US20080083598A1 - Radius conveyor belt - Google Patents

Radius conveyor belt Download PDF

Info

Publication number
US20080083598A1
US20080083598A1 US11/907,618 US90761807A US2008083598A1 US 20080083598 A1 US20080083598 A1 US 20080083598A1 US 90761807 A US90761807 A US 90761807A US 2008083598 A1 US2008083598 A1 US 2008083598A1
Authority
US
United States
Prior art keywords
belt
link ends
link
module
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/907,618
Inventor
Dieter Guldenfels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Habasit AG
Original Assignee
Habasit AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24315517&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080083598(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Habasit AG filed Critical Habasit AG
Priority to US11/907,618 priority Critical patent/US20080083598A1/en
Assigned to HABASIT AG reassignment HABASIT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GULDENFELS, DIETER
Publication of US20080083598A1 publication Critical patent/US20080083598A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/06Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
    • B65G17/08Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms the surface being formed by the traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/06Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
    • B65G17/08Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms the surface being formed by the traction element
    • B65G17/086Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms the surface being formed by the traction element specially adapted to follow a curved path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles

Definitions

  • This invention relates to conveyor belts and, more particularly, to modular plastic conveyor belts formed of rows of plastic belt modules pivotally interlinked by transverse pivot rods.
  • Modular plastic conveyor belts consist of molded plastic modular links, or belt modules, that can be arranged side by side in rows of selectable width.
  • a series of spaced apart link ends extending from each side of the modules include aligned apertures to accommodate a pivot rod.
  • the link ends along one end of a row of modules are interconnected with the link ends of an adjacent row.
  • a pivot rod journaled in the aligned apertures of the side-by-side and end-to-end connected modules forms a hinge between adjacent rows.
  • Rows of belt modules are connected together to form an endless conveyor belt capable of articulating about a drive sprocket.
  • conveyor belts are used to carry products along paths including curved segments.
  • Belts capable of flexing sidewise to follow curved paths are referred to as side-flexing, turn, or radius belts.
  • the belt must be able to fan out because the edge of the belt at the outside of the turn follows a longer path than the edge at the inside of the turn.
  • a modular plastic radius belt typically has provisions that allow it to collapse at the inside of a turn or to spread out at the outside of the turn.
  • Apertures slotted in the direction of travel of the belt are commonly provided in the link ends on at least one side of the modules to facilitate the collapsing and spreading of the belt.
  • radius belts especially if tightly tensioned or running fast and lightly loaded, tend to rise out of the conveyor support around a turn.
  • outer link ends are more likely to fail unless otherwise strengthened or bolstered.
  • a radius belt bricklayed to a width of, for example one meter, may compress by three to four millimeters as the belt rounds a turn, which can cause the belt to come out of the conveyor support.
  • Belts having a corrugated configuration as shown in U.S. Pat. No. 5,372,248 to Horton are especially susceptible to bending and compression of this type.
  • the present invention meets the above-described need by providing an endless conveyor belt formed of plastic belt modules and capable of following a curved path.
  • the modules include first and second module surfaces, i.e., a top, product-conveying surface and a bottom, sprocket-driven surface.
  • An intermediate section extends across the width of each module transverse to the direction of belt travel.
  • the intermediate section is formed in part by a web and in part by a thin, corrugated strip having a pair of essentially parallel walls.
  • the corrugated strip forms a series of regularly spaced alternating ridges and valleys along each wall. Link ends extend outward from the ridges on each wall of the corrugated strip.
  • Each link end has a leg portion attached at a ridge of the strip and a thick distal portion at the end of the link end distant from the corrugated strip.
  • Transverse holes in the link ends extending from respective walls of a module are aligned to accommodate a pivot rod.
  • the pivot rod serves as a hinge pin in a hinged joint between consecutive interlinked rows.
  • the pivot rod opens in at least one of the link ends extending from one of the walls of the corrugated strip, which are slotted longitudinally in the direction of belt travel.
  • the belt is driven by the engagement of the sprocket tooth with the curved outside surface of the link ends.
  • the link end engaged by the sprocket tooth is subjected to a compressive force rather than an undesirable tensile force.
  • the link ends provide pull strength, resistance to belt, sprocket wear, and sprocket drivability.
  • a central portion of a link end disposed in the middle of the belt modules may also engage with a tooth on the drive sprocket. Because the mid modules do not have to collapse fully, they may be formed with a thicker and fully straight cross-rib.
  • Each wall of the corrugated strip forms a series of arched recesses with the leg portions of the link ends.
  • the recesses are large enough to provide room for a thick link end of an interlinked module of an adjacent row to collapse into the recess or to rotate as belt rows fan out going around a turn. Because the recesses along one wall overlap in a transverse direction with the recesses along the other wall, additional space for collapsing is provided.
  • FIG. 1 is a top plan view of a radius conveyor belt of the present invention with a portion of one of the belt modules cutaway;
  • FIG. 2 is a top plan view of a belt module of the present invention
  • FIG. 3 is an end elevation view of a belt module of the present invention
  • FIG. 4 is a sectional view taken along lines 4 - 4 of FIG. 2 ;
  • FIG. 5 is a bottom plan view of a belt module of the present invention.
  • FIG. 6 is a top perspective view of the belt module of the present invention.
  • FIG. 7 is a bottom perspective view of the belt module of the present invention.
  • FIG. 8 is a top plan view of an alternate embodiment of a belt module suitable for use in the middle of a bricklayed modular radius conveyor belt according to the present invention
  • FIG. 9 is a bottom plan view of the belt module of FIG. 8 ;
  • FIG. 10 is an end elevational view of the belt module of FIG. 8 ;
  • FIG. 11 is a section view taken along lines 11 - 11 of FIG. 8 ;
  • FIG. 12 is a top plan view of an alternate embodiment of the belt module of the present invention.
  • FIG. 13 is a sectional view taken along lines 13 - 13 of FIG. 12 ;
  • FIG. 14 is a side elevation view of a drive sprocket engaging the radius conveyor belt of the present invention.
  • FIG. 15 is a cutaway side elevation view of a drive sprocket engaging with the link end and center cross-rib of the mid modules of the present invention.
  • FIG. 16 is a top plan view of the radius belt according to an exemplary embodiment of the present invention.
  • FIG. 17 is a side elevational view of a belt according to an exemplary embodiment of the present invention engaged with a sprocket and illustrating the gaps between adjacent modules.
  • FIGS. 1 to 7 show a first embodiment of a portion of a modular belt 20 of the present invention.
  • the portion of the modular belt 20 shown is formed from molded plastic modules 23 , 26 and 29 .
  • the direction of belt travel is indicated by arrow 32 ; however, the belt of the present invention may be conveyed in either direction.
  • a pivot rod 35 connects adjacent belt modules by passing through openings in the modules disposed transverse to the direction of belt travel.
  • an exemplary one of the belt modules 26 has an intermediate section 38 supporting a plurality of first link ends 41 and a plurality of second link ends 44 .
  • the first link ends 41 are disposed in the direction of belt travel indicated by arrow 32 and the plurality of second link ends 44 extend opposite the first link ends 41 .
  • the intermediate section 38 is comprised of an upper, transverse stiffening web 47 forming into a lower corrugated portion 50 .
  • the corrugated portion 50 forms a series of ridges 53 and valleys 56 in a sinusoidal manner.
  • the ridges 53 extending toward the left of FIG. 2 support the first link ends 41 while the ridges 53 extending toward the right in the drawing support the second link ends 44 .
  • the first link ends 41 include a leg portion 59 connected to an intermediate section 62 and extending to a distal head portion 65 .
  • the second link ends 44 include a leg portion 68 connected to the intermediate section 71 and extending to a distal head portion 74 .
  • the intermediate section 38 formed of the stiffening web 47 and the corrugated portion 50 is comprised of an upper surface 77 extending to and meeting with opposed left and right walls 80 and 83 which, in turn, meet with a lower surface 86 of the module.
  • the left wall 80 is comprised of an upper wall 89 , which is part of the stiffening web 47 , and extends downwardly to a curved wall 92 which forms into a lower vertical wall 95 .
  • the curved wall 92 and the lower vertical wall 95 are part of the corrugated portion 50 of the intermediate section 38 .
  • the lower vertical wall 95 extends to the lower surface 86 of the module which, in turn, extends to and meets with the right vertical wall 83 .
  • the head portion 65 is preferably larger than the leg portion 59 . Accordingly, the head portion 65 is connected to the leg portion 59 by the angled intermediate section 62 .
  • the head portion 65 is preferably formed with two substantially parallel sides 98 and 101 connected by an outer end 104 . The corners between the sides 98 , 101 and ends 104 are preferably radiused to be smooth and to protect the conveyed product from damage.
  • An opening 107 is defined between spaced apart sides 110 , 113 of adjacent link ends. At a distal end 116 , the ends of adjacent links form the mouth 119 of the opening 107 . At the opposite end 122 , the opening 107 terminates in the multi-level surface defined by the web 47 and corrugated portion 50 as described above.
  • the top level of the surface (best shown in FIG. 1 ) is defined by wall 89 of the web 47 .
  • the corners where the side walls of the link ends 41 meet the straight wall 89 of web 47 are also radiused to be smooth and to protect the conveyed product from damage.
  • the bottom level of the surface is defined by the relatively thin corrugated portion 50 having a pair of essentially parallel walls 125 , 128 .
  • the corrugated portion 50 forms the series of regularly spaced alternating ridges 53 and valleys 56 along the intermediate section 38 , as described herein.
  • the straight wall 89 is shown bordering the opening 107 .
  • the curved surface defined by corrugated portion 50 is shown in broken lines. The curved surface receives link ends from an adjacent belt module such that the belt 20 is capable of collapsing for movement around a curved path, as described in detail herein.
  • the plurality of second link ends 44 extend from and touch the belt module 26 in the opposite direction from the first link ends 41 .
  • the second link ends 44 have the same overall shape as the first link ends 41 (except for the last link end 45 ) and are designed to fit into the openings between the first link ends 41 such that adjacent belt modules can be intercalated and pivotally connected by the pivot rods 35 .
  • first and second link ends are respectively spaced apart at a first width and each link end is a second width wide, so that the first width is more than 0.01 inches greater than the second width.
  • first and second link ends each comprise a head portion and a leg portion, wherein the legs of adjacent link ends are spaced apart at a first width and each link end leg is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
  • a plurality of spaces that extend from a top surface of the belt to a bottom surface of the belt, are bound by a front wall of the web, an outer end of the first link end, and the side walls of the second link ends in a series of intercalated belt modules, wherein at least some of the spaces of the intercalated belt modules have diameter greater than zero and an area greater than zero at least when the belt follows a curved path.
  • the belt module 26 includes a slot 134 that is disposed through the link ends 41 transverse to the direction of belt travel.
  • the slot 134 extends in the direction of belt travel such that it is generally oblong.
  • the slot 134 receives the pivot rod 35 .
  • the pivot rod 35 passes through the slots 134 in the first link ends 41 and through the openings 137 in the second link ends 44 (as shown in FIG. 1 ).
  • the openings 137 correspond to the shape of the shaft 138 ( FIG. 1 ) of the pivot rod 35 such that the pivot rod 35 is received through the opening 137 but in contrast to slot 134 , the pivot rod 35 preferably cannot move in the direction of belt travel inside opening 137 .
  • the pivot rod 35 can pivot inside the slot 134 such that the belt 20 is capable of collapsing on one side while the other side fans out due to the pivoting of rod 35 and the nesting of the link ends 41 , 44 and cooperating spaces in the adjacent belt modules.
  • the last link end 45 of the belt module 26 includes a second opening 140 disposed around opening 137 to provide for countersinking a head (not shown) at the end of the pivot rod shaft 138 .
  • the back surface of the last link end 45 includes a rounded surface 143 that provides clearance for pivoting an adjacent link end 45 .
  • the transverse slot 134 in link ends 41 and the transverse opening 137 in link ends 44 receive pivot rods 35 to connect adjacent belt modules 23 and 29 as shown in FIG. 1 .
  • the transverse opening or slot 134 may have a length that is at least twice as wide as the diameter of the pivot rods 35 .
  • the web 47 is coterminous with the top surface 77 of the belt module 26 and terminates at the top of the corrugated portion 50 that defines the space between adjacent link ends (best shown in FIG. 5 ).
  • the outer ends 104 of the link ends 41 and 44 are radiused in a smooth rounded surface 146 .
  • the rounded surface 146 preferably comprises a rounded surface having a constant radius and provides a driving surface for engagement with the drive sprocket 149 , as described herein.
  • the curvature of the outer ends 104 of the link ends enables the links to clear the web 47 when the adjacent modules collapse along the edge.
  • the clearance enables the link ends to extend under the web 47 into the space defined by the corrugated portion 50 (best shown in FIGS. 6-7 ).
  • the web 47 partially hoods the link ends when the belt 20 collapses.
  • the belt module 26 provides a web 47 for structural stability while maintaining a corrugated portion 50 to allow for recesses that provide maximum space for collapsing the belt modules around a curved path.
  • FIGS. 8-11 a second embodiment of a portion of a modular belt module 200 is shown.
  • Belt module 200 is suitable for center modules in a bricklayed belt.
  • the belt module 200 includes link ends 206 , 207 which are supported by an intermediate section 208 .
  • the link ends 206 have a slot 209 disposed transverse to the direction of belt travel indicated by arrow 211 .
  • Link ends 207 have a transverse opening 213 that corresponds to the shaft 138 of pivot rod 35 .
  • the belt module 200 has a web 212 that is part of the intermediate section 208 and that is wider than the corrugated portion 50 of the edge module 26 shown in FIGS. 1-7 (best shown in FIG. 5 ).
  • the opening 218 between the link ends 206 is defined by a mouth 221 at one end 224 and is defined at the opposite end 227 by a multilevel surface defined by the web 212 and by a straight wall portion 230 that joins with the link end in a curved section 233 .
  • the bottom of the intermediate section 208 of the link ends is angled to provide a face 236 for engagement of the intermediate section 208 with the teeth 148 on the drive sprocket 149 ( FIG. 14 ).
  • the drive sprocket 149 is described in detail hereafter.
  • the link ends 207 have the transverse opening 213 capable of receiving the pivot rod 35 .
  • Link ends 206 have the transverse slot 209 that is oblong and extends in the direction of belt travel such that the pivot rod 35 can move inside the slot 209 to pivot and facilitate collapsing.
  • the engagement of the face 236 on the central portion 215 with the tooth 148 on the drive sprocket 149 assists in maintaining engagement between the belt 20 and the drive sprocket 149 and assists in driving the belt 20 .
  • the primary drive mechanism is described in detail below.
  • belt module 300 is an alternate embodiment of belt modules 23 , 26 , 29 of FIGS. 1-7 .
  • Belt module 300 differs from the previous modules because the slot and the holes are positioned off center on the link ends 303 and 306 , respectively.
  • the transverse slot 309 and transverse openings 312 are located lower on the belt module 300 which provides for increased module strength.
  • the distance 315 from the top surface 318 to the center 321 of the opening 312 is greater than the distance 316 from the center 321 of the opening 312 to the bottom surface 324 .
  • the link end 303 with the transverse slot 309 is designed such that the radius of curvature at the rounded end is greater above the slot 309 than it is below the slot 309 .
  • the belt module 300 includes a plurality of openings 331 that provide for reducing the weight and material cost for the belt and provide open areas for cleaning the belt.
  • the vertical openings 331 in the link ends 306 are shown in FIGS. 12 and 13 .
  • the belt modules 20 ( FIGS. 1-7 ) are shown driven by the teeth 148 on the drive sprocket 149 .
  • the drive sprocket 149 is driven by a rotating shaft (not shown) in a manner known to one of ordinary skill in the art.
  • the teeth 148 engage with the rounded surface 146 on the outside of the link ends and push the link ends forward.
  • the central portions 215 ( FIG. 15 ) of the middle modules push against the teeth along the angled face 236 .
  • the belt 420 is shown at its maximum lengthwise extension.
  • the maximum lengthwise extension creates spaces 400 bordered by the cross-rib 438 , the link ends 444 of module 423 and the link ends 441 of the adjacent module.
  • the top surface 477 of the cross-rib is extended such that the opening 400 described above is less than 10 mm.
  • the opening 400 is bordered on one side by upper wall 489 .
  • the space 400 is also bordered by sides 410 , 413 , of adjacent link ends 444 .
  • the end of space 400 opposite from upper wall 489 is defined by the outer end 404 of link end 441 on the adjacent belt module 426 . Also, a portion of the sides 498 and 401 of link end 441 border space 400 .
  • the openings created in the belt grid may allow for fingers to penetrate the grid.
  • the upper wall 489 is sized so that when the belt 420 is fully extended lengthwise the space 400 has critical opening widths or diameter less than 10 mm. Critical opening width or diameter is defined as the distance of the opening across its smallest dimension.
  • the extended upper wall 489 is sized to reduce the size of the opening yet allows the belt 420 to collapse without obstruction.
  • the curvature of the link end from the top surface provides for nesting of the link end beneath the upper wall 489 .
  • the belt modules 420 are shown driven by the teeth 448 on the drive sprocket 449 .
  • the drive sprocket 449 is driven by a rotating shaft (not shown) as known to those of ordinary skill in the art.
  • a cylindrical member 410 which is representative of a small finger, has a diameter of 10 mm. As shown, the space 400 is not large enough to accommodate the member 410 .
  • the belt 420 has an extended cross-rib 438 that reduces the space 400 to less than 10 mm width so as to prevent fingers of a user from penetrating the belt grid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chain Conveyers (AREA)
  • Belt Conveyors (AREA)
  • Magnetic Heads (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Structure Of Belt Conveyors (AREA)
  • Escalators And Moving Walkways (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

A belt module includes an intermediate section having a corrugated portion extending along the length of the intermediate section and a web extending along the length of the intermediate section and adjacent to the corrugated portion. A plurality of first link ends extend outward from the intermediate section with a transverse opening. A plurality of second link ends extend outward from the intermediate section in a direction opposite the first link ends and the second link ends have a transverse opening having an elongated shape.

Description

  • The present application is a continuation of U.S. patent application Ser. No. 10/969,983, filed Oct. 22, 2004, which is a continuation of U.S. patent application Ser. No. 10/429,031, filed May 5, 2003, now U.S. Pat. No. 6,896,126, which is a continuation of U.S. patent application Ser. No. 10/282,068, filed Oct. 29, 2002, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/874,589, filed Jun. 5, 2001, now U.S. Pat. No. 6,523,680, which is a continuation-in-part application claiming priority to U.S. patent application Ser. No. 09/579,090, filed May 25, 2000, now U.S. Pat. No. 6,330,941 and entitled “Radius Conveyor Belt,” all of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to conveyor belts and, more particularly, to modular plastic conveyor belts formed of rows of plastic belt modules pivotally interlinked by transverse pivot rods.
  • 2. Discussion of the Related Art
  • Because they do not corrode, are lightweight, and easy to clean, unlike metal conveyor belts, plastic conveyor belts are used widely, especially in conveying food products. Modular plastic conveyor belts consist of molded plastic modular links, or belt modules, that can be arranged side by side in rows of selectable width. A series of spaced apart link ends extending from each side of the modules include aligned apertures to accommodate a pivot rod. The link ends along one end of a row of modules are interconnected with the link ends of an adjacent row. A pivot rod journaled in the aligned apertures of the side-by-side and end-to-end connected modules forms a hinge between adjacent rows. Rows of belt modules are connected together to form an endless conveyor belt capable of articulating about a drive sprocket.
  • In many industrial applications, conveyor belts are used to carry products along paths including curved segments. Belts capable of flexing sidewise to follow curved paths are referred to as side-flexing, turn, or radius belts. As a radius belt negotiates a turn, the belt must be able to fan out because the edge of the belt at the outside of the turn follows a longer path than the edge at the inside of the turn. In order to fan out, a modular plastic radius belt typically has provisions that allow it to collapse at the inside of a turn or to spread out at the outside of the turn.
  • Apertures slotted in the direction of travel of the belt are commonly provided in the link ends on at least one side of the modules to facilitate the collapsing and spreading of the belt.
  • The requirement of following a curved path causes problems not found in straight-running belts. As one example, radius belts, especially if tightly tensioned or running fast and lightly loaded, tend to rise out of the conveyor support around a turn. As another example, because belt pull is concentrated in the outer portion of the belt as it rounds a turn, outer link ends are more likely to fail unless otherwise strengthened or bolstered.
  • There are other problems with some common belt designs. For example, stresses can be molded into the plastic modules during the manufacturing process. Sharp, as opposed to curved, junctions between molded features on a belt module are more likely to form concentrated stress regions. When such modules make up a conveyor belt, operation of the belt increases the stress in those regions. In a radius belt, in which the pulling load is unevenly distributed across the width of the belt as it rounds a turn, the problem is exacerbated. One way to solve the problem is to add more material to the belt, but that makes the belt heavier, increases the production cost due to the larger molding cycle and closes in some of the desirable open area that allows for drainage or air flow.
  • Another problem with some structures of radius belts is compression of the modules transverse to the direction of belt travel. A radius belt bricklayed to a width of, for example one meter, may compress by three to four millimeters as the belt rounds a turn, which can cause the belt to come out of the conveyor support. Belts having a corrugated configuration as shown in U.S. Pat. No. 5,372,248 to Horton are especially susceptible to bending and compression of this type.
  • What is needed is a modular radius conveyor belt that is resistant to compression and that improves the engagement of the belt to the drive sprocket.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention meets the above-described need by providing an endless conveyor belt formed of plastic belt modules and capable of following a curved path. The modules include first and second module surfaces, i.e., a top, product-conveying surface and a bottom, sprocket-driven surface. An intermediate section extends across the width of each module transverse to the direction of belt travel. The intermediate section is formed in part by a web and in part by a thin, corrugated strip having a pair of essentially parallel walls. The corrugated strip forms a series of regularly spaced alternating ridges and valleys along each wall. Link ends extend outward from the ridges on each wall of the corrugated strip. Each link end has a leg portion attached at a ridge of the strip and a thick distal portion at the end of the link end distant from the corrugated strip. Transverse holes in the link ends extending from respective walls of a module are aligned to accommodate a pivot rod. When the link ends of consecutive rows of side-by-side modules are intercalated, the pivot rod serves as a hinge pin in a hinged joint between consecutive interlinked rows. To permit the belt to follow a curved path, the pivot rod opens in at least one of the link ends extending from one of the walls of the corrugated strip, which are slotted longitudinally in the direction of belt travel.
  • The belt is driven by the engagement of the sprocket tooth with the curved outside surface of the link ends. The link end engaged by the sprocket tooth is subjected to a compressive force rather than an undesirable tensile force. Thus, the link ends provide pull strength, resistance to belt, sprocket wear, and sprocket drivability. As an alternative, a central portion of a link end disposed in the middle of the belt modules may also engage with a tooth on the drive sprocket. Because the mid modules do not have to collapse fully, they may be formed with a thicker and fully straight cross-rib.
  • Each wall of the corrugated strip forms a series of arched recesses with the leg portions of the link ends. The recesses are large enough to provide room for a thick link end of an interlinked module of an adjacent row to collapse into the recess or to rotate as belt rows fan out going around a turn. Because the recesses along one wall overlap in a transverse direction with the recesses along the other wall, additional space for collapsing is provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:
  • FIG. 1 is a top plan view of a radius conveyor belt of the present invention with a portion of one of the belt modules cutaway;
  • FIG. 2 is a top plan view of a belt module of the present invention;
  • FIG. 3 is an end elevation view of a belt module of the present invention;
  • FIG. 4 is a sectional view taken along lines 4-4 of FIG. 2;
  • FIG. 5 is a bottom plan view of a belt module of the present invention;
  • FIG. 6 is a top perspective view of the belt module of the present invention;
  • FIG. 7 is a bottom perspective view of the belt module of the present invention;
  • FIG. 8 is a top plan view of an alternate embodiment of a belt module suitable for use in the middle of a bricklayed modular radius conveyor belt according to the present invention;
  • FIG. 9 is a bottom plan view of the belt module of FIG. 8;
  • FIG. 10 is an end elevational view of the belt module of FIG. 8;
  • FIG. 11 is a section view taken along lines 11-11 of FIG. 8;
  • FIG. 12 is a top plan view of an alternate embodiment of the belt module of the present invention;
  • FIG. 13 is a sectional view taken along lines 13-13 of FIG. 12;
  • FIG. 14 is a side elevation view of a drive sprocket engaging the radius conveyor belt of the present invention; and,
  • FIG. 15 is a cutaway side elevation view of a drive sprocket engaging with the link end and center cross-rib of the mid modules of the present invention.
  • FIG. 16 is a top plan view of the radius belt according to an exemplary embodiment of the present invention.
  • FIG. 17 is a side elevational view of a belt according to an exemplary embodiment of the present invention engaged with a sprocket and illustrating the gaps between adjacent modules.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, FIGS. 1 to 7 show a first embodiment of a portion of a modular belt 20 of the present invention. The portion of the modular belt 20 shown is formed from molded plastic modules 23, 26 and 29. For reference, the direction of belt travel is indicated by arrow 32; however, the belt of the present invention may be conveyed in either direction. A pivot rod 35 connects adjacent belt modules by passing through openings in the modules disposed transverse to the direction of belt travel.
  • As shown in FIG. 2, an exemplary one of the belt modules 26 has an intermediate section 38 supporting a plurality of first link ends 41 and a plurality of second link ends 44. The first link ends 41 are disposed in the direction of belt travel indicated by arrow 32 and the plurality of second link ends 44 extend opposite the first link ends 41. As will be described in detail hereinafter, the intermediate section 38 is comprised of an upper, transverse stiffening web 47 forming into a lower corrugated portion 50. The corrugated portion 50 forms a series of ridges 53 and valleys 56 in a sinusoidal manner. Along with the transverse web 47 of the intermediate section 38, the ridges 53 extending toward the left of FIG. 2 support the first link ends 41 while the ridges 53 extending toward the right in the drawing support the second link ends 44.
  • The first link ends 41 include a leg portion 59 connected to an intermediate section 62 and extending to a distal head portion 65. In a similar manner, the second link ends 44 include a leg portion 68 connected to the intermediate section 71 and extending to a distal head portion 74.
  • With respect to the orientation shown in FIGS. 2 to 4, the intermediate section 38 formed of the stiffening web 47 and the corrugated portion 50 is comprised of an upper surface 77 extending to and meeting with opposed left and right walls 80 and 83 which, in turn, meet with a lower surface 86 of the module. The left wall 80 is comprised of an upper wall 89, which is part of the stiffening web 47, and extends downwardly to a curved wall 92 which forms into a lower vertical wall 95. The curved wall 92 and the lower vertical wall 95 are part of the corrugated portion 50 of the intermediate section 38. The lower vertical wall 95 extends to the lower surface 86 of the module which, in turn, extends to and meets with the right vertical wall 83.
  • As shown in FIG. 2, the head portion 65 is preferably larger than the leg portion 59. Accordingly, the head portion 65 is connected to the leg portion 59 by the angled intermediate section 62. The head portion 65 is preferably formed with two substantially parallel sides 98 and 101 connected by an outer end 104. The corners between the sides 98, 101 and ends 104 are preferably radiused to be smooth and to protect the conveyed product from damage.
  • An opening 107 is defined between spaced apart sides 110, 113 of adjacent link ends. At a distal end 116, the ends of adjacent links form the mouth 119 of the opening 107. At the opposite end 122, the opening 107 terminates in the multi-level surface defined by the web 47 and corrugated portion 50 as described above. The top level of the surface (best shown in FIG. 1) is defined by wall 89 of the web 47. The corners where the side walls of the link ends 41 meet the straight wall 89 of web 47 are also radiused to be smooth and to protect the conveyed product from damage.
  • In FIG. 5, the bottom level of the surface is defined by the relatively thin corrugated portion 50 having a pair of essentially parallel walls 125, 128. The corrugated portion 50 forms the series of regularly spaced alternating ridges 53 and valleys 56 along the intermediate section 38, as described herein.
  • Returning to FIG. 2, the straight wall 89 is shown bordering the opening 107. The curved surface defined by corrugated portion 50 is shown in broken lines. The curved surface receives link ends from an adjacent belt module such that the belt 20 is capable of collapsing for movement around a curved path, as described in detail herein.
  • The plurality of second link ends 44 extend from and touch the belt module 26 in the opposite direction from the first link ends 41. The second link ends 44 have the same overall shape as the first link ends 41 (except for the last link end 45) and are designed to fit into the openings between the first link ends 41 such that adjacent belt modules can be intercalated and pivotally connected by the pivot rods 35.
  • The first and second link ends are respectively spaced apart at a first width and each link end is a second width wide, so that the first width is more than 0.01 inches greater than the second width. In an exemplary embodiment, the first and second link ends each comprise a head portion and a leg portion, wherein the legs of adjacent link ends are spaced apart at a first width and each link end leg is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
  • Notably, a plurality of spaces, that extend from a top surface of the belt to a bottom surface of the belt, are bound by a front wall of the web, an outer end of the first link end, and the side walls of the second link ends in a series of intercalated belt modules, wherein at least some of the spaces of the intercalated belt modules have diameter greater than zero and an area greater than zero at least when the belt follows a curved path.
  • As shown in FIG. 3, the belt module 26 includes a slot 134 that is disposed through the link ends 41 transverse to the direction of belt travel. The slot 134 extends in the direction of belt travel such that it is generally oblong. The slot 134 receives the pivot rod 35. The pivot rod 35 passes through the slots 134 in the first link ends 41 and through the openings 137 in the second link ends 44 (as shown in FIG. 1). The openings 137 correspond to the shape of the shaft 138 (FIG. 1) of the pivot rod 35 such that the pivot rod 35 is received through the opening 137 but in contrast to slot 134, the pivot rod 35 preferably cannot move in the direction of belt travel inside opening 137. Due to the oblong shape of slot 134, the pivot rod 35 can pivot inside the slot 134 such that the belt 20 is capable of collapsing on one side while the other side fans out due to the pivoting of rod 35 and the nesting of the link ends 41, 44 and cooperating spaces in the adjacent belt modules.
  • The last link end 45 of the belt module 26 includes a second opening 140 disposed around opening 137 to provide for countersinking a head (not shown) at the end of the pivot rod shaft 138.
  • The back surface of the last link end 45 includes a rounded surface 143 that provides clearance for pivoting an adjacent link end 45.
  • In FIG. 4, the transverse slot 134 in link ends 41 and the transverse opening 137 in link ends 44 receive pivot rods 35 to connect adjacent belt modules 23 and 29 as shown in FIG. 1. The transverse opening or slot 134 may have a length that is at least twice as wide as the diameter of the pivot rods 35. The web 47 is coterminous with the top surface 77 of the belt module 26 and terminates at the top of the corrugated portion 50 that defines the space between adjacent link ends (best shown in FIG. 5).
  • The outer ends 104 of the link ends 41 and 44 are radiused in a smooth rounded surface 146. The rounded surface 146 preferably comprises a rounded surface having a constant radius and provides a driving surface for engagement with the drive sprocket 149, as described herein.
  • Also, the curvature of the outer ends 104 of the link ends enables the links to clear the web 47 when the adjacent modules collapse along the edge. The clearance enables the link ends to extend under the web 47 into the space defined by the corrugated portion 50 (best shown in FIGS. 6-7). In this manner, the web 47 partially hoods the link ends when the belt 20 collapses. Accordingly, the belt module 26 provides a web 47 for structural stability while maintaining a corrugated portion 50 to allow for recesses that provide maximum space for collapsing the belt modules around a curved path.
  • Turning to FIGS. 8-11, a second embodiment of a portion of a modular belt module 200 is shown. Belt module 200 is suitable for center modules in a bricklayed belt.
  • The belt module 200 includes link ends 206, 207 which are supported by an intermediate section 208. The link ends 206 have a slot 209 disposed transverse to the direction of belt travel indicated by arrow 211. Link ends 207 have a transverse opening 213 that corresponds to the shaft 138 of pivot rod 35.
  • As shown in FIG. 9, the belt module 200 has a web 212 that is part of the intermediate section 208 and that is wider than the corrugated portion 50 of the edge module 26 shown in FIGS. 1-7 (best shown in FIG. 5). In FIG. 8, the opening 218 between the link ends 206 is defined by a mouth 221 at one end 224 and is defined at the opposite end 227 by a multilevel surface defined by the web 212 and by a straight wall portion 230 that joins with the link end in a curved section 233.
  • As shown in FIGS. 10 and 11, the bottom of the intermediate section 208 of the link ends is angled to provide a face 236 for engagement of the intermediate section 208 with the teeth 148 on the drive sprocket 149 (FIG. 14). The drive sprocket 149 is described in detail hereafter.
  • The link ends 207 have the transverse opening 213 capable of receiving the pivot rod 35. Link ends 206 have the transverse slot 209 that is oblong and extends in the direction of belt travel such that the pivot rod 35 can move inside the slot 209 to pivot and facilitate collapsing.
  • The engagement of the face 236 on the central portion 215 with the tooth 148 on the drive sprocket 149 (shown in FIG. 15) assists in maintaining engagement between the belt 20 and the drive sprocket 149 and assists in driving the belt 20. The primary drive mechanism is described in detail below.
  • Turning to FIGS. 12-13, belt module 300 is an alternate embodiment of belt modules 23, 26, 29 of FIGS. 1-7. Belt module 300 differs from the previous modules because the slot and the holes are positioned off center on the link ends 303 and 306, respectively. The transverse slot 309 and transverse openings 312 are located lower on the belt module 300 which provides for increased module strength. The distance 315 from the top surface 318 to the center 321 of the opening 312 is greater than the distance 316 from the center 321 of the opening 312 to the bottom surface 324. Also, the link end 303 with the transverse slot 309 is designed such that the radius of curvature at the rounded end is greater above the slot 309 than it is below the slot 309.
  • As an option, the belt module 300 includes a plurality of openings 331 that provide for reducing the weight and material cost for the belt and provide open areas for cleaning the belt. The vertical openings 331 in the link ends 306 are shown in FIGS. 12 and 13.
  • Turning to FIGS. 14 and 15, the belt modules 20 (FIGS. 1-7) are shown driven by the teeth 148 on the drive sprocket 149. The drive sprocket 149 is driven by a rotating shaft (not shown) in a manner known to one of ordinary skill in the art. The teeth 148 engage with the rounded surface 146 on the outside of the link ends and push the link ends forward. In addition to the engagement of the teeth on the rounded surface 146 of the link ends, the central portions 215 (FIG. 15) of the middle modules push against the teeth along the angled face 236.
  • In FIG. 16, the belt 420 is shown at its maximum lengthwise extension. For example, the maximum lengthwise extension creates spaces 400 bordered by the cross-rib 438, the link ends 444 of module 423 and the link ends 441 of the adjacent module. In order to prevent small fingers from penetrating the belt grid and engaging with a belt support 405 (FIG. 17), the top surface 477 of the cross-rib is extended such that the opening 400 described above is less than 10 mm. At the top conveying surface, the opening 400 is bordered on one side by upper wall 489. The space 400 is also bordered by sides 410, 413, of adjacent link ends 444. The end of space 400 opposite from upper wall 489 is defined by the outer end 404 of link end 441 on the adjacent belt module 426. Also, a portion of the sides 498 and 401 of link end 441 border space 400.
  • For belts having a pitch greater than or equal to 1.5 inches, the openings created in the belt grid may allow for fingers to penetrate the grid.
  • In the present invention, for belts having pitches greater than or equal to 1.5 inches, extending the upper wall 489 outward from the cross-rib 438 reduces the size of space 400. The upper wall 489 is sized so that when the belt 420 is fully extended lengthwise the space 400 has critical opening widths or diameter less than 10 mm. Critical opening width or diameter is defined as the distance of the opening across its smallest dimension.
  • The extended upper wall 489 is sized to reduce the size of the opening yet allows the belt 420 to collapse without obstruction. The curvature of the link end from the top surface provides for nesting of the link end beneath the upper wall 489.
  • In FIG. 17, the belt modules 420 are shown driven by the teeth 448 on the drive sprocket 449. The drive sprocket 449 is driven by a rotating shaft (not shown) as known to those of ordinary skill in the art. A cylindrical member 410, which is representative of a small finger, has a diameter of 10 mm. As shown, the space 400 is not large enough to accommodate the member 410.
  • Accordingly, a radius belt 420 suitable for larger pitch (≧1.5″) radius belt applications has been disclosed. The belt 420 has an extended cross-rib 438 that reduces the space 400 to less than 10 mm width so as to prevent fingers of a user from penetrating the belt grid.
  • While the invention has been described in connection with certain preferred embodiments, it is not intended to limit the scope of the invention to the particular forms set forth, but, on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

Claims (62)

1. A belt module comprising:
an intermediate section including a corrugated portion extending along the length of the intermediate section and a web extending along the length of the intermediate section and adjacent to the corrugated portion;
a plurality of first link ends extending outward from the intermediate section with a transverse opening;
a plurality of second link ends extending outward from the intermediate section in a direction opposite the first link ends and the second link ends having a transverse opening having an elongated shape.
2. The belt module of claim 1, wherein the corrugated portion is arched.
3. The belt module of claim 1, wherein the first and second link ends each have a leg portion connected to the intermediate section, and wherein each leg portion has substantially parallel leg sidewalls.
4. The belt module of claim 3, wherein the first and second link ends each have a head portion that is wider than the leg portion, the head portion having a pair of substantially parallel head sidewalls and an endwall.
5. The belt module of claim 4, wherein a junction of the head sidewalls and endwall of the head portion is rounded.
6. The belt module of claim 5, wherein the endwall of the head portion is rounded and connects a top surface of the link end to a bottom surface of the link end.
7. A radius conveyor belt, comprising:
a plurality of belt modules comprising:
an intermediate section including a corrugated portion extending along the length of the intermediate section and a web extending along the length of the intermediate section and adjacent to the corrugated portion;
a plurality of first link ends extending outward from the intermediate section with a transverse opening; and
a plurality of second link ends extending outward from the intermediate section in a direction opposite the first link ends and the second link ends having a transverse opening having an elongated shape; and
a pivot rod extending transverse to the direction of belt travel through the transverse openings in the first link ends of one of the plurality of belt modules and extending through the transverse openings having an elongated shape in the second link ends of an adjacent belt module such that the first and second link ends of the adjacent belt modules are intercalated and the adjacent belt modules are interlinked into adjacent hinged rows capable of following a curved path.
8. The radius conveyor belt of claim 7, wherein the corrugated portion is arched.
9. The radius conveyor belt of claim 7, wherein the first and second link ends each have a leg portion connected to the intermediate section, and wherein each leg portion has substantially parallel leg sidewalls.
10. The radius conveyor belt of claim 9, wherein the first and second link ends each have a head portion that is wider than the leg portion, the head portion having a pair of substantially parallel head sidewalls and an endwall.
11. The radius conveyor belt of claim 10, wherein a junction of the head sidewalls and endwall of the head portion is rounded.
12. The radius conveyor belt of claim 7, wherein the web and the corrugated portion form a multilevel surface defining the end of the space between adjacent link ends.
13. The belt module of claim 1, wherein the corrugated portion includes regularly spaced valleys that do not extend beyond the web portion.
14. The belt module of claim 1, wherein the belt module is capable of intercalating with adjacently positioned belt modules to form a conveyor belt, wherein the first and second link ends fit into the corrugated portion of the adjacent belt modules when the conveyor belt is in a collapsed state to follow a curved path.
15. The belt module of claim 1, wherein the elongated transverse openings have a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
16. The belt module of claim 1, further comprising a plurality of spaces bounded by a front wall of the web, an outer end of the first link end, and the side walls of the second link ends in a series of intercalated belt modules, wherein at least some of the spaces of the intercalated belt modules have an area greater than zero when the belt follows a curved path.
17. The belt module of claim 1, wherein a series of intercalcalated belt modules form a conveyor belt and define spaces in a top surface of the conveyor belt that enable drainage and airflow.
18. The belt module of claim 1, wherein adjacent first and second link ends are respectively spaced apart at a first width and each link end is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
19. The belt module of claim 1, wherein the first and second link ends each comprise a head portion and a leg portion, wherein the legs of adjacent link ends are spaced apart at a first width and each link end leg is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
20. The belt module of claim 1, wherein the plurality of first link ends each have a transverse slotted opening disposed transverse to the direction of belt travel, wherein the plurality of first link ends each have an approximately circular transverse opening,
wherein said elongated transverse openings of the second link ends have a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
21. The radius conveyor belt of claim 7, wherein the corrugated portion includes regularly spaced valleys that do not extend beyond the web portion.
22. The radius conveyor belt of claim 7, wherein the belt module is capable of intercalating with adjacently positioned belt modules to form a conveyor belt, wherein the first and second link ends fit into the corrugated portion of the adjacent belt modules when the conveyor belt is in a collapsed state to follow a curved path.
23. The radius conveyor belt of claim 7, wherein the elongated openings have a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
24. The radius conveyor belt of claim 23, wherein the elongated openings have a length at least twice as wide as the diameter of the pivot rod.
25. The radius conveyor belt of claim 7, further comprising a plurality of spaces bounded by a front wall of the web, an outer end of the first link end, and the side walls of the second link ends in the series of intercalated belt modules, wherein at least some of the spaces of the intercalated belt modules have an area greater than zero when the belt follows a curved path.
26. The radius conveyor belt of claim 7, wherein a top surface of the conveyor belt that enables drainage and airflow.
27. The radius conveyor belt of claim 7, wherein adjacent first and second link ends are respectively spaced apart at a first width and each link end is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
28. The radius conveyor belt of claim 7, wherein the first and second link ends each comprise a head portion and a leg portion, wherein the legs of adjacent link ends are spaced apart at a first width and each link end leg is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
29. The radius conveyor belt of claim 7, wherein the plurality of first link ends each have a transverse slotted opening disposed transverse to the direction of belt travel, wherein the plurality of first link ends each have an approximately circular transverse opening,
wherein said elongated transverse openings of the second link ends have a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
30. A radius conveyor belt, comprising:
a plurality of belt modules having a plurality of first link ends disposed in the direction of belt travel and having a plurality of second link ends disposed in the opposite direction, a cross-rib disposed between the first and second link ends and having a web, and a corrugated portion disposed adjacent to the web, the first and second link ends disposed such that a space capable of receiving a link end is formed between each adjacent link end, the space being open at one end and terminating in an rounded region at the opposite end, the plurality of first link ends being offset from the plurality of second link ends such that the first link ends align with the space between the second link ends such that adjacently positioned belt modules are capable of intercalating so that the first link ends of one belt module fit into the spaces defined between the second link ends of an adjacent belt module, the plurality of first link ends having a slot defined therein, the slot disposed transverse to the direction of belt travel and extending in the direction of belt travel, the plurality of second link ends having a transverse opening defined therein;
a pivot rod extending transverse to the direction of belt travel through the openings in the second link end of one of the plurality of belt modules and extending through the slotted openings in the first link end of an adjacent belt module such that the first and second link ends of the adjacent belt modules are intercalated and the adjacent belt modules are interlinked into adjacent hinged rows capable of following a curved path;
wherein the web on the cross-rib extends in the direction of belt travel such that, when the belt is at its maximum extension in the direction of belt travel, a space bounded by the web, an outer end of the first link end and the sidewalls of second links ends has a diameter less than 10 mm.
31. The radius conveyor belt of claim 30, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends has a diameter greater than zero and an area greater than zero.
32. The radius conveyor belt of claim 30, wherein the corrugated portion has a sinusoidal shape comprising a series of regularly shaped ridges and valleys extending substantially across a lateral width of the module.
33. The radius conveyor belt of claim 30, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends has a diameter greater than zero and an area greater than zero, and
wherein the corrugated portion has a sinusoidal shape comprising a series of regularly shaped ridges and valleys extending substantially across a lateral width of the module.
34. The radius conveyor belt of claim 30, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends is bounded by a front wall of the web and extends from a top surface of the belt to a bottom surface of the belt, wherein the space has an area greater than zero.
35. The radius conveyor belt of claim 30, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends is bounded by a front wall of the web and extends from a top surface of the belt to a bottom surface of the belt, wherein the space has an area sufficient to enable airflow and drainage.
36. A conveying system, comprising:
an endless radius conveyor belt, comprising a plurality of belt modules having a plurality of first link ends disposed in the direction of belt travel and having a plurality of second link ends disposed in the opposite direction, the first and second link ends disposed such that a space capable of receiving a link end is formed between each adjacent link end, the space being open at one end and terminating in an rounded region at the opposite end, the plurality of first link ends being offset from the plurality of second link ends such that the first link ends align with the space between the second link ends such that adjacently positioned belt modules are capable of intercalating so that the first link ends of one belt module fit into the spaces defined between the second link ends of an adjacent belt module, the plurality of first link ends having a slot defined therein, the slot disposed transverse to the direction of belt travel and extending in the direction of belt travel, the plurality of second link ends having a transverse opening defined therein;
an intermediate portion disposed between the first and second link ends and having a web and a corrugated portion, the web formed in the center of the belt modules and disposed such that a first side of the web terminates in a first surface of the belt module and a second side of the web terminates adjacent to the corrugated portion, wherein the web on the intermediate portion extends in the direction of belt travel such that, when the belt is at its maximum extension in the direction of belt travel, a space bounded by the web, an outer end of the first link end and the sidewalls of second links ends has a diameter less than 10 mm;
a pivot rod extending transverse to the direction of belt travel through the openings in the second link end of one of the plurality of belt modules and extending through the slotted openings in the first link end of an adjacent belt module such that the first and second link ends of the adjacent belt modules are intercalated and the adjacent belt modules are interlinked into adjacent hinged rows capable of following a curved path; and,
a drive sprocket having teeth disposed around the perimeter thereof, the teeth capable of engaging with the rounded endwall of the link ends to drive the endless conveyor belt around a conveying path; and,
wherein the web and corrugated portion form a multilevel surface defining the end of the space between adjacent link ends.
37. The conveying system of claim 36, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends has a diameter greater than zero and an area greater than zero.
38. The conveying system of claim 36, wherein the corrugated portion has a sinusoidal shape comprising a series of regularly shaped ridges and valleys extending substantially across a lateral width of the module.
39. The conveying system of claim 36, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends has a diameter greater than zero and an area greater than zero, and
wherein the corrugated portion has a sinusoidal shape comprising a series of regularly shaped ridges and valleys extending substantially across a lateral width of the module.
40. The radius conveyor belt of claim 36, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends is bounded by a front wall of the web and extends from a top surface of the belt to a bottom surface of the belt, wherein the space has an area greater than zero.
41. The radius conveyor belt of claim 36, wherein the space bounded by the web, the outer end of the first link end and the sidewalls of the second links ends is bounded by a front wall of the web and extends from a top surface of the belt to a bottom surface of the belt, wherein the space has an area sufficient to enable airflow and drainage.
42. A belt module, which comprises:
a) an intermediate section having opposed first and second walls, wherein the intermediate section has an intermediate width defined by the first and second walls and a thickness defined by an upper surface and a lower surface and wherein the intermediate section comprises a web portion extending across the intermediate width between the first and second walls and from one of the upper and lower surfaces to a portion of the way through the thickness of the intermediate section to form into a corrugated portion extending across the intermediate width between the first and second walls to the other of the upper and lower surfaces, wherein the corrugated portion has a sinusoidal shape comprising a series of regularly spaced ridges and valleys extending substantially across a lateral width of the module;
b) a first plurality of link ends extending outwardly from the intermediate section including the web portion and being connected to the regularly spaced ridges of the first wall of the corrugated portion;
c) a second plurality of link ends extending outwardly from the intermediate section including the web portion and being connected to the regularly spaced ridges of the second wall of the corrugated portion and in a direction opposite the first link ends; and
d) transverse openings provided in each of the first and second link ends.
43. The belt module of claim 42, wherein the first plurality of link ends and the second plurality of link ends extend outwardly from and touch the web portion.
44. The belt module of claim 42, wherein the belt module is capable of intercalating with adjacently positioned belt modules to form a conveyor belt, wherein the first and second link ends fit into the valleys of the adjacent belt modules when the conveyor belt is in a collapsed state.
45. The belt module of claim 42, wherein the plurality of first link ends each have a transverse slotted opening disposed transverse to the direction of belt travel, said slotted opening having a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
46. The belt module of claim 45, wherein the belt modules are capable of being connected to an adjacent belt module with a pivot rod, wherein the slotted openings have a length at least twice as wide as the diameter of the pivot rod.
47. The belt module of claim 42, further comprising a plurality of spaces bounded by a front wall of the web, an outer end of the first link end, and the side walls of the second link ends in a series of intercalated belt modules, wherein at least some of the spaces have an area greater than zero when the belt follows a curved path.
48. The belt module of claim 42, wherein a series of intercalcalated belt modules form a conveyor belt and define spaces in a top surface of the conveyor belt that enable drainage and airflow.
49. The belt modules of claim 42, wherein adjacent link ends are spaced apart at a first width and each link end is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
50. The belt modules of claim 42, wherein the first and second link ends each comprise a head portion and a leg portion, wherein the legs of adjacent link ends are spaced apart at a first width and each link end leg is a second width wide, and wherein the first width is more than 0.01 inches greater than the second width.
51. The belt module of claim 42, wherein the plurality of first link ends each have a transverse slotted opening disposed transverse to the direction of belt travel, wherein the plurality of second link ends each have an approximately circular transverse opening, wherein said slotted opening having a length sufficient to enable a series of intercalated belt modules to collapse and follow a curved path.
52. A belt module, comprising:
an upper stiffening portion;
a lower corrugated portion, adjacent to the upper stiffening portion;
a plurality of first link ends, adjacent and transverse to the upper stiffening portion and the lower corrugated portion; and
a plurality of second link ends, adjacent and transverse to the upper stiffening portion and the lower corrugated portion and extending in a direction opposite to the plurality of first link ends, wherein each of the plurality of first link ends comprises a transverse opening there through having first shape and each of the plurality of second link ends comprises a transverse opening there through having a second shape, different from the first.
53. The belt module of claim 52, wherein the first shape is one of a circle and an elongated circle and the second shape is the other of the circle and the elongated circle.
54. The belt module of claim 52, wherein a centerline of the transverse openings through the plurality of first and second link ends is equidistant from a top surface and a bottom surface of the belt module.
55. The belt module of claim 52, wherein a centerline of the transverse openings through the plurality of first and second link ends is at a predetermined offset with respect to a top surface of the belt module.
56. The belt module of claim 55, wherein the predetermined offset is greater than one-half of a distance between the top surface and a bottom surface of the belt module.
57. The belt module of claim 52, wherein the first and second link ends are respectively spaced apart at a first width and each link end is a second width wide, wherein the first width is more than the second width.
58. The belt module of claim 57, wherein the first width is more than 0.01 inches greater than the second width.
59. The belt module of claim 52, wherein at least two of the plurality of second link ends have the same overall shape as at least two of the plurality of first link ends.
60. The belt module of claim 52, wherein at least one of the plurality of first link ends is centered between at least two of the plurality of oppositely directed second link ends.
61. The belt module of claim 52, wherein outer ends of the first and second link ends are adapted to provide a surface to engage a drive sprocket.
62. The belt module of claim 61, wherein the outer ends of the first and second link ends comprise a rounded surface.
US11/907,618 2000-05-25 2007-10-15 Radius conveyor belt Abandoned US20080083598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/907,618 US20080083598A1 (en) 2000-05-25 2007-10-15 Radius conveyor belt

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/579,090 US6330941B1 (en) 2000-05-25 2000-05-25 Radius conveyor belt
US09/874,589 US6523680B2 (en) 2000-05-25 2001-06-05 Radius conveyor belt with structure for the prevention of pinched fingers
US10/282,068 US20030057061A1 (en) 2000-05-25 2002-10-29 Radius conveyor belt with structure for the prevention of pinched fingers
US10/429,031 US6896126B2 (en) 2000-05-25 2003-05-05 Radius conveyor belt
US10/969,983 US7281626B2 (en) 2000-05-25 2004-10-22 Radius conveyor belt
US11/907,618 US20080083598A1 (en) 2000-05-25 2007-10-15 Radius conveyor belt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/969,983 Continuation US7281626B2 (en) 2000-05-25 2004-10-22 Radius conveyor belt

Publications (1)

Publication Number Publication Date
US20080083598A1 true US20080083598A1 (en) 2008-04-10

Family

ID=24315517

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/579,090 Expired - Lifetime US6330941B1 (en) 2000-05-25 2000-05-25 Radius conveyor belt
US09/874,589 Expired - Lifetime US6523680B2 (en) 2000-05-25 2001-06-05 Radius conveyor belt with structure for the prevention of pinched fingers
US10/282,068 Abandoned US20030057061A1 (en) 2000-05-25 2002-10-29 Radius conveyor belt with structure for the prevention of pinched fingers
US10/429,031 Expired - Lifetime US6896126B2 (en) 2000-05-25 2003-05-05 Radius conveyor belt
US10/428,858 Expired - Lifetime US6793069B2 (en) 2000-05-25 2003-05-05 Radius conveyor belt
US10/969,983 Expired - Fee Related US7281626B2 (en) 2000-05-25 2004-10-22 Radius conveyor belt
US11/907,618 Abandoned US20080083598A1 (en) 2000-05-25 2007-10-15 Radius conveyor belt

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US09/579,090 Expired - Lifetime US6330941B1 (en) 2000-05-25 2000-05-25 Radius conveyor belt
US09/874,589 Expired - Lifetime US6523680B2 (en) 2000-05-25 2001-06-05 Radius conveyor belt with structure for the prevention of pinched fingers
US10/282,068 Abandoned US20030057061A1 (en) 2000-05-25 2002-10-29 Radius conveyor belt with structure for the prevention of pinched fingers
US10/429,031 Expired - Lifetime US6896126B2 (en) 2000-05-25 2003-05-05 Radius conveyor belt
US10/428,858 Expired - Lifetime US6793069B2 (en) 2000-05-25 2003-05-05 Radius conveyor belt
US10/969,983 Expired - Fee Related US7281626B2 (en) 2000-05-25 2004-10-22 Radius conveyor belt

Country Status (8)

Country Link
US (7) US6330941B1 (en)
EP (1) EP1182151B1 (en)
JP (1) JP2002019939A (en)
AT (1) ATE226913T1 (en)
CA (1) CA2340288C (en)
DE (1) DE60000690T2 (en)
DK (1) DK1182151T3 (en)
ES (1) ES2183774T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085414B2 (en) 2012-11-29 2015-07-21 Solus Industrial Innovations, Llc Side-flexing conveyors
US9102476B2 (en) 2012-10-25 2015-08-11 Solus Industrial Innovations, Llc Conveyor system wear indication devices and methods

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330941B1 (en) 2000-05-25 2001-12-18 Habasit Ag Radius conveyor belt
US6766899B1 (en) * 2000-12-29 2004-07-27 Habasit Ag Sprocket with combined hinge/center drive
US6880696B2 (en) 2001-05-29 2005-04-19 Habasit Ag Module for a modular conveyor belt having a sandwich layer construction and method of manufacture
DE20109161U1 (en) * 2001-06-02 2002-07-11 Schuster Thomas Link belt, especially for round balers
US6725883B2 (en) * 2001-06-05 2004-04-27 Habasit Ag Flat top open hinge module
US6644466B2 (en) 2002-01-31 2003-11-11 The Laitram Corporation Platform-top radius belt and modules
US6705460B2 (en) * 2002-04-23 2004-03-16 Laitram L.L.C. Modular conveyor belt
US20040007448A1 (en) * 2002-07-12 2004-01-15 Luis Cediel Module for a modular conveyor belt having antimicrobial characteristics and method of manufacture
US7331447B2 (en) * 2003-07-24 2008-02-19 Habasit Ag Rod retaining snap rod with enlarged retaining ring
US7108127B2 (en) * 2003-07-24 2006-09-19 Habasit Ag Rod retaining snap rod with enlarged retaining ring
DE602004025250D1 (en) * 2003-08-12 2010-03-11 Habasit Ag MODULAR TRANSPORT BELT WITH CONNECTING BAR
US20050074568A1 (en) * 2003-10-07 2005-04-07 Unger Jeff C. Composite structural material and method therefor
US6837367B1 (en) 2003-11-05 2005-01-04 Laitram, L.L.C. Modular plastic conveyor belt with high beam strength
US7073662B2 (en) 2004-02-20 2006-07-11 Ashworth Bros., Inc. Conveyor belt and method of assembly
US7080729B2 (en) * 2004-08-25 2006-07-25 Habasit Ag Belt module with oblong pivot hole
DE602005001753T2 (en) * 2004-10-29 2008-05-21 Uni-Chains A/S Conveyor belt with lateral folding
US7284651B2 (en) * 2005-06-20 2007-10-23 Durr Systems, Inc. Conveyor system and method of conveying elements
NL1030155C2 (en) * 2005-10-10 2007-04-11 Rexnord Flattop Europe Bv Transporter.
US7530454B2 (en) 2005-11-08 2009-05-12 Ashworth Bros. Inc. Conveyor belt
US8678178B2 (en) * 2006-01-30 2014-03-25 Habasit Ag Modular conveyor belt with tight radius in one curve direction
US7364036B2 (en) * 2006-02-09 2008-04-29 Habasit Ag Module for a perforated flat top belt with hinge gap for better fluid flow
US20080023304A1 (en) * 2006-07-25 2008-01-31 Habasit Ag Radius belt with improved stiffness
US8276747B2 (en) * 2007-06-29 2012-10-02 Habasit Ag Module for a modular belt and a driving sprocket for easy cleaning
US7624858B2 (en) * 2007-12-21 2009-12-01 Habasit Ag Modular plastic conveyor belt for spiral conversion
AU2009202281B2 (en) 2009-06-09 2014-07-24 Metso Outotec Finland Oy A froth flotation method and an apparatus for extracting a valuable substance from a slurry
EP2275367A3 (en) * 2009-07-13 2012-07-25 Ammeraal Beltech Modular A/S Modular belt conveyor, in particular a curving or helical conveyor
US9023085B2 (en) 2010-12-22 2015-05-05 Walter E. Strippgen Dynamic surgical implant
US8776999B2 (en) 2011-09-16 2014-07-15 Dyco, Inc. Articulating frame for continuous conveyor
US8863944B2 (en) * 2012-02-20 2014-10-21 Laitram, L.L.C. Abrasion resistant conveyor belt
US8678180B2 (en) * 2012-07-25 2014-03-25 Laitram, L.L.C. Modular conveyor belt with extended raised ribs
CN102826331A (en) * 2012-09-19 2012-12-19 昆山特力伯传动科技有限公司 Grid-type conveyer belt
EP3066034B1 (en) * 2013-11-07 2018-02-07 Ammeraal Beltech Modular A/S Conveyor belt module
US9663297B1 (en) 2016-03-15 2017-05-30 Ashworth Bros., Inc. Linkage assembly for self-supporting conveyor belt
US10065802B1 (en) * 2017-04-17 2018-09-04 Laitram, L.L.C. Modular conveyor belt integrating a high density array of rollers
CN107380901B (en) * 2017-07-17 2019-07-16 徐州中良设备工程股份有限公司 A kind of mechanical transfer crawler belt
CN111670152B (en) * 2018-01-30 2022-12-27 剑桥国际股份有限公司 Splicing system for conveyor belt
CN111306893B (en) * 2020-03-11 2021-05-14 陕西事农果品有限公司 Spiral red date natural drying machine

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US270202A (en) * 1883-01-09 Gas-engine
US288255A (en) * 1883-11-13 Paper box
US291777A (en) * 1884-01-08 Machine for the reduction of wood and other materials to paper-pulp
US1804701A (en) * 1929-04-01 1931-05-12 Mojonnier Bros Co Chain conveyer
US1937304A (en) * 1930-08-04 1933-11-28 Alvey Conveyor Mfg Co Conveyer chain and sprocket wheel therefor
US2693268A (en) * 1949-04-09 1954-11-02 Joy Mfg Co Endless chain conveyer
US3602364A (en) * 1969-07-22 1971-08-31 Stevens & Co Inc J P Segmented belt
US3768631A (en) * 1971-11-12 1973-10-30 E Ragnvald Conveyor belt chain
US3870141A (en) * 1970-08-13 1975-03-11 Laitram Corp Modular belt
US4109784A (en) * 1976-01-24 1978-08-29 Karl Hartmann Conveyor belt with corrugated sidewalls
US4213527A (en) * 1977-01-17 1980-07-22 The Laitram Corporation Chain link conveyors
US4394901A (en) * 1980-12-16 1983-07-26 Ashworth Bros., Inc. Modular plastic conveyor belt
USD282907S (en) * 1983-09-22 1986-03-11 Rexnord Inc. Chain link for conveyors
USD286136S (en) * 1984-02-09 1986-10-14 Rexnord Inc. Chain link
US4688670A (en) * 1982-09-22 1987-08-25 The Laitram Corporation Flat top conveyor belt
US4729469A (en) * 1985-11-15 1988-03-08 Lapeyre James M Flat top conveyor belt
US4742907A (en) * 1982-06-01 1988-05-10 Kvp Systems, Inc. Plastic conveyor belt
US4754872A (en) * 1986-01-30 1988-07-05 Damkjaer Poul E Conveyor chain link
US4821872A (en) * 1983-01-12 1989-04-18 The Laitram Corporation Lightweight modular conveyor belt
US4832183A (en) * 1984-08-20 1989-05-23 The Laitram Corporation Conveyor belt having insertable & selectable conveying member
US4858753A (en) * 1987-04-15 1989-08-22 Rexnord Corporation Conveyor chain assembly
US4893709A (en) * 1988-08-18 1990-01-16 Rexnord Corporation Back-flexing article carrying chain
US4893710A (en) * 1989-01-13 1990-01-16 Cambridge Wire Cloth Company Plastic modular conveyor belts and modules therefor
US4901844A (en) * 1988-10-03 1990-02-20 Kvp Systems, Inc. Low tension plastic conveyor belt system
USD307707S (en) * 1987-01-29 1990-05-08 Ab Skf Conveyor chain link
US4925013A (en) * 1984-08-20 1990-05-15 The Laitram Corporation Conveyor belt having a high friction conveying surface
US4934517A (en) * 1988-11-14 1990-06-19 The Laitram Corporation Horizontal flexing conveyor belt
US4949838A (en) * 1988-11-14 1990-08-21 The Laitram Corporation Apparatus and methods to allow non-destructive removal of pivot rods in modular plastic conveyor belts
US4972942A (en) * 1988-07-18 1990-11-27 Faulkner William G Conveyor belt
US4989723A (en) * 1984-02-06 1991-02-05 The Cambridge Wire Cloth Company Plastic conveyor belt system with improved product support
US4993543A (en) * 1977-05-31 1991-02-19 The Laitram Corporation Link chain belt
US4993544A (en) * 1989-01-13 1991-02-19 Cambridge Wire Cloth Company Plastic modular conveyor belts and modules therefor
US5020656A (en) * 1988-07-18 1991-06-04 Faulkner William G Flat top conveyor
US5031757A (en) * 1989-12-26 1991-07-16 Span Tech Corporation Modular link conveyor system with narrow chain
US5065860A (en) * 1990-04-12 1991-11-19 Faulkner William G Connectors for woven conveyor belts
US5083659A (en) * 1984-02-06 1992-01-28 The Cambridge Wire Cloth Co. Plastic conveyor belt system with improved product support
US5105938A (en) * 1991-06-14 1992-04-21 The Laitram Corporation Pivot rod retention structure in modular conveyor belts
US5131526A (en) * 1989-11-06 1992-07-21 Kaak Stephanus W Conveyor for a treatment unit
US5133449A (en) * 1990-11-30 1992-07-28 The Cambridge Wire Cloth Company Frictional drive spiral conveyor system
US5139135A (en) * 1991-02-19 1992-08-18 Guy Irwin Reduced radius spiral conveyor with plastic belts
US5156262A (en) * 1990-11-08 1992-10-20 The Laitram Corporation Conveyor belt module drive surfaces for mating with sprocket drive surface in the hinging region
US5156264A (en) * 1988-11-14 1992-10-20 The Laitram Corporation Non-destructive pivot rod retention apparatus for modular plastic conveyor belts
US5181601A (en) * 1990-10-09 1993-01-26 Palmaer K V Plastic conveyor belt with integral sideplate
US5217110A (en) * 1992-04-23 1993-06-08 Cambridge Wire Cloth Company Modular plastic turn belt conveyor system, module, belt and drive therefor
US5224583A (en) * 1990-10-09 1993-07-06 Palmaer K V Low back pressure plastic conveyor
US5253749A (en) * 1990-10-25 1993-10-19 Rexnord Corporation Open area conveyor assembly
US5280833A (en) * 1991-08-27 1994-01-25 Andre Robin Turn conveyor with reduced friction feature
US5303818A (en) * 1990-05-21 1994-04-19 Ucc Corporation Modular conveyor belt
US5310045A (en) * 1992-12-02 1994-05-10 Palmaer K V Spiral conveyor belt with ridged drive capstan
US5332084A (en) * 1993-09-15 1994-07-26 The Laitram Corporation Pivot rod occlusion system for plastic modular link belts
US5339946A (en) * 1992-11-16 1994-08-23 William G. Faulkner Conveyor belt having link assemblies with leading and trailing shaft projections
US5346059A (en) * 1991-02-19 1994-09-13 Guy Irwin Conveyor belt module
US5361893A (en) * 1993-11-18 1994-11-08 The Laitram Corporation High friction plastic conveyor belts having modular links formed by two integrated plastic materials
US5379883A (en) * 1993-01-21 1995-01-10 Maskinfabrikken Baeltix A/S Chain link conveyor
US5413211A (en) * 1988-07-18 1995-05-09 William Faulkner Conveyor incorporating curved surface flight links
US5425443A (en) * 1993-08-03 1995-06-20 Mcc Nederland B.V. Conveyor mat built up of synthetic modules and modules for such conveyor mat
US5431275A (en) * 1993-05-27 1995-07-11 William G. Faulkner Conveyor belt with rotatable tapered link shift
US5439099A (en) * 1992-11-16 1995-08-08 Mcc Nederland B.V. Conveyor mat built up of synthetic modules and modules for such conveyor
US5562200A (en) * 1994-03-25 1996-10-08 Maryland Wire Belts, Inc. Unitary components and modular belt assembly
US5566817A (en) * 1995-05-31 1996-10-22 Meeker; William A. Conveyor belt
US5573105A (en) * 1995-11-08 1996-11-12 Palmaer; Karl V. Radius conveyor with guide rollers
US5573106A (en) * 1996-02-05 1996-11-12 Rexnord Corporation Modular conveyor chain including headed hinge pins
US5598916A (en) * 1994-01-18 1997-02-04 The Laitram Corporation Changing headless pivot rods from edges of modular conveyor belts
US5613597A (en) * 1993-08-26 1997-03-25 Kvp Systems, Inc. Transfer method for plastic conveyor belts
US5628393A (en) * 1995-06-08 1997-05-13 Steeber; Dorian F. Conveyor apparatus having a nodular conveying surface
US5634550A (en) * 1993-03-12 1997-06-03 Rexnord Corporation Direction changing mechanism for transferring articles between transverse conveyors
US5678683A (en) * 1996-02-05 1997-10-21 Rexnord Corporation Conveyor chain with sealed plug hinge pin retention system
US5690210A (en) * 1996-06-10 1997-11-25 Span Tech Corporation Modular link conveyor with interdigitating grid
US5738205A (en) * 1994-04-15 1998-04-14 Drobel; Jorgen Conveyor chain having a supporting face consitituted by chain links transversal to the longitudinal direction of the chain
US5775480A (en) * 1996-06-14 1998-07-07 The Laitram Corporation Low-friction conveyor assembly
US5816390A (en) * 1996-02-05 1998-10-06 Stebnicki; James C. Conveyor pin retention system using offset openings
US5906270A (en) * 1996-08-16 1999-05-25 Faulkner; William G. Tight turning radius conveyor belt
US5911305A (en) * 1996-11-22 1999-06-15 Span Tech Corporation Endless loop modular conveyor system with drive screw
US5921379A (en) * 1996-01-23 1999-07-13 The Laitram Corporation Modular conveyor belt suitable for following straight or curved paths
US6036001A (en) * 1997-05-14 2000-03-14 Rexnord Corporation Side-flexing conveyor construction
US6079543A (en) * 1998-06-18 2000-06-27 Kvp Falcon Plastic Belting, Inc. Lane-divided plastic conveyor belt
US6148990A (en) * 1998-11-02 2000-11-21 The Laitram Corporation Modular roller-top conveyor belt
US6196381B1 (en) * 1996-11-29 2001-03-06 Yamakyu Chain Kabushiki Kaisha Conveyor chain unit and conveyor chain
US6213292B1 (en) * 1998-05-29 2001-04-10 Tsubakimoto Chain Co. Molded conveyor chain
US6216854B1 (en) * 1998-01-23 2001-04-17 Uni-Chains A/S Side-flexing conveyor belt
US6227356B1 (en) * 1998-03-16 2001-05-08 Mcc Nederland B.V. Conveyor mat and conveying apparatus
US6345715B2 (en) * 1998-11-03 2002-02-12 Kvp Falcon Plastic Belting, Inc. Rod retention system for modular plastic conveyor belt
US6357581B1 (en) * 2000-07-19 2002-03-19 Habasit Ag Modular radius conveyor belt
US6364095B1 (en) * 2000-04-13 2002-04-02 Span Tech Llc Modular conveyor system with side flexing belt having roller support
US6382405B1 (en) * 2000-02-25 2002-05-07 Kvp Plastic Belting, Inc. Solid top radius conveyor belt
US6390288B1 (en) * 1999-07-19 2002-05-21 Uni-Chains A/S Feed apparatus
US6471048B1 (en) * 1999-03-19 2002-10-29 Vic Thompson Company Conveyor belt system
US7234589B2 (en) * 2004-07-06 2007-06-26 Laitram, L.L.C. Conveyor belt and module with a self-adjusting edge
US7360643B1 (en) * 2007-03-20 2008-04-22 Habasit Ag Electroconductive modular belt
US7364036B2 (en) * 2006-02-09 2008-04-29 Habasit Ag Module for a perforated flat top belt with hinge gap for better fluid flow
US7367448B2 (en) * 2006-07-20 2008-05-06 Habasit Ag Chain with undulated edge
US7410048B2 (en) * 2002-12-10 2008-08-12 Rexnord Flattop Europe B.V. Curved segment of a guide for a modular conveyor chain and modular conveyor chain with such a curved guiding segment
US7419051B2 (en) * 2004-10-29 2008-09-02 Ped Invest A/S Side-flexing conveyor belt

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US282907A (en) * 1883-08-07 John andeew knight
US307707A (en) * 1884-11-04 Extracting oil and other substances from seeds and other materials by means of
US288256A (en) * 1883-11-13 Albebt p
US290932A (en) * 1883-12-25 Aedson
US556142A (en) * 1896-03-10 Tire-tightener
US213527A (en) * 1879-03-25 Improvement in amalgamating quartz-mills
US376831A (en) * 1888-01-24 William c
US109784A (en) * 1870-11-29 Improvement in water-wheels
US537248A (en) * 1895-04-09 Derailing-switch
US286136A (en) * 1883-10-02 David humphbeys
US602364A (en) * 1898-04-12 Planter
US216854A (en) * 1879-06-24 Improvement in running-gears for wagons
US693268A (en) * 1900-11-24 1902-02-11 Thomas Gunning Feed-water heater and purifier.
US729469A (en) * 1902-11-01 1903-05-26 Edgar William Williams Boring-tool.
US821872A (en) * 1903-12-24 1906-05-29 Clarence B Hodges Gage-glass.
US937304A (en) * 1908-12-23 1909-10-19 Stephen Adair Holman Wrench.
US2683268A (en) * 1950-04-17 1954-07-13 George H Strayer Wheeled device for launching and beaching small boats
USD270202S (en) 1980-09-18 1983-08-16 Rexnord Inc. Conveyor module
US4557374A (en) 1982-02-23 1985-12-10 The Cambridge Wire Cloth Company Modular conveyor belting with cam-slotted links for maintaining transverse distribution of tension while negotiating horizontal curves and for facilitating cleaning
US4556142A (en) 1983-01-12 1985-12-03 The Laitram Corporation Lightweight modular conveyor belt
USD288255S (en) 1984-02-06 1987-02-10 The Cambridge Wire Cloth Co. Close rib belt module for an endless conveyor belt
USD290932S (en) 1984-04-10 1987-07-21 Aktiebolaget Skf Conveyor chain link
USD291777S (en) 1985-11-15 1987-09-08 The Laitram Corporation Conveyor belt module
US5057837A (en) * 1987-04-20 1991-10-15 Digital Equipment Corporation Instruction storage method with a compressed format using a mask word
DE3717190A1 (en) * 1987-05-22 1988-12-15 Supervis Ets CAMSHAFT FOR CONTROLLING VALVES IN COMBUSTION ENGINES AND METHOD FOR THEIR PRODUCTION
US4842907A (en) * 1987-12-31 1989-06-27 Minigrip, Inc. Biaxially stretched tubularly extruded film with transverse closure strip
JP2564177B2 (en) * 1988-09-21 1996-12-18 東亜建設工業 株式会社 High-concentration dredging device
JP2588006B2 (en) * 1988-09-30 1997-03-05 富士写真フイルム株式会社 Polishing tape
US5528393A (en) * 1989-10-30 1996-06-18 Regents Of The University Of Colorado Split-element liquid crystal tunable optical filter
US5545160A (en) * 1990-08-14 1996-08-13 O'rourke; Daniel K. Computer oriented stereotactic microneurological surgery
US5198722A (en) * 1990-10-31 1993-03-30 North American Philips Corporation High-pressure discharge lamp with end seal evaporation barrier
NL9002427A (en) * 1990-11-08 1992-06-01 Karel Kuiper HOOK HOOK.
US5069330A (en) 1990-11-30 1991-12-03 Palmaer K V Side plate for a plastic spiral conveyor belt system
US5083859A (en) * 1991-01-02 1992-01-28 Opticorp, Inc. Aspheric lenses
US5158264A (en) * 1991-02-22 1992-10-27 Baroid Technology, Inc. Parallel expanding gate valve
US5131828A (en) * 1991-03-27 1992-07-21 Tecumseh Products Company Scroll compressor including compliance mechanism for the orbiting scroll member
DE4116364A1 (en) * 1991-05-18 1992-11-19 Basf Ag METAL OXIDE CONTAINING CATALYST FOR PROCESSES FOR THE OXIDATIVE REMOVAL OF ORGANIC COMPOUNDS FROM EXHAUST GASES FROM COMBUSTION ENGINES
US5174439A (en) 1991-07-03 1992-12-29 Cambridge Wire Cloth Company Modular plastic turn belt conveyor system, module, belt and drive therefor
US5330941A (en) * 1991-07-24 1994-07-19 Asahi Glass Company Ltd. Quartz glass substrate for polysilicon thin film transistor liquid crystal display
US5174438A (en) 1991-10-23 1992-12-29 Flextrak Ltd. Conveyor belt parts and assembly
US5357581A (en) * 1991-11-01 1994-10-18 Eastman Kodak Company Method and apparatus for the selective filtering of dot-matrix printed characters so as to improve optical character recognition
US5379483A (en) * 1992-07-21 1995-01-10 Bissell, Inc. Vacuum cleaner having a tool attached to the nozzle
US5271491A (en) 1993-02-18 1993-12-21 Guy Irwin Bi-directional short radius turn conveyor belt
US5386469A (en) * 1993-08-05 1995-01-31 Zilog, Inc. Firmware encryption for microprocessor/microcomputer
US5812817A (en) * 1994-10-17 1998-09-22 International Business Machines Corporation Compression architecture for system memory application
US5850902A (en) 1995-10-06 1998-12-22 The Laitram Corporation Transferring articles from a moving belt edge onto a normally disposed moving conveyor belt
US6196361B1 (en) * 1996-02-16 2001-03-06 Sundstrand Corporation Compact electric asymmetry brake
US5864859A (en) * 1996-02-20 1999-01-26 International Business Machines Corporation System and method of compression and decompression using store addressing
ES1033821Y (en) 1996-04-18 1997-03-01 Bajo Demetrio Nunez PERFECTED CONVEYOR BELT.
US5761536A (en) * 1996-08-21 1998-06-02 International Business Machines Corporation System and method for reducing memory fragmentation by assigning remainders to share memory blocks on a best fit basis
US5764994A (en) * 1996-09-16 1998-06-09 International Business Machines Corporation Method and system for compressing compiled microcode to be executed within a data processing system
US5825878A (en) * 1996-09-20 1998-10-20 Vlsi Technology, Inc. Secure memory management unit for microprocessor
US5858753A (en) * 1996-11-25 1999-01-12 Icos Corporation Lipid kinase
GB9701291D0 (en) * 1997-01-22 1997-03-12 Ici Plc Closed cell polymer foam
US5920723A (en) * 1997-02-05 1999-07-06 Hewlett-Packard Company Compiler with inter-modular procedure optimization
US6175896B1 (en) * 1997-10-06 2001-01-16 Intel Corporation Microprocessor system and method for increasing memory Bandwidth for data transfers between a cache and main memory utilizing data compression
US6202152B1 (en) * 1998-01-27 2001-03-13 Philips Semiconductors, Inc. System and method for accessing information decrypted in multiple-byte blocks
NL1008600C2 (en) 1998-03-16 1999-09-17 Mcc Nederland Transport system, as well as a transport mat.
US6442680B1 (en) * 1999-01-29 2002-08-27 International Business Machines Corporation Method and system for compressing reduced instruction set computer (RISC) executable code
US6233674B1 (en) * 1999-01-29 2001-05-15 International Business Machines Corporation Method and system for scope-based compression of register and literal encoding in a reduced instruction set computer (RISC)
US6195743B1 (en) * 1999-01-29 2001-02-27 International Business Machines Corporation Method and system for compressing reduced instruction set computer (RISC) executable code through instruction set expansion
US6330941B1 (en) * 2000-05-25 2001-12-18 Habasit Ag Radius conveyor belt

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US270202A (en) * 1883-01-09 Gas-engine
US288255A (en) * 1883-11-13 Paper box
US291777A (en) * 1884-01-08 Machine for the reduction of wood and other materials to paper-pulp
US1804701A (en) * 1929-04-01 1931-05-12 Mojonnier Bros Co Chain conveyer
US1937304A (en) * 1930-08-04 1933-11-28 Alvey Conveyor Mfg Co Conveyer chain and sprocket wheel therefor
US2693268A (en) * 1949-04-09 1954-11-02 Joy Mfg Co Endless chain conveyer
US3602364A (en) * 1969-07-22 1971-08-31 Stevens & Co Inc J P Segmented belt
US3870141A (en) * 1970-08-13 1975-03-11 Laitram Corp Modular belt
US3768631A (en) * 1971-11-12 1973-10-30 E Ragnvald Conveyor belt chain
US4109784A (en) * 1976-01-24 1978-08-29 Karl Hartmann Conveyor belt with corrugated sidewalls
US4213527A (en) * 1977-01-17 1980-07-22 The Laitram Corporation Chain link conveyors
US4993543A (en) * 1977-05-31 1991-02-19 The Laitram Corporation Link chain belt
US4394901A (en) * 1980-12-16 1983-07-26 Ashworth Bros., Inc. Modular plastic conveyor belt
US4742907A (en) * 1982-06-01 1988-05-10 Kvp Systems, Inc. Plastic conveyor belt
US4688670A (en) * 1982-09-22 1987-08-25 The Laitram Corporation Flat top conveyor belt
US4821872A (en) * 1983-01-12 1989-04-18 The Laitram Corporation Lightweight modular conveyor belt
USD282907S (en) * 1983-09-22 1986-03-11 Rexnord Inc. Chain link for conveyors
US5083659A (en) * 1984-02-06 1992-01-28 The Cambridge Wire Cloth Co. Plastic conveyor belt system with improved product support
US4989723A (en) * 1984-02-06 1991-02-05 The Cambridge Wire Cloth Company Plastic conveyor belt system with improved product support
USD286136S (en) * 1984-02-09 1986-10-14 Rexnord Inc. Chain link
US4925013A (en) * 1984-08-20 1990-05-15 The Laitram Corporation Conveyor belt having a high friction conveying surface
US4832183A (en) * 1984-08-20 1989-05-23 The Laitram Corporation Conveyor belt having insertable & selectable conveying member
US4729469A (en) * 1985-11-15 1988-03-08 Lapeyre James M Flat top conveyor belt
US4754872A (en) * 1986-01-30 1988-07-05 Damkjaer Poul E Conveyor chain link
USD307707S (en) * 1987-01-29 1990-05-08 Ab Skf Conveyor chain link
US4858753A (en) * 1987-04-15 1989-08-22 Rexnord Corporation Conveyor chain assembly
US5020656A (en) * 1988-07-18 1991-06-04 Faulkner William G Flat top conveyor
US5413211A (en) * 1988-07-18 1995-05-09 William Faulkner Conveyor incorporating curved surface flight links
US4972942A (en) * 1988-07-18 1990-11-27 Faulkner William G Conveyor belt
US4893709A (en) * 1988-08-18 1990-01-16 Rexnord Corporation Back-flexing article carrying chain
US4901844A (en) * 1988-10-03 1990-02-20 Kvp Systems, Inc. Low tension plastic conveyor belt system
US4934517A (en) * 1988-11-14 1990-06-19 The Laitram Corporation Horizontal flexing conveyor belt
US5156264A (en) * 1988-11-14 1992-10-20 The Laitram Corporation Non-destructive pivot rod retention apparatus for modular plastic conveyor belts
US4949838A (en) * 1988-11-14 1990-08-21 The Laitram Corporation Apparatus and methods to allow non-destructive removal of pivot rods in modular plastic conveyor belts
US4993544A (en) * 1989-01-13 1991-02-19 Cambridge Wire Cloth Company Plastic modular conveyor belts and modules therefor
US4893710A (en) * 1989-01-13 1990-01-16 Cambridge Wire Cloth Company Plastic modular conveyor belts and modules therefor
US5131526A (en) * 1989-11-06 1992-07-21 Kaak Stephanus W Conveyor for a treatment unit
US5031757A (en) * 1989-12-26 1991-07-16 Span Tech Corporation Modular link conveyor system with narrow chain
US5065860A (en) * 1990-04-12 1991-11-19 Faulkner William G Connectors for woven conveyor belts
US5303818A (en) * 1990-05-21 1994-04-19 Ucc Corporation Modular conveyor belt
US5310046A (en) * 1990-10-09 1994-05-10 Palmaer K V Plastic conveyor belt with enhanced edge strength for travel on curves
US5645160A (en) * 1990-10-09 1997-07-08 Kvp Systems, Inc. Connecting rod retention in a plastic conveyor belt
US5181601A (en) * 1990-10-09 1993-01-26 Palmaer K V Plastic conveyor belt with integral sideplate
US5547071A (en) * 1990-10-09 1996-08-20 Kvp Systems, Inc. Plastic conveyor belt
US5224583A (en) * 1990-10-09 1993-07-06 Palmaer K V Low back pressure plastic conveyor
US5419428A (en) * 1990-10-09 1995-05-30 Palmaer; Karl V. Plastic conveyor belt with integral sideplate
US5253749A (en) * 1990-10-25 1993-10-19 Rexnord Corporation Open area conveyor assembly
US5156262A (en) * 1990-11-08 1992-10-20 The Laitram Corporation Conveyor belt module drive surfaces for mating with sprocket drive surface in the hinging region
US5133449A (en) * 1990-11-30 1992-07-28 The Cambridge Wire Cloth Company Frictional drive spiral conveyor system
US5139135A (en) * 1991-02-19 1992-08-18 Guy Irwin Reduced radius spiral conveyor with plastic belts
US5346059A (en) * 1991-02-19 1994-09-13 Guy Irwin Conveyor belt module
US5105938A (en) * 1991-06-14 1992-04-21 The Laitram Corporation Pivot rod retention structure in modular conveyor belts
US5280833A (en) * 1991-08-27 1994-01-25 Andre Robin Turn conveyor with reduced friction feature
US5217110A (en) * 1992-04-23 1993-06-08 Cambridge Wire Cloth Company Modular plastic turn belt conveyor system, module, belt and drive therefor
US5339946A (en) * 1992-11-16 1994-08-23 William G. Faulkner Conveyor belt having link assemblies with leading and trailing shaft projections
US5439099A (en) * 1992-11-16 1995-08-08 Mcc Nederland B.V. Conveyor mat built up of synthetic modules and modules for such conveyor
US5310045A (en) * 1992-12-02 1994-05-10 Palmaer K V Spiral conveyor belt with ridged drive capstan
US5379883A (en) * 1993-01-21 1995-01-10 Maskinfabrikken Baeltix A/S Chain link conveyor
US5634550A (en) * 1993-03-12 1997-06-03 Rexnord Corporation Direction changing mechanism for transferring articles between transverse conveyors
US5431275A (en) * 1993-05-27 1995-07-11 William G. Faulkner Conveyor belt with rotatable tapered link shift
US5425443A (en) * 1993-08-03 1995-06-20 Mcc Nederland B.V. Conveyor mat built up of synthetic modules and modules for such conveyor mat
US5613597A (en) * 1993-08-26 1997-03-25 Kvp Systems, Inc. Transfer method for plastic conveyor belts
US5332084A (en) * 1993-09-15 1994-07-26 The Laitram Corporation Pivot rod occlusion system for plastic modular link belts
US5507383A (en) * 1993-11-18 1996-04-16 The Laitram Corporation High friction plastic conveyor belts having modular links formed by two integrated plastic materials
US5361893A (en) * 1993-11-18 1994-11-08 The Laitram Corporation High friction plastic conveyor belts having modular links formed by two integrated plastic materials
US5598916A (en) * 1994-01-18 1997-02-04 The Laitram Corporation Changing headless pivot rods from edges of modular conveyor belts
US5562200A (en) * 1994-03-25 1996-10-08 Maryland Wire Belts, Inc. Unitary components and modular belt assembly
US5738205A (en) * 1994-04-15 1998-04-14 Drobel; Jorgen Conveyor chain having a supporting face consitituted by chain links transversal to the longitudinal direction of the chain
US5566817A (en) * 1995-05-31 1996-10-22 Meeker; William A. Conveyor belt
US5628393A (en) * 1995-06-08 1997-05-13 Steeber; Dorian F. Conveyor apparatus having a nodular conveying surface
US5573105A (en) * 1995-11-08 1996-11-12 Palmaer; Karl V. Radius conveyor with guide rollers
US5921379A (en) * 1996-01-23 1999-07-13 The Laitram Corporation Modular conveyor belt suitable for following straight or curved paths
US5678683A (en) * 1996-02-05 1997-10-21 Rexnord Corporation Conveyor chain with sealed plug hinge pin retention system
US5573106A (en) * 1996-02-05 1996-11-12 Rexnord Corporation Modular conveyor chain including headed hinge pins
US5816390A (en) * 1996-02-05 1998-10-06 Stebnicki; James C. Conveyor pin retention system using offset openings
US5690210A (en) * 1996-06-10 1997-11-25 Span Tech Corporation Modular link conveyor with interdigitating grid
US5775480A (en) * 1996-06-14 1998-07-07 The Laitram Corporation Low-friction conveyor assembly
US5906270A (en) * 1996-08-16 1999-05-25 Faulkner; William G. Tight turning radius conveyor belt
US5911305A (en) * 1996-11-22 1999-06-15 Span Tech Corporation Endless loop modular conveyor system with drive screw
US6196381B1 (en) * 1996-11-29 2001-03-06 Yamakyu Chain Kabushiki Kaisha Conveyor chain unit and conveyor chain
US6036001A (en) * 1997-05-14 2000-03-14 Rexnord Corporation Side-flexing conveyor construction
US6216854B1 (en) * 1998-01-23 2001-04-17 Uni-Chains A/S Side-flexing conveyor belt
US6227356B1 (en) * 1998-03-16 2001-05-08 Mcc Nederland B.V. Conveyor mat and conveying apparatus
US6213292B1 (en) * 1998-05-29 2001-04-10 Tsubakimoto Chain Co. Molded conveyor chain
US6079543A (en) * 1998-06-18 2000-06-27 Kvp Falcon Plastic Belting, Inc. Lane-divided plastic conveyor belt
US6367616B1 (en) * 1998-11-02 2002-04-09 The Laitram Corporation Modular roller-top conveyor belt
US6148990A (en) * 1998-11-02 2000-11-21 The Laitram Corporation Modular roller-top conveyor belt
US6345715B2 (en) * 1998-11-03 2002-02-12 Kvp Falcon Plastic Belting, Inc. Rod retention system for modular plastic conveyor belt
US6471048B1 (en) * 1999-03-19 2002-10-29 Vic Thompson Company Conveyor belt system
US6390288B1 (en) * 1999-07-19 2002-05-21 Uni-Chains A/S Feed apparatus
US6382405B1 (en) * 2000-02-25 2002-05-07 Kvp Plastic Belting, Inc. Solid top radius conveyor belt
US6364095B1 (en) * 2000-04-13 2002-04-02 Span Tech Llc Modular conveyor system with side flexing belt having roller support
US6357581B1 (en) * 2000-07-19 2002-03-19 Habasit Ag Modular radius conveyor belt
US7410048B2 (en) * 2002-12-10 2008-08-12 Rexnord Flattop Europe B.V. Curved segment of a guide for a modular conveyor chain and modular conveyor chain with such a curved guiding segment
US7234589B2 (en) * 2004-07-06 2007-06-26 Laitram, L.L.C. Conveyor belt and module with a self-adjusting edge
US7419051B2 (en) * 2004-10-29 2008-09-02 Ped Invest A/S Side-flexing conveyor belt
US7364036B2 (en) * 2006-02-09 2008-04-29 Habasit Ag Module for a perforated flat top belt with hinge gap for better fluid flow
US7367448B2 (en) * 2006-07-20 2008-05-06 Habasit Ag Chain with undulated edge
US7360643B1 (en) * 2007-03-20 2008-04-22 Habasit Ag Electroconductive modular belt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102476B2 (en) 2012-10-25 2015-08-11 Solus Industrial Innovations, Llc Conveyor system wear indication devices and methods
US9409721B2 (en) 2012-10-25 2016-08-09 Solus Industrial Innovations, Llc Conveyor system wear indication devices and methods
US9085414B2 (en) 2012-11-29 2015-07-21 Solus Industrial Innovations, Llc Side-flexing conveyors
US9751694B2 (en) 2012-11-29 2017-09-05 Solus Industrial Innovations, Llc Side-flexing conveyors

Also Published As

Publication number Publication date
CA2340288C (en) 2003-12-02
ES2183774T3 (en) 2003-04-01
US6523680B2 (en) 2003-02-25
US20040045795A1 (en) 2004-03-11
CA2340288A1 (en) 2001-11-25
DE60000690D1 (en) 2002-12-05
JP2002019939A (en) 2002-01-23
US6330941B1 (en) 2001-12-18
ATE226913T1 (en) 2002-11-15
US20010050214A1 (en) 2001-12-13
US6793069B2 (en) 2004-09-21
DE60000690T2 (en) 2003-08-21
EP1182151A1 (en) 2002-02-27
US6896126B2 (en) 2005-05-24
US20050109589A1 (en) 2005-05-26
EP1182151B1 (en) 2002-10-30
US7281626B2 (en) 2007-10-16
DK1182151T3 (en) 2003-03-03
US20030057061A1 (en) 2003-03-27
US20030192777A1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
US20080083598A1 (en) Radius conveyor belt
CA2140419C (en) Radius conveyor belt
US6382404B1 (en) Corrugated flight module
EP1799596B1 (en) Belt module with oblong pivot hole
CA2380127C (en) Snap-on side guards
US6948613B2 (en) Module with high friction conveying surface
US6644466B2 (en) Platform-top radius belt and modules
CA2380139C (en) Radious conveyor belt with structure for the prevention of pinched fingers
US6305530B1 (en) Module for a modular conveying belt
US6357581B1 (en) Modular radius conveyor belt
WO1991004209A1 (en) Conveyor belt with stacking plates

Legal Events

Date Code Title Description
AS Assignment

Owner name: HABASIT AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULDENFELS, DIETER;REEL/FRAME:020011/0972

Effective date: 20010529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION