US20090008237A1 - Device for producing active material for lithium secondary battery and method for producing active material for lithium secondary battery, method for manufacturing electrode for lithium secondary battery, and method for manufacturing lithium secondary battery - Google Patents

Device for producing active material for lithium secondary battery and method for producing active material for lithium secondary battery, method for manufacturing electrode for lithium secondary battery, and method for manufacturing lithium secondary battery Download PDF

Info

Publication number
US20090008237A1
US20090008237A1 US12/216,372 US21637208A US2009008237A1 US 20090008237 A1 US20090008237 A1 US 20090008237A1 US 21637208 A US21637208 A US 21637208A US 2009008237 A1 US2009008237 A1 US 2009008237A1
Authority
US
United States
Prior art keywords
active material
secondary battery
lithium secondary
producing
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/216,372
Inventor
Toshikazu Yoshida
Tetsuyuki Murata
Shigeki Matsuta
Yasunobu Iwami
Yoshinori Kida
Hiroyuki Akita
Koji Hasumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Assigned to SANYO ELECTRIC CO., LTD. reassignment SANYO ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKITA, HIROYUKI, MATSUTA, SHIGEKI, MURATA, TETSUYUKI, YOSHIDA, TOSHIKAZU, IWAMI, YASUNOBU, KIDA, YOSHINORI, HASUMI, KOJI
Publication of US20090008237A1 publication Critical patent/US20090008237A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an active material used for a lithium secondary battery, a method for manufacturing an electrode for a lithium secondary battery, and a method for manufacturing a lithium secondary battery, which are characterized in that the amount of iron as an impurity in the active material is reduced by use of magnetic force.
  • the reduction in the amount of an impurity can be considered to make it possible: to suppress a voltage drop caused by the iron impurities in a positive electrode dissolving in a battery electrolyte and migrating to a negative electrode inside a battery; and to suppress decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium.
  • LiCoO 2 is used for a positive electrode, and a lithium metal, lithium alloy or a carbon material which can absorb, accumulate and discharge lithium is used for a negative electrode.
  • a solution containing an organic solvent, such as ethylene carbonate or diethyl carbonate, with an electrolyte consisting of a lithium salt, e.g. LiBF 4 , and LiPF 6 , dissolved therein is used as a non aqueous electrolyte.
  • LiFePO 4 is produced by utilizing the following reaction to mix raw materials, synthesizing LiFePO 4 by means of the hydrothermal method, and then rinsing the product with distilled water:
  • water-insoluble impurities such as iron and iron alloy cannot be removed by the rinse using distilled water as stated in WO2005/051840, and the impurities will end up remaining in the active material.
  • magnetic iron impurities which are impurities in a positive electrode like this, dissolve in a battery electrolyte and migrate to a negative electrode in a battery, a voltage drop will occur. In addition, precipitation of lithium will cause decreases in charge and discharge efficiencies and a voltage drop.
  • JP-A-2003-123742 contains the description about a method for manufacturing a plate electrode for a nonaqueous electrolyte secondary battery including mixing a positive electrode active material, an electrically-conducting agent, and binding agent in a solvent thereby to prepare a slurry, and applying the resultant mixture on a current collector to dry it, in which it is described that the method includes the step of removing iron powder and/or SUS powder by means of magnetic force before the step of applying the slurry on the current collector.
  • JP-A-2004-223333 discloses a way to remove magnetic impurities by supplying a filtering-target toward a rod-shaped magnet so that it flows along the magnet sufficiently in contact with the magnet.
  • JP-A-2002-370047 discloses a way to remove magnetic impurities by means of a number of magnet devices provided on peripheral portions of a tubular body.
  • an object of the invention aims to overcome the problems as described above, and an object of the invention is to provide an active material for a lithium secondary battery, from which iron impurities have been removed to a higher level efficiently, an electrode for a lithium secondary battery using the active material, and a lithium secondary battery using the electrode.
  • a device for producing an active material for a lithium secondary battery which removes iron impurities in the active material or its raw material by means of magnetic force.
  • the device is characterized by including: a flow path which the active material or its raw material passes through, the flow path having at least one recess portion laid out along the flow path; and a magnetic force-generating device disposed at the recess portion so as to compose at least one part of the recess portion.
  • the device associated with the invention is significantly improved in hindering the active material flowing inside the flow path from unsticking the magnetic iron impurities, and the deposition of relevant impurities.
  • the device associated with the invention may be arranged so that the active material or its raw material is made to pass through a tubular member, and in the tubular member, a recess portion with a magnetic force-generating device disposed at the recess portion so as to compose at least one part of the recess portion is laid out, whereby iron impurities are removed.
  • a method for producing an active material which includes removing iron impurities by use of the device for producing an active material according to the first aspect.
  • the active material produced by the method associated with the invention is further processed to make an electrode, which is used as an electrode for a lithium secondary battery.
  • iron impurities in the active material are removed more efficiently in comparison with a lithium secondary battery manufactured by another method.
  • a voltage drop caused by dissolution of iron impurities and their migration to a negative electrode in a battery, and decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium can be suppressed.
  • positive electrode active materials including e.g. a lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 , and LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and a lithium complex compound expressed by a chemical formula of LiMPO, where M is at least one element selected from among cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe); negative electrode active materials including e.g. a carbon material which can absorb and release lithium.
  • the invention exerts an effect when using a para magnetic material such as LiFePO 4 .
  • the invention can be applied to removal of iron impurities from electrically-conducting agents including e.g. a carbon material such as acetylene black, ketjen black, natural graphite, artificial graphite, and vapor grown carbon fiber.
  • electrically-conducting agents including e.g. a carbon material such as acetylene black, ketjen black, natural graphite, artificial graphite, and vapor grown carbon fiber.
  • the structure having a recess portion in a flow path according to the invention is not limited to the embodiment hereof.
  • a structure having recess and projection portions, a meshed structure and the like may be used instead.
  • the active material in the method for producing an active material, is contained in a slurry.
  • magnetic iron impurities in an active material or its raw material are collected in a recess portion by a magnetic force-generating device, and therefore iron impurities in the active material or its raw material can be removed efficiently.
  • a slurry containing the active material is prepared, thereby to increase the fluidity of the active material. As a result, it is expected that iron impurities can be removed more efficiently.
  • FIG. 1 is a diagrammatic illustration for explaining removal of iron impurities in a slurry containing an active material by means of a magnet according to an embodiment of the invention
  • FIG. 2 is a diagrammatic illustration showing a jig having the magnet buried therein and used in the embodiment
  • FIG. 3 is a diagrammatic illustration for explaining removal of iron impurities in the slurry containing an active material by means of a magnet in a comparative example with the embodiment of the invention
  • FIG. 4 is a diagrammatic illustration showing a jig having the magnet buried therein in the comparative example
  • FIG. 5 is a photograph of a SEM image of deposits on a magnet of the jig used in a first example associated with the invention
  • FIG. 6 is a photograph of a SEM image of deposits on a magnet of the jig used in the comparative example.
  • FIG. 7 is a diagrammatic illustration showing another embodiment of a device for producing in accordance with the invention.
  • the jig 2 is composed of a resin structure which measures 20 mm in diameter and 10 mm in height, and has a hole having a diameter of 2 mm and a depth of 2 mm and formed in a central portion of the jig; in the hole, the magnet made of samarium cobalt and measuring 2 mm in diameter and 5 mm in height is buried.
  • the arrangement made in this example is the same as that made in the first example except that a jig 4 having a magnet buried therein is put in the container so that a portion of the magnet protruding from the jig 4 is located on an upper side of the jig 4 .
  • the jig 4 is composed of a resin structure which measures 20 mm in diameter and 10 mm in height and has a hole having a diameter of 2 mm and a depth of 2 mm and formed in a central portion of the jig; in the hole, the magnet which is made of samarium cobalt and measures 2 mm in diameter and 5 mm in height is set so that it protrudes from the jig by 2 mm (see FIGS. 3 and 4 ).
  • deposits on the magnet of each jig were observed by a SEM-EDX, i.e. scanning electron microscope equipped with an energy dispersive X-ray analyzer (see FIGS. 5 and 6 ).
  • the deposits on each magnet were transferred to a surface of an adhesive tape by putting the adhesive tape on the magnet.
  • FIGS. 5 and 6 show the deposits on the adhesive tapes.
  • FIGS. 5 and 6 show that when the magnet was located in the lower position of the recess portion 5 , lots of deposits were observed around perimeter on the bottom of the recess portion. However, it was shown that when the magnet was protruded from the surface of the jig, few deposits were observed. When the deposits were observed with the SEM-EDX, iron was detected as a main component, where as phosphorus was not detected. Judging from this, it is considered that LiFePO 4 had not been deposited.
  • the magnetic force-generating device is disposed in the recess portion so as to compose at least one part of the recess portion, the iron impurities can be removed efficiently.
  • a magnetic force-generating device placed in the recess portion so as to compose at least one part of the recess portion enables efficient removal of iron impurities, by suppressing the interruption of the active material to the deposition of iron impurities.
  • FIG. 7 is a diagrammatic illustration showing another embodiment of a device for producing in accordance with the invention.
  • the device for producing of the embodiment comprises a tube 7 having an inner wall surface 7 a in which a slurry containing an active material passes. Therefore, a flow path which the active material passes through is formed in the tube 7 .
  • a plurality of holes 6 are formed in the inner wall surface 7 a along the flow path.
  • a magnet 1 is buried in each hole 6 to form a recess portion 5 .
  • the iron impurities contained in the active material passed through in the tube 7 can be stuck on the magnet 1 in the recess portion 5 to be removed efficiently without being unstuck owing to collision with the active material flowing in the flow path.
  • a magnetic force-generating device in the recess portion so as to compose at least one part of the recess portion in the case of removing iron impurities in an active material by means of magnetic force. It is considered that the structure like this enables efficient removal of the iron impurities because the iron impurities, which have once stuck on the inside of a flow path, can be prevented from being unstuck owing to collision with the active material flowing in a flow path. Further, it is considered that in the case of removing iron impurities in a para magnetic material such as LiFePO 4 , iron impurities can be removed efficiently by suppressing the interruption of the active material to the deposition of impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a method for producing an active material for a lithium secondary battery to enable efficient removal of iron impurities, which would become a problem in production of an active material for a lithium secondary battery, and attain a high quality. The method includes removing iron impurities in an active material for a lithium secondary battery by means of magnetic force. With this method, use of a magnetic force-generating device within a recess portion, which composes at least one part of the recess portion, enables efficient removal of only iron impurities. Thus, it is expected that a voltage drop caused by dissolution of iron compounds, i.e. impurities in a positive electrode, and their migration to a negative electrode in a battery, and decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium can be suppressed.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for producing an active material used for a lithium secondary battery, a method for manufacturing an electrode for a lithium secondary battery, and a method for manufacturing a lithium secondary battery, which are characterized in that the amount of iron as an impurity in the active material is reduced by use of magnetic force. The reduction in the amount of an impurity can be considered to make it possible: to suppress a voltage drop caused by the iron impurities in a positive electrode dissolving in a battery electrolyte and migrating to a negative electrode inside a battery; and to suppress decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium.
  • 2. Description of the Related Art
  • In a nonaqueous electrolyte secondary battery commonly used at present, LiCoO2 is used for a positive electrode, and a lithium metal, lithium alloy or a carbon material which can absorb, accumulate and discharge lithium is used for a negative electrode. Further, in the battery, a solution containing an organic solvent, such as ethylene carbonate or diethyl carbonate, with an electrolyte consisting of a lithium salt, e.g. LiBF4, and LiPF6, dissolved therein is used as a non aqueous electrolyte. It is considered that when the iron impurities are contained in the active material, a voltage drop attributed to the iron impurities in a positive electrode dissolving in a battery electrolyte and migrating to a negative electrode inside a battery, and decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium will occur.
  • It is proposed in WO2005/051840 that LiFePO4 is produced by utilizing the following reaction to mix raw materials, synthesizing LiFePO4 by means of the hydrothermal method, and then rinsing the product with distilled water:

  • FeSO4.7H2O+H3PO4+3LiOH.H2O→LiFePO4+Li2SO4+11H2O.
  • However, water-insoluble impurities such as iron and iron alloy cannot be removed by the rinse using distilled water as stated in WO2005/051840, and the impurities will end up remaining in the active material. When magnetic iron impurities, which are impurities in a positive electrode like this, dissolve in a battery electrolyte and migrate to a negative electrode in a battery, a voltage drop will occur. In addition, precipitation of lithium will cause decreases in charge and discharge efficiencies and a voltage drop.
  • JP-A-2003-123742 contains the description about a method for manufacturing a plate electrode for a nonaqueous electrolyte secondary battery including mixing a positive electrode active material, an electrically-conducting agent, and binding agent in a solvent thereby to prepare a slurry, and applying the resultant mixture on a current collector to dry it, in which it is described that the method includes the step of removing iron powder and/or SUS powder by means of magnetic force before the step of applying the slurry on the current collector.
  • Further, JP-A-2004-223333 discloses a way to remove magnetic impurities by supplying a filtering-target toward a rod-shaped magnet so that it flows along the magnet sufficiently in contact with the magnet.
  • JP-A-2002-370047 discloses a way to remove magnetic impurities by means of a number of magnet devices provided on peripheral portions of a tubular body.
  • As described above, it is difficult to remove iron impurities with the means disclosed in WO2005/051840. Further, as for the ways to remove iron impurities proposed in JP-A-2003-123742, JP-A-2004-223333 and JP-A-2002-370047, it is difficult to remove iron impurities efficiently because an active material flowing through a flow path unsticks iron impurities having been stuck on a predetermined member or part. Particularly, in the case of removing iron impurities in a para magnetic material, such as LiFePO4, an active material impedes deposition of iron impurities, and therefore it is difficult to remove iron impurities efficiently.
  • SUMMARY OF THE INVENTION
  • Therefore, the invention aims to overcome the problems as described above, and an object of the invention is to provide an active material for a lithium secondary battery, from which iron impurities have been removed to a higher level efficiently, an electrode for a lithium secondary battery using the active material, and a lithium secondary battery using the electrode.
  • According to a first aspect of the invention, a device for producing an active material for a lithium secondary battery is provided, which removes iron impurities in the active material or its raw material by means of magnetic force. The device is characterized by including: a flow path which the active material or its raw material passes through, the flow path having at least one recess portion laid out along the flow path; and a magnetic force-generating device disposed at the recess portion so as to compose at least one part of the recess portion.
  • As magnetic iron impurities are collected in the recess portion by the magnetic force-generating device, the device associated with the invention is significantly improved in hindering the active material flowing inside the flow path from unsticking the magnetic iron impurities, and the deposition of relevant impurities.
  • Also, the device associated with the invention may be arranged so that the active material or its raw material is made to pass through a tubular member, and in the tubular member, a recess portion with a magnetic force-generating device disposed at the recess portion so as to compose at least one part of the recess portion is laid out, whereby iron impurities are removed.
  • According to a second aspect of the invention, a method for producing an active material is provided, which includes removing iron impurities by use of the device for producing an active material according to the first aspect.
  • The active material produced by the method associated with the invention is further processed to make an electrode, which is used as an electrode for a lithium secondary battery.
  • In regard to a lithium secondary battery using, for its positive electrode, the active material produced by the method associated with the invention, iron impurities in the active material are removed more efficiently in comparison with a lithium secondary battery manufactured by another method. Thus, a voltage drop caused by dissolution of iron impurities and their migration to a negative electrode in a battery, and decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium can be suppressed.
  • The following materials can be used according to the invention: positive electrode active materials including e.g. a lithium-containing transition metal oxide such as LiCoO2, LiNiO2, and LiNi1/3Co1/3Mn1/3O2, and a lithium complex compound expressed by a chemical formula of LiMPO, where M is at least one element selected from among cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe); negative electrode active materials including e.g. a carbon material which can absorb and release lithium. Particularly, the invention exerts an effect when using a para magnetic material such as LiFePO4.
  • Further, the invention can be applied to removal of iron impurities from electrically-conducting agents including e.g. a carbon material such as acetylene black, ketjen black, natural graphite, artificial graphite, and vapor grown carbon fiber.
  • The structure having a recess portion in a flow path according to the invention is not limited to the embodiment hereof. A structure having recess and projection portions, a meshed structure and the like may be used instead.
  • According to a third aspect of the invention, in the method for producing an active material, the active material is contained in a slurry.
  • According to the first and second aspects of the invention, magnetic iron impurities in an active material or its raw material are collected in a recess portion by a magnetic force-generating device, and therefore iron impurities in the active material or its raw material can be removed efficiently.
  • According to a third aspect of the invention, a slurry containing the active material is prepared, thereby to increase the fluidity of the active material. As a result, it is expected that iron impurities can be removed more efficiently.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic illustration for explaining removal of iron impurities in a slurry containing an active material by means of a magnet according to an embodiment of the invention;
  • FIG. 2 is a diagrammatic illustration showing a jig having the magnet buried therein and used in the embodiment;
  • FIG. 3 is a diagrammatic illustration for explaining removal of iron impurities in the slurry containing an active material by means of a magnet in a comparative example with the embodiment of the invention;
  • FIG. 4 is a diagrammatic illustration showing a jig having the magnet buried therein in the comparative example;
  • FIG. 5 is a photograph of a SEM image of deposits on a magnet of the jig used in a first example associated with the invention;
  • FIG. 6 is a photograph of a SEM image of deposits on a magnet of the jig used in the comparative example; and
  • FIG. 7 is a diagrammatic illustration showing another embodiment of a device for producing in accordance with the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The examples associated with preferred embodiments of the invention will be described below. However, the invention is not limited to the examples below at all. Various changes and modifications hereof may be made without departing from the subject matter hereof.
  • EMBODIMENTS Example 1 Sample Preparation
  • Five hundred grams of LiFePO4 and a jig 2 having a recess portion 5 and a magnet 1 disposed in the recess portion 5 are put in a container 3 holding 1500 milliliters of water so that the recess portion 5 of the jig 2 is opening vertically upward, followed by stirring the mixture for ten minutes in a circumferential direction in parallel with the bottom face of the container 3 (see FIGS. 1 and 2). Herein, the jig 2 is composed of a resin structure which measures 20 mm in diameter and 10 mm in height, and has a hole having a diameter of 2 mm and a depth of 2 mm and formed in a central portion of the jig; in the hole, the magnet made of samarium cobalt and measuring 2 mm in diameter and 5 mm in height is buried.
  • Comparative Example 1
  • The arrangement made in this example is the same as that made in the first example except that a jig 4 having a magnet buried therein is put in the container so that a portion of the magnet protruding from the jig 4 is located on an upper side of the jig 4. Herein, the jig 4 is composed of a resin structure which measures 20 mm in diameter and 10 mm in height and has a hole having a diameter of 2 mm and a depth of 2 mm and formed in a central portion of the jig; in the hole, the magnet which is made of samarium cobalt and measures 2 mm in diameter and 5 mm in height is set so that it protrudes from the jig by 2 mm (see FIGS. 3 and 4).
  • <Sample Analysis>
  • In the first example according to the embodiment hereof and the first comparative example, deposits on the magnet of each jig were observed by a SEM-EDX, i.e. scanning electron microscope equipped with an energy dispersive X-ray analyzer (see FIGS. 5 and 6). The deposits on each magnet were transferred to a surface of an adhesive tape by putting the adhesive tape on the magnet. FIGS. 5 and 6 show the deposits on the adhesive tapes.
  • FIGS. 5 and 6 show that when the magnet was located in the lower position of the recess portion 5, lots of deposits were observed around perimeter on the bottom of the recess portion. However, it was shown that when the magnet was protruded from the surface of the jig, few deposits were observed. When the deposits were observed with the SEM-EDX, iron was detected as a main component, where as phosphorus was not detected. Judging from this, it is considered that LiFePO4 had not been deposited.
  • From this fact, it can be understood that in the case of removing iron impurities in LiFePO4 by means of magnetic force, it is preferable to place a magnetic force-generating device at the recess portion so as to compose at least one part of the recess portion. In the case where the magnetic force-generating device protrudes from the surface or the case where the end of the device facing the outside is located at the same level with the surface, it is difficult to remove the iron impurities efficiently. This is because it is considered that an active material flowing through a flow path impinges on iron impurities sticking on the inside of the path thereby to unstick the sticking impurities. Further, in the case where the magnetic force-generating device is disposed in the recess portion so as to compose at least one part of the recess portion, the iron impurities can be removed efficiently. Particularly, in the case of removing iron impurities in a para magnetic material such as LiFePO4, it is considered that a magnetic force-generating device placed in the recess portion so as to compose at least one part of the recess portion enables efficient removal of iron impurities, by suppressing the interruption of the active material to the deposition of iron impurities.
  • FIG. 7 is a diagrammatic illustration showing another embodiment of a device for producing in accordance with the invention. Referring to FIG. 7, the device for producing of the embodiment comprises a tube 7 having an inner wall surface 7 a in which a slurry containing an active material passes. Therefore, a flow path which the active material passes through is formed in the tube 7. A plurality of holes 6 are formed in the inner wall surface 7 a along the flow path. A magnet 1 is buried in each hole 6 to form a recess portion 5. According to the embodiment, the iron impurities contained in the active material passed through in the tube 7 can be stuck on the magnet 1 in the recess portion 5 to be removed efficiently without being unstuck owing to collision with the active material flowing in the flow path.
  • As stated above, it is clear that it is preferable to place a magnetic force-generating device in the recess portion so as to compose at least one part of the recess portion in the case of removing iron impurities in an active material by means of magnetic force. It is considered that the structure like this enables efficient removal of the iron impurities because the iron impurities, which have once stuck on the inside of a flow path, can be prevented from being unstuck owing to collision with the active material flowing in a flow path. Further, it is considered that in the case of removing iron impurities in a para magnetic material such as LiFePO4, iron impurities can be removed efficiently by suppressing the interruption of the active material to the deposition of impurities. Thus, the occurrence of a voltage drop owing to dissolution of iron compounds as impurities in a positive electrode and their migration toward a negative electrode after that in a battery, and decreases in charge and discharge efficiencies and a voltage drop owing to precipitation of lithium can be suppressed.

Claims (16)

1. A device for producing an active material for a lithium secondary battery, which removes iron impurities in the active material or its raw material by means of magnetic force, comprising:
a flow path which the active material or its raw material passes through, said flow path having at least one recess portion laid out along said flow path; and
a magnetic force-generating device disposed at said recess portion so as to compose at least one part of said recess portion.
2. A device for producing an active material for a lithium secondary battery, which removes iron impurities in the active material or its raw material by means of magnetic force, comprising:
a tube which the active material or its raw material passes through, said tube having at least one recess portion laid out along said tube; and
a magnetic force-generating device disposed at said recess portion so as to compose at least one part of said recess portion.
3. A method for producing an active material for a lithium secondary battery, by which iron impurities in the active material or its raw material are removed by means of magnetic force, comprising the step of using the device of claim 1.
4. The method for producing an active material for a lithium secondary battery of claim 3, wherein the active material includes a lithium-transition metal oxyanion compound.
5. The method for producing an active material for a lithium secondary battery of claim 4, wherein the lithium-transition metal oxyanion compound is a substance having a chemical formula of LiMPO4, provided that M is at least one element selected from among cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe).
6. The method for producing an active material for a lithium secondary battery of claim 5, wherein the lithium-transition metal oxyanion compound is a substance having a chemical formula of LiFePO4.
7. The method for producing an active material for a lithium secondary battery of claim 3, wherein the active material is contained in a slurry.
8. A method for manufacturing an electrode for a lithium secondary battery, comprising the step of forming the electrode by use of an active material produced by the method of claim 3.
9. A method for manufacturing a lithium secondary battery having a positive electrode, a negative electrode and a nonaqueous electrolyte, comprising the step of manufacturing at least one of the positive electrode and negative electrode by the method of claim 8.
10. A method for producing an active material for a lithium secondary battery, by which iron impurities in the active material or its raw material are removed by means of magnetic force, comprising the step of using the device of claim 2.
11. The method for producing an active material for a lithium secondary battery of claim 10, wherein the active material includes a lithium-transition metal oxyanion compound.
12. The method for producing an active material for a lithium secondary battery of claim 11, wherein the lithium-transition metal oxyanion compound is a substance having a chemical formula of LiMPO4, provided that M is at least one element selected from among cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe).
13. The method for producing an active material for a lithium secondary battery of claim 12, wherein the lithium-transition metal oxyanion compound is a substance having a chemical formula of LiFePO4.
14. The method for producing an active material for a lithium secondary battery of claim 10, wherein the active material is contained in a slurry.
15. A method for manufacturing an electrode for a lithium secondary battery, comprising the step of forming the electrode by use of an active material produced by the method of claim 10.
16. A method for manufacturing a lithium secondary battery having a positive electrode, a negative electrode and a nonaqueous electrolyte, comprising the step of manufacturing at least one of the positive electrode and negative electrode by the method of claim 15.
US12/216,372 2007-07-06 2008-07-02 Device for producing active material for lithium secondary battery and method for producing active material for lithium secondary battery, method for manufacturing electrode for lithium secondary battery, and method for manufacturing lithium secondary battery Abandoned US20090008237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007177862 2007-07-06
JP2007-177862 2007-07-06

Publications (1)

Publication Number Publication Date
US20090008237A1 true US20090008237A1 (en) 2009-01-08

Family

ID=40213998

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/216,372 Abandoned US20090008237A1 (en) 2007-07-06 2008-07-02 Device for producing active material for lithium secondary battery and method for producing active material for lithium secondary battery, method for manufacturing electrode for lithium secondary battery, and method for manufacturing lithium secondary battery

Country Status (5)

Country Link
US (1) US20090008237A1 (en)
JP (1) JP2009038013A (en)
CN (1) CN101339986B (en)
CA (1) CA2636904A1 (en)
DE (1) DE102008031152A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478061A4 (en) * 2009-09-18 2016-12-21 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
CN110676428A (en) * 2019-10-17 2020-01-10 朱虎 Preparation method of mixed anode for lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020078A (en) * 2009-07-17 2011-02-03 Sanyo Electric Co Ltd Magnetic impurity separator
JP5488008B2 (en) * 2010-02-01 2014-05-14 日産自動車株式会社 Contamination separator
JP6216965B2 (en) 2012-01-31 2017-10-25 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP5892270B1 (en) 2015-01-30 2016-03-23 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714063A (en) * 1996-05-28 1998-02-03 Brunsting; William J. Apparatus for the removal of ferrous particles from liquids
US6632566B1 (en) * 1999-04-06 2003-10-14 Sony Corporation Positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material of positive material
US6811923B1 (en) * 1999-06-21 2004-11-02 Kabushiki Kaisha Toshiba Active material for anode of secondary cell and method for production thereof and non-aqueous electrolyte secondary cell, and recycled electronic functional material and method for recycling electronic functional material
JP2006015185A (en) * 2004-06-30 2006-01-19 Micro Magune Kk Removing device of fine magnetic particle
US20070054187A1 (en) * 2003-11-14 2007-03-08 Süd-Chemie AG Lithium metal phosphates, method for producing the same and use thereof as electrode material
US20070241043A1 (en) * 2006-04-12 2007-10-18 Long Charles F Device for removing contamination from a vehicle oil stream

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243947A (en) * 2000-02-29 2001-09-07 Sony Corp Manufacturing method and manufacturing device of lithium ion battery
JP2002126571A (en) * 2000-10-23 2002-05-08 Fumio Tagami Magnetic attraction apparatus for magnetic foreign matter
JP2002370047A (en) 2001-06-13 2002-12-24 Sony Corp Magnetic separator and magnetic separation method
JP2003123742A (en) 2001-10-11 2003-04-25 Mitsubishi Chemicals Corp Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2004223333A (en) 2003-01-20 2004-08-12 Sony Corp Magnetic impurity filter
JP2005135849A (en) * 2003-10-31 2005-05-26 Mitsui Mining & Smelting Co Ltd Positive electrode activator for lithium battery
JP4948786B2 (en) * 2005-06-09 2012-06-06 Necエナジーデバイス株式会社 Magnetic separation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714063A (en) * 1996-05-28 1998-02-03 Brunsting; William J. Apparatus for the removal of ferrous particles from liquids
US6632566B1 (en) * 1999-04-06 2003-10-14 Sony Corporation Positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material of positive material
US6811923B1 (en) * 1999-06-21 2004-11-02 Kabushiki Kaisha Toshiba Active material for anode of secondary cell and method for production thereof and non-aqueous electrolyte secondary cell, and recycled electronic functional material and method for recycling electronic functional material
US20070054187A1 (en) * 2003-11-14 2007-03-08 Süd-Chemie AG Lithium metal phosphates, method for producing the same and use thereof as electrode material
JP2006015185A (en) * 2004-06-30 2006-01-19 Micro Magune Kk Removing device of fine magnetic particle
US20070241043A1 (en) * 2006-04-12 2007-10-18 Long Charles F Device for removing contamination from a vehicle oil stream

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Translation of JP 2002-370047, 12/2002 *
Translation of JP 2006-015185, 01/2006 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478061A4 (en) * 2009-09-18 2016-12-21 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
EP4112543A1 (en) * 2009-09-18 2023-01-04 A123 Systems, LLC Ferric phosphate and methods of preparation thereof
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials
CN110676428A (en) * 2019-10-17 2020-01-10 朱虎 Preparation method of mixed anode for lithium ion battery

Also Published As

Publication number Publication date
DE102008031152A1 (en) 2009-04-30
CA2636904A1 (en) 2009-01-06
CN101339986A (en) 2009-01-07
JP2009038013A (en) 2009-02-19
CN101339986B (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US20090008237A1 (en) Device for producing active material for lithium secondary battery and method for producing active material for lithium secondary battery, method for manufacturing electrode for lithium secondary battery, and method for manufacturing lithium secondary battery
JP6334720B2 (en) Cyanometalate positive electrode battery and manufacturing method
CN106030873B (en) Positive electrode active material for nonaqueous electrolyte secondary battery
Zhang et al. Synthesis of TiO 2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate
CN101315976B (en) Cathode and battery
CN1333475C (en) Active material for cell and preparing method
KR100809570B1 (en) Cathode material for manufacturing a rechargeable battery
JP2009032656A (en) Method of manufacturing active material for lithium secondary battery, method of manufacturing electrode for lithium secondary battery, method of manufacturing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
US20140093774A1 (en) Lithium powder, lithium vanadium oxide, lithium secondary battery using a gel-polymer electrolyte, and method for preparing an electrode thereof
KR20140103940A (en) Lithium battery electrodes containing lithium oxalate
JP2009117081A (en) Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery
CN105742582A (en) Lithium secondary battery
CN103262327A (en) Method for producing lithium secondary cell
EP2772971A1 (en) Negative electrode active material and metal ion battery using same
KR20230007494A (en) Cost-Effective Synthesis of Oxide Materials for Lithium-Ion Batteries
KR20180062390A (en) Negative electrode for rechargeable battery and rechargeable battery including the same
CN105977481A (en) Active material, nonaqueous electrolyte battery, battery pack, and battery module
WO2013035187A1 (en) Lithium secondary battery manufacturing method
CN109565081A (en) Lithium ion secondary battery and its manufacturing method
KR20220078597A (en) Negative electrode material, battery, manufacturing method of negative electrode material, and manufacturing method of battery
US10431815B2 (en) Carbonaceous material, anode active material including the same, lithium battery including the anode active material, and method of preparing the carbonaceous material
JP2016042462A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
US8871388B2 (en) Negative electrode for lithium battery and lithium battery including negative electrode
JP2009259807A (en) Lithium secondary battery and electrode therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANYO ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIDA, TOSHIKAZU;MURATA, TETSUYUKI;MATSUTA, SHIGEKI;AND OTHERS;REEL/FRAME:021258/0988;SIGNING DATES FROM 20080617 TO 20080626

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION