non-working fluid from shell 14 .
  • the non-working fluid is defined herein to mean at least a fluid that is present in shell 14 that is not the working fluid, e.g., air.
  • shell 14 is constructed from flexible graphite
  • various techniques may be used to form the desired shaped shell. For example, compression may be used to form sheets of flexible graphite into the desired shape for shell 14 .
  • a typical pressure used to compress flexible graphite comprises about 4 bars or less, typically about 2 bars or less.
  • an adhesive may be used to form the flexible graphite into the desired shape for shell 14 . In certain preferred circumstances, the adhesive is not soluble in the working fluid or vice versa.
  • the flexible graphite is rolled into a cylindrical shape and a lengthwise seam of heat pipe 12 is formed through the use of compression or an adhesive and a plug may be used at each one of the axial openings of the cylinder to form shell 14 .
  • one or more flexible graphite sheets may be rolled into a tube shape and the ends of the tube may be plugged to form shell 14 .
  • the sheets may be embossed to form channels on an interior surface of shell 14 .
  • the flexible graphite sheets may be corrugated.
  • sheets of flexible graphite may be wrapped around a mandrel to form shell 14 . In wrapping the sheets, the sheets may be wrapped in any configuration, for example but limited to spirally wrapping the sheets.
  • the flexible graphite sheets may be resin impregnated or nonresin impregnated. With respect to the resin impregnated sheets, the resin may be cured prior to or after forming shell 14 .
  • shell 14 is constructed from a three-dimensional piece of flexible graphite.
  • a passage is machined into the piece.
  • the passage does not extend completely through the piece.
  • the open end of the passage may be sealed by any one of the aforementioned techniques of an adhesive, pressing, or a plug.
  • wick structure 16 comprises a porous material, more preferably a mass of expanded graphite, even more preferably flexible graphite having a density of no more than about 1.5 g/cc.
  • Flexible graphite is used herein to describe a mass of expanded graphite that has been formed into a sheet. More preferably, the flexible graphite of wick structure 16 has a density of no more than about 1.1 g/cc, even more preferably less than about 1.0 g/cc, and most preferably no more than about 0.5 g/cc. It is even further preferred that the flexible graphite has a density of at least about 0.25 g/cc.
  • GRAFOIL® available from Graftech Inc. of Lakewood, Ohio.
  • One way the density of the flexible graphite may be measured is by an immersion density test.
  • the sample of flexible graphite is weighed and the weight is recorded.
  • the sample is immersed in a predetermined volume of water.
  • the volume of water dispersed by the immersion of the sample is recorded.
  • the density is determined by dividing the weight of the sample by the volume of water dispersed. How to measure density is not limited to above immersion density test.
  • the flexible graphite of wick structure 16 may be resin impregnated or non-impregnated flexible graphite. In the case that structure 16 is resin impregnated. In certain preferred embodiments, structure 16 is impregnated in a manner to introduce porosity into structure 16 . Under such circumstances, it is more preferred that the resin impregnate enhances capillary flow and/or diffusion of the working fluid.
  • flexible graphite wick structure 16 may further include a metal wire incorporated into at least a segment of wick structure 16 .
  • suitable metal wire include copper, aluminum, stainless steel, titanium, and combinations thereof. The metal wire may be incorporated into wick structure 16 by various methods.
  • the metal wire may be wrapped around at least a portion of an exterior of wick structure 16 .
  • the metal wire is adhesively bonded to at least a portion of the an interior or an exterior of wick structure 16 .
  • a laminate of the flexible graphite and the metal wire is formed. At least a portion of the laminate includes the metal wire.
  • Wick structure 16 may also include one or more sheets of flexible graphite. Furthermore, each sheet of flexible graphite may comprise about two or more layers of flexible graphite.
  • wick structure 16 includes a sheet of crinkled flexible graphite.
  • the crinkles comprise microcrinkles. More preferably, the microcrinkles have an amplitude of about 1 mm or less. Crinkling gears may be used to from the crinkles.
  • This embodiment of wick structure 16 may include a second sheet of flexible graphite. In some circumstances, the second sheet of flexible graphite is not crinkled.
  • wick structure 16 includes at least one channel.
  • the channel(s) may comprise a first portion sized to facilitate vapor flow, and a second portion sized to facilitate liquid flow.
  • Wick structure 16 may be embossed to form the channels in structure 16 .
  • the size of the channels may be uniform or vary. If the size of the channels varies, some channels can be sized to facilitate vapor flow and others to facilitate liquid flow.
  • wick structure 16 is attached to evaporator 22 of heat pipe 12 .
  • wick structure may be constructed from other materials than expanded graphite.
  • Suitable alternative materials include metals such as aluminum, copper, iron, nickel, titanium, and combinations thereof. The alternate materials may be used instead of or in combination with the expanded graphite.
  • Heat pipe 12 may also include a working fluid circulating inside shell 14 .
  • the working fluid include at least one of methanol, ethanol, other alcohols, water, and, fluorocarbons (e.g., Freon®).
  • the construction of the heat pipe comprises evacuating the shell-wick structure assembly of the heat pipe and then back filling the heat pipe with at least enough fluid to fill the voids in wick structure 16 .
  • the amount of the working fluid in heat pipe 12 comprises enough to saturate wick structure 16 . More preferably, the amount of working fluid charged into shell 14 comprises about ten percent (10%) more than what is needed to saturate wick structure 16 .
  • the amount of working fluid may optionally comprise up to about twenty percent (20%) more than what is needed to saturate wick structure 16 .
  • the amount of working fluid in heat pipe 12 comprises the volume of condenser 26 , more preferably about 10% more than the volume of condenser 26 .
  • One technique to evacuate shell 14 is to pull vacuum on an interior of shell 14 .
  • a function of evacuating shell 14 is to remove as much residual air or other non-working fluid from shell 14 .
  • the atmosphere inside the heat pipe reaches equilibrium of liquid and vapor. As heat enters at the evaporator, this equilibrium shifts to the vapor side and increases the pressure inside the heat pipe. Under the increased pressure, the vapor may diffuse to the condenser, where slightly lower temperatures cause the vapor to condense and give-up its latent heat of vaporization. The condensed fluid is then transferred back to the evaporator by preferably capillary forces developed in wick structure 16 , diffusion, or gravity forces.
  • the continuous cycling of the working fluid transfers large quantities of heat with low thermal gradients.
  • the heat pipe's operation is passive, driven only by the heat that is transferred. Benefits of passive operation include excellent reliability and superior useful life.
  • the inventive heat pipe may be included into a heat spreader assembly as shown in FIG. 3 , generally designated 50 .
  • the assembly 50 comprises a heat pipe 52 .
  • heat pipe 52 includes at least one of a shell or a wick structure comprised of flexible graphite as described above.
  • assembly 50 may also optionally include a base unit 54 .
  • base unit 54 is located at the end of assembly 50 , which includes the condenser, not shown. Suitable materials of construction of base unit 54 comprise flexible graphite, copper, aluminum, and combinations thereof.
  • Base unit 54 includes a surface 56 which may be used to attach a plurality of fins, not shown, to assembly 50 .
  • assembly 50 may include a mating element 58 .
  • mating element 58 is located at an end of heat pipe 52 with the evaporator and is in contact with the heat source. Suitable materials of construction of mating element 58 comprise the same as mating element 28 noted above.
  • all three of the shell of heat pipe 52 , base 54 , and mating element 58 are constructed from flexible graphite, e.g., eGrafTM from Graftech Inc.
  • the flexible graphite for at least one of the pipe 52 , base 54 , and element 58 comprises a laminate.
  • the laminate may be constructed from high density (in certain embodiments, preferably at least about 1.6 g/cc, more preferably at least about 1.7 g/cc, and even more preferably at least about 1.9 g/cc) sheets of flexible graphite cemented together.
  • the flexible graphite laminate may be constructed from a plurality of resin impregnated flexible graphite sheets that have been hot pressed and cured to form a substantially monolithic structure.
  • FIG. 4 Illustrated in FIG. 4 is a cross sectional view of an embodiment of a thermal management device 60 and a heat source 70 .
  • the device 60 includes a shell formed from lower base 62 in contact with heat source 70 .
  • base 62 is constructed of a conductive material, e.g., copper, aluminum, or alloys thereof.
  • the shell further includes an upper element 66 comprises of flexible graphite.
  • the upper element 66 and lower base 62 may be joined at interface 64 by any suitable technique such as the use of an adhesive like an epoxy.
  • device 60 includes a plurality of fins 32 extending from a top surface of element 66 .
  • Device 60 may, optionally, also include one or more internal support elements 68 .
  • the internal support elements are not limited to any particular shape or any particular material of construction.
  • Support elements 68 could be constructed from a conductive material such as cooper, aluminum, expanded graphite, or combinations thereof.
  • support elements 68 may comprise one or more fins that extend down from upper element 66 .
  • a vapor chamber is similar to a heat pipe many ways.
  • a vapor chamber like a heat pipe uses the latent heat of vaporization of a working fluid to transfer heat from a heat source to a location that is colder than the heat source.
  • the working fluid in the vapor chamber is vaporized at some location inside the vapor chamber and travels to a cooler location with in the vapor chamber and condenses at such cooler location.
  • the vapor chamber comprises at least a shell similar to the shell a heat pipe.
  • the shell of the vapor chamber comprises flexible graphite.
  • the vapor chamber will also comprise a working fluid.
  • the working fluid of the vapor chamber may be the same as the working fluid of the heat pipe described above.
  • the vapor chamber may include one of more internal supports.
  • the internal supports are made from some type of thermally conductive material such as flexible graphite, copper, aluminum, or combinations thereof.
  • at least a portion of the outer surface of the vapor chamber may include a plurality of fins, as described with respect to the heat pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention provides to thermal management devices constructed from flexible graphite. In one embodiment, the thermal management device includes a wick structure inside a shell. In certain preferred embodiments, the wick structure is composed of a mass of expanded graphite. In a another embodiment, the shell of the device includes flexible graphite and an optional wick structure. In certain preferred embodiments, the flexible graphite shell is fluid impermeable. The invention further includes methods of making the aforementioned thermal management devices.

Description

    FIELD OF THE INVENTION
  • The invention relates to thermal management devices, and more particularly, to such devices, which include flexible graphite and methods of making such devices.
  • BACKGROUND OF THE INVENTION
  • Thermal management devices, such as heat pipes, are devices which are known in the art of heat transfer. A heat pipe is essentially a closed system of heat transfer in which a small amount of liquid within a sealed and evacuated enclosure is cycled through an evaporation and condensation cycle. Heat entering the enclosure at one location on the casing evaporates liquid at that location, producing vapor, which moves to a cooler location on the casing where it is condensed. The movement of the vapor is motivated by a small vapor pressure differential between the evaporator and the condenser locations. The heat transfer is accomplished when the heat of vaporization, which produces the vapor, is essentially moved with the vapor to the condenser location where it is given up as the heat of condensation.
  • In order for the heat transfer to continue, the condensed liquid must be returned from the condenser to the evaporator where it will again be vaporized. Although this return can be accomplished by something as simple as gravity, capillary wicks have generally been used to permit heat pipes to be relatively independent of the effects of gravity. Such a wick extends from a location near the condenser, where the liquid originates, to a location at the evaporator where it is needed for evaporation.
  • With respect to material of construction, casings are traditionally made of copper or other metals, and are made with walls of sufficient thickness to assure that they are structurally sufficient to withstand the vapor pressures within the heat pipe, and that they are not porous to either the reduced vapor or non-condensable gases outside the heat pipe casing.
  • Considerable efforts have been expended to develop materials, which are both heat conductive and act as capillary structures for wicks. The most common such materials are metal screens used in multiple layers and metal powders sintered into a structure attached to the casing. The heat conductive property of such wicks has been considered important so that the heat entering the heat pipe will be conducted into and through the wick at the evaporator and vaporizes the liquid within the wick. It is also generally preferred that in heat pipe construction that the wick is attached to the casing wall at the evaporator, so that the input heat has direct access to the liquid in the wick.
  • However, there are applications for which the conventional heat pipe structure is not satisfactory. Metal casings and metal wicks add weight, rigidity, and electrical conductivity to heat pipes, but that makes them unusable in some situations. Portable computers, the so-called “laptops”, are one application in which traditional heat pipes are difficult to use. In such applications, weight and space are extremely critical factors. Furthermore, the costs of metal casings and sintered wicks are disadvantaged in the highly competitive market of portable computers. Furthermore, wick components from conventional materials are not resistant to corrosion. Therefore a need exists to find new materials of construction for the heat pipes.
  • SUMMARY OF THE INVENTION
  • One embodiment of the invention provides thermal management devices comprising a substantially fluid impermeable shell and a wick structure inside the shell. In certain preferred embodiments, the wick comprises a mass of expanded graphite.
  • Another embodiment of the invention provides methods of making thermal management devices having a wick structure formed from a mass of expanded graphite.
  • A further embodiment of the invention provides thermal management devices having a shell constructed from flexible graphite.
  • Additional embodiments of the invention, which will become apparent to those skilled in the art after reading this specification, include methods of making thermal management devices having a shell constructed from flexible graphite.
  • Thermal management devices of the present invention have many advantages when compared to their conventional counterparts, some of which include excellent weight, acceptable rigidity, and satisfactory thermal conductivity. Moreover, the wick structure of the inventive device also has improved corrosion resistance as compared to conventional wicking material.
  • Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
  • It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of the internal aspects of a cylindrical heat pipe.
  • FIG. 2 is an exploded view of the elements of a vertical heat pipe.
  • FIG. 3 is a plan view of one specific embodiment of an inventive heat pipe in a heat spreader assembly.
  • FIG. 4 is a cross sectional view of one specific embodiment of a thermal management device with fins.
  • DETAILED DESCRIPTION
  • Graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces. In considering the graphite structure, two axes or directions are usually noted, to with, the “c” axis or direction and the “a” axes or directions. For simplicity, the “c” axis or direction may be considered as the direction perpendicular to the carbon layers. The “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the “c” direction. The graphites suitable for manufacturing flexible graphite sheets possess a very high degree of orientation.
  • As noted above, the bonding forces holding the parallel layers of carbon atoms together are only weak van der Waals forces. Natural graphites can be treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the “c” direction, and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained.
  • Graphite flake which has been greatly expanded and more particularly expanded so as to have a final thickness or “c” direction dimension which is as much as about 80 or more times the original “c” direction dimension can be formed without the use of a binder into cohesive or integrated sheets of expanded graphite, e.g., webs, papers, strips, tapes, foils, mats or the like (typically referred to as “flexible graphite”). The formation of graphite particles which have been expanded to have a final thickness or “c” dimension which is as much as about 80 times or more the original “c” direction dimension into integrated flexible sheets by compression, without the use of any binding material, is believed to be possible due to the mechanical interlocking, or cohesion, which is achieved between the voluminously expanded graphite particles.
  • In addition to flexibility, the sheet material, as noted above, has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles and graphite layers substantially parallel to the opposed faces of the sheet resulting from very high compression, e.g., roll pressing. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
  • Briefly, the process of producing flexible, binderless anisotropic graphite sheet material, e.g., web, paper, strip, tape, foil, mat, or the like, comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a “c” direction dimension which is as much as about 80 or more times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet. The expanded graphite particles that generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet. The density and thickness of the sheet material can be varied by controlling the degree of compression. The density of the sheet material can be within the range of from about 0.04 g/cc to about 2.0 g/cc. The flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet, with the degree of anisotropy increasing upon roll pressing of the sheet material to increased density. In roll pressed anisotropic sheet material, the thickness, i.e., the direction perpendicular to the opposed, parallel sheet surfaces comprises the “c” direction and the directions ranging along the length and width, i.e., along or parallel to the opposed, major surfaces comprises the “a” directions and the thermal and electrical properties of the sheet are very different, by orders of magnitude, for the “c” and “a” directions.
  • Methods of manufacturing articles from graphite particles have been proposed. For example, U.S. Pat. No. 5,882,570 to Hayward discloses a method of grinding flexible unimpregnated graphite foil to a small particle size, thermally shocking the particles to expand them, mixing the expanded graphite with a thermoset phenolic resin, injection molding the mixture to form low density blocks or other shapes, then heat treating the blocks to thermoset the material. The resulting blocks may be used as insulating material in a furnace or the like.
  • WO 00/54953 and U.S. Pat. No. 6,217,800, both to Hayward, further describe processes related to those of U.S. Pat. No. 5,882,570. The Hayward processes are very limited in the scope of the source materials they use, and the type of end products they can produce. Hayward uses only unimpregnated graphite source materials, and his finished products are only formed by mixing the graphite particles with large proportions of resin and injection molding the mixture to form articles, which are then thermoset.
  • With respect to graphite, it is known that graphites are made up of layered planes of hexagonal arrays or networks of carbon atoms. These layered planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another. The substantially flat, parallel equidistant sheets or layers of carbon atoms, usually referred to as graphene layers or basal planes, are linked or bonded together and groups thereof are arranged in crystallites. Highly ordered graphites consist of crystallites of considerable size. The crystallites are highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. It should be noted that graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional, e.g., thermal and electrical conductivity and fluid diffusion.
  • The invention may comprise providing source materials such as flexible sheets of graphite material. The source materials typically comprise graphite, a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes. In obtaining source materials such as the above flexible sheets of graphite, particles of graphite, such as natural graphite flake, are typically treated with an intercalant of, e.g., a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant. The treated particles of graphite are hereafter referred to as “particles of intercalated graphite.” Upon exposure to high temperature, the intercalant within the graphite decomposes and volatilizes, causing the particles of intercalated graphite to expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the “c” direction, i.e., in the direction perpendicular to the crystalline planes of the graphite. The exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact.
  • Graphite starting materials for the flexible sheets suitable for use in the present invention include highly graphitic carbonaceous materials capable of intercalating organic and inorganic acids as well as halogens and then expanding when exposed to heat. These highly graphitic carbonaceous materials most preferably have a degree of graphitization of about 1.0. As used in this disclosure, the term “degree of graphitization” refers to the value g according to the formula:
  • g = 3.45 - d ( 002 ) 0.095
  • where d(002) is the spacing between the graphitic layers of the carbons in the crystal structure measured in Angstrom units. The spacing “d” between graphite layers is measured by standard X-ray diffraction techniques. The positions of diffraction peaks corresponding to the (002), (004) and (006) Miller Indices are measured, and standard least-squares techniques are employed to derive spacing which minimizes the total error for all of these peaks. Examples of highly graphitic carbonaceous materials include natural graphites from various sources, as well as other carbonaceous materials such as carbons prepared by chemical vapor deposition and the like. In many instances, natural graphite is preferred.
  • The graphite starting materials for the flexible sheets used in the present invention may contain non-carbon components so long as the crystal structure of the starting materials maintains the required degree of graphitization and they are capable of exfoliation. Generally, any carbon-containing material, the crystal structure of which possesses the required degree of graphitization and which can be exfoliated, is suitable for use with the present invention. Such graphite preferably has an ash content of less than twenty weight percent. In certain circumstances, the graphite employed will have a purity of at least about 94%. In other preferred circumstances, the graphite employed will have a purity of at least about 99%.
  • A common method for manufacturing graphite sheet is described by Shane, et al. in U.S. Pat. No. 3,404,061, the disclosure of which is incorporated herein by reference. In the typical practice of the Shane, et al. method, natural graphite flakes are intercalated by dispersing the flakes in a solution containing e.g., a mixture of nitric and sulfuric acid, advantageously at a level of about 20 to about 300 parts by weight of intercalant solution per 100 parts by weight of graphite flakes (pph). The intercalation solution contains oxidizing and other intercalating agents known in the art. Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g., trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid. Alternatively, an electric potential can be used to bring about oxidation of the graphite. Chemical species that can be introduced into the graphite crystal using electrolytic oxidation include sulfuric acid as well as other acids.
  • In one preferred embodiment, the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e., nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like. The intercalation solution may even sometimes contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
  • The quantity of intercalation solution may range from about 20 to about 150 pph, and typically from about 50 to about 120 pph. After the flakes are intercalated, any excess solution is typically drained from the flakes and the flakes are water-washed. Alternatively, the quantity of the intercalation solution may be limited to between about 10 and about 50 pph, which permits the washing step to be eliminated as taught and described in U.S. Pat. No. 4,895,713, the disclosure of which is also herein incorporated by reference.
  • The particles of graphite flake treated with intercalation solution can, optionally, be contacted, e.g., by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25° C. and 125° C. Suitable specific organic agents include hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1, 10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, glycerol monostearate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate, ascorbic acid and lignin-derived compounds, such as sodium lignosulfate. The amount of organic reducing agent is typically from about 0.1 to 5% by weight of the particles of graphite flake.
  • The use of an expansion aid applied prior to, during or immediately after intercalation can also provide improvements. Among these improvements can be reduced exfoliation temperature and increased expanded volume (also referred to as “worm volume”). An expansion aid in this context will advantageously be an organic material sufficiently soluble in the intercalation solution to achieve an improvement in expansion. More narrowly, organic materials of this type that contain carbon, hydrogen and oxygen, preferably exclusively, may be employed. Carboxylic acids have been found especially effective. A suitable carboxylic acid useful as the expansion aid can be selected from aromatic, aliphatic or cycloaliphatic, straight chain or branched chain, saturated and unsaturated monocarboxylic acids, dicarboxylic acids and polycarboxylic acids which have at least 1 carbon atom, and often times up to about 15 carbon atoms, which is soluble in the intercalation solution in amounts effective to provide a measurable improvement of one or more aspects of exfoliation. Suitable organic solvents can be employed to improve solubility of an organic expansion aid in the intercalation solution.
  • Representative examples of saturated aliphatic carboxylic acids are acids such as those of the formula H(CH2)nCOOH wherein “n” is a number of from 0 to about 5, including formic, acetic, propionic, butyric, pentanoic, hexanoic, and the like. In place of the carboxylic acids, the anhydrides or reactive carboxylic acid derivatives such as alkyl esters can also be employed. Representative examples of alkyl esters are methyl formate and ethyl formate. Sulfuric acid, nitric acid and other known aqueous intercalants have the ability to decompose formic acid, ultimately to water and carbon dioxide. Because of this, formic acid and other sensitive expansion aids are advantageously contacted with the graphite flake prior to immersion of the flake in aqueous intercalant. Representative examples of dicarboxylic acids are aliphatic dicarboxylic acids having 2-12 carbon atoms, in particular oxalic acid, fumaric acid, malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,10-decanedicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and aromatic dicarboxylic acids such as phthalic acid or terephthalic acid. Representative examples of alkyl esters are dimethyl oxylate and diethyl oxylate. Representative examples of cycloaliphatic acids is cyclohexane carboxylic acid and of aromatic carboxylic acids are benzoic acid, naphthoic acid, anthranilic acid, p-aminobenzoic acid, salicylic acid, o-, m- and p-tolyl acids, methoxy and ethoxybenzoic acids, acetoacetamidobenzoic acids and, acetamidobenzoic acids, phenylacetic acid and naphthoic acids. Representative examples of hydroxy aromatic acids are hydroxybenzoic acid, 3-hydroxy-1-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid and 7-hydroxy-2-naphthoic acid. Prominent among the polycarboxylic acids is citric acid.
  • The intercalation solution will typically be aqueous and may contain an amount of expansion aid of from about 1 to 10%, the amount being effective to enhance exfoliation. In an embodiment wherein the expansion aid is contacted with the graphite flake prior to or after immersing in the aqueous intercalation solution, the expansion aid can be admixed with the graphite by suitable means, such as a V-blender, typically in an amount of from about 0.1% to about 10% by weight of the graphite flake.
  • After intercalating the graphite flake, and following the blending of the intercalant coated intercalated graphite flake with the organic reducing agent, the blend is exposed to temperatures in the range of 25° to 125° C. to promote reaction of the reducing agent and intercalant coating. The heating period is up to about 20 hours, with shorter heating periods, e.g., at least about 10 minutes, for higher temperatures in the above-noted range.
  • The thus treated particles of graphite are sometimes referred to as “particles of intercalated graphite.” Upon exposure to high temperature, e.g., temperatures of at least about 160° C. and often times about 700° C. to 1200° C. and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e., in the direction perpendicular to the crystalline planes of the constituent graphite particles. The expanded, i.e., exfoliated, graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact as hereinafter described.
  • Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, e.g., by roll-pressing, to a thickness of about 0.05 mm to 4.00 mm and a typical density of about 0.1 to 1.5 grams per cubic centimeter (g/cc). From about 1.5 to 30% by weight of ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Pat. No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product. The additives include ceramic fiber particles having a length of about 0.1 to 1.5 millimeters. The width of the particles is suitably from about 0.05 to 0.001 mm. The ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about 1100° C., preferably about 1400° C. or higher. Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
  • The flexible graphite sheet can also, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e., stiffness, of the flexible graphite sheet as well as “fixing” the morphology of the sheet. Suitable resin content is preferably at least about 5% by weight, more preferably about 10 to 35% by weight, and suitably up to about 60% by weight. Resins found especially useful in the practice of the present invention include acrylic-, epoxy- and phenolic-based resin systems, or mixtures thereof. Suitable epoxy resin systems include those based on diglycidyl ether or bisphenol A (DGEBA) and other multifunctional resin systems; phenolic resins that can be employed include resole and novolac phenolics. In certain preferred embodiments, the glass transition temperature of the resin is compatible with the use temperature of the thermal heat management device. Nonetheless, the graphite sheet as prepared above may be cut and trimmed to form the desired articles. Flexible graphite treated with a resin is also referred to as “resin impregnated flexible graphite” or “impregnated flexible graphite”.
  • The invention will now be described in terms of the aforementioned drawings in terms of a heat pipe, however the invention is not limited to a heat pipe and is applicable to other types of thermal management devices, e.g., a vapor chamber. Whenever possible like or similar reference characters will be used to describe like or similar elements of the drawings.
  • FIG. 1 is a plan view of the internal aspects of a cylindrical heat pipe, generally designated 10. Depicted in FIG. 1 is a cylindrical heat pipe 12 arranged in a horizontal orientation with respect to the general path of flow of the working fluid. Heat pipe 12 includes a shell 14 and wick structure 16. Optionally, heat pipe 12 includes at least one fluid passage 18 external to wick structure 16, also represented by arrows E. Heat pipe 12 may also include at least one fluid passage 20 internal to wick structure 16, also represented by arrows I. Wick structure 16 may also comprise a plurality of approximately radial fluid passages, which allows the working fluid to travel at least from passage 18, through wick structure 16 to passage 20. Optionally, heat pipe 12 also includes an evaporator 22 and a condenser 26 at opposed ends of the heat pipe 12.
  • Heat pipe 12 may include a mating element 28 for a heat source 30. Optionally, mating element 28 is located on the same end of heat pipe 12 as evaporator 22. In certain preferred embodiments, mating element 28 has a surface in contact with a surface of heat source 30 and that the surface of mating element 28 is optionally the mirror image of the surface of heat source 30 in contact with mating element 28. In other preferred embodiments, mating element 28 is also in contact with an external portion of heat pipe 12. The contact between mating element 28 and heat pipe 12 may enhance heat transfer from heat source 30 to heat pipe 12. Suitable materials of construction of mating element 28 comprise at least flexible graphite, copper, aluminum, and combinations thereof. An example of a suitable material for mating element 28 comprises eGRAF HS 400 from Graftech Inc. One example of heat source 30 is a computer chip.
  • As illustrated in FIG. 1, heat pipe 12 may also include a plurality of fins 32 located on at least a portion of shell 14. Optionally, fins 32 are located on at least an end of pipe 12 which condenser 26 is located. With respect to an embodiment of heat pipe 12 that includes fins 32, preferably fins 32 are constructed from flexible graphite. Other suitable materials of fins 32 may comprise copper, aluminum, and any combination of the previously identified materials. Fins 32 are not limited to the embodiment depicted in FIG. 1. Any suitable configuration of fins 32 may be used as part of the invention. For example fins 32 may comprise a combination of elements of a base and a plurality of spaced apart fins extending vertically away from heat pipe 12. An embodiment of the invention may also include a fan to move air across fins 32 to assist with the dissipation of the heat absorbed by fins 32.
  • As shown in FIG. 1, heat is generated at heat source 30. The heat generated at heat source 30 is transmitted to the heat pipe 12 and evaporates the working fluid in at least evaporator 22. The vapor phase of the working fluid flows along passage 20 to condenser 26 as indicated by arrows I. The vapor working fluid is condensed into a liquid form at condenser 26 and the heat removed from the working fluid as a result of condensing is transmitted to fins 32 and dissipated into the ambient environment. The liquid form of the working fluid flows back to evaporator 22 along passage 18 in the direction indicated by arrows E. Typical flow mechanisms to transport liquid working fluid from condenser 26 to evaporator 22 include at least gravity, capillary action, or combinations thereof.
  • Optionally, heat pipe 12 may be operated at a pressure of less than atmospheric pressure. By adjusting the pressure inside heat pipe 12, the temperature at which the working fluid inside heat pipe 12 will vaporize may be adjusted to the specific change in temperature associated with the heat generated by heat source 30. For example, if the working fluid is water and heat pipe 12 is operating at a reduced pressure, the water will vaporize at a temperature of less than about 100° C.
  • A second embodiment of a heat pipe is illustrated in FIG. 2 and is generally designated 40. Optionally, heat pipe 40 may be arranged in a vertical orientation with respect to the path of travel of the working fluid. However, heat pipe 40 may be arranged in any configuration. Heat pipe 40 includes a shell, which comprises of the two sheets of material 44 u and 44 l. Sheets 44 u and 44 l are located on opposed ends of heat pipe 40. Sheet 44 l may be referred to as an evaporator and sheet 44 u may be referred to as a condenser.
  • Heat pipe 40 also includes a wick structure 46. As illustrated, wick structure 46 includes four (4) different plate structures 46 a-46 d. It should be noted that heat pipe 40 is not limited to any particular number of plates. As for the construction of plate structures 46 a-46 d, it is preferred that the path of flow of the working fluid is altered from one plate to the adjacent plate. With respect to plates 46 a and 46 b, it is shown that the flow pathway of plate 46 a is about the exact opposite of the flow pathway of the working fluid through plate 46 b. For example, plate 46 a has a central aperture and spoke like flow pathways that extend radially outward from the central aperture. In contrast, plate 46 b includes a central hub and spoke like support members that extend radially outward from the central hub. Furthermore, preferably plate 46 c provides a flow path that is complimentary to that of plate 46 b. The same is true between the relationship plates 46 c and 46 d. Wick structure 46 is constructed in a manner such that the working fluid is transported within heat pipe 40 by at least capillary action.
  • With respect to one embodiment of the invention, preferably heat pipe 12 comprises a substantially fluid impermeable shell 14, preferably shell 14 is a vacuum tight enclosure, and a wick structure 16 is inside shell 14. Optionally, shell 14 of heat pipe 12 may be constructed from flexible graphite. Optionally, shell 14 is constructed from flexible graphite having a density of at least about 1.6 g/cc, typically at least about 1.7 g/cc, more typically at least about 1.9 g/cc, and even more typically at least about 2.0 g/cc.
  • The flexible graphite used to form shell 14 may or may not be resin impregnated flexible graphite. Furthermore, shell 14 may comprise more than one sheet of flexible graphite. In a further embodiment of shell 14, an interior surface of shell 14 may include at least one channel, preferably a plurality of channels. Vacuum tight is used herein to mean that vacuum was used to remove at least some, preferably substantially all, of the non-working fluid from shell 14. The non-working fluid is defined herein to mean at least a fluid that is present in shell 14 that is not the working fluid, e.g., air.
  • In the case that shell 14 is constructed from flexible graphite, various techniques may be used to form the desired shaped shell. For example, compression may be used to form sheets of flexible graphite into the desired shape for shell 14. A typical pressure used to compress flexible graphite comprises about 4 bars or less, typically about 2 bars or less. In a second technique, an adhesive may be used to form the flexible graphite into the desired shape for shell 14. In certain preferred circumstances, the adhesive is not soluble in the working fluid or vice versa. In the third technique, the flexible graphite is rolled into a cylindrical shape and a lengthwise seam of heat pipe 12 is formed through the use of compression or an adhesive and a plug may be used at each one of the axial openings of the cylinder to form shell 14.
  • In another technique, one or more flexible graphite sheets may be rolled into a tube shape and the ends of the tube may be plugged to form shell 14. Optionally, the sheets may be embossed to form channels on an interior surface of shell 14. In another alternative, the flexible graphite sheets may be corrugated. A further technique, sheets of flexible graphite may be wrapped around a mandrel to form shell 14. In wrapping the sheets, the sheets may be wrapped in any configuration, for example but limited to spirally wrapping the sheets. In the above techniques, the flexible graphite sheets may be resin impregnated or nonresin impregnated. With respect to the resin impregnated sheets, the resin may be cured prior to or after forming shell 14.
  • In another embodiment, shell 14 is constructed from a three-dimensional piece of flexible graphite. A passage is machined into the piece. Preferably the passage does not extend completely through the piece. The open end of the passage may be sealed by any one of the aforementioned techniques of an adhesive, pressing, or a plug.
  • In certain preferred embodiments, wick structure 16 comprises a porous material, more preferably a mass of expanded graphite, even more preferably flexible graphite having a density of no more than about 1.5 g/cc. Flexible graphite is used herein to describe a mass of expanded graphite that has been formed into a sheet. More preferably, the flexible graphite of wick structure 16 has a density of no more than about 1.1 g/cc, even more preferably less than about 1.0 g/cc, and most preferably no more than about 0.5 g/cc. It is even further preferred that the flexible graphite has a density of at least about 0.25 g/cc. One example of such flexible graphite is GRAFOIL® available from Graftech Inc. of Lakewood, Ohio.
  • One way the density of the flexible graphite may be measured is by an immersion density test. In this test the sample of flexible graphite is weighed and the weight is recorded. Next the sample is immersed in a predetermined volume of water. The volume of water dispersed by the immersion of the sample is recorded. The density is determined by dividing the weight of the sample by the volume of water dispersed. How to measure density is not limited to above immersion density test.
  • The flexible graphite of wick structure 16 may be resin impregnated or non-impregnated flexible graphite. In the case that structure 16 is resin impregnated. In certain preferred embodiments, structure 16 is impregnated in a manner to introduce porosity into structure 16. Under such circumstances, it is more preferred that the resin impregnate enhances capillary flow and/or diffusion of the working fluid.
  • Optionally, flexible graphite wick structure 16 may further include a metal wire incorporated into at least a segment of wick structure 16. Examples of suitable metal wire include copper, aluminum, stainless steel, titanium, and combinations thereof. The metal wire may be incorporated into wick structure 16 by various methods.
  • One method is that the metal wire may be wrapped around at least a portion of an exterior of wick structure 16. In a second method, the metal wire is adhesively bonded to at least a portion of the an interior or an exterior of wick structure 16. In a third method, a laminate of the flexible graphite and the metal wire is formed. At least a portion of the laminate includes the metal wire.
  • Wick structure 16 may also include one or more sheets of flexible graphite. Furthermore, each sheet of flexible graphite may comprise about two or more layers of flexible graphite.
  • In one specific embodiment, wick structure 16 includes a sheet of crinkled flexible graphite. Preferably, the crinkles comprise microcrinkles. More preferably, the microcrinkles have an amplitude of about 1 mm or less. Crinkling gears may be used to from the crinkles. This embodiment of wick structure 16 may include a second sheet of flexible graphite. In some circumstances, the second sheet of flexible graphite is not crinkled.
  • In another embodiment, wick structure 16 includes at least one channel. The channel(s) may comprise a first portion sized to facilitate vapor flow, and a second portion sized to facilitate liquid flow. Wick structure 16 may be embossed to form the channels in structure 16. The size of the channels may be uniform or vary. If the size of the channels varies, some channels can be sized to facilitate vapor flow and others to facilitate liquid flow. As for structure 16, in one embodiment, wick structure 16 is attached to evaporator 22 of heat pipe 12.
  • Alternatively, wick structure may be constructed from other materials than expanded graphite. Suitable alternative materials include metals such as aluminum, copper, iron, nickel, titanium, and combinations thereof. The alternate materials may be used instead of or in combination with the expanded graphite.
  • Heat pipe 12 may also include a working fluid circulating inside shell 14. Preferred examples of the working fluid include at least one of methanol, ethanol, other alcohols, water, and, fluorocarbons (e.g., Freon®). In one embodiment, the construction of the heat pipe comprises evacuating the shell-wick structure assembly of the heat pipe and then back filling the heat pipe with at least enough fluid to fill the voids in wick structure 16.
  • In certain preferred embodiments, the amount of the working fluid in heat pipe 12 comprises enough to saturate wick structure 16. More preferably, the amount of working fluid charged into shell 14 comprises about ten percent (10%) more than what is needed to saturate wick structure 16.
  • The amount of working fluid may optionally comprise up to about twenty percent (20%) more than what is needed to saturate wick structure 16. In another embodiment, the amount of working fluid in heat pipe 12 comprises the volume of condenser 26, more preferably about 10% more than the volume of condenser 26. One technique to evacuate shell 14 is to pull vacuum on an interior of shell 14. A function of evacuating shell 14 is to remove as much residual air or other non-working fluid from shell 14.
  • In one preferred embodiment, the atmosphere inside the heat pipe reaches equilibrium of liquid and vapor. As heat enters at the evaporator, this equilibrium shifts to the vapor side and increases the pressure inside the heat pipe. Under the increased pressure, the vapor may diffuse to the condenser, where slightly lower temperatures cause the vapor to condense and give-up its latent heat of vaporization. The condensed fluid is then transferred back to the evaporator by preferably capillary forces developed in wick structure 16, diffusion, or gravity forces.
  • The continuous cycling of the working fluid transfers large quantities of heat with low thermal gradients. Preferably, the heat pipe's operation is passive, driven only by the heat that is transferred. Benefits of passive operation include excellent reliability and superior useful life.
  • The inventive heat pipe may be included into a heat spreader assembly as shown in FIG. 3, generally designated 50. The assembly 50 comprises a heat pipe 52. In certain preferred embodiments, heat pipe 52 includes at least one of a shell or a wick structure comprised of flexible graphite as described above.
  • As shown in FIG. 3, assembly 50 may also optionally include a base unit 54. Preferably base unit 54 is located at the end of assembly 50, which includes the condenser, not shown. Suitable materials of construction of base unit 54 comprise flexible graphite, copper, aluminum, and combinations thereof. Base unit 54 includes a surface 56 which may be used to attach a plurality of fins, not shown, to assembly 50. Furthermore, assembly 50 may include a mating element 58. Preferably, mating element 58 is located at an end of heat pipe 52 with the evaporator and is in contact with the heat source. Suitable materials of construction of mating element 58 comprise the same as mating element 28 noted above.
  • In one embodiment of assembly 50, all three of the shell of heat pipe 52, base 54, and mating element 58 are constructed from flexible graphite, e.g., eGraf™ from Graftech Inc. In certain preferred embodiments, the flexible graphite for at least one of the pipe 52, base 54, and element 58 comprises a laminate. The laminate may be constructed from high density (in certain embodiments, preferably at least about 1.6 g/cc, more preferably at least about 1.7 g/cc, and even more preferably at least about 1.9 g/cc) sheets of flexible graphite cemented together. Alternatively, the flexible graphite laminate may be constructed from a plurality of resin impregnated flexible graphite sheets that have been hot pressed and cured to form a substantially monolithic structure.
  • Illustrated in FIG. 4 is a cross sectional view of an embodiment of a thermal management device 60 and a heat source 70. The device 60 includes a shell formed from lower base 62 in contact with heat source 70. Preferably, base 62 is constructed of a conductive material, e.g., copper, aluminum, or alloys thereof. The shell further includes an upper element 66 comprises of flexible graphite. The upper element 66 and lower base 62 may be joined at interface 64 by any suitable technique such as the use of an adhesive like an epoxy. In certain preferred embodiments, device 60 includes a plurality of fins 32 extending from a top surface of element 66.
  • Device 60 may, optionally, also include one or more internal support elements 68. The internal support elements are not limited to any particular shape or any particular material of construction. Support elements 68 could be constructed from a conductive material such as cooper, aluminum, expanded graphite, or combinations thereof. In an alternate embodiment, support elements 68 may comprise one or more fins that extend down from upper element 66.
  • The invention also applies to other types of thermal management devices such as a vapor chamber. A vapor chamber is similar to a heat pipe many ways. A vapor chamber like a heat pipe uses the latent heat of vaporization of a working fluid to transfer heat from a heat source to a location that is colder than the heat source. In operation, the working fluid in the vapor chamber is vaporized at some location inside the vapor chamber and travels to a cooler location with in the vapor chamber and condenses at such cooler location.
  • In certain preferred embodiments, the vapor chamber comprises at least a shell similar to the shell a heat pipe. Under these circumstances, the shell of the vapor chamber comprises flexible graphite. Typically, the vapor chamber will also comprise a working fluid. The working fluid of the vapor chamber may be the same as the working fluid of the heat pipe described above. Optionally, the vapor chamber may include one of more internal supports. Preferably, the internal supports are made from some type of thermally conductive material such as flexible graphite, copper, aluminum, or combinations thereof. Optionally, at least a portion of the outer surface of the vapor chamber may include a plurality of fins, as described with respect to the heat pipe.

Claims (14)

1. A thermal management device comprising:
a. a substantially fluid impermeable shell having an evaporator portion and a condenser portion;
b. a wick structure inside said shell, said wick structure comprising a mass of expanded graphite;
c. a working fluid circulating inside said shell; and
d. the substantially fluid impermeable shell having a mating element disposed at its evaporator portion, wherein the mating element comprises at least one sheet of compressed particles of exfoliated graphite.
2. (canceled)
3. The thermal management device according to claim 1 wherein said sheet of compressed particles of exfoliated graphite which forms said mating element comprises at least one resin impregnated sheet of compressed particles of exfoliated graphite.
4-20. (canceled)
21. The thermal management device of claim 1 wherein the mating element comprises at least one sheet of compressed particles of exfoliated graphite having a density of at least about 1.1 g/cc.
22. The thermal management device of claim 21, wherein the at least one sheet of compressed particles of exfoliated graphite has a density of at least about 1.6 g/cc.
23. The thermal management device of claim 21, wherein the in-plane thermal conductivity of the at least one sheet of compressed particles of exfoliated graphite is at least about 400 W/m-K.
24. The thermal management device of claim 3, wherein the at least one sheet of compressed particles of exfoliated graphite is impregnated with about 5% resin by weight.
25. A thermal management device comprising:
a. a substantially fluid impermeable shell having an evaporator portion and a condenser portion;
b. a working fluid circulating inside said shell; and
c. the substantially fluid impermeable shell having a dissipation fin disposed at its condenser portion, wherein the dissipation fin each comprise at least one sheet of compressed particles of exfoliated graphite.
26. The thermal management device according to claim 25 wherein said sheet of compressed particles of exfoliated graphite which forms said dissipation fin comprises at least one resin impregnated sheet of compressed particles of exfoliated graphite.
27. The thermal management device of claim 26, wherein the at least one sheet of compressed particles of exfoliated graphite is impregnated with about 5% resin by weight.
28. The thermal management device of claim 25 wherein the at least one sheet of compressed particles of exfoliated graphite having a density of at least about 1.1 g/cc.
29. The thermal management device of claim 28, wherein the at least one sheet of compressed particles of exfoliated graphite has a density of at least about 1.6 g/cc.
30. The thermal management device of claim 28, wherein the in-plane thermal conductivity of the at least one sheet of compressed particles of exfoliated graphite is at least about 400 W/m-K.
US12/253,073 2002-12-23 2008-10-16 Flexible Graphite Thermal Management Devices Abandoned US20090032227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/253,073 US20090032227A1 (en) 2002-12-23 2008-10-16 Flexible Graphite Thermal Management Devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/328,302 US20040118553A1 (en) 2002-12-23 2002-12-23 Flexible graphite thermal management devices
US12/253,073 US20090032227A1 (en) 2002-12-23 2008-10-16 Flexible Graphite Thermal Management Devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/328,302 Continuation US20040118553A1 (en) 2002-12-23 2002-12-23 Flexible graphite thermal management devices

Publications (1)

Publication Number Publication Date
US20090032227A1 true US20090032227A1 (en) 2009-02-05

Family

ID=32594425

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/328,302 Abandoned US20040118553A1 (en) 2002-12-23 2002-12-23 Flexible graphite thermal management devices
US12/253,073 Abandoned US20090032227A1 (en) 2002-12-23 2008-10-16 Flexible Graphite Thermal Management Devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/328,302 Abandoned US20040118553A1 (en) 2002-12-23 2002-12-23 Flexible graphite thermal management devices

Country Status (9)

Country Link
US (2) US20040118553A1 (en)
EP (1) EP1576656A2 (en)
JP (1) JP4652818B2 (en)
KR (1) KR101012195B1 (en)
CN (1) CN100575853C (en)
AU (1) AU2003297158A1 (en)
CA (1) CA2511504A1 (en)
MX (1) MXPA05006827A (en)
WO (1) WO2004059696A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221369A1 (en) * 2004-09-07 2007-09-27 Advanced Energy Technology Inc. Composite Heat Sink With Metal Base And Graphite Fins
US20070240852A1 (en) * 2006-04-14 2007-10-18 Foxconn Technology Co., Ltd. Heat pipe with heat reservoirs at both evaporating and condensing sections thereof
US20090166003A1 (en) * 2007-12-27 2009-07-02 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
US20100326629A1 (en) * 2009-06-26 2010-12-30 Meyer Iv George Anthony Vapor chamber with separator
US20110000648A1 (en) * 2009-07-01 2011-01-06 Chao-Nan Chien Heat dissipation module
US20110203776A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Thermal transfer device and associated systems and methods
US20110232881A1 (en) * 2010-03-26 2011-09-29 Hamilton Sundstrand Corporation Corrugated Graphite Sheet Heat Transfer Device
US20140090817A1 (en) * 2012-05-11 2014-04-03 The Regents Of The University Of California Inorganic aqueous solution (ias) for phase-change heat transfer medium
US20140182819A1 (en) * 2013-01-01 2014-07-03 Asia Vital Components Co., Ltd. Heat dissipating device
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US11125508B2 (en) * 2014-11-12 2021-09-21 Asia Vital Components Co., Ltd. Thin heat pipe structure
US11137215B2 (en) * 2017-06-01 2021-10-05 Furukawa Electric Co., Ltd. Flat heat pipe
US11453593B2 (en) * 2019-04-29 2022-09-27 Global Graphene Group, Inc. Oriented graphene sheet-enhanced vapor-based heat transfer device and process for producing same
US11566852B2 (en) 2019-04-26 2023-01-31 Global Graphene Group, Inc. Graphene-enhanced vapor-based heat transfer device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060021740A1 (en) * 2004-07-30 2006-02-02 Richard Chi-Hsueh Vacuum condenser heat sink
JP2006064296A (en) * 2004-08-27 2006-03-09 Sgl Carbon Ag Heat conductive plate formed of expanded graphite and production method therefor
US20060070720A1 (en) * 2004-09-17 2006-04-06 Capp Joseph P Heat riser
US8171984B2 (en) * 2006-02-01 2012-05-08 Sgl Carbon Ag Latent heat storage devices
CN101466230B (en) * 2007-12-21 2012-07-25 富准精密工业(深圳)有限公司 Radiating device
US8955580B2 (en) 2009-08-14 2015-02-17 Wah Hong Industrial Corp. Use of a graphite heat-dissipation device including a plating metal layer
TW201035513A (en) * 2009-03-25 2010-10-01 Wah Hong Ind Corp Method for manufacturing heat dissipation interface device and product thereof
BR112012020282A2 (en) * 2010-02-13 2016-05-03 Mcalister Technologies Llc thermal transfer device, and associated systems and methods
US20140141233A1 (en) 2012-07-03 2014-05-22 Peterson Chemical Technology, Inc. Surface Infusion of Flexible Cellular Foams With Novel Liquid Gel Mixture
CN103292629A (en) * 2012-03-01 2013-09-11 欧司朗股份有限公司 Heat pipe and manufacturing method thereof
CN102967163A (en) * 2012-11-29 2013-03-13 南京卡立得热能科技有限公司 Thermal expansion board
US20140352926A1 (en) * 2013-05-31 2014-12-04 Cooler Master Co., Ltd. Shell structure for handheld device
EP3044530A4 (en) * 2013-09-12 2017-03-08 Renew Group Private Limited System and method of using graphene enriched products for distributing heat energy
JP6737564B2 (en) * 2013-09-13 2020-08-12 ザ・ボーイング・カンパニーThe Boeing Company Energy storage and thermal management using phase change materials with heat pipes and foils, foams or other porous media
US9333599B2 (en) 2013-12-20 2016-05-10 General Electric Company Electronics chassis and method of fabricating the same
CN105459472B (en) * 2015-11-27 2018-07-06 宁波信远石墨有限公司 A kind of high heat transfer and the material of the hot bi-directional conversion of wave and preparation and application
CN105674777B (en) * 2016-01-25 2017-08-04 云南科威液态金属谷研发有限公司 A kind of intelligent device based on liquid metal
US10330392B2 (en) * 2016-02-05 2019-06-25 Cooler Master Co., Ltd. Three-dimensional heat transfer device
CN107278089B (en) * 2016-04-07 2019-07-19 讯凯国际股份有限公司 Heat conductive structure
EP3255665B1 (en) 2016-06-08 2022-01-12 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic device with component carrier and method for producing it
CN106091764A (en) * 2016-08-11 2016-11-09 广东兆瓦热能科技股份有限公司 Heat transmitter
US10012445B2 (en) * 2016-09-08 2018-07-03 Taiwan Microloops Corp. Vapor chamber and heat pipe combined structure
US10830094B2 (en) 2016-09-28 2020-11-10 Raytheon Technologies Corporation Gas turbine engine with graphene heat pipe
EP3302006A1 (en) * 2016-09-30 2018-04-04 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier comprising at least one heat pipe and method for producing said component carrier
CN108323137A (en) * 2017-01-18 2018-07-24 台达电子工业股份有限公司 Soaking plate
US10766097B2 (en) * 2017-04-13 2020-09-08 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements
US20190368823A1 (en) 2018-05-29 2019-12-05 Cooler Master Co., Ltd. Heat dissipation plate and method for manufacturing the same
US11913725B2 (en) 2018-12-21 2024-02-27 Cooler Master Co., Ltd. Heat dissipation device having irregular shape
CN109574001B (en) * 2019-01-09 2021-11-30 哈尔滨工业大学 Preparation method of low-temperature sulfur-free and heavy metal-free expandable graphite
CN114061349A (en) * 2021-11-23 2022-02-18 广东墨睿科技有限公司 Integrally formed soaking plate and preparation method and application thereof

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
US3528494A (en) * 1966-11-07 1970-09-15 Teledyne Inc Heat pipe for low thermal conductivity working fluids
US4199628A (en) * 1978-03-23 1980-04-22 The Dow Chemical Company Vermicular expanded graphite composite material
US4838346A (en) * 1988-08-29 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reusable high-temperature heat pipes and heat pipe panels
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
US4966226A (en) * 1989-12-29 1990-10-30 Digital Equipment Corporation Composite graphite heat pipe apparatus and method
US4995451A (en) * 1989-12-29 1991-02-26 Digital Equipment Corporation Evaporator having etched fiber nucleation sites and method of fabricating same
US5036905A (en) * 1989-10-26 1991-08-06 The United States Of America As Represented By The Secretary Of The Air Force High efficiency heat exchanger
US5240769A (en) * 1986-11-25 1993-08-31 Nippon Pillar Packing Co. Ltd. Packing material and packing made of the same
US5523260A (en) * 1993-08-02 1996-06-04 Motorola, Inc. Method for heatsinking a controlled collapse chip connection device
US5642776A (en) * 1996-02-27 1997-07-01 Thermacore, Inc. Electrically insulated envelope heat pipe
US5882570A (en) * 1994-06-20 1999-03-16 Sgl Technic, Inc. Injection molding graphite material and thermoplastic material
US5902762A (en) * 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
US6167948B1 (en) * 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
US6184578B1 (en) * 1990-02-28 2001-02-06 Hughes Electronics Corporation Graphite composite heat pipe
US6182974B1 (en) * 1996-03-22 2001-02-06 Garlock, Inc. Stuffing box packing assembly
US6208513B1 (en) * 1995-01-17 2001-03-27 Compaq Computer Corporation Independently mounted cooling fins for a low-stress semiconductor package
US6217800B1 (en) * 1996-01-25 2001-04-17 Sgl Technic, Inc. Graphite foam material and method of making same
US6245400B1 (en) * 1998-10-07 2001-06-12 Ucar Graph-Tech Inc. Flexible graphite with non-carrier pressure sensitive adhesive backing and release liner
US6382309B1 (en) * 2000-05-16 2002-05-07 Swales Aerospace Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction
US6427765B1 (en) * 1998-09-29 2002-08-06 Korea Electronics Telecomm Heat-pipe having woven-wired wick and method for manufacturing the same
US20020157819A1 (en) * 2001-04-04 2002-10-31 Julian Norley Graphite-based thermal dissipation component
US20030044614A1 (en) * 2001-08-31 2003-03-06 Julian Norley Laminates prepared from impregnated flexible graphite sheets
US20030141045A1 (en) * 2002-01-30 2003-07-31 Samsung Electro-Mechanics Co., Ltd. Heat pipe and method of manufacturing the same
US6817097B2 (en) * 2002-03-25 2004-11-16 Thermal Corp. Flat plate fuel cell cooler
US20090087558A1 (en) * 2006-04-14 2009-04-02 Toyota Jidosha Kabushiki Kaisha Rare Metal Plating Of Titanium Components
US20100119882A1 (en) * 2005-07-28 2010-05-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium electrode material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252743A (en) 1985-09-02 1987-03-07 Canon Inc Optical recording medium
JPH0612372Y2 (en) * 1987-04-09 1994-03-30 ニチアス株式会社 Heat exchanger
JPH1053407A (en) 1996-08-06 1998-02-24 Hitachi Chem Co Ltd Filler material and its production
TW385298B (en) 1997-04-04 2000-03-21 Ucar Carbon Tech Oxidation and corrosion resistant flexible graphite composite sheet and method
JPH1158591A (en) * 1997-08-22 1999-03-02 Furukawa Electric Co Ltd:The Heat-conductive sheet
JP2000165077A (en) * 1998-11-24 2000-06-16 Matsushita Refrig Co Ltd Heat dissipation unit for electronic apparatus
JP3524802B2 (en) * 1999-02-24 2004-05-10 三洋電機株式会社 Polymer electrolyte fuel cell
JP4327947B2 (en) * 1999-07-12 2009-09-09 タイユ株式会社 Apparatus and method for removing floating oil
JP2001107022A (en) * 1999-10-01 2001-04-17 Nitto Kasei Kogyo Kk Drug-transpiring composition and physical decoration article and insole equipped with this
JP2001165584A (en) * 1999-12-02 2001-06-22 Tokai Rubber Ind Ltd Sheet type heat pipe
JP2001307748A (en) * 2000-04-19 2001-11-02 Fuji Electric Co Ltd Solid polymer fuel battery
DE10022972A1 (en) 2000-05-11 2001-11-22 Bosch Gmbh Robert Micro heat exchanger has a number of parallel metal hollow fiber tubes shrouded by a graphite matrix body for a high heat exchange in a simple unit
JP2002003670A (en) * 2000-06-22 2002-01-09 Uchiyama Mfg Corp Heat-conductive rubber composition
JP3472252B2 (en) * 2000-09-07 2003-12-02 日本リークレス工業株式会社 Method for manufacturing expanded graphite heat sink

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
US3528494A (en) * 1966-11-07 1970-09-15 Teledyne Inc Heat pipe for low thermal conductivity working fluids
US4199628A (en) * 1978-03-23 1980-04-22 The Dow Chemical Company Vermicular expanded graphite composite material
US5240769A (en) * 1986-11-25 1993-08-31 Nippon Pillar Packing Co. Ltd. Packing material and packing made of the same
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
US4838346A (en) * 1988-08-29 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reusable high-temperature heat pipes and heat pipe panels
US5036905A (en) * 1989-10-26 1991-08-06 The United States Of America As Represented By The Secretary Of The Air Force High efficiency heat exchanger
US4966226A (en) * 1989-12-29 1990-10-30 Digital Equipment Corporation Composite graphite heat pipe apparatus and method
US4995451A (en) * 1989-12-29 1991-02-26 Digital Equipment Corporation Evaporator having etched fiber nucleation sites and method of fabricating same
US6184578B1 (en) * 1990-02-28 2001-02-06 Hughes Electronics Corporation Graphite composite heat pipe
US5523260A (en) * 1993-08-02 1996-06-04 Motorola, Inc. Method for heatsinking a controlled collapse chip connection device
US5882570A (en) * 1994-06-20 1999-03-16 Sgl Technic, Inc. Injection molding graphite material and thermoplastic material
US6208513B1 (en) * 1995-01-17 2001-03-27 Compaq Computer Corporation Independently mounted cooling fins for a low-stress semiconductor package
US6217800B1 (en) * 1996-01-25 2001-04-17 Sgl Technic, Inc. Graphite foam material and method of making same
US5642776A (en) * 1996-02-27 1997-07-01 Thermacore, Inc. Electrically insulated envelope heat pipe
US6182974B1 (en) * 1996-03-22 2001-02-06 Garlock, Inc. Stuffing box packing assembly
US6167948B1 (en) * 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
US5902762A (en) * 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
US6427765B1 (en) * 1998-09-29 2002-08-06 Korea Electronics Telecomm Heat-pipe having woven-wired wick and method for manufacturing the same
US6245400B1 (en) * 1998-10-07 2001-06-12 Ucar Graph-Tech Inc. Flexible graphite with non-carrier pressure sensitive adhesive backing and release liner
US6382309B1 (en) * 2000-05-16 2002-05-07 Swales Aerospace Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction
US20020157819A1 (en) * 2001-04-04 2002-10-31 Julian Norley Graphite-based thermal dissipation component
US20020166658A1 (en) * 2001-04-04 2002-11-14 Graftech Inc. Graphite-based thermal dissipation component
US20030044614A1 (en) * 2001-08-31 2003-03-06 Julian Norley Laminates prepared from impregnated flexible graphite sheets
US20030141045A1 (en) * 2002-01-30 2003-07-31 Samsung Electro-Mechanics Co., Ltd. Heat pipe and method of manufacturing the same
US6817097B2 (en) * 2002-03-25 2004-11-16 Thermal Corp. Flat plate fuel cell cooler
US20100119882A1 (en) * 2005-07-28 2010-05-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium electrode material
US20090087558A1 (en) * 2006-04-14 2009-04-02 Toyota Jidosha Kabushiki Kaisha Rare Metal Plating Of Titanium Components

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221369A1 (en) * 2004-09-07 2007-09-27 Advanced Energy Technology Inc. Composite Heat Sink With Metal Base And Graphite Fins
US20070240852A1 (en) * 2006-04-14 2007-10-18 Foxconn Technology Co., Ltd. Heat pipe with heat reservoirs at both evaporating and condensing sections thereof
US20090166003A1 (en) * 2007-12-27 2009-07-02 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
US7942196B2 (en) * 2007-12-27 2011-05-17 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
US20110203776A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Thermal transfer device and associated systems and methods
US20100326629A1 (en) * 2009-06-26 2010-12-30 Meyer Iv George Anthony Vapor chamber with separator
US20110000648A1 (en) * 2009-07-01 2011-01-06 Chao-Nan Chien Heat dissipation module
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US20110232881A1 (en) * 2010-03-26 2011-09-29 Hamilton Sundstrand Corporation Corrugated Graphite Sheet Heat Transfer Device
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US20140090817A1 (en) * 2012-05-11 2014-04-03 The Regents Of The University Of California Inorganic aqueous solution (ias) for phase-change heat transfer medium
US8967236B2 (en) * 2012-05-11 2015-03-03 The Regents Of The University Of California Inorganic aqueous solution (IAS) for phase-change heat transfer medium
US20140182819A1 (en) * 2013-01-01 2014-07-03 Asia Vital Components Co., Ltd. Heat dissipating device
US11125508B2 (en) * 2014-11-12 2021-09-21 Asia Vital Components Co., Ltd. Thin heat pipe structure
US11137215B2 (en) * 2017-06-01 2021-10-05 Furukawa Electric Co., Ltd. Flat heat pipe
US11566852B2 (en) 2019-04-26 2023-01-31 Global Graphene Group, Inc. Graphene-enhanced vapor-based heat transfer device
US11453593B2 (en) * 2019-04-29 2022-09-27 Global Graphene Group, Inc. Oriented graphene sheet-enhanced vapor-based heat transfer device and process for producing same

Also Published As

Publication number Publication date
KR20050085880A (en) 2005-08-29
KR101012195B1 (en) 2011-02-08
EP1576656A2 (en) 2005-09-21
WO2004059696A3 (en) 2005-04-28
AU2003297158A8 (en) 2004-07-22
CA2511504A1 (en) 2004-07-15
AU2003297158A1 (en) 2004-07-22
JP2006511782A (en) 2006-04-06
CN1754079A (en) 2006-03-29
WO2004059696A2 (en) 2004-07-15
MXPA05006827A (en) 2006-05-25
CN100575853C (en) 2009-12-30
US20040118553A1 (en) 2004-06-24
JP4652818B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US20090032227A1 (en) Flexible Graphite Thermal Management Devices
US6841250B2 (en) Thermal management system
US6758263B2 (en) Heat dissipating component using high conducting inserts
US6749010B2 (en) Composite heat sink with metal base and graphite fins
US6771502B2 (en) Heat sink made from longer and shorter graphite sheets
US6777086B2 (en) Laminates prepared from impregnated flexible graphite sheets
US6886249B2 (en) Method for making finned heat sink assemblies
US20070158050A1 (en) Microchannel heat sink manufactured from graphite materials
US6538892B2 (en) Radial finned heat sink
US7494712B2 (en) Resin-impregnated flexible graphite articles
US20020168526A1 (en) Graphite article having predetermined anisotropic characteristics and process therefor
US20020157819A1 (en) Graphite-based thermal dissipation component
US20070221369A1 (en) Composite Heat Sink With Metal Base And Graphite Fins
US20030183379A1 (en) Optimized heat sink using high thermal conducting base and low thermal conducting fins
EP1383644A2 (en) Anisotropic thermal solution
US20030173060A1 (en) Heat sink with cooling channel

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, TE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GRAFTECH INTERNATIONAL HOLDINGS INC.;REEL/FRAME:024678/0830

Effective date: 20100428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GRAFTECH INTERNATIONAL HOLDINGS INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:045308/0567

Effective date: 20180212