US20080257784A1 - Hydrogenation and dehydrogenation processes and catalysts therefor - Google Patents

Hydrogenation and dehydrogenation processes and catalysts therefor Download PDF

Info

Publication number
US20080257784A1
US20080257784A1 US11/931,134 US93113407A US2008257784A1 US 20080257784 A1 US20080257784 A1 US 20080257784A1 US 93113407 A US93113407 A US 93113407A US 2008257784 A1 US2008257784 A1 US 2008257784A1
Authority
US
United States
Prior art keywords
canceled
process according
catalyst
support
unsaturations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/931,134
Inventor
Jean-Pierre Dath
Walter Vermeiren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Petrochemicals Research Feluy SA
Original Assignee
Total Petrochemicals Research Feluy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Petrochemicals Research Feluy SA filed Critical Total Petrochemicals Research Feluy SA
Priority to US11/931,134 priority Critical patent/US20080257784A1/en
Publication of US20080257784A1 publication Critical patent/US20080257784A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution

Definitions

  • the present invention relates to a process for hydrogenating unsaturated petrochemical feedstocks, in particular a process for the selective hydrogenation of such feedstocks.
  • the present invention also relates to a process for dehydrogenating petrochemical feedstocks.
  • the present invention also relates to a catalyst, in particular a catalyst for use in such a process.
  • Heterogeneous hydrogenation catalysts contain an active metal compound on a carrier.
  • active metal compounds are Group IIb, VIb, VIIb and VIII element compounds. They can be in the metallic state, in an oxidic state, in a partially reduced oxide state or even in a sulphided or partially sulphided state.
  • metallic Group Ia metals are known to be active hydrogenation catalysts. The most preferred metals or metal compounds are those of Pd, Pt, Ni, Rh, Co, Fe, Cu, Ir, Ru, Os, W, Mo and Na or K. All these active hydrogenation catalysts can also exhibit isomerisation activity to some extent. It is known that in particular Na, K, Fe, Pd and Ni metals catalyse double bond migration, while Pt and Cu are much less active isomerisation catalysts.
  • Activity and selectivity of selective hydrogenation catalysts can still further be improved by employing bimetallics or bimetallic compounds.
  • Typical examples are CoMo, NiW and NiMo sulphided catalysts used for hydrotreatment.
  • Other examples used for selective hydrogenation are: Cu—Pd, Cu—Ni, Cu—Co, Cu—Pt, Fe—Pd, Co—Pd, Ni—Pd, Pt—Pd, Ag—Pd, Fe—Pt, Ni—Pt, Pt—Sn, Pt—Pb, Pd—Sn, Pd—Pb, Au—Pd and many others.
  • activity and selectivity can also be influenced by the characteristics of the carrier for the metal compound.
  • the carrier can influence the dispersion of the metal or metal compound, the particle size of the metal of metal compound and the electronic properties of the metal or metal compound.
  • Known carriers include carbon, alumina, silica, titania, zirconia, salts of alkaline earth metals and zeolites or molecular sieves.
  • the acid-base properties of the carrier can be very important for several reasons.
  • the carrier properties can influence the dispersion of the metal or metal compound, its electronic properties and hence its activity and selectively.
  • the carrier is not completely covered with metal or metal compound, the remaining acid and/or basic sites may influence the catalytic behaviour of the catalyst.
  • highly unsaturated hydrocarbons When highly unsaturated hydrocarbons are to be hydrogenated, they will interact strongly with acidic carriers whereas they will interact little with basic carriers. Even when hydrogenation needs high temperature, site reactions such as acid catalysed isomerisation or cracking can occur.
  • Known basic carriers are salts of alkaline earth metals. However, they develop only very low surface areas.
  • catalysts for selective hydrogenation of unsaturated hydrocarbons comprise, for example palladium on an alumina support, palladium on an activated carbon support, nickel tungsten on an alumina support and palladium on a barium sulphate support.
  • dehydrogenation catalysts for the dehydrogenation of light paraffins such as propane and butane primarily employ supported platinum, nickel or chromium. In such supported platinum catalysts, the platinum is present as a metal and is often promoted with tin.
  • Chromium-based catalysts contain chromium oxide as the active phase.
  • the nickel-based catalysts mainly employ nickel in the form of sulphide which is present on the support.
  • the carrier of the active phase has a very important effect on catalyst performance—the activity, the selectivity and the stability are all influenced by the support.
  • these three kinds of catalysts are supported on alumina-type carriers which have been modified by the addition of one or more alkali metal or alkaline earth metal compounds, which tend to moderate the acidity of the alumina in the carrier and hence increase the selectivity and the potential lifetime of the catalyst.
  • the active metal compound may be supported on a spinel-like carrier such as MgAl 2 O 4 or ZrO 2 which are less acidic than alumina-type carriers and which exhibit a high thermal stability.
  • the property of high thermal stability is very important, since dehydrogenation reactions typically require a temperature of from 500 to 630° C.
  • Another catalytic dehydrogenation process is reforming which is a very important refinery application, in which the main goal is to dehydrogenate alkyl cycloparaffins into aromatics with co-production of hydrogen.
  • Conventional reforming catalysts typically comprise platinum supported on an acidified alumina carrier. The acidic function is required when isomerisation and dehydrocyclisation are desired to convert additional paraffins into isomers and aromatics.
  • U.S. Pat. No. 3,806,585 discloses the production of a hydrous calcium silicate composed preponderantly of xonotlite in the shape of rod crystals which is described as having outstanding refractory properties, whereby moulded bodies comprised primarily of xonotlite provide strength unattained by other inorganic materials.
  • hydrous calcium silicate of the xonotlite type has use in construction as a fire proof coating material, as a fire proof moisture retaining material and as a potential filler for plastics and rubber products.
  • U.S. Pat. No. 3,804,652 discloses a method of producing calcium silicate products, such as drain pipes and insulating material, to form tobermorite having the empirical formula 5CaO.6SiO 2 .5H 2 O.
  • U.S. Pat. No. 3,928,539 discloses a method of producing hydrous calcium silicates such as xonotlite, tobermorite and the like.
  • U.S. Pat. No.3,915,725 discloses a process for producing hollow spherical aggregates of xonotlite, which aggregates are employed to form shaped articles.
  • U.S. Pat. No.4,298,386 discloses the production of globular secondary particles of the woolastonite group of calcium silicate crystals, including woolastonite and xonotlite.
  • U.S. Pat. No.4,689,315 discloses the production of amorphous, approximately spherical silica particles obtained by the acidic hydrolysis of an approximately spherical synthetic calcium silicate.
  • the resultant silica particles, obtained by such acid hydrolysis, are disclosed as being particularly suitable for use as catalyst support.
  • the starting material may comprise spherical synthetic calcium silicates such as xonotlite, tobermorite and/or calcium silicate hydrate, which are then treated with an aqueous acid having a pH of from 0.6 to 3 to produce the resultant silica particles for use as a catalyst support.
  • U.S. Pat. No.4,849,195 discloses synthetic substantially spherical crystal aggregates of xonotlite.
  • the aggregates can be mixed with inert particles, for example to produce thermal insulation products.
  • the aggregates of xonotlite can be used as starting material for acid extraction of calcium atoms in order to obtain silica.
  • the present invention in one preferred aspect aims to provide an improved method of selectively hydrogenating unsaturated petrochemical feedstocks.
  • the present invention provides a process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of an alkaline earth metal silicate having a surface area of at least 30 m 2 /g at a temperature of from 0 to 550° C. and a pressure of from 3 to 150 barg.
  • the at least one petrochemical feedstock is passed-over the catalyst at an LHSV of from 1 to 100 h ⁇ 1 .
  • the molar ratio of hydrogen to the at least one component having unsaturations to be selectively hydrogenated may be from 0.7 to 200.
  • the present invention also provides a process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of a crystalline calcium silicate having the chemical composition Ca 6 Si 6 O 17 (OH) 2 .
  • the present invention further provides a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a crystalline calcium silicate support having a surface area of at least 30 m 2 /g, the support being in the form of substantially spherical particles and pores in the particles having a diameter of from 100 to 2000 Angstroms.
  • the particles have a mean diameter of from 10 to 200 microns.
  • the catalyst may be used, in accordance with the invention, in a process for hydrogenating an unsaturated hydrocarbon feedstock or in a process for dehydrogenating or reforming a hydrocarbon feedstock.
  • the present invention yet further provides a catalyst comprising a metal on a support comprising a crystalline calcium silicate of molecular formula 6CaO.6SiO 2 .H 2 O.
  • the metal comprises at least one metal selected from Groups Ia, Ib, IIb, VIb, VIIb and VIII of the periodic table.
  • the present invention still further provides the use of a crystalline calcium silicate of molecular formula 6CaO.6SiO 2 .H 2 O as a catalyst support.
  • the present invention is at least partly predicated on the surprising discovery that a basic hydrated crystalline calcium silicate when used as a catalyst support can yield hydrogenation catalysts for selective hydrogenation of petrochemical feedstocks having high activity and selectivity.
  • xonotlite-type materials have been known for a number of years but to the applicant's knowledge there has been no disclosure or suggestion in the prior art of using xonotlite-type materials as catalysts or catalyst carriers. Rather, as disclosed in for example U.S. Pat. No.
  • xonotlite has been proposed in the prior art for use as a starting material for the production of silica, where the chemical composition and structure of the xonotlite is destroyed in the preparation of the silica particles by acid hydrolysis.
  • the present invention is also at least partly predicated on the surprising discovery that a basic hydrated crystalline calcium silicate comprising xonotlite is a is a suitable carrier for dehydrogenation and reforming reactions because at temperatures of up to 650° C., such a basic carrier has high temperature stability, in that the carrier retains its crystallinity and substantially retains its pore volume and surface area.
  • the catalyst of the present invention preferably comprises a supported noble metal catalyst.
  • the catalyst of the present invention comprises at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal, such as Pd, Co, Rh, Ru, Ni, Mo, W, Fe, Cu, Na or K or a combination thereof with palladium being particularly preferred.
  • the metal or metals may be in the metallic state, in an oxidic state, in a partially reduced oxide state, or in a sulphided or partially sulphided state.
  • bi-metallic metals or bi-metallic compounds may be incorporated into the hydrogenation catalyst, such as CoMo, NiW, and NiMo sulphided catalyst for hydro-treatment and, for selective hydrogenation, Cu—Pd, Cu—Ni, Cu—Co, Cu—Pt, Fe—Pd, Co—Pd, Ni—Pd, Pt—Pd, Ag—Pd, Fe—Pt, Ni—Pt, Pt—Sn, Pt—Pb, Pd—Sn, Pd—Pb and Au—Pd.
  • the preferred catalyst support is a basic alkaline earth metal silicate with a very open and accessible pore structure.
  • a most preferred catalyst support comprises a synthetic crystalline hydrated calcium silicate having a chemical composition of Ca 6 Si 6 O 17 (OH) 2 which corresponds to the known mineral xonotlite (having a molecular formula 6CaO.6SiO 2 .H 2 ).
  • the catalyst support preferably has a spherical morphology with a mean diameter of the spherical particles being from 10 to 200 ⁇ m.
  • the support has a very open structure comprising an outer shell with a very close-crystal structure surrounding an open inner structure. This may be referred to as an egg shell like structure.
  • the outer shell is formed of interlocked ribbon-shaped crystals yielding regular and homogeneous surface properties.
  • the outer shell is provided with pore openings up to 2000 Angstroms, more preferably from 100 to 1000 Angstroms, in diameter, This provides a good pore structure with high pore volume.
  • the support has a specific surface area well above 10 m 2/ g, ranging from 30 to 200 m 2 /g, more preferably from 40 to 90 m 2 /g.
  • the support material is preferably pH basic. More preferably, the support material has a minimum basicity corresponding to a pH of greater than 7.5. The pH may be measured when 4 wt % of the support material is immersed in water.
  • a synthetic hydrated calcium silicate is synthesised hydrothermally under autogeneous pressure.
  • a particularly preferred synthetic hydrated calcium silicate is available in commerce from the company Promat of Ratingen in Germany under the trade name Promaxon D. This material exhibits some basicity due to the presence of calcium, and in a 4% by weight dispersion in water, the pH reaches a value of around 10.
  • the specific composition of the preferred synthetic hydrated calcium silicate is specified in Table 1.
  • xonotlite Bold under the trade name Promaxon D was calcined in ambient air at a relative humidity of about 50% at two different temperatures, namely 650° C. and 750° C., each for a period of 24 hours.
  • the initial xonotlite had a crystalline phase Ca 6 Si 6 O 17 (OH) 2 with a BET surface area of 51 m 2 /gram and a pore volume (of less than 100 nanometers) of 0.35 ml/gram.
  • the carrier After calcination at 650° C., the carrier retained its crystallinity which corresponds to that of xonotlite. Thus after a 24 hour calcination at 650° C., the crystalline phase still comprised xonotlite (Ca 6 Si 6 O 17 (OH) 2 ) with a BET surface area of 47.4 m 2 /gram and a pore volume (less than 100 nanometers) of 0.30 ml/gram. After the calcination at 750° C., the carrier was transformed into wollastonite (having the crystalline phase CaSiO 3 ) by losing one water molecule. This made the carrier less basic. Furthermore, as a result of calcination at 750° C. the carrier lost much of its pore volume, being reduced to 0.09 ml/gram (for pore sizes of less than 100 nanometers) and the BET surface area was correspondingly reduced to 38 m 2 /gram.
  • xonotlite has utility as a basic carrier for high temperature reactions in the range of from 500 to 650° C., more particularly from 500 to 630° C., the typical temperature range for dehydrogenation and reforming reactions. In these temperature ranges the xonotlite retains its basicity, resulting in the carrier being suitable for incorporation in a catalyst for use in reforming reactions.
  • the at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal is preferably present in an amount of from 0.01 to 10 wt %, more preferably about 0.5 wt %, based on the weight of the supported catalyst.
  • the catalyst is produced by impregnating the at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on the alkaline earth metal silicate support.
  • an incipient wetness impregnation technique is employed where the pores of the support are filled with a volume of solution containing the metal.
  • the dried catalyst is impregnated with a solution of a salt of the at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal, for example a halide of the metal, in particular the Group VIII metal chloride.
  • the amount of the metal salt is calculated to provide a desired metal content on the support, for example a metal content of from 0.01 to 10 wt % based on the weight of the supported catalyst, most preferably about 0.5 wt % based on the weight of the supported catalyst.
  • the impregnated solid is dried first under vacuum and subsequently at elevated temperature. Finally, the product is calcined, for example at a temperature of about 250° C. for a period of about 3 hours.
  • the active metal phase can have different locations: (1) the metal or metal compound is concentrated in a thin layer close to the external surface, this may be referred to as an “egg-shell mode”, (2) the metal or metal compound is concentrated in a thin layer below the surface, but not penetrating to the centre, this may be referred to as an “egg-white mode”, (3) the metal or metal compound is concentrated in a small zone near the centre of the particle carrier, this may be referred to as an “egg-yolk mode”, and (4) the metal or metal compound is uniformly distributed throughout the particle carrier.
  • the way that the metal precursor will interact with the carrier depends on the isoelectric point (IEP) which is the pH at which the particle of the carrier in an aqueous solution has no net charge.
  • IEP isoelectric point
  • cations will be adsorbed, because the surface carries a negative charge
  • below the IEP only anions will be adsorbed, because the surface carries a positive charge.
  • the impregnating solution may be altered by adding complexing agents, which can change the charge of the metal precursor.
  • competing ions may be added to improve the spreading of the metal precursor over the carrier.
  • the metal may be deposited on the support by ion exchange or vapour phase deposition.
  • the catalyst of the present invention is a heterogeneous catalyst which may be used in a batch wise or continuous process.
  • the catalyst is used in a fixed bed reactor.
  • a most preferred process employs a continuously operated fixed bed reactor.
  • the petrochemical feedstock is contacted batch-wise or continuously passed over the catalyst at a selected temperature and pressure.
  • the temperature is preferably from 0 to 250° C.
  • the total pressure is preferably from 3 to 50 bar.
  • the petrochemical feedstock is preferably contacted with the catalyst at a liquid hourly space velocity (LHSV) of from 0.1 to 100 h ⁇ 1 , more preferably from 1 to 100 h ⁇ 1 .
  • LHSV liquid hourly space velocity
  • the hydrogenation conditions vary dependent on the nature of the petrochemical feedstock and the process of the invention may be employed for hydrogenating a variety of different unsaturated petrochemical feedstocks.
  • the feedstocks are those to be selectively hydrogenated where one of two unsaturates is reduced or one or two of three unsaturates are reduced, the unsaturates being selected from multiple unsaturated hydrocarbons such as alkynes with triple bonds, diolefins with two double bonds or multiple olefins with more double bonds; unsaturated hydrocarbons with only one double bond; and aromatic unsaturated hydrocarbons having an aromatic nucleus.
  • the process is used for selective hydrogenation of butadiene to butenes in crude C4 streams.
  • the C4 streams may come from an FCC unit, a visbreaker or a coker, or may comprise a C4 stream from a steam cracker or a C4 fraction of an ethylene plant.
  • the C4 fraction of an ethylene plant contains high concentrations of butadiene (typically 25 to 75 wt %). It is desirable to hydrogenate such butadiene into butenes for further processing. Moreover, a C4 fraction from which the butadiene has been removed by conversion or extraction may still contain residual butadiene.
  • the C4 stream containing butadiene is fed over the catalyst together with hydrogen so as to have a hydrogen/butadiene molar ratio of from 1 to 10, under process conditions comprising an inlet temperature of from 20 to 200° C., a total pressure of from 5 to 50 barg and an LHSV of from 1 to 40 h ⁇ 1 .
  • the reactor effluent may be recycled in order to control the outlet temperature.
  • several reactors in series may be used with intermittent cooling and/or injection of hydrogen for improved control of the hydrogen content in the feedstock.
  • the process may be employed for selective hydrogenation of vinyl-and ethyl acetylenes in crude C4 streams.
  • the C4 streams typically come from steam crackers.
  • the C4 fraction from an ethylene plant contains, beside the butadiene discussed hereinabove, varying amounts of vinyl acetylene and ethyl acetylene. These have to be removed before further processing, such as by extraction or conversion.
  • the feedstock is fed together with hydrogen over the catalyst, there being a hydrogen/butadiene molar ratio of from 1 to 10 under process parameters having an inlet temperature of from 0 to 100° C., a total pressure of from 3 to 35 barg and an LHSV of from 1 to 40 h ⁇ 1 .
  • the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen for improved control of the hydrogen content in the feed.
  • the process may be employed for selective hydrogenation of methyl acetylene and propadiene to propylene in C3 streams.
  • the feedstock typically comprises a C3 cut from a steam cracking unit, which most typically is a C3 fraction with high propylene content which is obtained from an ethylene plant. This fraction contains methyl acetylene and propadiene. These compounds have to be removed for further processing of the propylene.
  • the feedstocks is fed together with hydrogen, at a hydrogen/MAPD molar ratio of from 0.7 to 5 (MAPD being the total molar content of methyl acetylene and propadiene) under process parameters comprising an inlet temperature of from 0 to 100° C., a total pressure of from 10 to 50 barg and an LHSV of from 10 to 50 h ⁇ 1 .
  • the reaction may be carried out in a multi-tubular pseudo-isothermal reactor or in an adiabatic reactor.
  • the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen in order to provide better control of the hydrogen content in the feedstock.
  • the process of the invention may be employed for the selective hydrogenation of pyrolysis gasoline, which may also be known in the art as “first stage” hydrogenation of the pyrolysis gasoline.
  • the feedstock comprises pyrolysis gasoline from steam cracking units, coker units or visbreakers.
  • diolefins and unsaturated aromatics are converted into the corresponding olefins and aromatics.
  • the hydrogenated product can be used as a stable gasoline blending feed or can be further hydrotreated for the recovery of aromatics.
  • the feedstock is passed over the catalyst together with hydrogen to provide a hydrogen/diene molar ratio of from 1 to 10 under the process parameters of an inlet temperature of from 20 to 200° C., a total pressure of from 5 to 50 barg and an LHSV of 1 to 20 h ⁇ 1 .
  • the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen in order to achieve better control of the hydrogen content in the feedstock.
  • the process of the invention is employed for selective hydrogenation of gasoline fractions.
  • the feedstock may comprise fractions from pyrolysis gasoline originating from steam cracking units, coker units or visbreakers and light cracked naphthas from FCC units.
  • dienes and acetylenes in the gasoline fractions are selectively removed for the preparation of ethers.
  • the feedstock is passed over the catalyst together with hydrogen to provide a hydrogen/diene molar ratio of from 1 to 20, and the process parameters are an inlet temperature of from 20 to 250° C., a total pressure of from 5 to 50 barg and an LHSV of from 1 to 20 h ⁇ 1 .
  • the process of the invention may be employed for selective hydrogenation of phenyl acetylene in crude styrene streams.
  • the feedstock comprises crude styrene.
  • Crude styrene production by dehydrogenation of ethyl benzene or recovery from pyrolysis gasoline tends to yield styrene containing small amounts of phenyl acetylene which has to be removed before further processing.
  • the styrene is fed together with hydrogen to yield a hydrogen/phenyl acetylene molar ratio of from 1 to 20 over the catalyst at an inlet temperature of from 10 to 150° C., a total pressure of from 5 to 50 barg and an LHSV of from 10 to 100 h ⁇ 1 .
  • the process of the invention is for selective hydrogenation of olefins in aromatic rich fractions.
  • the feedstocks may comprise aromatic rich fractions from reforming units, from cokers or from steam cracking units.
  • aromatic rich fractions need to be treated to extract the aromatics.
  • the residual bromine index (which reflects the olefin content) has to be very low. Any process to reduce the olefin content by hydrogenation needs to minimize the conversion of the aromatics. Also, a further reduction of the bromine index in almost pure aromatic fractions may require a further hydrogenation step which can replace conventional clay treatment.
  • the feedstock is passed together with hydrogen over the catalyst at a hydrogen/olefins molar ratio of from 5 to 100 under process parameters comprising an inlet temperature of from 5 to 250° C., a total pressure of from 5 to 50 barg and an LHSV of from 5 to 50 h ⁇ 1 .
  • the process of the invention may be employed for selective hydrogenation of petrochemical feedstocks in conjunction with a reforming process.
  • the catalyst when used for a dehydrogenation or reforming catalyst, the catalyst, as well as the support, comprises at least one Group IIb, VIb, VIIb or VIII metal such as Pd, Co, Rh, Ru, Ni, Mo, W, Fe, Cu or a combination thereof.
  • the feedstocks for dehydrogenation may typically comprise light paraffins, such as propane and butane.
  • the feedstocks for reforming reactions may typically comprise normal paraffins and cycloparaffins, such as n-hexane and cyclohexane.
  • the dehydrogenation and reforming reactions may be carried out at a temperature of from 500 to 630° C.
  • Extrudates of the hydrated crystalline calcium silicate available in commerce under the Trade name Promaxon D was dried at a temperature of 500° C. for a period of 3 hours.
  • the dried support gas then impregnated with a solution of palladium chloride (PdCl 2 ) using a wet impregnation technique.
  • PdCl 2 palladium chloride
  • 65.38 g of dried Promaxon D were progressively contacted with 38.23 mol of an aqueous palladium chloride solution, the amount of solution being selected so as to correspond to the estimated absorption capacity of the dried Promaxon D.
  • the amount of the palladium salt was calculated in order to reach a final palladium content in the resultant catalyst of 0.3 wt %.
  • the impregnated solid was dried under vacuum for a period of 36 hours at 25° C. and thereafter dried for a period of 16 hours at a temperature of 110° C. Finally, the catalyst was calcined at a temperature of 400° C. for a period of 3 hours.
  • the paraffins content was about 27 wt %, increasing to a paraffins content of about 33 wt % at an inlet temperature of about 120° C.
  • the dienes content of the effluent was significantly reduced as compared to that of the feedstock, and the dienes content of the effluent tended to decrease yet further with increasing inlet temperature.
  • the dienes content was about 2 wt %, significantly less than the original dienes content of about 12 wt % and the dienes content of the effluent decreased to about 0.25 wt % at an inlet temperature of about 120° C.
  • the significant decrease in the dienes content of the effluent as compared to that of the feedstock, with a corresponding smaller increase in the paraffins and olefins content, and with the aromatics content being substantially unchanged, indicates the effectiveness of the selected hydrogenation catalyst of the present invention.
  • the catalyst is very active for the hydrogenation of dienes, and a good selectivity for olefins is maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of an alkaline earth metal silicate having a surface area of at least 30 m2/g at a temperature of from 0 to 250° C. and a pressure of from 3 to 50 barg.

Description

  • The present invention relates to a process for hydrogenating unsaturated petrochemical feedstocks, in particular a process for the selective hydrogenation of such feedstocks. The present invention also relates to a process for dehydrogenating petrochemical feedstocks. The present invention also relates to a catalyst, in particular a catalyst for use in such a process.
  • There are a number of known processes for the hydrogenation of unsaturated hydrocarbons. For most applications, the hydrogenation must be carried out in a selective manner, i.e. some unsaturated hydrocarbons have to be hydrogenated while other unsaturated hydrocarbons may not be hydrogenated. Among the pure hydrocarbons, three kinds of unsaturated hydrocarbons can be considered: (1) multiple unsaturated hydrocarbons are alkynes with triple bonds, diolefins with two double bonds or even multiple olefins with more double bonds; (2) unsaturated hydrocarbons with only one double bond; and (3) aromatic unsaturated hydrocarbons, having an aromatic nucleus. Selective hydrogenation means that only one or two of the three unsaturates are reduced. Very important industrial applications of hydrogenation are: (1) removal of impurities from steam cracker product streams, for example selective hydrogenation of multiple unsaturated hydrocarbons in olefin rich streams, or selective hydrogenation of multiple unsaturates and unsaturated hydrocarbons from aromatic rich streams, and (2) hydrogenation of macromolecules, for example hydrocarbon solvents and base oils, polyalpha-olefins and even resins, polymers and copolymers.
  • Heterogeneous hydrogenation catalysts contain an active metal compound on a carrier.
  • Among the active metal compounds are Group IIb, VIb, VIIb and VIII element compounds. They can be in the metallic state, in an oxidic state, in a partially reduced oxide state or even in a sulphided or partially sulphided state. Also metallic Group Ia metals are known to be active hydrogenation catalysts. The most preferred metals or metal compounds are those of Pd, Pt, Ni, Rh, Co, Fe, Cu, Ir, Ru, Os, W, Mo and Na or K. All these active hydrogenation catalysts can also exhibit isomerisation activity to some extent. It is known that in particular Na, K, Fe, Pd and Ni metals catalyse double bond migration, while Pt and Cu are much less active isomerisation catalysts. Activity and selectivity of selective hydrogenation catalysts can still further be improved by employing bimetallics or bimetallic compounds. Typical examples are CoMo, NiW and NiMo sulphided catalysts used for hydrotreatment. Other examples used for selective hydrogenation are: Cu—Pd, Cu—Ni, Cu—Co, Cu—Pt, Fe—Pd, Co—Pd, Ni—Pd, Pt—Pd, Ag—Pd, Fe—Pt, Ni—Pt, Pt—Sn, Pt—Pb, Pd—Sn, Pd—Pb, Au—Pd and many others.
  • It is known that activity and selectivity can also be influenced by the characteristics of the carrier for the metal compound. The carrier can influence the dispersion of the metal or metal compound, the particle size of the metal of metal compound and the electronic properties of the metal or metal compound.
  • Known carriers include carbon, alumina, silica, titania, zirconia, salts of alkaline earth metals and zeolites or molecular sieves. The acid-base properties of the carrier can be very important for several reasons. The carrier properties can influence the dispersion of the metal or metal compound, its electronic properties and hence its activity and selectively. Moreover, when the carrier is not completely covered with metal or metal compound, the remaining acid and/or basic sites may influence the catalytic behaviour of the catalyst. When highly unsaturated hydrocarbons are to be hydrogenated, they will interact strongly with acidic carriers whereas they will interact little with basic carriers. Even when hydrogenation needs high temperature, site reactions such as acid catalysed isomerisation or cracking can occur. It is known that addition of basic compounds during hydrogenation or adding basic metal compounds on the carrier do increase catalytic performance. Known basic carriers are salts of alkaline earth metals. However, they develop only very low surface areas.
  • A number of catalysts for selective hydrogenation of unsaturated hydrocarbons are available commercially. Such catalysts comprise, for example palladium on an alumina support, palladium on an activated carbon support, nickel tungsten on an alumina support and palladium on a barium sulphate support.
  • In complete contrast to the hydrogenation process, it is also known to dehydrogenate hydrocarbons. For example, it is known in the art that dehydrogenation catalysts for the dehydrogenation of light paraffins such as propane and butane primarily employ supported platinum, nickel or chromium. In such supported platinum catalysts, the platinum is present as a metal and is often promoted with tin. Chromium-based catalysts contain chromium oxide as the active phase. The nickel-based catalysts mainly employ nickel in the form of sulphide which is present on the support. For these three catalyst types it is known in the art that the carrier of the active phase has a very important effect on catalyst performance—the activity, the selectivity and the stability are all influenced by the support. Often, these three kinds of catalysts are supported on alumina-type carriers which have been modified by the addition of one or more alkali metal or alkaline earth metal compounds, which tend to moderate the acidity of the alumina in the carrier and hence increase the selectivity and the potential lifetime of the catalyst. On the other hand, the active metal compound may be supported on a spinel-like carrier such as MgAl2O4 or ZrO2 which are less acidic than alumina-type carriers and which exhibit a high thermal stability. The property of high thermal stability is very important, since dehydrogenation reactions typically require a temperature of from 500 to 630° C.
  • Another catalytic dehydrogenation process is reforming which is a very important refinery application, in which the main goal is to dehydrogenate alkyl cycloparaffins into aromatics with co-production of hydrogen. Conventional reforming catalysts typically comprise platinum supported on an acidified alumina carrier. The acidic function is required when isomerisation and dehydrocyclisation are desired to convert additional paraffins into isomers and aromatics. There is an interest in the art to convert only paraffins with at least 6 carbon atoms into aromatic compounds with co-production of hydrogen. It is known in the art that this may be done over a catalyst comprising a basic zeolite carrier impregnated with platinum. Since there are no acidic sites associated with the basic zeolite carrier, competing reactions such as isomerisation and hydrocracking are suppressed, resulting in a very high selectivity for the production of aromatic compounds.
  • However, there is a need in the art for improved dehydrogenation catalysts, and in particular carriers for such dehydrogenation catalysts.
  • A huge variety of naturally occurring and synthetically produced silicates are known in the art.
  • U.S. Pat. No. 3,806,585 discloses the production of a hydrous calcium silicate composed preponderantly of xonotlite in the shape of rod crystals which is described as having outstanding refractory properties, whereby moulded bodies comprised primarily of xonotlite provide strength unattained by other inorganic materials. The specification discloses that hydrous calcium silicate of the xonotlite type has use in construction as a fire proof coating material, as a fire proof moisture retaining material and as a potential filler for plastics and rubber products.
  • U.S. Pat. No. 3,804,652 discloses a method of producing calcium silicate products, such as drain pipes and insulating material, to form tobermorite having the empirical formula 5CaO.6SiO2.5H2O.
  • U.S. Pat. No. 3,928,539 discloses a method of producing hydrous calcium silicates such as xonotlite, tobermorite and the like.
  • U.S. Pat. No.3,915,725 discloses a process for producing hollow spherical aggregates of xonotlite, which aggregates are employed to form shaped articles.
  • U.S. Pat. No.4,298,386 discloses the production of globular secondary particles of the woolastonite group of calcium silicate crystals, including woolastonite and xonotlite.
  • U.S. Pat. No.4,689,315 discloses the production of amorphous, approximately spherical silica particles obtained by the acidic hydrolysis of an approximately spherical synthetic calcium silicate. The resultant silica particles, obtained by such acid hydrolysis, are disclosed as being particularly suitable for use as catalyst support. The starting material may comprise spherical synthetic calcium silicates such as xonotlite, tobermorite and/or calcium silicate hydrate, which are then treated with an aqueous acid having a pH of from 0.6 to 3 to produce the resultant silica particles for use as a catalyst support.
  • U.S. Pat. No.4,849,195 discloses synthetic substantially spherical crystal aggregates of xonotlite. The aggregates can be mixed with inert particles, for example to produce thermal insulation products. Alternatively, as for U.S. Pat. No.4,689,315 described above, the aggregates of xonotlite can be used as starting material for acid extraction of calcium atoms in order to obtain silica.
  • The present invention in one preferred aspect aims to provide an improved method of selectively hydrogenating unsaturated petrochemical feedstocks.
  • Accordingly, the present invention provides a process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of an alkaline earth metal silicate having a surface area of at least 30 m2/g at a temperature of from 0 to 550° C. and a pressure of from 3 to 150 barg.
  • Preferably, the at least one petrochemical feedstock is passed-over the catalyst at an LHSV of from 1 to 100 h−1.
  • The molar ratio of hydrogen to the at least one component having unsaturations to be selectively hydrogenated may be from 0.7 to 200.
  • The present invention also provides a process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of a crystalline calcium silicate having the chemical composition Ca6Si6O17(OH)2.
  • The present invention further provides a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a crystalline calcium silicate support having a surface area of at least 30 m2/g, the support being in the form of substantially spherical particles and pores in the particles having a diameter of from 100 to 2000 Angstroms.
  • Preferably, the particles have a mean diameter of from 10 to 200 microns.
  • The catalyst may be used, in accordance with the invention, in a process for hydrogenating an unsaturated hydrocarbon feedstock or in a process for dehydrogenating or reforming a hydrocarbon feedstock.
  • The present invention yet further provides a catalyst comprising a metal on a support comprising a crystalline calcium silicate of molecular formula 6CaO.6SiO2.H2O.
  • Preferably, the metal comprises at least one metal selected from Groups Ia, Ib, IIb, VIb, VIIb and VIII of the periodic table.
  • The present invention still further provides the use of a crystalline calcium silicate of molecular formula 6CaO.6SiO2.H2O as a catalyst support.
  • The present invention is at least partly predicated on the surprising discovery that a basic hydrated crystalline calcium silicate when used as a catalyst support can yield hydrogenation catalysts for selective hydrogenation of petrochemical feedstocks having high activity and selectivity. This is all the more surprising since xonotlite-type materials have been known for a number of years but to the applicant's knowledge there has been no disclosure or suggestion in the prior art of using xonotlite-type materials as catalysts or catalyst carriers. Rather, as disclosed in for example U.S. Pat. No. 4,689,315 as discussed above, xonotlite has been proposed in the prior art for use as a starting material for the production of silica, where the chemical composition and structure of the xonotlite is destroyed in the preparation of the silica particles by acid hydrolysis.
  • The present invention is also at least partly predicated on the surprising discovery that a basic hydrated crystalline calcium silicate comprising xonotlite is a is a suitable carrier for dehydrogenation and reforming reactions because at temperatures of up to 650° C., such a basic carrier has high temperature stability, in that the carrier retains its crystallinity and substantially retains its pore volume and surface area.
  • Preferred embodiments of the present invention will now be described in greater detail by way of example only.
  • The catalyst of the present invention preferably comprises a supported noble metal catalyst.
  • The catalyst of the present invention comprises at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal, such as Pd, Co, Rh, Ru, Ni, Mo, W, Fe, Cu, Na or K or a combination thereof with palladium being particularly preferred.
  • The metal or metals may be in the metallic state, in an oxidic state, in a partially reduced oxide state, or in a sulphided or partially sulphided state. Optionally, bi-metallic metals or bi-metallic compounds may be incorporated into the hydrogenation catalyst, such as CoMo, NiW, and NiMo sulphided catalyst for hydro-treatment and, for selective hydrogenation, Cu—Pd, Cu—Ni, Cu—Co, Cu—Pt, Fe—Pd, Co—Pd, Ni—Pd, Pt—Pd, Ag—Pd, Fe—Pt, Ni—Pt, Pt—Sn, Pt—Pb, Pd—Sn, Pd—Pb and Au—Pd.
  • The preferred catalyst support is a basic alkaline earth metal silicate with a very open and accessible pore structure. A most preferred catalyst support comprises a synthetic crystalline hydrated calcium silicate having a chemical composition of Ca6Si6O17(OH)2 which corresponds to the known mineral xonotlite (having a molecular formula 6CaO.6SiO2.H2). The catalyst support preferably has a spherical morphology with a mean diameter of the spherical particles being from 10 to 200 μm. The support has a very open structure comprising an outer shell with a very close-crystal structure surrounding an open inner structure. This may be referred to as an egg shell like structure. The outer shell is formed of interlocked ribbon-shaped crystals yielding regular and homogeneous surface properties. The outer shell is provided with pore openings up to 2000 Angstroms, more preferably from 100 to 1000 Angstroms, in diameter, This provides a good pore structure with high pore volume.
  • Preferably, the support has a specific surface area well above 10 m2/g, ranging from 30 to 200 m2/g, more preferably from 40 to 90 m2/g.
  • The support material is preferably pH basic. More preferably, the support material has a minimum basicity corresponding to a pH of greater than 7.5. The pH may be measured when 4 wt % of the support material is immersed in water.
  • Generally, a synthetic hydrated calcium silicate is synthesised hydrothermally under autogeneous pressure. A particularly preferred synthetic hydrated calcium silicate is available in commerce from the company Promat of Ratingen in Germany under the trade name Promaxon D. This material exhibits some basicity due to the presence of calcium, and in a 4% by weight dispersion in water, the pH reaches a value of around 10. The specific composition of the preferred synthetic hydrated calcium silicate is specified in Table 1.
  • In order to demonstrate the thermal stability of xonotlite, and therefore the applicability of xonotlite as a carrier for dehydrogenation and reforming reactions, commercial xonotlite Bold under the trade name Promaxon D was calcined in ambient air at a relative humidity of about 50% at two different temperatures, namely 650° C. and 750° C., each for a period of 24 hours. The initial xonotlite had a crystalline phase Ca6Si6O17(OH)2 with a BET surface area of 51 m2/gram and a pore volume (of less than 100 nanometers) of 0.35 ml/gram. After calcination at 650° C., the carrier retained its crystallinity which corresponds to that of xonotlite. Thus after a 24 hour calcination at 650° C., the crystalline phase still comprised xonotlite (Ca6Si6O17(OH)2) with a BET surface area of 47.4 m2/gram and a pore volume (less than 100 nanometers) of 0.30 ml/gram. After the calcination at 750° C., the carrier was transformed into wollastonite (having the crystalline phase CaSiO3) by losing one water molecule. This made the carrier less basic. Furthermore, as a result of calcination at 750° C. the carrier lost much of its pore volume, being reduced to 0.09 ml/gram (for pore sizes of less than 100 nanometers) and the BET surface area was correspondingly reduced to 38 m2/gram.
  • These results show that xonotlite has utility as a basic carrier for high temperature reactions in the range of from 500 to 650° C., more particularly from 500 to 630° C., the typical temperature range for dehydrogenation and reforming reactions. In these temperature ranges the xonotlite retains its basicity, resulting in the carrier being suitable for incorporation in a catalyst for use in reforming reactions.
  • The at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal is preferably present in an amount of from 0.01 to 10 wt %, more preferably about 0.5 wt %, based on the weight of the supported catalyst.
  • The catalyst is produced by impregnating the at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on the alkaline earth metal silicate support. Preferably, an incipient wetness impregnation technique is employed where the pores of the support are filled with a volume of solution containing the metal. In this technique, the dried catalyst is impregnated with a solution of a salt of the at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal, for example a halide of the metal, in particular the Group VIII metal chloride. The amount of the metal salt is calculated to provide a desired metal content on the support, for example a metal content of from 0.01 to 10 wt % based on the weight of the supported catalyst, most preferably about 0.5 wt % based on the weight of the supported catalyst. The impregnated solid is dried first under vacuum and subsequently at elevated temperature. Finally, the product is calcined, for example at a temperature of about 250° C. for a period of about 3 hours.
  • Alternatively an excess of solution is used during the impregnation step and the solvent is removed by evaporation. Depending on the properties of the impregnation solution and the carrier the active metal phase can have different locations: (1) the metal or metal compound is concentrated in a thin layer close to the external surface, this may be referred to as an “egg-shell mode”, (2) the metal or metal compound is concentrated in a thin layer below the surface, but not penetrating to the centre, this may be referred to as an “egg-white mode”, (3) the metal or metal compound is concentrated in a small zone near the centre of the particle carrier, this may be referred to as an “egg-yolk mode”, and (4) the metal or metal compound is uniformly distributed throughout the particle carrier. The way that the metal precursor will interact with the carrier depends on the isoelectric point (IEP) which is the pH at which the particle of the carrier in an aqueous solution has no net charge. At pH's above the IEP, cations will be adsorbed, because the surface carries a negative charge; below the IEP, only anions will be adsorbed, because the surface carries a positive charge. During the contact of the impregnating solution and the carrier, ion exchange can also occur. The impregnating solution may be altered by adding complexing agents, which can change the charge of the metal precursor. In another technique, competing ions may be added to improve the spreading of the metal precursor over the carrier.
  • In alternative embodiments of the catalyst production process, the metal may be deposited on the support by ion exchange or vapour phase deposition.
  • The catalyst of the present invention is a heterogeneous catalyst which may be used in a batch wise or continuous process. Preferably, the catalyst is used in a fixed bed reactor. A most preferred process employs a continuously operated fixed bed reactor.
  • In the hydrogenation process, the petrochemical feedstock is contacted batch-wise or continuously passed over the catalyst at a selected temperature and pressure. The temperature is preferably from 0 to 250° C. The total pressure is preferably from 3 to 50 bar. The petrochemical feedstock is preferably contacted with the catalyst at a liquid hourly space velocity (LHSV) of from 0.1 to 100 h−1, more preferably from 1 to 100 h−1.
  • The hydrogenation conditions vary dependent on the nature of the petrochemical feedstock and the process of the invention may be employed for hydrogenating a variety of different unsaturated petrochemical feedstocks. Fundamentally, the feedstocks are those to be selectively hydrogenated where one of two unsaturates is reduced or one or two of three unsaturates are reduced, the unsaturates being selected from multiple unsaturated hydrocarbons such as alkynes with triple bonds, diolefins with two double bonds or multiple olefins with more double bonds; unsaturated hydrocarbons with only one double bond; and aromatic unsaturated hydrocarbons having an aromatic nucleus.
  • In a first preferred aspect, the process is used for selective hydrogenation of butadiene to butenes in crude C4 streams.
  • The C4 streams may come from an FCC unit, a visbreaker or a coker, or may comprise a C4 stream from a steam cracker or a C4 fraction of an ethylene plant. The C4 fraction of an ethylene plant contains high concentrations of butadiene (typically 25 to 75 wt %). It is desirable to hydrogenate such butadiene into butenes for further processing. Moreover, a C4 fraction from which the butadiene has been removed by conversion or extraction may still contain residual butadiene. Typically, in this preferred process the C4 stream containing butadiene is fed over the catalyst together with hydrogen so as to have a hydrogen/butadiene molar ratio of from 1 to 10, under process conditions comprising an inlet temperature of from 20 to 200° C., a total pressure of from 5 to 50 barg and an LHSV of from 1 to 40 h−1. The reactor effluent may be recycled in order to control the outlet temperature. Optionally, several reactors in series may be used with intermittent cooling and/or injection of hydrogen for improved control of the hydrogen content in the feedstock.
  • In a second preferred aspect of the invention the process may be employed for selective hydrogenation of vinyl-and ethyl acetylenes in crude C4 streams. The C4 streams typically come from steam crackers. The C4 fraction from an ethylene plant contains, beside the butadiene discussed hereinabove, varying amounts of vinyl acetylene and ethyl acetylene. These have to be removed before further processing, such as by extraction or conversion. The feedstock is fed together with hydrogen over the catalyst, there being a hydrogen/butadiene molar ratio of from 1 to 10 under process parameters having an inlet temperature of from 0 to 100° C., a total pressure of from 3 to 35 barg and an LHSV of from 1 to 40 h−1. Again, the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen for improved control of the hydrogen content in the feed.
  • In a third preferred aspect of the invention the process may be employed for selective hydrogenation of methyl acetylene and propadiene to propylene in C3 streams. The feedstock typically comprises a C3 cut from a steam cracking unit, which most typically is a C3 fraction with high propylene content which is obtained from an ethylene plant. This fraction contains methyl acetylene and propadiene. These compounds have to be removed for further processing of the propylene. In this aspect of the process, the feedstocks is fed together with hydrogen, at a hydrogen/MAPD molar ratio of from 0.7 to 5 (MAPD being the total molar content of methyl acetylene and propadiene) under process parameters comprising an inlet temperature of from 0 to 100° C., a total pressure of from 10 to 50 barg and an LHSV of from 10 to 50 h−1. The reaction may be carried out in a multi-tubular pseudo-isothermal reactor or in an adiabatic reactor. As for the other preferred aspects, the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen in order to provide better control of the hydrogen content in the feedstock.
  • In accordance with a fourth preferred aspect of the invention, the process of the invention may be employed for the selective hydrogenation of pyrolysis gasoline, which may also be known in the art as “first stage” hydrogenation of the pyrolysis gasoline. The feedstock comprises pyrolysis gasoline from steam cracking units, coker units or visbreakers. In accordance with this aspect, diolefins and unsaturated aromatics are converted into the corresponding olefins and aromatics. The hydrogenated product can be used as a stable gasoline blending feed or can be further hydrotreated for the recovery of aromatics. The feedstock is passed over the catalyst together with hydrogen to provide a hydrogen/diene molar ratio of from 1 to 10 under the process parameters of an inlet temperature of from 20 to 200° C., a total pressure of from 5 to 50 barg and an LHSV of 1 to 20 h−1. Again, as for the other aspects, the reactor effluent may be recycled in order to control the outlet temperature and optionally several reactors in series may be used with intermittent cooling and/or injection of hydrogen in order to achieve better control of the hydrogen content in the feedstock.
  • In a yet fifth preferred aspect of the invention the process of the invention is employed for selective hydrogenation of gasoline fractions. The feedstock may comprise fractions from pyrolysis gasoline originating from steam cracking units, coker units or visbreakers and light cracked naphthas from FCC units. In this aspect, dienes and acetylenes in the gasoline fractions are selectively removed for the preparation of ethers. The feedstock is passed over the catalyst together with hydrogen to provide a hydrogen/diene molar ratio of from 1 to 20, and the process parameters are an inlet temperature of from 20 to 250° C., a total pressure of from 5 to 50 barg and an LHSV of from 1 to 20 h−1.
  • In a sixth preferred aspect of the invention, the process of the invention may be employed for selective hydrogenation of phenyl acetylene in crude styrene streams. The feedstock comprises crude styrene. Crude styrene production by dehydrogenation of ethyl benzene or recovery from pyrolysis gasoline tends to yield styrene containing small amounts of phenyl acetylene which has to be removed before further processing. The styrene is fed together with hydrogen to yield a hydrogen/phenyl acetylene molar ratio of from 1 to 20 over the catalyst at an inlet temperature of from 10 to 150° C., a total pressure of from 5 to 50 barg and an LHSV of from 10 to 100 h−1.
  • In a seventh preferred aspect of the invention, the process of the invention is for selective hydrogenation of olefins in aromatic rich fractions. The feedstocks may comprise aromatic rich fractions from reforming units, from cokers or from steam cracking units. Such aromatic rich fractions need to be treated to extract the aromatics. Before the extraction of the aromatics, the residual bromine index (which reflects the olefin content) has to be very low. Any process to reduce the olefin content by hydrogenation needs to minimize the conversion of the aromatics. Also, a further reduction of the bromine index in almost pure aromatic fractions may require a further hydrogenation step which can replace conventional clay treatment. The feedstock is passed together with hydrogen over the catalyst at a hydrogen/olefins molar ratio of from 5 to 100 under process parameters comprising an inlet temperature of from 5 to 250° C., a total pressure of from 5 to 50 barg and an LHSV of from 5 to 50 h−1.
  • In an eight preferred aspect or the present invention, the process of the invention may be employed for selective hydrogenation of petrochemical feedstocks in conjunction with a reforming process.
  • When the crystalline calcium silicate support (such as xonotlite) is used for a dehydrogenation or reforming catalyst, the catalyst, as well as the support, comprises at least one Group IIb, VIb, VIIb or VIII metal such as Pd, Co, Rh, Ru, Ni, Mo, W, Fe, Cu or a combination thereof. The feedstocks for dehydrogenation may typically comprise light paraffins, such as propane and butane. The feedstocks for reforming reactions may typically comprise normal paraffins and cycloparaffins, such as n-hexane and cyclohexane. The dehydrogenation and reforming reactions may be carried out at a temperature of from 500 to 630° C.
  • The present invention will now be described with reference to the following non-limiting Example.
  • EXAMPLE 1 Catalyst Preparation
  • Extrudates of the hydrated crystalline calcium silicate available in commerce under the Trade name Promaxon D was dried at a temperature of 500° C. for a period of 3 hours. The dried support gas then impregnated with a solution of palladium chloride (PdCl2) using a wet impregnation technique. In particular, 65.38 g of dried Promaxon D were progressively contacted with 38.23 mol of an aqueous palladium chloride solution, the amount of solution being selected so as to correspond to the estimated absorption capacity of the dried Promaxon D. The amount of the palladium salt was calculated in order to reach a final palladium content in the resultant catalyst of 0.3 wt %. The impregnated solid was dried under vacuum for a period of 36 hours at 25° C. and thereafter dried for a period of 16 hours at a temperature of 110° C. Finally, the catalyst was calcined at a temperature of 400° C. for a period of 3 hours.
  • Selective Hydrogenation of Pyrolysis Gasoline
  • An amount of 42.2 g (having a volume of 75 ml) of the activated catalyst comprising 0.3 wt % Pd on the xonotlite carrier was transferred under nitrogen into a laboratory scale continuous trickle bed reactor. The catalyst was then reduced under a flowing hydrogen stream at 120° C. Thereafter a pyrolysis gasoline from a steam cracker having the composition and properties specified in Table 2, was passed through the reactor at an LHSV of 4.92 h−1 (corresponding to a weight hourly space velocity (WHSV) of 7.00 h−1), constituting a mass flow rate of 296 g/h, together with hydrogen at a flow rate of 40.0 Nl/h. The hydrogen/diene molar ratio was 4.10. The total pressure was 30 bar and the inlet temperature was varied from about 45° C. to about 120° C.
  • The composition of the effluent of the reactor was analysed over the varying inlet temperatures and the results are summarised in FIG. 1.
  • From FIG. 1 it will be seen that for the aromatics content of the effluent, this was substantially unchanged as compared to the aromatics content of the feedstock. The olefins content was increased in the effluent as compared to that in the feedstock. However, the olefins content tended to decrease with increasing inlet temperature up to 120° C. For inlet temperatures of from about 45 to 80° C., the olefins content was about 17 wt %, decreasing gradually to about 14 wt % at an inlet temperature of 120° C. For the paraffins content, this was increased in the effluent as compared to the paraffins content of the feedstock. The paraffins content gradually increased with increasing inlet temperature. Thus at an inlet temperature of about 45° C. the paraffins content was about 27 wt %, increasing to a paraffins content of about 33 wt % at an inlet temperature of about 120° C. Most significantly, the dienes content of the effluent was significantly reduced as compared to that of the feedstock, and the dienes content of the effluent tended to decrease yet further with increasing inlet temperature. Thus at inlet temperatures of about 45° C., the dienes content was about 2 wt %, significantly less than the original dienes content of about 12 wt % and the dienes content of the effluent decreased to about 0.25 wt % at an inlet temperature of about 120° C.
  • The significant decrease in the dienes content of the effluent as compared to that of the feedstock, with a corresponding smaller increase in the paraffins and olefins content, and with the aromatics content being substantially unchanged, indicates the effectiveness of the selected hydrogenation catalyst of the present invention. Thus the catalyst is very active for the hydrogenation of dienes, and a good selectivity for olefins is maintained.
  • TABLE 1
    Composition
    SiO2 49.0 wt %
    CaO 42.9 wt %
    Al2O3 0.2 wt %
    MgO 0.3 wt %
    Fe2O3 1.1 wt %
    Na2O 0.2 wt %
    K2O 0.2 wt %
    Loss on Ignition 6.1 wt %
    Specific area (BET) 50 m2/g
    Bulk Density 90 g/l
    Average particle size 45 μm
  • TABLE 2
    Feedstock Composition
    Paraffins 24.46 wt %
    Olefins 10.91 wt %
    Dienes 12.20 wt %
    Aromatics 52.43 wt %
    Diene Value [gram I2/100 gram] 18.21
    Sulphur 94 wppm
    Density 0.802 g/ml

Claims (51)

1. A process for hydrogenating unsaturations in a petrochemical feedstock, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIb or VIII metal impregnated on a support of a crystalline calcium silicate having a surface area of at least 30 m2/g, the support being in the form of substantially spherical particles having a mean diameter of from 10 to 200 microns and comprising pores in the particles having a diameter of from 100 to 2000 Angstroms, at a temperature of from 0 to 550° C. and a pressure of from 3 to 150 barg.
2. A process according to claim 1 wherein the calcium silicate has the chemical composition Ca6Si6O17(OH)2.
3. A process according to claim 1 wherein the support has a basicity corresponding to a pH of greater than 7.5.
4. A process according to claim 1 wherein said catalyst comprises palladium impregnated onto the support in an amount of from 0.01 to 10 wt. % based on a weight of the supported catalyst.
5. A process according to claim 1 wherein the petrochemical feedstock is passed over the catalyst at a liquid hourly space velocity of from 0.1 to 100 h−1.
6. A process according to claim 1 wherein the molar ratio of hydrogen to the at least one component having unsaturations which is hydrogenated is from 0.7 to 200.
7. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises butadiene in a C4 stream.
8. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises at least one of vinyl acetylene and ethyl acetylene in a C4 stream.
9. (canceled)
10. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises at least one of methyl acetylene and propadiene in a C3 stream.
11. (canceled)
12. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises at least one of a diolefin and an unsaturated aromatic in pyrolysis gasoline.
13. (canceled)
14. (canceled)
15. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises phenyl acetylene in a styrene stream.
16. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated comprises olefins in an aromatic rich fraction.
17. (canceled)
18. (canceled)
19. A process according to claim 1 wherein the support is in the form of substantially spherical particles having a mean diameter of from 10 to 200 microns and comprising pores in the particles having a diameter of from 100 to 2000 Angstroms.
20. (canceled)
21. A process according to claim 1 wherein the support has a surface area of from 30 to 200 m2/g.
22. (canceled)
23. A process according to claim 1 wherein the petrochemical feedstock is passed over the catalyst at a liquid hourly space velocity of from 1 to 100 h−1, an inlet temperature of from 0 to 250° C. and a pressure of from 3 to 50 barg.
24. (canceled)
25. A process according to claim 1 wherein the at least one component having unsaturations which is hydrogenated is selected fi-n the group consisting of butadiene in a C4 stream; at least one of methyl acetylene and propadiene in a C3 stream; at least one of a diolefin and an unsaturated aromatic in pyrolysis gasoline; at least one of a diene and an alkyne in pyrolysis gasoline; phenyl acetylene in a styrene stream; and an alpha-olefin in an aromatic rich fraction.
26-29. (canceled)
30. (canceled)
31. A process for dehydrogenating or reforming a hydrocarbon feedstock comprising contacting the catalyst of claim 1 with said feedstock under conditions effective to dehydrogenate or reform said feedstock.
32-33. (canceled)
34. A catalyst support comprising a crystalline calcium silicate of molecular formula 6CaO.6SiO2.H2O having a surface area of at least 30 m2/g, the Support being in the form of substantially spherical particles having a mean diameter of from 10 to 200 microns and pores in the particles having a diameter of from 100 to 2000 Angstroms, wherein a catalyst is produced by impregnating at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on the calcium silicate support.
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. (canceled)
40. The process according to claim 1 wherein the at least one component comprises at least one vinyl acetylene and an ethyl acetylene in a C4 stream.
41. The process according to claim 1 wherein the C4 stream is from a FCC unit, a visbreaker, a coker, or a steam cracker.
42. (canceled)
43. The process according to claim 25 wherein the C3 stream is from a steam cracking unit.
44. (canceled)
45. (canceled)
46. The process according to claim 12 wherein the pyrolysis gasoline is from a steam cracking unit, a coker unit, a visbreaker, or comprises a light cracked naphtha from a FCC unit.
47. (canceled)
48. The process according to claim 36 wherein the at least one component comprises an olefin in an aromatic rich fraction.
49. (canceled)
50. (canceled)
51. (canceled)
52. (canceled)
53. (canceled)
54. (canceled)
55. A process for dehydrogenating or reforming a hydrocarbon feedstock using the catalyst of claim 1 comprising contacting said catalyst with said feedstock under conditions effective to dehydrogenate or reform said feedstock.
US11/931,134 2001-07-18 2007-10-31 Hydrogenation and dehydrogenation processes and catalysts therefor Abandoned US20080257784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/931,134 US20080257784A1 (en) 2001-07-18 2007-10-31 Hydrogenation and dehydrogenation processes and catalysts therefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP01202732A EP1277826A1 (en) 2001-07-18 2001-07-18 Hydrogenation and dehydrogenation processes and catalysts therefor
EP01202732.2 2001-07-18
US10/484,417 US7294604B2 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor
PCT/EP2002/007947 WO2003008519A1 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor
US11/931,134 US20080257784A1 (en) 2001-07-18 2007-10-31 Hydrogenation and dehydrogenation processes and catalysts therefor

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2002/007947 Division WO2003008519A1 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor
US10/484,417 Division US7294604B2 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor

Publications (1)

Publication Number Publication Date
US20080257784A1 true US20080257784A1 (en) 2008-10-23

Family

ID=8180652

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/484,417 Expired - Fee Related US7294604B2 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor
US11/931,134 Abandoned US20080257784A1 (en) 2001-07-18 2007-10-31 Hydrogenation and dehydrogenation processes and catalysts therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/484,417 Expired - Fee Related US7294604B2 (en) 2001-07-18 2002-07-16 Hydrogenation and dehydrogenation processes and catalysts therefor

Country Status (6)

Country Link
US (2) US7294604B2 (en)
EP (2) EP1277826A1 (en)
JP (2) JP4395369B2 (en)
KR (1) KR100881933B1 (en)
CN (1) CN100427571C (en)
WO (1) WO2003008519A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159442A1 (en) * 2007-12-20 2009-06-25 Gordon Bruce Collier Formation of immobilized biological layers for sensing
US20100197485A1 (en) * 2008-07-31 2010-08-05 Celanese International Corporation Catalysts for making ethanol from acetic acid
US20100255120A1 (en) * 2007-12-20 2010-10-07 Gordon Bruce Collier Compositions for forming immobilized biological layers for sensing
US20110118518A1 (en) * 2008-01-25 2011-05-19 Total Petrochemicals Research Feluy Process for Obtaining a Catalyst Composite
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8653308B2 (en) 2010-02-02 2014-02-18 Celanese International Corporation Process for utilizing a water stream in a hydrolysis reaction to form ethanol
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8704008B2 (en) 2010-07-09 2014-04-22 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8729317B2 (en) 2012-02-15 2014-05-20 Celanese International Corporation Ethanol manufacturing process over catalyst with cesium and support comprising tungsten or oxides thereof
US8729311B2 (en) 2012-02-10 2014-05-20 Celanese International Corporaton Catalysts for converting acetic acid to acetone
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
US8802903B2 (en) 2012-03-13 2014-08-12 Celanese International Corporation Stacked bed reactor with diluents for producing ethanol
US8829250B2 (en) 2010-07-09 2014-09-09 Celanese International Corporation Finishing reactor for purifying ethanol
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021128A1 (en) * 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Apparatus and method for the continuous reaction of a liquid with a gas on a solid catalyst
JP4845172B2 (en) * 2005-03-30 2011-12-28 月島機械株式会社 Method and apparatus for adiabatic cooling crystallization of organic compounds
JP4765381B2 (en) * 2005-04-18 2011-09-07 トヨタ自動車株式会社 Manufacturing method of complex oxide with heat resistance
JP4835027B2 (en) * 2005-04-18 2011-12-14 トヨタ自動車株式会社 Manufacturing method of composite
JP4765382B2 (en) * 2005-04-18 2011-09-07 トヨタ自動車株式会社 Manufacturing method of complex oxide with heat resistance
US7655595B2 (en) * 2006-06-02 2010-02-02 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sol-gel based oxidation catalyst and coating system using same
WO2008060974A2 (en) * 2006-11-11 2008-05-22 Uop Llc Dehydrogenation processes using functional surface catalyst composition
TW200902143A (en) * 2006-11-11 2009-01-16 Uop Llc Dehydrogenation processes using functional surface catalyst composition
WO2008060969A2 (en) * 2006-11-11 2008-05-22 Uop Llc Dehydrogenation processes using functional surface catalyst composition
WO2008140025A1 (en) * 2007-05-08 2008-11-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust gas purification catalyst, and exhaust gas purification apparatus and exhaust gas purification method each using the catalyst
CN101220294B (en) * 2007-12-14 2013-01-23 武汉科技学院 Lubricating oil basic oil depickling agent and use method thereof
EP2082803A1 (en) * 2008-01-25 2009-07-29 Total Petrochemicals Research Feluy Process for obtaining catalyst composites comprising MeAPO and their use in conversion of organics to olefins
US8101541B2 (en) * 2008-07-14 2012-01-24 Sud-Chemie Inc. Catalyst for dehydrogenation of hydrocarbons
JP5328888B2 (en) * 2008-07-29 2013-10-30 トヨタ自動車株式会社 Method for preparing electrode catalyst for fuel cell
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US7816565B2 (en) 2008-07-31 2010-10-19 Celanese International Corporation Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
CN101658790B (en) * 2008-08-28 2013-06-12 北京三聚环保新材料股份有限公司 Method for preparing dehydrogenation catalyst
US20100152507A1 (en) * 2008-12-16 2010-06-17 Gajda Gregory J Process for Using Layered Sphere Catalysts with High Accessibility Indexes
EP2204235A1 (en) * 2008-12-19 2010-07-07 Total Petrochemicals Research Feluy Catalyst and process for selective hydrogenation of alkynes and dienes
EP2204236A1 (en) * 2008-12-19 2010-07-07 Total Petrochemicals Research Feluy Catalyst and process for hydrogenation of hydrocarbon feedstocks
US8178715B2 (en) 2008-12-31 2012-05-15 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via acetaldehyde
EP2223987A1 (en) * 2009-02-17 2010-09-01 ISP Marl GmbH Purification of an aromatic fraction containing acetylenes by selective hydrogenation of the acetylenes
BRPI1010611B1 (en) * 2009-06-11 2018-09-11 Shell Int Research process for the selective hydrogenation of diolefins and sulfur compounds contained in a pyrolysis gasoline feedstock
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US9192916B2 (en) * 2009-09-21 2015-11-24 Uop Llc Selective hydrogenation of dienes in the manufacture of MLAB
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
MX2012004841A (en) * 2009-10-26 2012-05-29 Celanese Int Corp Catalyst for the production of ethanol by hydrogenation of acetic acid comprising platinum -tin on silicaceous support.
WO2011056247A2 (en) * 2009-10-26 2011-05-12 Celanese International Corporation Catalysts for making ethanol from acetic acid
CN102378647A (en) * 2009-10-26 2012-03-14 国际人造丝公司 Processes for making ethanol or ethyl acetate from acetic acid using bimetallic catalysts
EP2336272A1 (en) * 2009-12-15 2011-06-22 Total Petrochemicals Research Feluy Debottlenecking of a steam cracker unit to enhance propylene production.
WO2011078354A1 (en) * 2009-12-25 2011-06-30 東ソー株式会社 Hydrogenation catalyst, process for production thereof, and use thereof
JP5966244B2 (en) * 2009-12-25 2016-08-10 東ソー株式会社 Hydrogenation catalyst, method for producing the same, and use thereof
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
RU2012137264A (en) 2010-02-02 2014-03-10 Селаниз Интернэшнл Корпорейшн MANUFACTURE AND USE OF THE CATALYST FOR PRODUCING ETHANOL CONTAINING A CRYSTALLINE CARRIER MODIFIER
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8293952B2 (en) * 2010-03-31 2012-10-23 Exxonmobil Research And Engineering Company Methods for producing pyrolysis products
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
CN102477111B (en) * 2010-11-30 2013-08-14 中国石油化工股份有限公司 Method for hydrogenating polymer
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
CN103483121B (en) * 2012-06-08 2015-02-11 中国石油化工股份有限公司 Method of preparing butadiene from gasoline
US10562017B2 (en) * 2017-01-05 2020-02-18 GM Global Technology Operations LLC Ion adsorption of oxide layers to hinder catalyst sintering
US10376872B2 (en) 2017-01-05 2019-08-13 GM Global Technology Operations LLC Solution-based approach to make porous coatings for sinter-resistant catalysts
US10596563B2 (en) 2017-01-27 2020-03-24 GM Global Technology Operations LLC Sinter-resistant stable catalyst systems by trapping of mobile platinum group metal (PGM) catalyst species
KR102324239B1 (en) * 2017-11-06 2021-11-08 한화솔루션 주식회사 Hydrogenation catalyst of aromatic compounds and process for preparing thereof
JP7539398B2 (en) 2019-02-28 2024-08-23 ダウ グローバル テクノロジーズ エルエルシー Method for operating an acetylene hydrogenation unit in an olefin production process
EP3865558A1 (en) * 2020-02-14 2021-08-18 BASF Corporation Process for the hydrogenation of hydrocarbon resins using catalysts with protective coatings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751515A (en) * 1972-03-28 1973-08-07 Goodyear Tire & Rubber Hydrogenation process
US7265184B2 (en) * 2001-07-18 2007-09-04 Total Petrochemicals Research Feluy Polymer hydrogenation process

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1156060B (en) * 1960-10-15 1963-10-24 Bayer Ag Process for the production of finely divided calcium silicate fillers
US3095461A (en) * 1961-01-05 1963-06-25 California Research Corp Preparation of 1-alkenes
US3804652A (en) * 1967-12-27 1974-04-16 Chem & Insulating Co Ltd Method of producing calcium silicate products
DE2117375A1 (en) * 1970-04-28 1971-12-09 Agency Of Industrial Science & Technology, Tokio Method of making lightweight calcium silicate material
US3729429A (en) * 1970-08-31 1973-04-24 Exxon Research Engineering Co Layered complex metal silicate compositions and their preparation
JPS5622812B2 (en) * 1971-05-08 1981-05-27
US3928539A (en) * 1972-05-05 1975-12-23 Onoda Chem Ind Co Ltd Method for continuously producing hydrated calcium silicates
JPS53146997A (en) * 1976-11-04 1978-12-21 Osaka Patsukingu Seizoushiyo K Spherical secondary particles of superlight calcium silicate
JPS55109217A (en) * 1979-02-09 1980-08-22 Osaka Packing Seizosho:Kk Calcium silicate and preparing the same
JPS58176118A (en) * 1982-04-07 1983-10-15 Ngk Spark Plug Co Ltd Preparation of calcium silicate
JPS58176117A (en) * 1982-04-07 1983-10-15 Ngk Spark Plug Co Ltd Preparation of calcium silicate
US4689315A (en) * 1984-04-14 1987-08-25 Redco N.V. Amorphous silica particles, a method for producing same, and catalyst thereof
ATE87595T1 (en) * 1985-11-29 1993-04-15 Redco Nv CRYSTALLINE CONGLOMERATES OF SYNTHETIC XONOTLITH AND PROCESS FOR THEIR PRODUCTION.
JP2579633B2 (en) * 1987-04-04 1997-02-05 三菱化学株式会社 Treatment method for waste gas containing carbon monoxide
DE4025525A1 (en) * 1990-08-11 1992-02-20 Hoechst Ag CARRIER CATALYSTS AND A METHOD FOR THEIR PRODUCTION
FR2729968B1 (en) * 1995-01-27 1997-04-11 Inst Francais Du Petrole PROCESS FOR HYDROGENATION OF DIOLEFINS AND POSSIBLY OLEFINS FROM HYDROCARBON CUTS RICH IN AROMATIC COMPOUNDS ON METAL CATALYZERS IMPREGENED WITH SULFUR ORGANIC COMPOUNDS
CN1044379C (en) * 1996-07-22 1999-07-28 中国石油化工总公司 Process for preparing catalyst for hydrogenation of arylhydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751515A (en) * 1972-03-28 1973-08-07 Goodyear Tire & Rubber Hydrogenation process
US7265184B2 (en) * 2001-07-18 2007-09-04 Total Petrochemicals Research Feluy Polymer hydrogenation process

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100255120A1 (en) * 2007-12-20 2010-10-07 Gordon Bruce Collier Compositions for forming immobilized biological layers for sensing
US9441259B2 (en) 2007-12-20 2016-09-13 Abbott Point Of Care Inc. Formation of immobilized biological layers for sensing
US8241697B2 (en) 2007-12-20 2012-08-14 Abbott Point Of Care Inc. Formation of immobilized biological layers for sensing
US8268604B2 (en) 2007-12-20 2012-09-18 Abbott Point Of Care Inc. Compositions for forming immobilized biological layers for sensing
US8389042B2 (en) 2007-12-20 2013-03-05 Abbott Point Of Care Inc. Formation of immobilized biological layers for sensing
US8986526B2 (en) 2007-12-20 2015-03-24 Abbott Point Of Care Inc. Formation of immobilized biological layers for sensing
US20090159442A1 (en) * 2007-12-20 2009-06-25 Gordon Bruce Collier Formation of immobilized biological layers for sensing
US9227175B2 (en) * 2008-01-25 2016-01-05 Total Research & Technology Feluy Process for obtaining a catalyst composite
US20140194276A1 (en) * 2008-01-25 2014-07-10 Total Research & Technology Feluy Process for Obtaining a Catalyst Composite
US20110118518A1 (en) * 2008-01-25 2011-05-19 Total Petrochemicals Research Feluy Process for Obtaining a Catalyst Composite
US8728969B2 (en) * 2008-01-25 2014-05-20 Total Research & Technology Feluy Process for obtaining a catalyst composite
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US20100197485A1 (en) * 2008-07-31 2010-08-05 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8569203B2 (en) 2010-02-01 2013-10-29 Celanese International Corporation Processes for making tin-containing catalysts
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8653308B2 (en) 2010-02-02 2014-02-18 Celanese International Corporation Process for utilizing a water stream in a hydrolysis reaction to form ethanol
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8704008B2 (en) 2010-07-09 2014-04-22 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US8829250B2 (en) 2010-07-09 2014-09-09 Celanese International Corporation Finishing reactor for purifying ethanol
US9670119B2 (en) 2010-07-09 2017-06-06 Celanese International Corporation Process for producing ethanol using multiple beds each having different catalysts
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US9381500B2 (en) 2012-01-06 2016-07-05 Celanese International Corporation Process for producing ethanol using hydrogenation catalysts
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US8729311B2 (en) 2012-02-10 2014-05-20 Celanese International Corporaton Catalysts for converting acetic acid to acetone
US8729317B2 (en) 2012-02-15 2014-05-20 Celanese International Corporation Ethanol manufacturing process over catalyst with cesium and support comprising tungsten or oxides thereof
US8802903B2 (en) 2012-03-13 2014-08-12 Celanese International Corporation Stacked bed reactor with diluents for producing ethanol
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol

Also Published As

Publication number Publication date
CN100427571C (en) 2008-10-22
EP1406987A1 (en) 2004-04-14
US7294604B2 (en) 2007-11-13
EP1277826A1 (en) 2003-01-22
JP2009161766A (en) 2009-07-23
JP4395369B2 (en) 2010-01-06
US20040232049A1 (en) 2004-11-25
KR20040019336A (en) 2004-03-05
CN1549851A (en) 2004-11-24
JP2004535470A (en) 2004-11-25
KR100881933B1 (en) 2009-02-06
WO2003008519A1 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
US7294604B2 (en) Hydrogenation and dehydrogenation processes and catalysts therefor
US7838710B2 (en) Selective hydrogenation process and catalyst
CN106604978B (en) Catalyst with a medium and large pore blended nickel active phase having a median large pore diameter of more than 300 nm and use thereof in hydrogenation
CN106660905B (en) Nickel-based mesoporous catalysts and their use in hydrogenation
JP5514668B2 (en) Process for the preparation of Ni / Sn supported catalysts for the selective hydrogenation of polyunsaturated hydrocarbons
US7408089B2 (en) Ni catalyst, process for making catalysts and selective hydrogenation process
AU2003238018B2 (en) Selective hydrogenation of acetylenes
US7816571B2 (en) Selective hydrogenation process using layered catalyst composition
JP4335144B2 (en) Method for producing lower olefin
EP2204235A1 (en) Catalyst and process for selective hydrogenation of alkynes and dienes
US20080176737A1 (en) Process for preparing a layered catalyst composition for a selective hydrogenation process
EP2204236A1 (en) Catalyst and process for hydrogenation of hydrocarbon feedstocks
US7265184B2 (en) Polymer hydrogenation process
US20060155154A1 (en) Process for the selective hydrogenation of alkynes
AU3969301A (en) Hydrocarbon hydrogenation catalyst and process
US4931416A (en) Thallium or lead-containing microporous crystalline materials and their use as dehydrogenation dehydrocyclization and reforming catalysts
US20020148758A1 (en) Gasoline hydrodesulfurization
CN115551633A (en) Method for preparing a catalyst comprising a nickel active phase and a nickel-copper alloy distributed in a shell
WO2010050950A1 (en) Process for preparing a layered catalyst composition for a selective hydrogenation process

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE