US20090004319A1 - Template Having a Silicon Nitride, Silicon Carbide or Silicon Oxynitride Film - Google Patents
Template Having a Silicon Nitride, Silicon Carbide or Silicon Oxynitride Film Download PDFInfo
- Publication number
- US20090004319A1 US20090004319A1 US12/130,259 US13025908A US2009004319A1 US 20090004319 A1 US20090004319 A1 US 20090004319A1 US 13025908 A US13025908 A US 13025908A US 2009004319 A1 US2009004319 A1 US 2009004319A1
- Authority
- US
- United States
- Prior art keywords
- thickness
- template
- imprint lithography
- layer
- over
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 5
- 229910052710 silicon Inorganic materials 0.000 title claims description 5
- 239000010703 silicon Substances 0.000 title claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 4
- 238000000059 patterning Methods 0.000 claims abstract description 92
- 238000001459 lithography Methods 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 28
- 238000000926 separation method Methods 0.000 claims description 4
- 238000009736 wetting Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nanometers or smaller.
- One area in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits.
- nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
- Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
- An exemplary nano-fabrication technique is commonly referred to as imprint lithography.
- Exemplary imprint lithography processes are described in detail in numerous publications, such as United States patent application publication 2004/0065976 filed as U.S. patent application Ser. No. 10/264,960, entitled “Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability”; United States patent application publication 2004/0065252 filed as U.S. patent application Ser. No. 10/264,926, entitled “Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards”; and U.S. Pat. No. 6,936,194, entitled “Functional Patterning Material for Imprint Lithography Processes,” all of which are assigned to the assignee of the present invention.
- the imprint lithography technique disclosed in each of the aforementioned United States patent application publications and United States patent includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate.
- the substrate may be positioned upon a stage to obtain a desired position to facilitate patterning thereof.
- a patterning device is employed spaced-apart from the substrate with a formable liquid present between the patterning device and the substrate.
- the liquid is solidified to form a patterned layer that has a pattern recorded therein that is conforming to a shape of the surface of the patterning device in contact with the liquid.
- the patterning device is then separated from the patterned layer such that the patterning device and the substrate are spaced-apart.
- the substrate and the patterned layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the patterned layer.
- both the patterning device and the substrate may include alignment marks.
- Previous methods of facilitating alignment between the patterning device and the substrate including positioning a moat around the alignment marks to create an air (or gas) gap with a different index of refraction than the patterning device which causes an interface that can be sensed with optical techniques.
- moats may be undesirable.
- moated alignment marks are not transferred into the pattern on the substrate; moats may consume a large area; moats affect fluid flow and thus cannot be arbitrarily placed within a patterned area; and for flexible patterning devices, moats do not effectively hold the alignment mark region of the patterning device in superimposition with the formable liquid, causing pattern distortions.
- FIG. 1 is a simplified side view of a lithographic system having a patterning device spaced-apart from a substrate;
- FIG. 2 is a side view of the patterning device shown in FIG. 1 ;
- FIG. 3 is a side view of the patterning device contacting a polymeric material positioned on the substrate, all shown in FIG. 1 .
- FIG. 4 is a simplified elevation view of the patterning device in superimposition with the substrate, both shown in FIG. 1 , showing misalignment along one direction;
- FIG. 5 is a top down view of the patterning device in superimposition with the substrate, both shown in FIG. 1 , showing misalignment along two transverse directions;
- FIG. 6 is a top down view of the patterning device in superimposition with the substrate, both shown in FIG. 1 , showing angular misalignment;
- FIG. 7 is a simplified side view of the substrate shown in FIG. 1 , having a patterned layer thereon;
- FIG. 8 is a side view of the patterning device shown in FIG. 1 , having a thin film
- FIG. 9 is a side view of the patterning device shown in FIG. 1 , having a thick film;
- FIGS. 10 a and 10 b are a first example of a distortion plot
- FIGS. 11 a and 11 b are a second example of a distortion plot
- FIG. 12 is a side view of the patterning device shown in FIG. 1 , having a layer positioned thereon.
- Substrate 12 may be coupled to a substrate chuck 14 .
- Substrate chuck 14 may be any chuck including, but not limited to, vacuum, pin-type, groove-type, or electromagnetic, as described in U.S. Pat. No. 6,873,087 entitled “High-Precision Orientation Alignment and Gap Control Stages for Imprint Lithography Processes,” which is incorporated herein by reference.
- Substrate 12 and substrate chuck 14 may be supported upon a stage 16 . Further, stage 16 , substrate 12 , and substrate chuck 14 may be positioned on a base (not shown). Stage 16 may provide motion about the x and y axes.
- Patterning device 18 spaced-apart from substrate 12 is a patterning device 18 .
- Patterning device 18 may comprise a body 20 and a patterning layer 22 .
- Patterning layer 22 maybe have a plurality of features 24 defined therein, with features 24 including protrusions 26 and recessions 28 .
- patterning layer 22 may be substantially smooth and/or planar. Patterning layer 22 may define an original pattern that forms the basis of a pattern to be formed on substrate 12 , described further below.
- Body 20 may comprise fused-silica, however, in a further embodiment, body 20 may be formed from such materials including, but not limited to, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and hardened sapphire.
- Patterning layer 22 may be formed from such materials including, but not limited to, silicon nitride, silicon oxynitride, and silicon carbide.
- Body 20 may have a thickness t 1
- patterning layer 22 may have a thickness t 2
- features 24 may have a thickness t 3 .
- patterning device 18 may be coupled to a chuck 30 , chuck 30 being any chuck including, but not limited to, vacuum, pin-type, groove-type, or electromagnetic, as described in U.S. Pat. No. 6,873,087 entitled “High-Precision Orientation Alignment and Gap Control Stages for Imprint Lithography Processes.” Further, chuck 30 may be coupled to an imprint head 32 to facilitate movement of patterning device 18 .
- System 10 further comprises a fluid dispense system 34 .
- Fluid dispense system 34 may be in fluid communication with substrate 12 so as to deposit polymeric material 36 thereon.
- System 10 may comprise any number of fluid dispensers, and fluid dispense system 34 may comprise a plurality of dispensing units therein.
- Polymeric material 36 may be positioned upon substrate 12 using any known technique, e.g., drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and the like.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- thin film deposition thick film deposition
- thick film deposition and the like.
- polymeric material 36 is disposed upon substrate 12 before the desired volume is defined between patterning device 18 and substrate 12 . However, polymeric material 36 may fill the volume after the desired volume has been obtained.
- System 10 further comprises a source 38 of energy 40 coupled to direct energy 40 along a path 42 .
- Source 38 may produce ultraviolet energy. However, other energy sources may be employed, such as thermal, electromagnetic, visible light and the like.
- the selection of energy employed to initiate polymerization of polymeric material 36 is known to one skilled in the art and typically depends on the specific application which is desired.
- Imprint head 30 and stage 16 are configured to arrange patterning device 18 and substrate 12 , respectively, to be in superimposition and disposed in path 42 . Either imprint head 30 , stage 16 , or both vary a distance between patterning device 18 and substrate 12 to define a desired volume therebetween that is filled by polymeric material 36 , as shown in FIG. 3 .
- an alignment between patterning device 18 and substrate 12 may be desired. Ascertaining a desired alignment between patterning device 18 and substrate 12 facilitates pattern transfer between patterning device 18 and substrate 12 .
- patterning device 18 may include alignment marks 44
- substrate 12 may include alignment marks 46 .
- desired alignment between patterning device 18 and substrate 12 occurs upon alignment mark 44 being in superimposition with alignment mark 46 .
- desired alignment between pattering device 18 and substrate 12 has not occurred, shown by the two marks being offset a distance O.
- offset O is shown as being a linear offset in one direction, it should be understood that the offset may be linear along two directions shown as O 1 and O 2 , as shown in FIG. 5 .
- the offset between patterning device 18 and substrate 12 may also consist of an angular offset, shown in FIG. 6 as angle ⁇ .
- Multiple alignment masks may also have other offsets in combination (e.g., magnification, skew, and trapezoidal distortions).
- source 38 produces energy 40 , e.g., broadband ultraviolet radiation that causes polymeric material 36 to solidify and/or cross-link conforming to the shape of a surface 48 of substrate 12 and patterning device 18 , defining a patterned layer 50 on substrate 12 .
- Patterned layer 50 may comprise a residual layer 52 and protrusions 54 and recessions 56 .
- the pattern of patterned layer 50 may be transferred into substrate 12 or an underlying layer (not shown) or used as a functional material.
- System 10 may be regulated by a processor 58 that is in data communication with stage 16 , imprint head 30 , fluid dispense system 34 , and source 38 , operating on a computer readable program stored in memory 60 .
- an alignment between substrate 12 and patterning device 18 may be desired.
- it may be desired to increase a contrast between patterning device 18 and polymeric material 36 positioned on substrate 12 and, as a result, in-liquid alignment between substrate 12 and patterning device 18 may be achieved.
- patterning layer 22 of patterning device 18 may be formed from such materials including, but not limited to, silicon nitride, silicon oxynitride, and silicon carbide, as mentioned above.
- thickness t 2 of patterning layer 22 may be selected to minimize, if not prevent, distortions within patterning layer 22 , described further below.
- a magnitude of thickness t 2 of patterning layer 22 may result in thin film distortions of patterning layer 22 . More specifically, during formation of patterning layer 22 , patterning layer 22 may be subjected to an etching process to remove portions thereof to define features 24 therein. However, when thickness t 2 of patterning layer 22 has a magnitude within a range of ⁇ 20 of thickness t 3 of features 24 , stress relief may be induced within patterning layer 22 resulting in thin film stress distortion of patterning layer 22 , which is undesirable. This is a result of removing portions of patterning layer 22 during etching to define features 24 having a significant size compared to thickness t 2 of patterning layer 22 (i.e. thickness t 3 of features 24 ). Further, as a result of thickness t 1 of body 20 being substantially greater than thickness t 2 of patterning layer 22 , thermal distortions may be small.
- a magnitude of thickness t 2 of patterning layer 22 may result in thermal distortions of patterning layer 22 . More specifically, when thickness t 2 of patterning layer 22 has a magnitude within a range of > 1/350 of thickness t 1 of body 20 , a far field distortion of patterning device 18 may result as a result of thermal expansion differences of the materials comprising body 20 and patterning layer 22 . The aforementioned thermal distortion may cause a tension or a compression effect at an interface of body 20 and patterning layer 22 with nonlinear distribution over features 24 , with a maximum distortion at a perimeter 61 of patterned layer 22 .
- the aforementioned thermal distortions may cause an out-of-plane bending effect of patterning device 18 that may further increase an in-plane distortion prior to patterning device 18 is in full contact with polymeric material 36 on substrate 12 , such as during proximity alignment.
- thickness t 2 of patterning layer 22 being substantially greater than thickness t 3 of features 24 , localized distortions from etching patterns may be small.
- thickness t 2 of patterning layer 22 may be defined as:
- c 1 and c 2 are defined to result in greater stability to etch-based stress relief distortion and thermal distortions of patterning layer 22 , wherein c 1 may be greater than 20 and c 2 may be greater than 350.
- thickness t 2 of patterning layer 22 may be 2 ⁇ m.
- thickness t 2 of pattering layer 102 may have a range of 100 nm-5 ⁇ m, depending on thin film stresses during deposition of patterning layer 22 and the relative thermal expansion coefficient of the specific composition of patterning layer 22 compared to the composition of body 20 .
- a layer 62 may be positioned upon patterned layer 22 .
- Layer 62 may facilitate separation from polymeric material 36 and/or wetting of polymeric material 36 .
- layer 62 may comprise an oxide.
Landscapes
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/130,259 US20090004319A1 (en) | 2007-05-30 | 2008-05-30 | Template Having a Silicon Nitride, Silicon Carbide or Silicon Oxynitride Film |
US12/605,848 US7874831B2 (en) | 2007-05-30 | 2009-10-26 | Template having a silicon nitride, silicon carbide or silicon oxynitride film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94073707P | 2007-05-30 | 2007-05-30 | |
US12/130,259 US20090004319A1 (en) | 2007-05-30 | 2008-05-30 | Template Having a Silicon Nitride, Silicon Carbide or Silicon Oxynitride Film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/605,848 Continuation US7874831B2 (en) | 2007-05-30 | 2009-10-26 | Template having a silicon nitride, silicon carbide or silicon oxynitride film |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090004319A1 true US20090004319A1 (en) | 2009-01-01 |
Family
ID=40094021
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/130,259 Abandoned US20090004319A1 (en) | 2007-05-30 | 2008-05-30 | Template Having a Silicon Nitride, Silicon Carbide or Silicon Oxynitride Film |
US12/605,848 Active US7874831B2 (en) | 2007-05-30 | 2009-10-26 | Template having a silicon nitride, silicon carbide or silicon oxynitride film |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/605,848 Active US7874831B2 (en) | 2007-05-30 | 2009-10-26 | Template having a silicon nitride, silicon carbide or silicon oxynitride film |
Country Status (5)
Country | Link |
---|---|
US (2) | US20090004319A1 (enrdf_load_stackoverflow) |
JP (1) | JP2010537395A (enrdf_load_stackoverflow) |
KR (1) | KR20100031570A (enrdf_load_stackoverflow) |
TW (1) | TW200907562A (enrdf_load_stackoverflow) |
WO (1) | WO2008150499A1 (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130064036A1 (en) * | 2006-12-07 | 2013-03-14 | Doo Sik LEE | Ultrasound system and signal processing unit configured for time gain and lateral gain compensation |
US20230033557A1 (en) * | 2021-07-27 | 2023-02-02 | Canon Kabushiki Kaisha | Devices, systems, and methods for the transformation and cropping of drop patterns |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8715515B2 (en) * | 2009-03-23 | 2014-05-06 | Intevac, Inc. | Process for optimization of island to trench ratio in patterned media |
CN101629663B (zh) * | 2009-08-18 | 2011-01-05 | 河北亚大汽车塑料制品有限公司 | 一种直插式快插接头 |
US9170485B2 (en) | 2013-03-15 | 2015-10-27 | Canon Nanotechnologies, Inc. | Nano imprinting with reusable polymer template with metallic or oxide coating |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817242A (en) * | 1995-08-04 | 1998-10-06 | International Business Machines Corporation | Stamp for a lithographic process |
US6207570B1 (en) * | 1999-08-20 | 2001-03-27 | Lucent Technologies, Inc. | Method of manufacturing integrated circuit devices |
US6274393B1 (en) * | 1998-04-20 | 2001-08-14 | International Business Machines Corporation | Method for measuring submicron images |
US6284653B1 (en) * | 2000-10-30 | 2001-09-04 | Vanguard International Semiconductor Corp. | Method of selectively forming a barrier layer from a directionally deposited metal layer |
US20040065976A1 (en) * | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability |
US20040065252A1 (en) * | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method of forming a layer on a substrate to facilitate fabrication of metrology standards |
US6873087B1 (en) * | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
US20050084804A1 (en) * | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US20050158900A1 (en) * | 2004-01-16 | 2005-07-21 | Shih-Wei Lee | Fabrication method for liquid crystal display |
US6936194B2 (en) * | 2002-09-05 | 2005-08-30 | Molecular Imprints, Inc. | Functional patterning material for imprint lithography processes |
US20060067650A1 (en) * | 2004-09-27 | 2006-03-30 | Clarence Chui | Method of making a reflective display device using thin film transistor production techniques |
US7083860B2 (en) * | 2002-08-16 | 2006-08-01 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Metallic honeycomb body having at least partially perforated sheet-metal layers |
US7140861B2 (en) * | 2004-04-27 | 2006-11-28 | Molecular Imprints, Inc. | Compliant hard template for UV imprinting |
US20060266916A1 (en) * | 2005-05-25 | 2006-11-30 | Molecular Imprints, Inc. | Imprint lithography template having a coating to reflect and/or absorb actinic energy |
US20070026324A1 (en) * | 2005-07-28 | 2007-02-01 | Mitsubishi Electric Corporation | Substrate with light-shielding film, color filter substrate, method of manufacture of both, and display device having substrate with light-shielding film |
US20070247608A1 (en) * | 2006-04-03 | 2007-10-25 | Molecular Imprints, Inc. | Tesselated Patterns in Imprint Lithography |
US20070287081A1 (en) * | 2004-06-03 | 2007-12-13 | Molecular Imprints, Inc. | Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques |
US7491637B2 (en) * | 2003-11-12 | 2009-02-17 | Molecular Imprints, Inc. | Formation of conductive templates employing indium tin oxide |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309580B1 (en) * | 1995-11-15 | 2001-10-30 | Regents Of The University Of Minnesota | Release surfaces, particularly for use in nanoimprint lithography |
JP4511786B2 (ja) * | 2000-07-16 | 2010-07-28 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | 基板とこの基板から離れたテンプレートを整列させる方法 |
US6387787B1 (en) * | 2001-03-02 | 2002-05-14 | Motorola, Inc. | Lithographic template and method of formation and use |
JP2003281791A (ja) * | 2002-03-22 | 2003-10-03 | Toshiba Corp | 片面2層光ディスク及びその製造方法及び装置 |
US7083880B2 (en) * | 2002-08-15 | 2006-08-01 | Freescale Semiconductor, Inc. | Lithographic template and method of formation and use |
US6755984B2 (en) * | 2002-10-24 | 2004-06-29 | Hewlett-Packard Development Company, L.P. | Micro-casted silicon carbide nano-imprinting stamp |
-
2008
- 2008-05-30 TW TW097120233A patent/TW200907562A/zh unknown
- 2008-05-30 US US12/130,259 patent/US20090004319A1/en not_active Abandoned
- 2008-05-30 WO PCT/US2008/006921 patent/WO2008150499A1/en active Application Filing
- 2008-05-30 JP JP2010510369A patent/JP2010537395A/ja not_active Withdrawn
- 2008-05-30 KR KR1020097024903A patent/KR20100031570A/ko not_active Withdrawn
-
2009
- 2009-10-26 US US12/605,848 patent/US7874831B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817242A (en) * | 1995-08-04 | 1998-10-06 | International Business Machines Corporation | Stamp for a lithographic process |
US6274393B1 (en) * | 1998-04-20 | 2001-08-14 | International Business Machines Corporation | Method for measuring submicron images |
US6207570B1 (en) * | 1999-08-20 | 2001-03-27 | Lucent Technologies, Inc. | Method of manufacturing integrated circuit devices |
US6873087B1 (en) * | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
US6284653B1 (en) * | 2000-10-30 | 2001-09-04 | Vanguard International Semiconductor Corp. | Method of selectively forming a barrier layer from a directionally deposited metal layer |
US7083860B2 (en) * | 2002-08-16 | 2006-08-01 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Metallic honeycomb body having at least partially perforated sheet-metal layers |
US6936194B2 (en) * | 2002-09-05 | 2005-08-30 | Molecular Imprints, Inc. | Functional patterning material for imprint lithography processes |
US20040065976A1 (en) * | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability |
US20040065252A1 (en) * | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method of forming a layer on a substrate to facilitate fabrication of metrology standards |
US20050084804A1 (en) * | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US7491637B2 (en) * | 2003-11-12 | 2009-02-17 | Molecular Imprints, Inc. | Formation of conductive templates employing indium tin oxide |
US20050158900A1 (en) * | 2004-01-16 | 2005-07-21 | Shih-Wei Lee | Fabrication method for liquid crystal display |
US7140861B2 (en) * | 2004-04-27 | 2006-11-28 | Molecular Imprints, Inc. | Compliant hard template for UV imprinting |
US7279113B2 (en) * | 2004-04-27 | 2007-10-09 | Molecular Imprints, Inc. | Method of forming a compliant template for UV imprinting |
US20070287081A1 (en) * | 2004-06-03 | 2007-12-13 | Molecular Imprints, Inc. | Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques |
US20060067650A1 (en) * | 2004-09-27 | 2006-03-30 | Clarence Chui | Method of making a reflective display device using thin film transistor production techniques |
US20060266916A1 (en) * | 2005-05-25 | 2006-11-30 | Molecular Imprints, Inc. | Imprint lithography template having a coating to reflect and/or absorb actinic energy |
US20070026324A1 (en) * | 2005-07-28 | 2007-02-01 | Mitsubishi Electric Corporation | Substrate with light-shielding film, color filter substrate, method of manufacture of both, and display device having substrate with light-shielding film |
US20070247608A1 (en) * | 2006-04-03 | 2007-10-25 | Molecular Imprints, Inc. | Tesselated Patterns in Imprint Lithography |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130064036A1 (en) * | 2006-12-07 | 2013-03-14 | Doo Sik LEE | Ultrasound system and signal processing unit configured for time gain and lateral gain compensation |
US20230033557A1 (en) * | 2021-07-27 | 2023-02-02 | Canon Kabushiki Kaisha | Devices, systems, and methods for the transformation and cropping of drop patterns |
US12405537B2 (en) * | 2021-07-27 | 2025-09-02 | Canon Kabushiki Kaisha | Devices, systems, and methods for the transformation and cropping of drop patterns |
Also Published As
Publication number | Publication date |
---|---|
TW200907562A (en) | 2009-02-16 |
US20100040718A1 (en) | 2010-02-18 |
US7874831B2 (en) | 2011-01-25 |
WO2008150499A1 (en) | 2008-12-11 |
KR20100031570A (ko) | 2010-03-23 |
JP2010537395A (ja) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7780893B2 (en) | Method of concurrently patterning a substrate having a plurality of fields and a plurality of alignment marks | |
USRE47483E1 (en) | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template | |
US8609326B2 (en) | Methods for exposure for the purpose of thermal management for imprint lithography processes | |
US7802978B2 (en) | Imprinting of partial fields at the edge of the wafer | |
US7309225B2 (en) | Moat system for an imprint lithography template | |
US20070247608A1 (en) | Tesselated Patterns in Imprint Lithography | |
US8913230B2 (en) | Chucking system with recessed support feature | |
US20070231422A1 (en) | System to vary dimensions of a thin template | |
US8628712B2 (en) | Misalignment management | |
US20100015270A1 (en) | Inner cavity system for nano-imprint lithography | |
US20110084417A1 (en) | Large area linear array nanoimprinting | |
US7874831B2 (en) | Template having a silicon nitride, silicon carbide or silicon oxynitride film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOLECULAR IMPRINTS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RESNICK, DOUGLAS J., DR.;MEISSL, MARIO J.;SELINIDIS, KOSTA S.;AND OTHERS;REEL/FRAME:021414/0137;SIGNING DATES FROM 20080710 TO 20080711 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |