US20080092712A1 - Flexible Electromechanical Punching Device - Google Patents

Flexible Electromechanical Punching Device Download PDF

Info

Publication number
US20080092712A1
US20080092712A1 US11/795,718 US79571805A US2008092712A1 US 20080092712 A1 US20080092712 A1 US 20080092712A1 US 79571805 A US79571805 A US 79571805A US 2008092712 A1 US2008092712 A1 US 2008092712A1
Authority
US
United States
Prior art keywords
tool
punch
electromechanical
flexible
punching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/795,718
Inventor
Joachim Aronsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20080092712A1 publication Critical patent/US20080092712A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
    • B25J15/0491Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof comprising end-effector racks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/36Perforating, i.e. punching holes using rotatable work or tool holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support

Definitions

  • the present invention relates to a flexible punching device which is intended to be included in a robot arm for automatic punching. It may be the last link to a robot arm or similar. It may also be floor mounted, where a robot manipulates the detail to be punched.
  • the machines itself is built by basically four individual items.
  • One is the lower table containing a fixture device shaped as a negative of the actual part to be punched. This negative need to contain one cushion for each individual hole to be punched, regardless of the shape of the hole.
  • the second is the upper table containing a series of punch tools with the correct size.
  • the upper table usually need to have a vertical or movement corresponding to the actual distance the punch tools need to have for penetrating the material to be punched. Additional to this, the upper table usually need to have a vertically or rotational travel corresponding to the height of the part to be punched, for one to be able to load and unload the machine.
  • the third is non-parallel hole punchers.
  • the upper table contains individual punch-tools, usually hydraulic driven, for every hole that are not parallel to each other in a three dimensional object which shall be punched. Every one of these tools need to have a devise for spring-back.
  • punching through material with conventional hardened tools regardless if it is metal or plastic or others, there will be a friction force generated when the punch tool retracts back through the part. This applies a force into the part that might be dislocated from the lower table if not considered.
  • conventional punchers contains a device surrounding the actual tool which is applying force on to the part in the counter-direction of the force implemented by the tool.
  • the fourth basic part is the frame.
  • the frame need to be big and rigid enough to hold the lower table, the upper table with the travel considered, all punching tools with corresponding hydraulic cylinders as well as the part to be punched.
  • the conventional punching machine size is 3.5 ⁇ 2 ⁇ 3 m and have a total weight of 1.5 metric ton.
  • a typical value is one or two per shift.
  • a normal convention punching machine for e.g. bumpers, instrument panels or inner door panels perform about one part per 30 seconds which give around 1000 parts per shift. In worst case, there might be up to 1000 parts that does not meet the requirements and need to be rejected as scrap.
  • a flexible punching device intended to be a part of a robot arm for punching holes in different locations and with different shapes in different material and which is characterized in that it comprises a base body holding an electrical servo motor or similar, a linear gear construction, a tool-changing device or optionally a rotation or indexing device having pieces around or along containing required tools with correct size and shape, as well as a quality sensor system and having an attachment piece on one end for attaching the complete device to a robot arm or similar and an attachment device automatic attaching a secondary tool construction (multiple punch) holding a rigid arm construction, a punch tool in a bushing and a cushion and a scrap removal system and scrap counter but not a mechanical retract spring system.
  • a secondary tool construction multiple punch
  • the base body is mechanically attached to a robot arm or similar.
  • the electrical servo motor or similar is electrically connected with the robot axis computer system as an additional, syncronized, axis.
  • the servo motor or similar is mechanically connected to the base body on one side and to the gear system on the other side.
  • the gear system allows a high speed linear motion and are mechanically connected to the electrical servo motor or similar at one end and indirectly linked to the punch tool at the other end.
  • a tool changing device is mechanically connected to the base body at one end and to the rigid arm in the secondary tool construction at the other end as well as to the punch tool.
  • the rigid arm in the secondary tool construction is mechanically connected to the tool changing device on one end and are connected to the cushion on the other end.
  • the punch tool are mechanically connected to the arm, with free allowance to move in one direction at one side and connected to the tool change system on the other side.
  • the secondary tool construction can be automatically exchanged to different configurations.
  • the secondary tool construction can be optionally equipped with rotational or linear device containing different punch tools.
  • the complete system allows a syncronized movement of all axis where the cushion is standing still relative the part to be punched during punching operation and where the punch tool stand still relative the part just being punched during retract allowing a spring retract system to be excluded.
  • a quality control system is built in, controlling the actual force required to penetrate the material which ensures that the tool is in good condition and will give alarm if the force is too high relative a pre-set value indicating that the tool has been wear or something else has been wrong and indicate that it is time for replacement of the tool preventing that any rejects will be produced. It also, constantly, has a control of the actual position of the punch tool, both relative the part to be punched and relative the punching machine itself. The system will therefore also be constantly aware of that the correct position has been achieved as well as that the punch tool reach the bottom position during every punch ensuring that a hole the whole way through has been done.
  • FIG. 1 shows a linear gear system from side
  • FIG. 2 electromechanichal drive unit
  • FIG. 3 base body seen from side
  • FIG. 4 punch tool
  • FIG. 5 multiple tool
  • FIG. 6 tool change system
  • FIG. 7 multiple punch
  • FIG. 8 assembled punching device
  • FIG. 9 flexible electromechanical punch device mounted on robot arm
  • FIG. 9 a electromechanical punching device according to the invention is shown which base body is mechanically connected to a robot arm, preferable axis 6 (last axis on a 6 axis robot).
  • the servo motor as a part in the electromechanical unit, is electrically connected to the robot axis computer and is identified as axis no 7 in a 6-axis robot controller (connected as axis no 5 in a 4-axis robot etc.).
  • the axis no 7 in this case, will be fully syncronized and calibrated to the robot controller meaning that the result will be that the robot actually now is a 7-axis robot.
  • a firm definition of motor characteristics in relation to the mechanical gears will ensure an absolute accuracy of the motor rotational position in relation to the actual value of the punch tool position.
  • the servo motor will be controlled by a drive unit.
  • the axis controller will control and monitor motor current and resolver or encoder values in such a way that the tolerance of the actual position of the punch tool will be less than 0.05 mm.
  • the 7:th axis may move independent.
  • Full motor current according to the servo motor specification, is applied to the system for maximum acceleration and speed.
  • the mass inertia together with applied motor torque implement a high mechanical force onto the part to be punched when the punch tool hit the part.
  • the speed and weight of the punch tool system will be opposite proportional to the size of the servo motor for a given punch capacity.
  • a typical dimensional value of motor size is 1/10 of the static force comparing to a hydraulic system.
  • the current controller will instantly detect a deviation from a normal characteristic. The system will therefore be able to recognise if the punch tool is damaged or otherwise not suitable to perform a required operation. The system will also be able to detect variations of the material to be punched. Wrong material, wrong thickness or wrong loading position. The wrong loading or robot position is given by the fact that the motor current detection is directly linked to the resolver/encoder value of the axis, and may therefore instantly be able to detect if any force is applied in to the system in any other position than expected.
  • the scrap part will be pushed by the punch tool further down through the cushion.
  • the cushion will be long enough to contain the required number of scrap parts during one operational cycle, e.g. for 10 holes.
  • the friction between the cushion and the scrap part makes the scrap parts to stay in the cushion.
  • the scrap part will just simply travel further down when next hole is punched.
  • the robot will move to a container.
  • the punch tool will now travel the whole way through the cushion why the scrap parts will be pushed out and fall down.
  • FIG. 1 shows the linear gear system, a rigid construction converting a rotational movement to a linear movement.
  • the unit is attached with the electromechanical drive unit and the base body.
  • FIG. 2 shows the electromechanical drive unit, in which a servo motor or similar and, optionally, a planetary gear, or similar, is connected to each other. In many cases, there is no need of a gear onto the servo motor.
  • FIG. 3 shows the base body which connects to robot flange on one side and the linear gear system and tool change system on the other side.
  • FIG. 4 shows a punch tool with corresponding cushion
  • FIG. 5 shows a multiple tool.
  • the multiple tool is the actual part cutting/punching through the material. It is made of conventional material used in normal hydraulic punching machines. There can be, depending on the environment, several tools mounted in the same multiple punch, linear or rotational indexing into the tool holder of the multiple punch device. A typical, reasonable, value is two tool, e.g. shape1 Left and Right.
  • FIG. 6 shows the tool change system.
  • the tool change system is consisting of mainly two basic parts.
  • the tool changing system is attached on the base body. This unit hold a mechanical device mechanically connecting to the multiple punch through a male or female fit with a cam locking device.
  • the second basic part is a mechanical device connecting to the multiple tool through a radial locking system.
  • FIG. 7 shows the multiple punch which is the part to be, automatically (or manually) replaced to another multiple tool if a new shape of holes shall be done.
  • This part is configured to fit into the tool change system having corresponding male/female fit.
  • a typical value for the time to change the multiple punch in automatic mode is 4-5 seconds.
  • a set of multiple tools can easily be arranged on a simple table/holder.
  • the fastening of e.g. the tool changing device can be located between the body and the gear system and that the equipment can be without tool-changing system totally, all depending of the quantity of different hole shapes to be performed at the time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

A flexible electromechanical punch device mounted on, or controlled by, a robot arm or similar is disclosed. In one example embodiment, it is further intended to hold a series of punch tools and cushion, or a multiple tool, connected to a multiple punch which, in itself, may be connected to a base body with attached linear gear system and electromechanical drive unit over a tool change system, in such a syncronized way that a spring retract system will be eliminated and that full control of the punch tool position in all directions will be met and that full feedback of motor current and position of the tool during penetration makes it possible to determine that a good punch has been performed relative the supposed material to be punched.

Description

    TECHNICAL FIELD
  • The present invention relates to a flexible punching device which is intended to be included in a robot arm for automatic punching. It may be the last link to a robot arm or similar. It may also be floor mounted, where a robot manipulates the detail to be punched.
  • BACKGROUND ART
  • Industrial punching machines are well known and have been in use for many decades. They are especially used in line production for example for the production of car body parts or the like. The machines must in such applications have a certain size, configuration of tools and rigidity so they can contain the whole part, which are to be punched, to receive the right position and tolerances of the holes with correct quality of the cut.
  • The machines itself is built by basically four individual items. One is the lower table containing a fixture device shaped as a negative of the actual part to be punched. This negative need to contain one cushion for each individual hole to be punched, regardless of the shape of the hole. The second is the upper table containing a series of punch tools with the correct size. The upper table usually need to have a vertical or movement corresponding to the actual distance the punch tools need to have for penetrating the material to be punched. Additional to this, the upper table usually need to have a vertically or rotational travel corresponding to the height of the part to be punched, for one to be able to load and unload the machine.
  • This is a so called daylight of the machine. A typically value of the daylight of a punching machine for e.g. car bumpers is 2.5 times 1.5 metres. The third is non-parallel hole punchers. The upper table contains individual punch-tools, usually hydraulic driven, for every hole that are not parallel to each other in a three dimensional object which shall be punched. Every one of these tools need to have a devise for spring-back. When punching through material with conventional hardened tools, regardless if it is metal or plastic or others, there will be a friction force generated when the punch tool retracts back through the part. This applies a force into the part that might be dislocated from the lower table if not considered. To overcome this problem, conventional punchers contains a device surrounding the actual tool which is applying force on to the part in the counter-direction of the force implemented by the tool.
  • The fourth basic part is the frame. The frame need to be big and rigid enough to hold the lower table, the upper table with the travel considered, all punching tools with corresponding hydraulic cylinders as well as the part to be punched. In the example with car-bumpers, it is not unusual that the conventional punching machine size is 3.5×2×3 m and have a total weight of 1.5 metric ton.
  • In practice, during a typical engineering session of the part to be punched, there are constant changes implemented to the part to be cut itself. This is especially applicable in the car industry, where design and construction of each component of the car is alive and are subject to changes during the entire time to the start of production. To engineer and build a conventional part-unique punching machine takes several months and is very costly in itself. Additional to this there might be changes during the project face which consumes additional time and money. The machines are mechanically rigid, but they are also rigid in an economical and design essence. They are not easy to rebuild. Also during the entire life of a car, there will be many changes of the parts due to mechanical or design reasons, so called face-lifts.
  • In most cases of such a face-lift, it require a complete new punching machine due to the fact that a rebuilt of an existing machine take so much time (months) so it is not practical feasible to rebuild. The car industry does not allow such an production stop.
  • Conventional punching machines does not contain any built-in quality control. The quality control is usually done by the operator manually loading and unloading the machine. The operator perform a visual check, as best of his capacity. It is, however, quite impossible for the operator to determine if the holes are in the right position or have the correct size, considering that usual tolerances of position and size of the holes shall be in a fraction of a millimetre. Therefore, a parallel quality control system in most cases is implemented into the production facility. A, so called, dimensional control jig is often constructed and built or a dimensional measuring machine is used to check the components and parts.
  • This is, however, time consuming why it cannot be controlling every single part through the production. A typical value is one or two per shift. A normal convention punching machine for e.g. bumpers, instrument panels or inner door panels perform about one part per 30 seconds which give around 1000 parts per shift. In worst case, there might be up to 1000 parts that does not meet the requirements and need to be rejected as scrap.
  • DISCLOSURE OF INVENTION Technical Problem
  • Even though the above mentioned known machines have been well developed and have functioned well since many years they have, however, the serious limitation of being non-flexible, difficult and expensive to rebuild and mechanical complex to perform maintenance on. It is also necessary to have one machine for each type of product to be punched and also contain on punch-tool for every individual hole to be made in that specific product. This makes the production extremely expensive. After the time when the product is taken out from production (program life time) the machine usually often will be shipped somewhere to only produce spare-parts. Now, the production volume decrease from, maybe, 3000 units per day (3-shift) to 3-4 parts per day. But the machine is equally big still and require a quite big floor area. Bearing in mind, that there are hundreds of parts in a car body that need to be individually punched with different holes for option devices, anyone understand the total requirements of space and cost.
  • Imagine if it would be possible to produce all different products with all different shapes of holes in just one flexible machine with just a simple change of the actual, low cost, punch tool and also maintain a 100% quality control and a weight of 100 kg or less. What a hit!
  • Technical Solution
  • Through the present invention one has been able to meet the above desires and brought about a flexible punching device intended to be a part of a robot arm for punching holes in different locations and with different shapes in different material and which is characterized in that it comprises a base body holding an electrical servo motor or similar, a linear gear construction, a tool-changing device or optionally a rotation or indexing device having pieces around or along containing required tools with correct size and shape, as well as a quality sensor system and having an attachment piece on one end for attaching the complete device to a robot arm or similar and an attachment device automatic attaching a secondary tool construction (multiple punch) holding a rigid arm construction, a punch tool in a bushing and a cushion and a scrap removal system and scrap counter but not a mechanical retract spring system.
  • According to the invention the base body is mechanically attached to a robot arm or similar.
  • According to the invention the electrical servo motor or similar is electrically connected with the robot axis computer system as an additional, syncronized, axis.
  • According to the invention the servo motor or similar is mechanically connected to the base body on one side and to the gear system on the other side.
  • According to the invention the gear system allows a high speed linear motion and are mechanically connected to the electrical servo motor or similar at one end and indirectly linked to the punch tool at the other end.
  • According to the invention a tool changing device is mechanically connected to the base body at one end and to the rigid arm in the secondary tool construction at the other end as well as to the punch tool.
  • According to the invention the rigid arm in the secondary tool construction is mechanically connected to the tool changing device on one end and are connected to the cushion on the other end.
  • According to the invention the punch tool are mechanically connected to the arm, with free allowance to move in one direction at one side and connected to the tool change system on the other side.
  • According to the invention, the secondary tool construction can be automatically exchanged to different configurations.
  • According to the invention, the secondary tool construction can be optionally equipped with rotational or linear device containing different punch tools.
  • According to the invention the complete system allows a syncronized movement of all axis where the cushion is standing still relative the part to be punched during punching operation and where the punch tool stand still relative the part just being punched during retract allowing a spring retract system to be excluded.
  • According to the invention, a quality control system is built in, controlling the actual force required to penetrate the material which ensures that the tool is in good condition and will give alarm if the force is too high relative a pre-set value indicating that the tool has been wear or something else has been wrong and indicate that it is time for replacement of the tool preventing that any rejects will be produced. It also, constantly, has a control of the actual position of the punch tool, both relative the part to be punched and relative the punching machine itself. The system will therefore also be constantly aware of that the correct position has been achieved as well as that the punch tool reach the bottom position during every punch ensuring that a hole the whole way through has been done.
  • DESCRIPTION OF DRAWINGS
  • The invention will in the following be described more in detail in connection with the attached drawing which describe an embodiment where the punching device shall serve and carry a punch tool and where,
  • FIG. 1 shows a linear gear system from side
  • FIG. 2 electromechanichal drive unit
  • FIG. 3 base body seen from side
  • FIG. 4 punch tool
  • FIG. 5 multiple tool
  • FIG. 6 tool change system
  • FIG. 7 multiple punch
  • FIG. 8 assembled punching device
  • FIG. 9 flexible electromechanical punch device mounted on robot arm
  • BEST MODE
  • On FIG. 9 a electromechanical punching device according to the invention is shown which base body is mechanically connected to a robot arm, preferable axis 6 (last axis on a 6 axis robot). The servo motor, as a part in the electromechanical unit, is electrically connected to the robot axis computer and is identified as axis no 7 in a 6-axis robot controller (connected as axis no 5 in a 4-axis robot etc.). The axis no 7, in this case, will be fully syncronized and calibrated to the robot controller meaning that the result will be that the robot actually now is a 7-axis robot. In some applications there will also be possible to control the 7:th axis as a, so called, independent axis. A firm definition of motor characteristics in relation to the mechanical gears will ensure an absolute accuracy of the motor rotational position in relation to the actual value of the punch tool position. The servo motor will be controlled by a drive unit. The axis controller will control and monitor motor current and resolver or encoder values in such a way that the tolerance of the actual position of the punch tool will be less than 0.05 mm. During the punch operation, the 7:th axis may move independent. Full motor current, according to the servo motor specification, is applied to the system for maximum acceleration and speed. The mass inertia together with applied motor torque implement a high mechanical force onto the part to be punched when the punch tool hit the part. The speed and weight of the punch tool system will be opposite proportional to the size of the servo motor for a given punch capacity. A typical dimensional value of motor size is 1/10 of the static force comparing to a hydraulic system. During the penetration of material, the current controller will instantly detect a deviation from a normal characteristic. The system will therefore be able to recognise if the punch tool is damaged or otherwise not suitable to perform a required operation. The system will also be able to detect variations of the material to be punched. Wrong material, wrong thickness or wrong loading position. The wrong loading or robot position is given by the fact that the motor current detection is directly linked to the resolver/encoder value of the axis, and may therefore instantly be able to detect if any force is applied in to the system in any other position than expected.
  • When the punch tool finally penetrates the material, it will due to the current and resolver/encoder values know that the task was performed correctly. The scrap part will be pushed by the punch tool further down through the cushion. The cushion, however, will be long enough to contain the required number of scrap parts during one operational cycle, e.g. for 10 holes. The friction between the cushion and the scrap part makes the scrap parts to stay in the cushion. The scrap part will just simply travel further down when next hole is punched. After a complete cycle, the robot will move to a container. The punch tool will now travel the whole way through the cushion why the scrap parts will be pushed out and fall down.
  • After the penetration, there is a relative high friction between the tool and the material just being punched. The system now switch the tool centre point, from earlier top section of the cushion, to the top section of the punch tool. The system will be ordered to move all 7 axis in such a way that the punching tool will retract from the part but not changing the position of the tool centre point relative the part. No forces is applied into the part during this movement When such a movement is done, the part will, in the end of the movement, hit the upper section of the tool holder. At this point, the tool centre point is changed to the top section of the cushion again, and a full retract is performed without the need of a spring retract system.
  • FIG. 1 shows the linear gear system, a rigid construction converting a rotational movement to a linear movement. The unit is attached with the electromechanical drive unit and the base body.
  • FIG. 2 shows the electromechanical drive unit, in which a servo motor or similar and, optionally, a planetary gear, or similar, is connected to each other. In many cases, there is no need of a gear onto the servo motor.
  • FIG. 3 shows the base body which connects to robot flange on one side and the linear gear system and tool change system on the other side.
  • FIG. 4 shows a punch tool with corresponding cushion
  • FIG. 5 shows a multiple tool. The multiple tool is the actual part cutting/punching through the material. It is made of conventional material used in normal hydraulic punching machines. There can be, depending on the environment, several tools mounted in the same multiple punch, linear or rotational indexing into the tool holder of the multiple punch device. A typical, reasonable, value is two tool, e.g. shape1 Left and Right.
  • FIG. 6. shows the tool change system. The tool change system is consisting of mainly two basic parts. The tool changing system is attached on the base body. This unit hold a mechanical device mechanically connecting to the multiple punch through a male or female fit with a cam locking device. The second basic part is a mechanical device connecting to the multiple tool through a radial locking system.
  • FIG. 7 shows the multiple punch which is the part to be, automatically (or manually) replaced to another multiple tool if a new shape of holes shall be done. This part is configured to fit into the tool change system having corresponding male/female fit. A typical value for the time to change the multiple punch in automatic mode is 4-5 seconds. A set of multiple tools can easily be arranged on a simple table/holder.
  • The invention is not limited to the embodiment shown, and it can be varied in different ways within the scope of the patent claims. Thus the fastening of e.g. the tool changing device can be located between the body and the gear system and that the equipment can be without tool-changing system totally, all depending of the quantity of different hole shapes to be performed at the time.

Claims (8)

1. Flexible electromechanical punching device intended to be a part of a robot arm or similar for flexible punching of holes with one or several shapes in metal, plastic or any other material, comprising:
a base body where a linear gear system, an electromechanical drive unit and a tool change system is attached and automatically or manually is connected to a multiple punch which contain a multiple tool with individual punch tool including corresponding cushion.
2. Flexible electromechanical punching device according to claim 1; the electromechanical drive unit has a control system syncronized with robot axis controller in such a way that a syncronized movement with all involved axis are performed during retract of the punch tool eliminating the need of an additional spring back retract system.
3. Flexible electromechanical punching device according to claim 1; wherein the electromechanical drive unit control system momentarily supervise actual current value in such a way that the force will be monitored.
4. Flexible electromechanical punching device according to claim 1; wherein the electromechanical drive unit control system momentarily supervise resolver/encoder value in such a way that the position of the tool will be monitored.
5. Flexible electromechanical punching device according to claim 1; wherein a linear gear system is connected to a punch tool, direct or indirect through a tool change device.
6. Flexible electromechanical punching device according to claim 1; wherein a base body is connected to a multiple punch, direct or indirect through a tool change device.
7. Flexible electromechanical punching device according to claim 1; wherein the multiple punch may be equipped with a multiple tool arranged in such a way that an indexing, linear or rotational, is performed to place the correct tool into the seat of the multiple tool.
8. Flexible electromechanical punching device according to claim 1; wherein the waste material in the punching operation will be kept in the cushion until a desired time chosen.
US11/795,718 2005-02-15 2005-02-15 Flexible Electromechanical Punching Device Abandoned US20080092712A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2005/050579 WO2006087607A1 (en) 2005-02-15 2005-02-15 Flexible electromechanical punching device

Publications (1)

Publication Number Publication Date
US20080092712A1 true US20080092712A1 (en) 2008-04-24

Family

ID=36916171

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/795,718 Abandoned US20080092712A1 (en) 2005-02-15 2005-02-15 Flexible Electromechanical Punching Device

Country Status (4)

Country Link
US (1) US20080092712A1 (en)
EP (1) EP1848555A1 (en)
JP (1) JP2008529801A (en)
WO (1) WO2006087607A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2394714R1 (en) * 2010-06-02 2013-06-18 Benteler Maschb Gmbh DEVICE AND PROCEDURE FOR HOLE MOUNTING PARTS
CN105520821A (en) * 2016-01-26 2016-04-27 哈尔滨工业大学 Spring energy storage device with continuous variable stiffness
EP2484515B1 (en) * 2011-02-04 2016-11-30 Bayerische Motoren Werke Aktiengesellschaft Punch unit for fibre composite materials
WO2017034566A1 (en) * 2015-08-27 2017-03-02 Ford Global Technologies, Llc System and method for punching and attaching to fascia
WO2017198217A1 (en) * 2016-05-19 2017-11-23 深圳市越疆科技有限公司 Desktop-level mechanical arm device
CN107942952A (en) * 2017-10-26 2018-04-20 郑海宁 The manufacture device and manufacture method of chain are arbitrarily matched in a kind of numerical control
CN114603635A (en) * 2022-03-22 2022-06-10 苏州骏创汽车科技股份有限公司 Punching device for automotive plastic interior trim part based on machine vision

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114629B (en) * 2009-12-30 2014-06-25 鸿富锦精密工业(深圳)有限公司 Robot structure
DE202012101120U1 (en) * 2012-03-29 2013-07-16 Kuka Systems Gmbh processing device
CN104460447A (en) * 2014-11-19 2015-03-25 天水锻压机床(集团)有限公司 Automatic selection system of liner punching device and control method thereof
DE102017007036B3 (en) * 2017-07-26 2019-01-03 Audi Ag Robot punch
CN108406750B (en) * 2018-03-05 2020-10-30 丽水学院 Intelligent automatic robot of multi-functional six joint arms
CN108972617A (en) * 2018-07-26 2018-12-11 芜湖市越泽机器人科技有限公司 A kind of Robot arm structure
CN110270985A (en) * 2018-08-30 2019-09-24 南京禹智智能科技有限公司 A kind of support device for industrial robot of antidetonation
CN111744649A (en) * 2020-07-15 2020-10-09 马鞍山盛禾新智能科技有限公司 Rotary damping support of steering oil cylinder type hydraulic crusher

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843704A (en) * 1986-09-11 1989-07-04 Amada Company, Limited Tool exchange apparatus
US4872381A (en) * 1988-07-13 1989-10-10 International Business Machines Corp. Programmable magnetic repulsion punching apparatus
US5113736A (en) * 1990-06-26 1992-05-19 Meyerle George M Electromagnetically driven punch press with magnetically isolated removable electromagnetic thrust motor
US5215513A (en) * 1991-06-06 1993-06-01 Amada Engineering & Service Co., Inc. Tool changing apparatus for a turret punch press
US5224915A (en) * 1992-09-09 1993-07-06 Trumpf Inc. Punch press with dual tool changing assemblies and method of punching
US5245904A (en) * 1990-06-26 1993-09-21 Meyerle George M Non-skid ball bearings with adjustable stroke for punch presses
US5269739A (en) * 1991-06-06 1993-12-14 Amada Engineering & Service Co., Inc. Tool changing apparatus for a turret punch press
US5905352A (en) * 1995-06-07 1999-05-18 International Business Machines Corporation Magneto-repulsion punching with dynamic damping
US6305258B1 (en) * 1998-02-18 2001-10-23 International Business Machines Corporation Punch actuator monitoring system and method
US6484613B1 (en) * 1993-07-27 2002-11-26 International Business Machines Corporation Electromagnetic bounce back braking for punch press and punch press process
US7331265B2 (en) * 2004-03-19 2008-02-19 Winset Technologies L.L.C. Electromagnetic punch presses with feedback device
US7419341B2 (en) * 2005-06-28 2008-09-02 Romer Machining mechanical parts with a hollow cylindrical tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112225A (en) * 1993-10-15 1995-05-02 Amada Co Ltd Punching work device
JP3204165B2 (en) * 1997-06-16 2001-09-04 村田機械株式会社 Punch press machine
JP2002096122A (en) * 2000-09-20 2002-04-02 Murata Mach Ltd Punch press

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843704A (en) * 1986-09-11 1989-07-04 Amada Company, Limited Tool exchange apparatus
US4872381A (en) * 1988-07-13 1989-10-10 International Business Machines Corp. Programmable magnetic repulsion punching apparatus
US5113736A (en) * 1990-06-26 1992-05-19 Meyerle George M Electromagnetically driven punch press with magnetically isolated removable electromagnetic thrust motor
US5245904A (en) * 1990-06-26 1993-09-21 Meyerle George M Non-skid ball bearings with adjustable stroke for punch presses
US5215513A (en) * 1991-06-06 1993-06-01 Amada Engineering & Service Co., Inc. Tool changing apparatus for a turret punch press
US5269739A (en) * 1991-06-06 1993-12-14 Amada Engineering & Service Co., Inc. Tool changing apparatus for a turret punch press
US5224915A (en) * 1992-09-09 1993-07-06 Trumpf Inc. Punch press with dual tool changing assemblies and method of punching
US6484613B1 (en) * 1993-07-27 2002-11-26 International Business Machines Corporation Electromagnetic bounce back braking for punch press and punch press process
US5905352A (en) * 1995-06-07 1999-05-18 International Business Machines Corporation Magneto-repulsion punching with dynamic damping
US6305258B1 (en) * 1998-02-18 2001-10-23 International Business Machines Corporation Punch actuator monitoring system and method
US7331265B2 (en) * 2004-03-19 2008-02-19 Winset Technologies L.L.C. Electromagnetic punch presses with feedback device
US7419341B2 (en) * 2005-06-28 2008-09-02 Romer Machining mechanical parts with a hollow cylindrical tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2394714R1 (en) * 2010-06-02 2013-06-18 Benteler Maschb Gmbh DEVICE AND PROCEDURE FOR HOLE MOUNTING PARTS
EP2484515B1 (en) * 2011-02-04 2016-11-30 Bayerische Motoren Werke Aktiengesellschaft Punch unit for fibre composite materials
WO2017034566A1 (en) * 2015-08-27 2017-03-02 Ford Global Technologies, Llc System and method for punching and attaching to fascia
CN107921515A (en) * 2015-08-27 2018-04-17 福特全球技术公司 The system and method for backplate are punched out and are attached to backplate
GB2557795A (en) * 2015-08-27 2018-06-27 Ford Global Tech Llc System and method for punching and attaching to fascia
GB2557795B (en) * 2015-08-27 2021-06-02 Ford Global Tech Llc System and method for punching and attaching to fascia
CN105520821A (en) * 2016-01-26 2016-04-27 哈尔滨工业大学 Spring energy storage device with continuous variable stiffness
WO2017198217A1 (en) * 2016-05-19 2017-11-23 深圳市越疆科技有限公司 Desktop-level mechanical arm device
CN107942952A (en) * 2017-10-26 2018-04-20 郑海宁 The manufacture device and manufacture method of chain are arbitrarily matched in a kind of numerical control
CN114603635A (en) * 2022-03-22 2022-06-10 苏州骏创汽车科技股份有限公司 Punching device for automotive plastic interior trim part based on machine vision

Also Published As

Publication number Publication date
EP1848555A1 (en) 2007-10-31
WO2006087607A1 (en) 2006-08-24
JP2008529801A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US20080092712A1 (en) Flexible Electromechanical Punching Device
EP2093642B1 (en) Rotary table with an associated control or regulation unit
EP3359351B1 (en) Gripping device having an integrated controller
EP1240974A2 (en) A machine tool with at least two machining units
DE102011114180A1 (en) Device for slicing a food product and device with a robot
JP6549714B2 (en) Device for detecting a workpiece, workpiece evaluation system, manufacturing system, processing method of workpiece
EP2992993B1 (en) Device and method for positioning a tensioning element
DE102013016068A1 (en) Tool and method for condition monitoring of a tool
DE102021002418B3 (en) Process for creating gripper sequence programs
JPH0819900A (en) Load detection/meeting device for press machine
EP0625651B1 (en) Method for the control of the dynamic and/or wear status of a transmission during operation and device for its application
DE102006061310B4 (en) Device for moving masses by means of a shaft or roller, which can be driven by a motor drive
DE102016010320B4 (en) Machine stopping the movement of an element on the drive axle due to an irregularity in a brake
JP2897658B2 (en) Toggle punch press abnormality detection device
DE102013221899B4 (en) industrial robot
CN110695769B (en) Abnormality detection device for machine tool
DE202014011110U1 (en) hand tool
DE102015211344B4 (en) Device for handling articles and methods for detecting wear in such a handling device
DE102010060627B4 (en) Forming machine with slide control
CN110589126B (en) Material placement dislocation detection device and detection method
DE3632151A1 (en) Programmable gripper system
US6748647B1 (en) Apparatus for monitoring and controlling processing of articles
CN214443476U (en) Automatic indulge scissors ring storage
EP4219089A1 (en) A punching cell for punching workpieces
DE10016697A1 (en) Measuring platform and mount for robotic device comprises three weighing cells or force sensors to detect and control the robotic movements

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION