US20080295499A1 - Exhaust system utilizing a low-temperature oxidation catalyst - Google Patents
Exhaust system utilizing a low-temperature oxidation catalyst Download PDFInfo
- Publication number
- US20080295499A1 US20080295499A1 US11/806,433 US80643307A US2008295499A1 US 20080295499 A1 US20080295499 A1 US 20080295499A1 US 80643307 A US80643307 A US 80643307A US 2008295499 A1 US2008295499 A1 US 2008295499A1
- Authority
- US
- United States
- Prior art keywords
- exhaust
- temperature
- exhaust gas
- oxidation catalyst
- approximately
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 101
- 230000003647 oxidation Effects 0.000 title claims abstract description 77
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 77
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 15
- 238000010531 catalytic reduction reaction Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 14
- 239000000446 fuel Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 description 50
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 23
- 239000000758 substrate Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000013618 particulate matter Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 208000035859 Drug effect increased Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/0231—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2053—By-passing catalytic reactors, e.g. to prevent overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/06—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device at cold starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present disclosure is directed to an engine exhaust system, and more particularly, to an engine exhaust system utilizing a low-temperature oxidation catalyst.
- pollutants may include, for example, particulate matter, nitrogen oxides (NOx) such as NO and NO 2 , and sulfur compounds. Due to heightened environmental concerns, diesel powered engine exhaust emission standards have become increasingly stringent. The amount of pollutants in the exhaust stream may be regulated depending on the type, size, and/or class of engine.
- NOx nitrogen oxides
- DPF diesel particulate filters
- SCR selective catalytic reduction
- DPFs are devices consisting of a wire mesh medium or porous ceramic substrate that are designed to trap particulate matter.
- SCR systems include catalytic devices that facilitate a reaction between ammonia and NOx from the exhaust gas to produce water vapor and nitrogen gas (N 2 ), thereby removing NOx from the exhaust gas.
- N 2 water vapor and nitrogen gas
- the DPF and SCR emission control strategies may be combined by supporting an SCR catalyst on a particulate filter substrate.
- the performance of DPFs and SCR systems are related to the composition of NOx in the engine's emissions.
- the performances of DPFs and SCR systems improve as the percentage of NO 2 in the emissions increases. This is because NO 2 reacts with and oxidizes particulate matter trapped on a DPF.
- the chemical reactions in an SCR system reduce NO 2 to N 2 more quickly than NO to N 2 .
- oxidation catalysts are often located upstream of DPF and SCR systems or combined with the DPFs upstream of SCR systems for oxidizing NO in the exhaust to boost NO 2 levels.
- the NO 2 synthesizing capability of the above-mentioned configuration may be limited.
- As exhaust temperatures increase it becomes more difficult for the oxidation catalyst to generate NO 2 . This is due to the fact that NO 2 generation is an equilibrium reaction, and higher exhaust temperatures generally favor NO production over NO 2 production.
- conventional oxidation catalysts require a minimum activation temperature and cannot function at lower exhaust temperatures that favor NO 2 production. Thus, the overall amount of NO 2 that can be generated is limited by temperature. Without the boost in NO 2 levels that would otherwise be produced by the oxidation catalyst, the emissions reduction capability of the DPF and SCR system may likewise be limited.
- a controller regulates the injection of fuel and urea in response to NOx levels detected by NOx sensors located upstream and downstream of the SCR catalyst. Due to its small size, the ALNC can warm up more quickly than the oxidation catalyst and can begin generating NO 2 at lower exhaust gas temperatures. In addition, the chemical reaction that occurs inside the ALNC is exothermic and can be used to warm up the oxidation catalyst thereby permitting the oxidation catalyst to also function at lower exhaust temperatures than would otherwise be possible.
- utilizing an ALNC requires additional components and processes that may add to the complexity and cost of the system.
- additional sensors, valves, storage tanks, piping, and computing power are required for the adequate injection of hydrocarbons used by the ALNC.
- the additional components may increase the likelihood of system failure due to component malfunction, as well as increasing the cost of the system.
- the complex calculations performed by the controller for injecting the proper quantity of fuel may require greater computing power, thereby increasing the cost of the system.
- the disclosed system is directed to overcoming one or more of the problems set forth above.
- the present disclosure is directed toward an exhaust treatment system that includes a first exhaust passageway fluidly connected to an engine.
- a particulate filter, a selective catalytic reduction catalyst, and a sensor are situated within the first exhaust passageway.
- the system includes a first oxidation catalyst located within the first exhaust passageway upstream of the particulate filter and the selective catalytic reduction catalyst.
- the system further includes a second exhaust passageway fluidly connected to the first exhaust passageway upstream and downstream of the first oxidation catalyst.
- the sensor is configured to sense a parameter indicative of an exhaust gas temperature.
- the system includes a controller configured to direct exhaust gas through the first oxidation catalyst when the exhaust gas temperature is below a threshold temperature, and direct the exhaust gas through the second exhaust passageway when the exhaust gas temperature is above the threshold temperature.
- a method for generating NO 2 .
- the method includes sensing a temperature of an exhaust gas, and oxidizing the exhaust gas at a first location only when the exhaust gas temperature is below a threshold temperature.
- FIG. 1 is a diagrammatic illustration of a power system according to an exemplary disclosed embodiment of the present disclosure
- FIG. 2 is a diagrammatic illustration of a power system according to another exemplary disclosed embodiment of the present disclosure
- FIG. 3 is a flow chart depicting an exemplary method of operating the after-treatment exhaust system of FIG. 1 ;
- FIG. 4 is a flow chart depicting an exemplary method of operating the after-treatment exhaust system of FIG. 2 .
- FIG. 1 illustrates an exemplary power system 10 having an engine 12 that combusts a mixture of air and fuel to generate a mechanical output and a flow of exhaust.
- engine 12 is depicted and described as a four-stroke diesel engine.
- engine 12 may be any other type of internal combustion engine such as, for example, a gasoline or a gaseous fuel-powered engine.
- Engine 12 may include an engine block 14 defining a plurality of cylinders 16 , an air intake manifold 18 fluidly connecting cylinders 16 to an air intake passageway 20 , and an exhaust manifold 22 fluidly connecting cylinders 16 to an exhaust passageway 24 .
- a piston (not shown) may be slidably disposed within each cylinder 16 to reciprocate between a top-dead-center position and a bottom-dead-center position, and a cylinder head (not shown) may be associated with each cylinder 16 .
- Cylinder 16 , the piston, and the cylinder head may form a combustion chamber 26 fluidly connected to air intake manifold 18 and exhaust manifold 22 via fluid passageways 28 and 30 , respectively.
- engine 12 includes six such combustion chambers 26 .
- engine 12 may include a greater or lesser number of combustion chambers 26 and that combustion chambers 26 may be disposed in an “in-line” configuration, a “V” 0 configuration, or in any other suitable configuration.
- Power system 10 may also include an exhaust treatment system 32 for removing and/or reducing the amount of pollutants in the exhaust produced by engine 12 and released into the atmosphere.
- Exhaust treatment system 32 may include a bypass 34 , a pair of valves 36 and 38 , a low temperature oxidation catalyst 40 , a combined particulate filter and selective catalytic reduction catalyst (DPF/SCR) 42 , a sensor 44 for sensing a temperature of the exhaust gas, and a controller 46 for regulating exhaust flow through DPF/SCR 42 in response to the sensed temperature.
- DPF/SCR 42 may be fluidly connected to low temperature oxidation catalyst 40 via a fluid passageway 48 and may direct treated exhaust gas into the atmosphere via a fluid passageway 50 .
- Bypass 34 may direct exhaust gas around low temperature oxidation catalyst 40 and may be fluidly connected to exhaust passageway 24 and fluid passageway 48 .
- Valve 36 may be disposed within bypass 34
- valve 38 may be disposed within exhaust passageway 24 downstream of an inlet of bypass 34 and upstream of low temperature oxidation catalyst 40 .
- Valves 36 and 38 may be any type of valve such as, for example, a butterfly valve, a diaphragm valve, a gate valve, a ball valve, a globe valve, or any other valve known in the art. Additionally, valves 36 and 38 may be solenoid-actuated, hydraulically-actuated, pneumatically-actuated or actuated in any other manner to selectively restrict the flow of exhaust through bypass 34 and low temperature oxidation catalyst 40 . It is contemplated that exhaust treatment system 32 may be located downstream of any turbochargers present (if any) and/or additional emission control devices disposed within or fluidly connected to exhaust passageway 24 (not shown) such as, for example, exhaust gas recirculation components
- Low temperature oxidation catalyst 40 may include one or more substrates coated with a material that catalyzes a chemical reaction to reduce pollution. For example, low temperature oxidation catalyst 40 may oxidize NO and CO constituents into CO 2 and NO 2 , which may be more susceptible to catalytic treatment. In addition, low temperature oxidation catalyst 40 may have a light-off temperature as low as approximately 150 degrees Celsius. The light-off temperature may be the minimum temperature at which the NO 2 generating reaction may occur.
- the substrates and catalyst materials of low temperature oxidation catalyst 40 may include alkali metals, alkaline-earth metals, rare-earth metals, precious metals or any combination of elements that may initiate an NO 2 -generating reaction at temperatures of approximately 150 degrees Celsius and above.
- low temperature oxidation catalyst 40 may include a combination of elements such as, for example, a platinum catalyst material supported on a Cerium Oxide substrate or a gold catalyst material supported on an iron or titanium substrate, if desired.
- DPF/SCR 42 may include a selective catalytic reduction catalyst supported on a particulate trapping substrate.
- the particulate trapping substrate may be any type of after-treatment device configured to remove one or more types of particulate matter, such as soot and/or ash, from the exhaust flow of engine 12 .
- the integral catalytic material and particulate trapping substrate may trap the particulate matter and remove NOx from the exhaust as the exhaust flows through DPF/SCR 42 .
- the catalyst material may be packaged with, coated on, or otherwise associated with the substrate.
- the substrate may, itself, be a catalytic material. It is contemplated that a separate particulate filter and selective catalytic reduction device may alternatively be included, if desired. It is further contemplated that exhaust treatment system 32 may include multiple combined DPF/SCR devices, multiple separate PDFs and SCR devices, or any combination thereof, if desired.
- Sensor 44 may include any type of temperature sensing device known in the art.
- sensor 44 may include a surface-type temperature sensing device that measures a wall temperature of exhaust passageway 24 .
- sensor 44 may include a gas-type temperature sensing device that directly measures the temperature of the exhaust gas within exhaust passageway 24 .
- sensor 44 may generate an exhaust gas temperature signal and send this signal to controller 46 via a communication line 52 , as is known in the art. This temperature signal may be sent continuously, on a periodic basis, or only when prompted to do so by controller 46 , if desired.
- Controller 46 may include one or more microprocessors, a memory, a data storage device, a communication hub, and/or other components known in the art and may be associated only with exhaust treatment system 32 . However, it is contemplated that controller 46 may be integrated within a general control system capable of controlling additional functions of power system 10 , e.g., selective control of engine 12 , and/or additional systems operatively associated with power system 10 , e.g., selective control of a transmission system (not shown).
- Controller 46 may receive signals from sensor 44 and compare the sensed temperature to a threshold temperature stored in or accessible by controller 46 .
- the threshold temperature may be indicative of an upper temperature limit, beyond which low temperature oxidation catalyst 40 may function suboptimally and/or may even be damaged.
- the threshold temperature may be, for example, approximately 250 degrees Celsius.
- controller 46 may actuate valves 36 and 38 to direct most or substantially all of the exhaust gas through low temperature oxidation catalyst 40 .
- controller 46 may direct most or substantially all of the exhaust gas through bypass 34 . It is contemplated that when the exhaust temperature is at or below the threshold temperature, controller 46 may direct the exhaust gas through both bypass 34 and low temperature oxidation catalyst 40 , if desired.
- FIG. 2 illustrates another exemplary power system 10 having components similar to the previously disclosed embodiment except for valves 36 and 38 , which may be proportional type valves.
- the exhaust treatment system 32 disclosed in FIG. 2 may additionally include a high temperature oxidation catalyst 54 positioned within bypass 34 .
- High temperature oxidation catalyst 54 may be a device with a porous ceramic honeycomb-like or metal mesh structure coated with a material that catalyzes a chemical reaction to reduce pollution.
- high temperature oxidation catalyst 54 may oxidize NO and CO constituents into CO 2 and NO 2 , which may be more susceptible to catalytic treatment.
- Such a catalyst may include any suitable catalytic material, such as, for example, alkali metals, alkaline-earth metals, rare-earth metals, precious metals or combinations thereof.
- high temperature oxidation catalyst 54 may have a light-off temperature at or above approximately 200 degrees Celsius.
- Controller 46 may regulate the flow of exhaust gas based on temperature signals received from sensor 44 and compare the sensed temperature to a temperature range stored in or accessible by controller 46 .
- the temperature range may be indicative of an upper temperature limit beyond which, low temperature oxidation catalyst 40 may function suboptimally and/or even be damaged and a lower limit beyond which, high temperature oxidation catalyst 54 may function suboptimally.
- the lower and upper thresholds of the temperature range may be, for example, approximately 200 and 250 degrees Celsius, respectively.
- controller 46 may actuate valves 36 and 38 to direct most or substantially all of the exhaust gas through low temperature oxidation catalyst 40 .
- controller 46 may direct most or substantially all of the exhaust gas through bypass 34 .
- controller 46 may direct the exhaust gas through both low temperature oxidation catalyst 40 and high temperature oxidation catalyst 54 in amounts proportional to the sensed temperature.
- FIGS. 3 and 4 which are discussed in the following section, illustrate the operation of exhaust treatment system 32 .
- FIGS. 3 and 4 illustrate exemplary methods for generating NO 2 at low and high exhaust gas temperatures.
- the disclosed exhaust treatment system may generate NO 2 over a wide range of exhaust gas temperatures, thereby improving the performance of an associated DPF and SCR system.
- the exhaust treatment system may boost NO 2 levels at cold temperatures.
- NO 2 may be generated over a wider range of temperatures increasing the overall NO 2 production and performance of the exhaust treatment system.
- FIG. 3 illustrates a flow diagram depicting an exemplary method for generating NO 2 in an embodiment of power system 10 having only low temperature oxidation catalyst 40 .
- the method may begin when controller 46 receives temperature signals from sensor 44 indicative of a temperature of the exhaust gas flowing through exhaust passageway 24 (step 100 ). Controller 46 may compare the exhaust gas temperature to a threshold temperature stored in its memory to determine whether the exhaust temperature is above or below the threshold temperature (step 102 ).
- the threshold temperature may be a temperature at which low temperature oxidation catalyst 40 may function suboptimally and/or may even be damaged. Such a threshold temperature may be, for example, approximately 250 degrees Celsius.
- controller 46 may direct a majority of the exhaust gas through low temperature oxidation catalyst 40 (step 104 ). This may be accomplished by setting valve 36 to a fully closed position and setting valve 38 to a fully open position. Once valves 36 and 38 have been set to their respective desired positions, step 100 may be repeated (i.e. controller 46 may receive new temperature signals from sensor 44 indicative of a new temperature of the exhaust gas).
- controller 46 may direct most of the exhaust gas through bypass 34 (step 106 ). This may be accomplished by setting valve 36 to a fully open position and setting valve 38 to a fully closed position. Once valves 36 and 38 have been set to their respective desired positions, step 100 may be repeated (i.e. controller 46 may receive new temperature signals from sensor 44 indicative of a new temperature of the exhaust gas).
- FIG. 4 illustrates a flow diagram depicting an exemplary method for generating NO 2 in an embodiment of power system 10 having both low temperature oxidation catalyst 40 and high temperature catalyst 54 .
- the method may begin when controller 46 receives temperature signals from sensor 44 indicative of a temperature of the exhaust gas flowing through exhaust passageway 24 (step 200 ). Controller 46 may compare the exhaust gas temperature to a first threshold temperature stored in its memory to determine whether the exhaust temperature is below the first threshold temperature (step 202 ).
- the first threshold temperature may be a temperature below the light-off temperature of high temperature oxidation catalyst 54 . In other words, the first threshold temperature may be a temperature, below which high temperature oxidation catalyst 54 may be unable to adequately generate NO 2 .
- the first threshold temperature may be approximately 200 degrees Celsius.
- controller 46 may direct most of the exhaust gas through low temperature oxidation catalyst 40 (step 204 ). This may be accomplished by setting valve 36 to the fully closed position and setting valve 38 to the fully open position. Once valves 36 and 38 have been set to their respective desired positions, step 200 may be repeated (i.e. controller 46 may receive new temperature signals from sensor 44 indicative of a new temperature of the exhaust gas).
- controller 46 may compare the exhaust gas temperature to a second threshold temperature stored in its memory to determine whether the exhaust temperature is above the second threshold temperature (step 206 ).
- the second threshold temperature may be a temperature, at which low temperature oxidation catalyst 40 may function suboptimally and/or may even be damaged.
- Such a threshold temperature may be, for example, approximately 250 degrees Celsius.
- controller 46 may direct most of the exhaust gas through high temperature oxidation catalyst 54 (step 208 ). This may be accomplished by setting valve 36 to the fully open position and setting valve 38 to the fully closed position. Once valves 36 and 38 have been set to their respective desired positions, step 200 may be repeated (i.e. controller 46 may receive new temperature signals from sensor 44 indicative of a new temperature of the exhaust gas).
- controller 46 may direct the exhaust gas through both low temperature oxidation catalyst 40 and high temperature oxidation catalyst 54 (step 210 ). This may be accomplished by setting valves 36 and 38 to partially or fully open positions. It is contemplated that, the volume of exhaust gas flowing through each oxidation catalyst may be essentially equal or set at a fixed ratio where one oxidation catalyst receives more exhaust gas than the other, if desired. If it is desired that the volume of exhaust gas flowing through each oxidation catalyst is essentially equal, valves 36 and 38 may be set to fully open positions. However, if it is desired that the distribution of exhaust gas be unequal at a fixed ratio, valves 36 and 38 may be set to positions partially restricting the flow of exhaust.
- step 200 may be repeated (i.e. controller 46 may receive new temperature signals from sensor 44 indicative of a new temperature of the exhaust gas).
- the emissions treating capability of the disclosed exhaust treatment system may be improved.
- Utilizing the low temperature oxidation catalyst can boost the system's ability to generate NO 2 in cold conditions, which in turn improves the exhaust treatment system's ability to treat engine exhaust.
- the low temperature oxidation catalyst may require minimal infrastructure to properly function, there may be little impact on the complexity and cost of the system.
- utilizing both low temperature and high temperature oxidation catalysts may allow the system to generate NO 2 over a greater range of temperatures, which may also boost the performance of the after-treatment exhaust system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Exhaust Gas After Treatment (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/806,433 US20080295499A1 (en) | 2007-05-31 | 2007-05-31 | Exhaust system utilizing a low-temperature oxidation catalyst |
PCT/US2008/005210 WO2008147492A1 (fr) | 2007-05-31 | 2008-04-23 | Système d'échappement utilisant un catalyseur d'oxydation basse température |
GB0920038A GB2461672A (en) | 2007-05-31 | 2009-11-16 | Exhaust system utilizing a low-temperature oxidation catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/806,433 US20080295499A1 (en) | 2007-05-31 | 2007-05-31 | Exhaust system utilizing a low-temperature oxidation catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080295499A1 true US20080295499A1 (en) | 2008-12-04 |
Family
ID=39587912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/806,433 Abandoned US20080295499A1 (en) | 2007-05-31 | 2007-05-31 | Exhaust system utilizing a low-temperature oxidation catalyst |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080295499A1 (fr) |
GB (1) | GB2461672A (fr) |
WO (1) | WO2008147492A1 (fr) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090120076A1 (en) * | 2007-11-14 | 2009-05-14 | Umicore Autocat Usa Inc. | Process for reducing no2 from combustion system exhaust |
US20090272104A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST USING AMMONIA STORAGE AND SLIP CONTROL |
US20090272105A1 (en) * | 2008-04-30 | 2009-11-05 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US20090272099A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | Apparatus, system, and method for determining the degradation of an scr catalyst |
US20090272102A1 (en) * | 2008-04-30 | 2009-11-05 | Ofoli Abdul R | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US20090272101A1 (en) * | 2008-04-30 | 2009-11-05 | Wills Joan M | Apparatus, system, and method for controlling ammonia slip from an scr catalyst |
US20100024390A1 (en) * | 2008-04-30 | 2010-02-04 | Wills Joan M | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US20100024393A1 (en) * | 2008-04-30 | 2010-02-04 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR NOx SIGNAL CORRECTION IN FEEDBACK CONTROLS OF AN SCR SYSTEM |
US20100024397A1 (en) * | 2008-04-30 | 2010-02-04 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS FROM AN ENGINE SYSTEM |
US20100050613A1 (en) * | 2008-08-29 | 2010-03-04 | Umicore Autocat Usa Inc. | Process for reducing nox emissions from engine exhaust using lnt and scr components |
US20100199643A1 (en) * | 2009-02-12 | 2010-08-12 | Yasser Mohamed Sayed Yacoub | Exhaust gas purification system |
US20100199634A1 (en) * | 2007-05-02 | 2010-08-12 | David Mark Heaton | Exhaust treatment system implementing selective doc bypass |
US20100229531A1 (en) * | 2008-12-05 | 2010-09-16 | Cummins Ip, Inc. | Apparatus, system, and method for controlling reductant dosing in an scr catalyst system |
NL2002651C2 (nl) * | 2009-03-23 | 2010-09-27 | Trs Transportkoeling B V | Voertuig voorzien van een verbrandingsmotor. |
US20100242440A1 (en) * | 2008-12-05 | 2010-09-30 | Cummins Ip, Inc. | APPARATUS, SYSTEM, AND METHOD FOR ESTIMATING AN NOx CONVERSION EFFICIENCY OF A SELECTIVE CATALYTIC REDUCTION CATALYST |
US20100275583A1 (en) * | 2009-04-30 | 2010-11-04 | Farrell Lisa A | Engine system properties controller |
US20110041481A1 (en) * | 2008-03-11 | 2011-02-24 | Isuzu Motors Limited | Method of controlling nox purification system, and nox purification system |
US20110058999A1 (en) * | 2009-09-10 | 2011-03-10 | Cummins Ip, Inc | Low temperature selective catalytic reduction catalyst and associated systems and methods |
US20110170102A1 (en) * | 2008-10-31 | 2011-07-14 | Janssen John M | Apparatus, System, and Method for Aftertreatment Control and Diagnostics |
US20110185786A1 (en) * | 2008-10-31 | 2011-08-04 | Lindner Frederick H | Optical sensing in an adverse environment |
US20110192143A1 (en) * | 2008-10-31 | 2011-08-11 | Volvo Lastvagnar Ab | Method and apparatus for cold starting an internal combustion engine |
US20110289903A1 (en) * | 2009-01-22 | 2011-12-01 | Man Truck & Bus Ag | Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine |
US20130019588A1 (en) * | 2010-04-20 | 2013-01-24 | Westport Power Inc. | Method Of Controlling A Direct-Injection Gaseous-Fuelled Internal Combustion Engine System With A Selective Catalytic Reduction Converter |
US8733083B2 (en) | 2010-04-26 | 2014-05-27 | Cummins Filtration Ip, Inc. | SCR catalyst ammonia surface coverage estimation and control |
WO2014137518A1 (fr) * | 2013-03-07 | 2014-09-12 | Cummins Ip, Inc | Système et procédés de dérivation de post-traitement de gaz d'échappement |
US8842283B2 (en) | 2010-06-18 | 2014-09-23 | Cummins Inc. | Apparatus, system, and method for detecting engine fluid constituents |
US9194273B2 (en) | 2008-10-31 | 2015-11-24 | Cummins Inc. | Apparatus, system, and method for aftertreatment control and diagnostics |
DE102010026890B4 (de) * | 2009-07-14 | 2016-08-11 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Abgasbehandlungssystem und Verfahren |
US20180187588A1 (en) * | 2015-06-17 | 2018-07-05 | Mtu Friedrichshafen Gmbh | Method for operating an exhaust gas aftertreatment system, exhaust gas aftertreatment system, and internal combustion engine with an exhaust gas aftertreatment system |
US10030557B2 (en) | 2016-11-14 | 2018-07-24 | Ford Global Technologies, Llc | Exhaust passage having first and second catalysts |
US20190085746A1 (en) * | 2017-09-19 | 2019-03-21 | Caterpillar Inc. | Aftertreatment system |
CN110062840A (zh) * | 2016-12-12 | 2019-07-26 | 斯堪尼亚商用车有限公司 | 排气系统和用于控制排气的流动的方法 |
US11492946B2 (en) | 2018-11-26 | 2022-11-08 | Volvo Truck Corporation | Aftertreatment system |
US11867111B2 (en) | 2019-05-09 | 2024-01-09 | Cummins Emission Solutions Inc. | Valve arrangement for split-flow close-coupled catalyst |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120279206A1 (en) * | 2011-05-02 | 2012-11-08 | Stephen Mark Geyer | Device, method, and system for emissions control |
FR2976320A1 (fr) * | 2011-06-08 | 2012-12-14 | Peugeot Citroen Automobiles Sa | Ligne d'echappement debouchant d'un moteur a combustion interne |
GB2567807A (en) * | 2017-10-17 | 2019-05-01 | Perkins Engines Co Ltd | Engine exhaust aftertreatment system and method |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273971A (en) * | 1963-09-26 | 1966-09-20 | Oxy Catalyst Inc | Apparatus for improving the purification of exhaust gases from an internal combustion engine |
US3791143A (en) * | 1971-11-10 | 1974-02-12 | Engelhard Min & Chem | Process and apparatus |
US6125629A (en) * | 1998-11-13 | 2000-10-03 | Engelhard Corporation | Staged reductant injection for improved NOx reduction |
US6212885B1 (en) * | 1998-04-28 | 2001-04-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control system of internal combustion engine |
US6584760B1 (en) * | 2000-09-12 | 2003-07-01 | Hybrid Power Generation Systems, Inc. | Emissions control in a recuperated gas turbine engine |
US20040139739A1 (en) * | 2002-11-25 | 2004-07-22 | Masao Kagenishi | Exhaust gas purifying apparatus and exhaust gas purifying method for an internal combustion engine |
US6805849B1 (en) * | 1998-02-06 | 2004-10-19 | Johnson Matthey Public Limited Company | System for NOx reduction in exhaust gases |
US6823660B2 (en) * | 2001-12-13 | 2004-11-30 | Isuzu Motors Limited | Exhaust emission purification system for diesel engine |
US6823663B2 (en) * | 2002-11-21 | 2004-11-30 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US20050031514A1 (en) * | 2003-08-05 | 2005-02-10 | Engelhard Corporation | Catalyzed SCR filter and emission treatment system |
US6871489B2 (en) * | 2003-04-16 | 2005-03-29 | Arvin Technologies, Inc. | Thermal management of exhaust systems |
US20050069476A1 (en) * | 2001-12-20 | 2005-03-31 | Blakeman Philip Gerald | Selective catalytic reduction |
US6928806B2 (en) * | 2002-11-21 | 2005-08-16 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US6947831B2 (en) * | 2003-04-11 | 2005-09-20 | Ford Global Technologies, Llc | Pressure sensor diagnosis via a computer |
US6973776B2 (en) * | 2003-11-03 | 2005-12-13 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US20060029896A1 (en) * | 2000-07-27 | 2006-02-09 | John Zink Company, Llc | Venturi cluster, and burners and methods employing such cluster |
US7062904B1 (en) * | 2005-02-16 | 2006-06-20 | Eaton Corporation | Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines |
US20060144189A1 (en) * | 2002-07-16 | 2006-07-06 | Nippon Sheet Glass Co. | Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same |
US20060179822A1 (en) * | 2005-02-14 | 2006-08-17 | Dalla Betta Ralph A | Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass |
US20060213187A1 (en) * | 2003-02-12 | 2006-09-28 | Joachim Kupe | System and method of nox abatement |
US20070137187A1 (en) * | 2005-12-21 | 2007-06-21 | Kumar Sanath V | DOC and particulate control system for diesel engines |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002188432A (ja) * | 2000-12-19 | 2002-07-05 | Isuzu Motors Ltd | ディーゼルエンジンの排気浄化装置 |
JP4224383B2 (ja) * | 2003-06-12 | 2009-02-12 | 日野自動車株式会社 | 排気浄化装置 |
JP4290032B2 (ja) * | 2004-02-18 | 2009-07-01 | 日産ディーゼル工業株式会社 | 排気浄化装置 |
DE102004036036A1 (de) * | 2004-07-24 | 2006-03-16 | Daimlerchrysler Ag | Abgassystem, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs |
AT501066B1 (de) * | 2006-03-02 | 2008-11-15 | Avl List Gmbh | Abgassystem für eine brennkraftmaschine |
-
2007
- 2007-05-31 US US11/806,433 patent/US20080295499A1/en not_active Abandoned
-
2008
- 2008-04-23 WO PCT/US2008/005210 patent/WO2008147492A1/fr active Application Filing
-
2009
- 2009-11-16 GB GB0920038A patent/GB2461672A/en not_active Withdrawn
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273971A (en) * | 1963-09-26 | 1966-09-20 | Oxy Catalyst Inc | Apparatus for improving the purification of exhaust gases from an internal combustion engine |
US3791143A (en) * | 1971-11-10 | 1974-02-12 | Engelhard Min & Chem | Process and apparatus |
US20040258594A1 (en) * | 1998-02-06 | 2004-12-23 | Anders Andreasson | Catalytic reduction of NOx |
US6805849B1 (en) * | 1998-02-06 | 2004-10-19 | Johnson Matthey Public Limited Company | System for NOx reduction in exhaust gases |
US6212885B1 (en) * | 1998-04-28 | 2001-04-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control system of internal combustion engine |
US6125629A (en) * | 1998-11-13 | 2000-10-03 | Engelhard Corporation | Staged reductant injection for improved NOx reduction |
US20060029896A1 (en) * | 2000-07-27 | 2006-02-09 | John Zink Company, Llc | Venturi cluster, and burners and methods employing such cluster |
US6584760B1 (en) * | 2000-09-12 | 2003-07-01 | Hybrid Power Generation Systems, Inc. | Emissions control in a recuperated gas turbine engine |
US6823660B2 (en) * | 2001-12-13 | 2004-11-30 | Isuzu Motors Limited | Exhaust emission purification system for diesel engine |
US20050069476A1 (en) * | 2001-12-20 | 2005-03-31 | Blakeman Philip Gerald | Selective catalytic reduction |
US20060144189A1 (en) * | 2002-07-16 | 2006-07-06 | Nippon Sheet Glass Co. | Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same |
US6823663B2 (en) * | 2002-11-21 | 2004-11-30 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US6928806B2 (en) * | 2002-11-21 | 2005-08-16 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US20040139739A1 (en) * | 2002-11-25 | 2004-07-22 | Masao Kagenishi | Exhaust gas purifying apparatus and exhaust gas purifying method for an internal combustion engine |
US20060213187A1 (en) * | 2003-02-12 | 2006-09-28 | Joachim Kupe | System and method of nox abatement |
US6947831B2 (en) * | 2003-04-11 | 2005-09-20 | Ford Global Technologies, Llc | Pressure sensor diagnosis via a computer |
US6871489B2 (en) * | 2003-04-16 | 2005-03-29 | Arvin Technologies, Inc. | Thermal management of exhaust systems |
US20050031514A1 (en) * | 2003-08-05 | 2005-02-10 | Engelhard Corporation | Catalyzed SCR filter and emission treatment system |
US6973776B2 (en) * | 2003-11-03 | 2005-12-13 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US20060179822A1 (en) * | 2005-02-14 | 2006-08-17 | Dalla Betta Ralph A | Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass |
US7062904B1 (en) * | 2005-02-16 | 2006-06-20 | Eaton Corporation | Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines |
US20070137187A1 (en) * | 2005-12-21 | 2007-06-21 | Kumar Sanath V | DOC and particulate control system for diesel engines |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100199634A1 (en) * | 2007-05-02 | 2010-08-12 | David Mark Heaton | Exhaust treatment system implementing selective doc bypass |
US20090120076A1 (en) * | 2007-11-14 | 2009-05-14 | Umicore Autocat Usa Inc. | Process for reducing no2 from combustion system exhaust |
US8800270B2 (en) * | 2007-11-14 | 2014-08-12 | Umicore Autocat Usa Inc. | Process for reducing NO2 from combustion system exhaust |
US8464517B2 (en) * | 2008-03-11 | 2013-06-18 | Isuzu Motors Limited | Method of controlling NOx purification system, and NOx purification system |
US20110041481A1 (en) * | 2008-03-11 | 2011-02-24 | Isuzu Motors Limited | Method of controlling nox purification system, and nox purification system |
US20100024393A1 (en) * | 2008-04-30 | 2010-02-04 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR NOx SIGNAL CORRECTION IN FEEDBACK CONTROLS OF AN SCR SYSTEM |
US8074445B2 (en) | 2008-04-30 | 2011-12-13 | Cummins Ip, Inc. | Apparatus, system, and method for reducing NOx emissions on an SCR catalyst |
US8201394B2 (en) | 2008-04-30 | 2012-06-19 | Cummins Ip, Inc. | Apparatus, system, and method for NOx signal correction in feedback controls of an SCR system |
US20100024397A1 (en) * | 2008-04-30 | 2010-02-04 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS FROM AN ENGINE SYSTEM |
US8181450B2 (en) | 2008-04-30 | 2012-05-22 | Cummins IP. Inc. | Apparatus, system, and method for reducing NOx emissions on an SCR catalyst using ammonia storage and slip control |
US8161730B2 (en) | 2008-04-30 | 2012-04-24 | Cummins Ip, Inc. | Apparatus, system, and method for reducing NOx emissions on an SCR catalyst |
US20090272101A1 (en) * | 2008-04-30 | 2009-11-05 | Wills Joan M | Apparatus, system, and method for controlling ammonia slip from an scr catalyst |
US8141340B2 (en) | 2008-04-30 | 2012-03-27 | Cummins Ip, Inc | Apparatus, system, and method for determining the degradation of an SCR catalyst |
US20090272102A1 (en) * | 2008-04-30 | 2009-11-05 | Ofoli Abdul R | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US20090272099A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | Apparatus, system, and method for determining the degradation of an scr catalyst |
US8109079B2 (en) | 2008-04-30 | 2012-02-07 | Cummins Ip, Inc. | Apparatus, system, and method for controlling ammonia slip from an SCR catalyst |
US20090272105A1 (en) * | 2008-04-30 | 2009-11-05 | Chi John N | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US20090272104A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST USING AMMONIA STORAGE AND SLIP CONTROL |
US8281572B2 (en) | 2008-04-30 | 2012-10-09 | Cummins Ip, Inc. | Apparatus, system, and method for reducing NOx emissions from an engine system |
US8256208B2 (en) | 2008-04-30 | 2012-09-04 | Cummins Ip, Inc. | Apparatus, system, and method for reducing NOx emissions on an SCR catalyst |
US20100024390A1 (en) * | 2008-04-30 | 2010-02-04 | Wills Joan M | APPARATUS, SYSTEM, AND METHOD FOR REDUCING NOx EMISSIONS ON AN SCR CATALYST |
US8112987B2 (en) | 2008-08-29 | 2012-02-14 | Umicore Ag & Co. Kg | Process for reducing NOx emissions from engine exhaust using LNT and SCR components |
US20100050613A1 (en) * | 2008-08-29 | 2010-03-04 | Umicore Autocat Usa Inc. | Process for reducing nox emissions from engine exhaust using lnt and scr components |
US20110185786A1 (en) * | 2008-10-31 | 2011-08-04 | Lindner Frederick H | Optical sensing in an adverse environment |
US20110192143A1 (en) * | 2008-10-31 | 2011-08-11 | Volvo Lastvagnar Ab | Method and apparatus for cold starting an internal combustion engine |
US8223337B2 (en) * | 2008-10-31 | 2012-07-17 | Cummins Inc. | Apparatus, system, and method for aftertreatment control and diagnostics |
US20110170102A1 (en) * | 2008-10-31 | 2011-07-14 | Janssen John M | Apparatus, System, and Method for Aftertreatment Control and Diagnostics |
US8648322B2 (en) | 2008-10-31 | 2014-02-11 | Cummins Inc. | Optical sensing in an adverse environment |
US8904767B2 (en) * | 2008-10-31 | 2014-12-09 | Volvo Lastvagnar Ab | Method and apparatus for cold starting an internal combustion engine |
US9194273B2 (en) | 2008-10-31 | 2015-11-24 | Cummins Inc. | Apparatus, system, and method for aftertreatment control and diagnostics |
US20100242440A1 (en) * | 2008-12-05 | 2010-09-30 | Cummins Ip, Inc. | APPARATUS, SYSTEM, AND METHOD FOR ESTIMATING AN NOx CONVERSION EFFICIENCY OF A SELECTIVE CATALYTIC REDUCTION CATALYST |
US8225595B2 (en) | 2008-12-05 | 2012-07-24 | Cummins Ip, Inc. | Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst |
US8356471B2 (en) | 2008-12-05 | 2013-01-22 | Cummins Ip, Inc. | Apparatus, system, and method for controlling reductant dosing in an SCR catalyst system |
US20100229531A1 (en) * | 2008-12-05 | 2010-09-16 | Cummins Ip, Inc. | Apparatus, system, and method for controlling reductant dosing in an scr catalyst system |
US10240498B2 (en) * | 2009-01-22 | 2019-03-26 | Man Truck & Bus Ag | Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine |
US20150275722A1 (en) * | 2009-01-22 | 2015-10-01 | Man Truck & Bus Ag | Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine |
US20110289903A1 (en) * | 2009-01-22 | 2011-12-01 | Man Truck & Bus Ag | Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine |
US20100199643A1 (en) * | 2009-02-12 | 2010-08-12 | Yasser Mohamed Sayed Yacoub | Exhaust gas purification system |
NL2002651C2 (nl) * | 2009-03-23 | 2010-09-27 | Trs Transportkoeling B V | Voertuig voorzien van een verbrandingsmotor. |
US8505278B2 (en) | 2009-04-30 | 2013-08-13 | Cummins Ip, Inc. | Engine system properties controller |
US20100275583A1 (en) * | 2009-04-30 | 2010-11-04 | Farrell Lisa A | Engine system properties controller |
DE102010026890B4 (de) * | 2009-07-14 | 2016-08-11 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Abgasbehandlungssystem und Verfahren |
US8491845B2 (en) | 2009-09-10 | 2013-07-23 | Cummins Ip, Inc. | Low temperature selective catalytic reduction catalyst and associated systems and methods |
US20110058999A1 (en) * | 2009-09-10 | 2011-03-10 | Cummins Ip, Inc | Low temperature selective catalytic reduction catalyst and associated systems and methods |
WO2011032020A3 (fr) * | 2009-09-10 | 2011-07-14 | Cummins Ip, Inc. | Catalyseur de réduction catalytique sélective basse température ainsi que systèmes et procédés associés |
WO2011032020A2 (fr) * | 2009-09-10 | 2011-03-17 | Cummins Ip, Inc. | Catalyseur de réduction catalytique sélective basse température ainsi que systèmes et procédés associés |
US9482166B2 (en) * | 2010-04-20 | 2016-11-01 | Westport Power Inc. | Method of controlling a direct-injection gaseous-fuelled internal combustion engine system with a selective catalytic reduction converter |
US20130019588A1 (en) * | 2010-04-20 | 2013-01-24 | Westport Power Inc. | Method Of Controlling A Direct-Injection Gaseous-Fuelled Internal Combustion Engine System With A Selective Catalytic Reduction Converter |
US8733083B2 (en) | 2010-04-26 | 2014-05-27 | Cummins Filtration Ip, Inc. | SCR catalyst ammonia surface coverage estimation and control |
US9475006B2 (en) | 2010-04-26 | 2016-10-25 | Cummins Filtration Ip, Inc. | SCR catalyst ammonia surface coverage estimation and control |
US8842283B2 (en) | 2010-06-18 | 2014-09-23 | Cummins Inc. | Apparatus, system, and method for detecting engine fluid constituents |
GB2525813A (en) * | 2013-03-07 | 2015-11-04 | Cummins Ip Inc | Exhaust gas aftertreatment bypass system and methods |
GB2525813B (en) * | 2013-03-07 | 2017-11-22 | Cummins Ip Inc | Exhaust gas aftertreatment bypass system and methods |
US9964013B2 (en) | 2013-03-07 | 2018-05-08 | Cummins Ip, Inc. | Exhaust gas aftertreatment bypass system and methods |
WO2014137518A1 (fr) * | 2013-03-07 | 2014-09-12 | Cummins Ip, Inc | Système et procédés de dérivation de post-traitement de gaz d'échappement |
US20180187588A1 (en) * | 2015-06-17 | 2018-07-05 | Mtu Friedrichshafen Gmbh | Method for operating an exhaust gas aftertreatment system, exhaust gas aftertreatment system, and internal combustion engine with an exhaust gas aftertreatment system |
US10030557B2 (en) | 2016-11-14 | 2018-07-24 | Ford Global Technologies, Llc | Exhaust passage having first and second catalysts |
CN110062840A (zh) * | 2016-12-12 | 2019-07-26 | 斯堪尼亚商用车有限公司 | 排气系统和用于控制排气的流动的方法 |
CN110062840B (zh) * | 2016-12-12 | 2021-10-08 | 斯堪尼亚商用车有限公司 | 排气系统和用于控制排气的流动的方法 |
US20190085746A1 (en) * | 2017-09-19 | 2019-03-21 | Caterpillar Inc. | Aftertreatment system |
US11492946B2 (en) | 2018-11-26 | 2022-11-08 | Volvo Truck Corporation | Aftertreatment system |
US11867111B2 (en) | 2019-05-09 | 2024-01-09 | Cummins Emission Solutions Inc. | Valve arrangement for split-flow close-coupled catalyst |
Also Published As
Publication number | Publication date |
---|---|
WO2008147492A1 (fr) | 2008-12-04 |
GB2461672A (en) | 2010-01-13 |
GB0920038D0 (en) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080295499A1 (en) | Exhaust system utilizing a low-temperature oxidation catalyst | |
US9133749B2 (en) | Ammonia storage set-point control for selective catalytic reduction applications | |
EP2192278B1 (fr) | Système de purification pour post-injection variable et son procédé de commande | |
US7832200B2 (en) | Exhaust system implementing feedforward and feedback control | |
US8491845B2 (en) | Low temperature selective catalytic reduction catalyst and associated systems and methods | |
US9512761B2 (en) | Systems and methods for NOx reduction and aftertreatment control using passive NOx adsorption | |
US8769928B2 (en) | Exhaust system having cross-sensitive sensor | |
US9970344B2 (en) | Method of evaluating a soot quantity accumulated in a selective catalytic reduction washcoated particulate filter (SDPF) | |
EP1939422A1 (fr) | Épurateur des gaz d'échappement pour moteur diesel | |
US20120144802A1 (en) | Exhaust system having doc regeneration strategy | |
CN101646846A (zh) | 氨氧化催化剂中的n2o生成量推定方法以及内燃机的排气净化系统 | |
US8783023B2 (en) | Exhaust gas purification system for internal combustion engine | |
US10161331B2 (en) | Method of operating a selective catalytic reduction on filter of an automotive system | |
CN113167159B (zh) | 后处理系统 | |
CN109209588B (zh) | 用于调整燃烧以缓解排气过温的系统和方法 | |
US20160061129A1 (en) | System and method of recovering oxidation catalyst performance | |
JP2006200473A (ja) | 排ガス後処理装置付きエンジンの制御装置 | |
US7617812B2 (en) | Method of operating a compression ignition engine | |
JP2010185434A (ja) | 内燃機関の排気浄化装置 | |
CN101506501A (zh) | 内燃机的排气净化系统及方法 | |
US10100696B2 (en) | Method for operating an exhaust gas purification system connected to an internal combustion engine of a motor-vehicle comprising an SCR catalyst | |
JP2013241860A (ja) | 内燃機関の排気浄化装置 | |
JP4893493B2 (ja) | 内燃機関の排気浄化装置 | |
WO2008085246A1 (fr) | Système d'émission à basse température équipé d'une dérivation de turbocompresseur | |
JP2020143631A (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CATERPILLAR INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRISCOLL, JAMES JOSHUA;LIANG, CHO YING;SILVER, RONALD;AND OTHERS;REEL/FRAME:019424/0318;SIGNING DATES FROM 20070523 TO 20070530 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |