JPH1053407A - Filler material and its production - Google Patents

Filler material and its production

Info

Publication number
JPH1053407A
JPH1053407A JP8206298A JP20629896A JPH1053407A JP H1053407 A JPH1053407 A JP H1053407A JP 8206298 A JP8206298 A JP 8206298A JP 20629896 A JP20629896 A JP 20629896A JP H1053407 A JPH1053407 A JP H1053407A
Authority
JP
Japan
Prior art keywords
filler material
expanded graphite
graphite
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8206298A
Other languages
Japanese (ja)
Inventor
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8206298A priority Critical patent/JPH1053407A/en
Publication of JPH1053407A publication Critical patent/JPH1053407A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1062Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

PROBLEM TO BE SOLVED: To obtain a filler material excellent in electroconductivity by grinding expanded graphite or a molded form thereof and by coating the resultant powder with a specified amount of greater of a metal. SOLUTION: First, natural flaky graphite is treated with a mixture of concentrated sulfuric acid and concentrated nitride acid to form a graphite interlaminar compound which, in turn, is treated under heating up to about 1.000 deg.C to prepare expanded graphite. Secondly, the expanded graphite or a molded form thereof about 0.05-0.8g/cm<3> in bulk density of ground into powder about 0.1-0.5g/cm<3> in bulk density and about <=350μm in average particle size. Subsequently, the surface of the expanded graphite powder is coated with >=25 (pref. >=35)wt.%, based on the powder, of at least one kind of electroconductive metal such as copper, nickel and/or silver by nonelectrolytic plating, thus obtaining the objective filler material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック、無
機材料等に配合して、導電性、熱伝導性等を得るために
好適なフィラー材の製造法及び該製造法で得られたフィ
ラー材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a filler material suitable for obtaining electrical conductivity, thermal conductivity and the like by blending it with a plastic, an inorganic material, and the like, and a filler material obtained by the production method. .

【0002】[0002]

【従来の技術】プラスチック、無機材料等に導電性、熱
伝導性等を付与するためには、宮内信乃助著、技術情報
協会出版の「導電性フィラーの開発と応用」に記載され
ているように、一般に金属、黒鉛、カーボンブラック等
の粒子をフィラーとして配合することにより達せられ
る。しかし、フィラーの配合量が多くなるとマトリック
ス本来の性能が消失する傾向があり、フィラーとして最
重要な性能は、マトリックス材料に少量の添加で、有効
な特性付与効果が得られることである。このためには、
フィラーそのものの特性が優れていることに加え、マト
リックス材料内部でフィラー粒子同士が接触し易い状態
となることが望ましい。フィラー粒子同士が接触し易い
ようにするにはフィラー粒子の形状は、球状よりもアス
ペクト比が大きい形状、即ち鱗片状、薄片状、繊維状等
の形状であることが望ましく、加えて粒子の密度につい
ても低密度であることが好ましい。
2. Description of the Related Art In order to impart conductivity, thermal conductivity, and the like to plastics and inorganic materials, as described in "Development and Application of Conductive Fillers" published by Shinnosuke Miyauchi and published by the Technical Information Association. In general, it can be achieved by blending particles of metal, graphite, carbon black or the like as a filler. However, when the blending amount of the filler increases, the original performance of the matrix tends to be lost, and the most important performance as the filler is that an effective property imparting effect can be obtained by adding a small amount to the matrix material. To do this,
In addition to the excellent properties of the filler itself, it is desirable that the filler particles be in a state of being easily contacted inside the matrix material. In order to make the filler particles easily contact each other, the shape of the filler particles is desirably a shape having a larger aspect ratio than a sphere, that is, a shape such as a flaky shape, a flaky shape, or a fibrous shape. Is also preferably low.

【0003】金属は、優れた導電性、熱伝導性を有して
おり、この点から金属粒子はフィラーとして有望な材料
であるが、一般に金属粒子は、嵩密度が他の材料に比較
して大きく、また粒子形状も球状に近いためマトリック
ス材料に添加した場合、有効な導電性、熱伝導性を得る
ためにはマトリックス材料に対して通常30重量%以上
の大量の配合量が必要となる。また配合の際、マトリッ
クス材料となるプラスチック、無機材料等に比較し、密
度が大きく相違するためマトリックス材料中に均一に分
散することが難しい。これらの点から、黒鉛やカーボン
ブラックは、粒子そのものの導電性、熱伝導性は金属に
及ばないが、粒子形状(黒鉛は鱗片状、カーボンブラッ
クは二次粒子の凝集体)や低嵩密度の点から金属に比べ
有効な特性付与効果が期待できる。
[0003] Metals have excellent electrical conductivity and thermal conductivity. From this point, metal particles are promising materials as fillers. However, in general, metal particles have a higher bulk density than other materials. When added to a matrix material because it is large and the particle shape is almost spherical, a large amount of usually 30% by weight or more based on the matrix material is required to obtain effective electrical conductivity and thermal conductivity. Further, at the time of compounding, it is difficult to disperse uniformly in the matrix material because the density is greatly different as compared with plastics, inorganic materials, and the like which are matrix materials. From these points, graphite and carbon black do not have the same conductivity and thermal conductivity of metal as the metal itself, but have a particle shape (graphite is flaky, carbon black is an aggregate of secondary particles) and low bulk density. From this point, it can be expected that the effect of imparting characteristics is more effective than that of metal.

【0004】しかしながら、カーボンブラックは熱伝導
性が乏しく、また通常一次粒子形状が1μm以下で微粒
であるため取扱いが悪いという欠点がある。一方、黒鉛
はその粒子形状、嵩密度から特性付与効果がカーボンブ
ラックには及ばず一般に実用化できる導電性、熱伝導性
を得るためには、マトリックス材料に対して20重量%
以上の配合量が必要となる。
[0004] However, carbon black has the disadvantages of poor thermal conductivity and poor handling because it is usually a fine particle having a primary particle shape of 1 μm or less. On the other hand, graphite has a particle shape and bulk density, and the effect of imparting properties does not reach that of carbon black. In order to obtain conductivity and thermal conductivity that can be generally used, 20% by weight of the matrix material is required.
The above amount is required.

【0005】[0005]

【発明が解決しようとする課題】請求項1及び2記載の
発明は、少量の添加で有効な特性付与効果(導電性、熱
伝導性等に優れること)が期待できるフィラー材の製造
法を提供するものである。請求項3記載の発明は、請求
項1又は2記載の効果に加えて、特に導電性、熱伝導性
に優れるフィラー材の製造法を提供するものである。請
求項4記載の発明は、少量の添加で有効な特性付与効果
(導電性、熱伝導性等に優れること)が期待できるフィ
ラー材を提供するものである。
The first and second aspects of the present invention provide a method for producing a filler material which can be expected to provide an effective property imparting effect (excellent in conductivity, thermal conductivity, etc.) with a small amount of addition. Is what you do. The invention according to claim 3 provides a method for producing a filler material having particularly excellent electrical conductivity and thermal conductivity, in addition to the effects described in claim 1 or 2. The invention described in claim 4 provides a filler material that can be expected to provide an effective property imparting effect (excellent in conductivity, thermal conductivity, and the like) with a small amount of addition.

【0006】[0006]

【課題を解決するための手段】本発明は、膨張黒鉛の表
面に該膨張黒鉛に対して金属を25重量%以上被覆する
ことを特徴とするフィラー材の製造法に関する。また、
本発明は、膨張黒鉛又はその成形体を粉砕し、次いでこ
の粉砕粉の表面に該粉砕粉に対して金属を25重量%以
上被覆することを特徴とするフィラー材の製造法に関す
る。また、本発明は、このフィラー材の製造法におい
て、金属が、銅、ニッケル、銀であることを特徴とする
フィラー材の製造法に関する。さらに、本発明は、上記
の製造法で得られたフィラー材に関する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a filler material, characterized in that the surface of expanded graphite is coated with at least 25% by weight of metal based on the expanded graphite. Also,
The present invention relates to a method for producing a filler material, which comprises pulverizing expanded graphite or a molded product thereof, and then coating the surface of the pulverized powder with a metal of 25% by weight or more based on the pulverized powder. The present invention also relates to a method for producing a filler material, wherein the metal is copper, nickel, or silver. Furthermore, the present invention relates to a filler material obtained by the above-mentioned production method.

【0007】[0007]

【発明の実施の形態】本発明で用いられる膨張黒鉛は、
特に制限はなく公知の方法で得られるもので、例えば天
然黒鉛、キッシュ黒鉛等の結晶の発達した黒鉛を、酸化
剤の存在化で濃硫酸と反応させて得た黒鉛層間化合物
を、1000℃以上の高温で加熱して得られたものが用
いられる。
DETAILED DESCRIPTION OF THE INVENTION The expanded graphite used in the present invention is:
There is no particular limitation, and it can be obtained by a known method.For example, natural graphite, graphite having developed crystals such as Kish graphite, a graphite intercalation compound obtained by reacting with concentrated sulfuric acid in the presence of an oxidizing agent, at 1000 ° C. or more What was obtained by heating at a high temperature is used.

【0008】本発明になるフィラー材は、膨張黒鉛の表
面に該膨張黒鉛に対して金属を25重量%以上被覆した
ものでも有効な特性付与効果が期待できるが、膨張黒鉛
又はその成形体を粉砕し、この粉砕粉の表面に該粉砕粉
に対して金属を25重量%以上被覆したものを用いるこ
とが取扱い性の点から好ましい。なお上記の粉砕粉は、
嵩密度が0.1〜0.5g/cm3の範囲であることが金属
をくまなく被覆でき、金属の密着性に優れるので好まし
い。
The filler material according to the present invention can be expected to provide an effective property-imparting effect even if the surface of the expanded graphite is coated with at least 25% by weight of a metal with respect to the expanded graphite. It is preferable from the viewpoint of handleability that the surface of the ground powder is coated with 25% by weight or more of metal based on the ground powder. The above ground powder is
It is preferable that the bulk density is in the range of 0.1 to 0.5 g / cm 3 because the metal can be covered all over and the metal has excellent adhesion.

【0009】また、粉砕粉を得るのに膨張黒鉛そのもの
を粉砕してもよいが、作業性、効率の面から膨張黒鉛
を、嵩密度が0.05〜1.8g/cm3の範囲になるよう
に成形した成形体を粉砕することが好ましい。膨張黒鉛
又はその成形体を粉砕する方法については特に制限はな
いが、ジェットミルなどの衝撃式の粉砕機で粉砕するこ
とが好ましい。粉砕後の平均粒径は、1000μm以下
が好ましく、500μm以下がより好ましく、350μ
m以下がさらに好ましい。1000μmを超えるとマト
リックス材料に配合した場合、表面外観に粒子の残影を
生じさせ易くなる傾向がある。なお粒径の下限は特に制
限はないが、0.5μm程度までが作業性の面から好ま
しい。
The expanded graphite itself may be pulverized to obtain a pulverized powder. However, from the viewpoint of workability and efficiency, the expanded graphite has a bulk density of 0.05 to 1.8 g / cm 3. It is preferable to pulverize the molded body formed as described above. There is no particular limitation on the method of pulverizing the expanded graphite or its molded product, but it is preferable to pulverize it with an impact-type pulverizer such as a jet mill. The average particle size after pulverization is preferably 1000 μm or less, more preferably 500 μm or less, and 350 μm or less.
m or less is more preferable. When it exceeds 1000 μm, when blended in a matrix material, particles tend to be left behind on the surface appearance. The lower limit of the particle size is not particularly limited, but is preferably up to about 0.5 μm from the viewpoint of workability.

【0010】本発明において、被覆する金属としては、
銅、ニッケル、銀等の導電性、熱伝導性に優れ、かつ酸
化による性状変化の少ない金属の一種以上が好ましい。
被覆する方法については特に制限はなく、メッキ法で被
覆することが好ましく、特に無電解メッキ法で被覆する
ことが好ましい。また、金属の被覆量は、膨張黒鉛(粉
砕していないもの)、膨張黒鉛又はその成形体を粉砕し
た粉砕粉に対して25重量%以上、好ましくは30重量
%以上、さらに好ましくは35重量%以上とされ、25
重量%未満であると良好な導電性、熱伝導性が得られに
くく、酸化により性状変化が生じ易いという欠点が生じ
る。上限については特に制限はないが、マトリックス材
料に少量の添加で、有効な特性付与効果が得られるとい
う点で75重量%までが好ましい。
In the present invention, the metal to be coated includes:
One or more metals, such as copper, nickel, and silver, which are excellent in electrical conductivity and thermal conductivity and have little property change due to oxidation are preferable.
There is no particular limitation on the method of coating, and the coating is preferably performed by a plating method, and particularly preferably performed by an electroless plating method. The metal coating amount is at least 25% by weight, preferably at least 30% by weight, more preferably at least 35% by weight, based on expanded graphite (not pulverized), pulverized powder obtained by pulverizing expanded graphite or a molded product thereof. 25
When the amount is less than the weight percentage, it is difficult to obtain good electrical conductivity and thermal conductivity, and there is a disadvantage that the property is easily changed by oxidation. The upper limit is not particularly limited, but is preferably up to 75% by weight in that an effective property imparting effect can be obtained by adding a small amount to the matrix material.

【0011】[0011]

【実施例】以下本発明の実施例を説明する。 実施例1 中国産天然鱗状黒鉛を濃硫酸と濃硝酸との混液で処理し
て黒鉛層間化合物を得、次いでこれを1000℃まで加
熱処理して、比容積が200cc/gの膨張黒鉛を作製し
た。この膨張黒鉛をロールにより連続加圧して嵩密度が
0.5g/cm3の膨張黒鉛成形体を得た。この成形体を衝
撃式粉砕機(ホソカワミクロン(株)製、ビクトリーミ
ル)で粉砕し、平均粒径が350μm及び嵩密度が0.
15g/cm3の粉砕粉を得、次いでこの粉砕粉の表面に無
電解銅メッキにより、該粉砕粉に対して40重量%の銅
の被膜を被覆したフィラー材を得た。
Embodiments of the present invention will be described below. Example 1 Natural scale graphite produced in China was treated with a mixture of concentrated sulfuric acid and concentrated nitric acid to obtain a graphite intercalation compound, which was then heated to 1000 ° C. to produce an expanded graphite having a specific volume of 200 cc / g. . The expanded graphite was continuously pressed by a roll to obtain an expanded graphite molded body having a bulk density of 0.5 g / cm 3 . This compact was pulverized with an impact pulverizer (Victory Mill, manufactured by Hosokawa Micron Corp.) to have an average particle size of 350 μm and a bulk density of 0.1 μm.
15 g / cm 3 of the pulverized powder was obtained, and then the surface of the pulverized powder was subjected to electroless copper plating to obtain a filler material coated with a copper coating of 40% by weight based on the pulverized powder.

【0012】実施例2 実施例1で得た粉砕粉の表面に無電解ニッケルメッキに
より、該粉砕粉に対して35重量%のニッケルの被膜を
被覆したフィラー材を得た。
Example 2 A filler material was obtained by coating the surface of the pulverized powder obtained in Example 1 with a coating of 35% by weight of nickel with respect to the pulverized powder by electroless nickel plating.

【0013】実施例3 実施例1で得た粉砕粉の表面に無電解銀メッキにより、
該粉砕粉に対して30重量%の銀の被膜を被覆したフィ
ラー材を得た。
Example 3 The surface of the pulverized powder obtained in Example 1 was plated by electroless silver plating.
A filler material coated with a 30% by weight silver film based on the pulverized powder was obtained.

【0014】実施例4 実施例1で得た膨張黒鉛成形体を実施例1で用いた粉砕
機で粉砕し、平均粒径が980μm及び嵩密度が0.1
7g/cm3の粉砕粉を得、次いでこの粉砕粉の表面に無電
解銅メッキにより、該粉砕粉に対して40重量%の銅の
被膜を被覆したフィラー材を得た。
Example 4 The expanded graphite molded article obtained in Example 1 was pulverized by the pulverizer used in Example 1, and had an average particle size of 980 μm and a bulk density of 0.1.
7 g / cm 3 of the pulverized powder was obtained, and then the surface of the pulverized powder was subjected to electroless copper plating to obtain a filler material coated with a 40% by weight copper film with respect to the pulverized powder.

【0015】比較例1 実施例1で得た粉砕粉の表面に無電解銅メッキにより、
該粉砕粉に対して20重量%の銅の被膜を被覆したフィ
ラー材を得た。
Comparative Example 1 The surface of the pulverized powder obtained in Example 1 was electrolessly plated with copper.
A filler material coated with a 20% by weight copper film with respect to the pulverized powder was obtained.

【0016】比較例2 実施例1で得た粉砕粉をそのままフィラー材とした。Comparative Example 2 The pulverized powder obtained in Example 1 was directly used as a filler material.

【0017】比較例3 実施例1で出発原料として用いた中国産天然鱗状黒鉛の
表面に無電解銅メッキにより、該天然鱗状黒鉛に対して
40重量%の銅の被膜を被覆したフィラー材を得た。
Comparative Example 3 A filler material coated with a copper coating of 40% by weight with respect to the natural scale graphite was obtained by electroless copper plating on the surface of the natural scale graphite produced in China used as a starting material in Example 1. Was.

【0018】次に上記の各実施例及び各比較例で得たフ
ィラー材を、フェノール樹脂(日立化成工業(株)製、商
品名CP−J2000)中に20重量%となるように添
加し、ヘンシェルミキサーで5分間混合した後、厚さが
1mmの金型中で150℃で10分間加熱硬化させ、試
験体を作製した。この試験体について、外観の観察、体
積固有抵抗値及び熱伝導率を測定した。この結果を表1
に示す。なお外観は目で形状の変化を観察し、体積固有
抵抗値はJIS K6911に従ってアドバンテスト社
製デジタルマルチメータを用いて測定し、また熱伝導率
は京都電子工業(株)製の自動熱伝導率測定機を用いて測
定した。
Next, the filler material obtained in each of the above Examples and Comparative Examples was added to a phenol resin (trade name: CP-J2000, manufactured by Hitachi Chemical Co., Ltd.) so as to be 20% by weight. After mixing with a Henschel mixer for 5 minutes, the mixture was cured by heating at 150 ° C. for 10 minutes in a mold having a thickness of 1 mm to prepare a test body. With respect to this specimen, the appearance was observed, and the volume resistivity and the thermal conductivity were measured. Table 1 shows the results.
Shown in The external appearance was observed by observing the change in shape, the volume resistivity was measured using a digital multimeter manufactured by Advantest Co. according to JIS K6911, and the thermal conductivity was measured by an automatic thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. It measured using the machine.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から、実施例のフィラー材は、比較例
のフィラー材に比較して、同じ量をフェノール樹脂中に
配合したときに良好な導電性と熱伝導性が得られること
が示される。
From Table 1, it is shown that the filler material of the example can obtain good electrical conductivity and thermal conductivity when the same amount is mixed in the phenolic resin as compared with the filler material of the comparative example. .

【0021】[0021]

【発明の効果】請求項1及び2における方法により得ら
れるフィラー材は、少量の添加で有効な特性付与効果
(導電性、熱伝導性等に優れること)が期待できるフィ
ラー材である。請求項3における方法により得られるフ
ィラー材は、請求項1又は2の効果を奏し、特に導電
性、熱伝導性に優れるフィラー材である。請求項4にお
けるフィラー材は、少量の添加で有効な特性付与効果
(導電性、熱伝導性等に優れること)が期待できるフィ
ラー材である。
The filler material obtained by the method according to claims 1 and 2 is a filler material that can be expected to provide an effective property imparting effect (excellent in conductivity, thermal conductivity, etc.) with a small amount of addition. The filler material obtained by the method according to claim 3 has the effect of claim 1 or 2, and is a filler material having particularly excellent electrical conductivity and thermal conductivity. The filler material according to claim 4 is a filler material that can be expected to provide an effective property imparting effect (excellent in conductivity, thermal conductivity, and the like) with a small amount of addition.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09C 3/06 PBT C09C 3/06 PBT ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C09C 3/06 PBT C09C 3/06 PBT

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 膨張黒鉛の表面に該膨張黒鉛に対して金
属を25重量%以上被覆することを特徴とするフィラー
材の製造法。
1. A method for producing a filler material, comprising coating a surface of expanded graphite with a metal in an amount of 25% by weight or more based on the expanded graphite.
【請求項2】 膨張黒鉛又はその成形体を粉砕し、次い
でこの粉砕粉の表面に該粉砕粉に対して金属を25重量
%以上被覆することを特徴とするフィラー材の製造法。
2. A method for producing a filler material, comprising: pulverizing expanded graphite or a molded article thereof; and coating the surface of the pulverized powder with metal in an amount of 25% by weight or more based on the pulverized powder.
【請求項3】 金属が、銅、ニッケル、銀であることを
特徴とする請求項1又は2記載のフィラー材の製造法。
3. The method for producing a filler material according to claim 1, wherein the metal is copper, nickel, or silver.
【請求項4】 請求項1、2又は3記載の製造法で得ら
れたフィラー材。
4. A filler material obtained by the production method according to claim 1, 2 or 3.
JP8206298A 1996-08-06 1996-08-06 Filler material and its production Pending JPH1053407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8206298A JPH1053407A (en) 1996-08-06 1996-08-06 Filler material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8206298A JPH1053407A (en) 1996-08-06 1996-08-06 Filler material and its production

Publications (1)

Publication Number Publication Date
JPH1053407A true JPH1053407A (en) 1998-02-24

Family

ID=16520993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206298A Pending JPH1053407A (en) 1996-08-06 1996-08-06 Filler material and its production

Country Status (1)

Country Link
JP (1) JPH1053407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511782A (en) * 2002-12-23 2006-04-06 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Flexible graphite thermal management device
EP1528046A3 (en) * 2003-10-27 2006-04-26 Labor Grieder Additive for improving the bioenergetic properties of building materials containing an organic binder
JP2012516829A (en) * 2009-02-05 2012-07-26 エルジー・ケム・リミテッド Method for producing composite material comprising carbon-based particles / copper
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511782A (en) * 2002-12-23 2006-04-06 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Flexible graphite thermal management device
KR101012195B1 (en) 2002-12-23 2011-02-08 그라프텍 인터내셔널 홀딩스 인코포레이티드 Flexible graphite thermal management devices
EP1528046A3 (en) * 2003-10-27 2006-04-26 Labor Grieder Additive for improving the bioenergetic properties of building materials containing an organic binder
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet
JP2012516829A (en) * 2009-02-05 2012-07-26 エルジー・ケム・リミテッド Method for producing composite material comprising carbon-based particles / copper

Similar Documents

Publication Publication Date Title
US7588700B2 (en) Electromagnetic shielding material having carbon nanotube and metal as electrical conductor
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
CN103333368A (en) Compound dispersing agent of carbon nanomaterial and method for preparing electric conduction polymeric composite thereof
JP2009144000A (en) Resin-carbon composite material
Lee et al. Comparative study of EMI shielding effectiveness for carbon fiber pultruded polypropylene/poly (lactic acid)/multiwall CNT composites prepared by injection molding versus screw extrusion
JP3406470B2 (en) Particulate acetylene black and its production method and use
Grinou et al. Polyaniline nanofiber-coated polystyrene/graphene oxide core-shell microsphere composites
JP2004332047A (en) Linked metal powder, its manufacturing method, and electroconductivity-imparting material using the powder
JP2595396B2 (en) Manufacturing method of conductive composite
CN102702892A (en) Conducting paint composition and preparation method thereof
JP4746803B2 (en) Thermally conductive electromagnetic shielding sheet
JPH08188407A (en) Filler material
JPH01101373A (en) Electrically conductive composition
JPH1053407A (en) Filler material and its production
JPH0394078A (en) Production of electrically conductive particles
JP3606782B2 (en) Conductive paint
JP2008001757A (en) Resin composition for semiconductor sealing use and resin-sealed type semiconductor device
Roichman et al. Percolation of electrical conductivity in solution-cast blends containing polyaniline
CN108659506A (en) A kind of nanometer of cuprous sulfide composite electromagnetic shield materials and preparation method thereof
CN100427547C (en) Process for synthesizing nanometer chrome nitride/polypyrrole composite materials
JPS60118744A (en) Conductive resin composition
CN109096705A (en) A kind of preparation method of conduction silicon foams
JP2000281896A (en) Flame-retardant conductive resin composition and molded product using the same
JPS62160603A (en) Conducting paste
CN109265948A (en) A kind of conduction silicon foams