US20080010513A1 - Controlling computer storage systems - Google Patents

Controlling computer storage systems Download PDF

Info

Publication number
US20080010513A1
US20080010513A1 US11/475,496 US47549606A US2008010513A1 US 20080010513 A1 US20080010513 A1 US 20080010513A1 US 47549606 A US47549606 A US 47549606A US 2008010513 A1 US2008010513 A1 US 2008010513A1
Authority
US
United States
Prior art keywords
change
request
availability
program code
replication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/475,496
Other languages
English (en)
Inventor
Murthy V. Devarakonda
Konstantinos Magoutis
Norbert George Vogl
Kaladhar Voruganti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US11/475,496 priority Critical patent/US20080010513A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEVARAKONDA, MURTHY V., MAGOUTIS, KONSTANTINOS, VOGLE, NORBERT GEORGE, VORUGANTI, KALADHAR
Priority to JP2009518408A priority patent/JP5090447B2/ja
Priority to PCT/US2007/064504 priority patent/WO2008002693A2/en
Publication of US20080010513A1 publication Critical patent/US20080010513A1/en
Priority to US12/130,216 priority patent/US8185779B2/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/008Reliability or availability analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2053Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant
    • G06F11/2056Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant by mirroring
    • G06F11/2069Management of state, configuration or failover
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/10Indexing scheme relating to G06F11/10
    • G06F2211/1002Indexing scheme relating to G06F11/1076
    • G06F2211/1004Adaptive RAID, i.e. RAID system adapts to changing circumstances, e.g. RAID1 becomes RAID5 as disks fill up

Definitions

  • the present invention generally relates to information technology, and, more particularly, to controlling computer storage systems.
  • RAID Redundant Array of Inexpensive (or Independent) Disks
  • These storage controllers are typically computer servers attached to a large number of DASDs via a peripheral I/O interconnect. They form RAID arrays by combining groups of DASDs and subsequently create and export logical disk abstractions over these RAID arrays.
  • the RAID technology protects against data loss due to DASD failure by replicating data across multiple DASDs and by transparently reconstructing lost data onto spare DASDs in case of failure.
  • RAID technology is one of many approaches to using data redundancy to improve the availability, and potentially the performance, of stored data sets.
  • Data redundancy can take multiple forms. Depending on the level of abstraction in the implementation, one can distinguish between block-level redundancy and volume-level replication.
  • Block-level redundancy can be performed using techniques such as block mirroring (RAID Level 5), parity-based protection (RAID Level 10), or erasure coding. See R. Bhagwan et al., “Total Recall: System Support for Automated Availability Management,” in Proc. of USENIX Conference on Networked Systems Design and Implementations ' 04, San Francisco, Calif., March 2004.
  • volume-level redundancy operates below the storage volume abstraction and is thus transparent to system software layered over that abstraction.
  • volume-level replication which involves maintaining one or more exact replicas of a storage volume, is visible (and thus must be managed) by system software layered over the storage volume abstraction.
  • Known technologies to perform volume-level replication include, e.g., FlashCopy® computer hardware and software for data warehousing, for use in the field of mass data storage, from International Business Machines Corporation, and Peer-to-Peer Remote Copy (PPRC).
  • CHAMPS tracks component dependencies and exploits parallelism in task graph. While representing a substantial advance in the art, CHAMPS may have limitations regarding consideration of service availability and regarding data availability in distributed storage systems.
  • HiRAID Hierarchical RAID
  • S. H. Baek et al. “Reliability and Performance of Hierarchical RAID with Multiple Controllers,” in Proc. 20 th ACM Symposium on Principles of Distributed Computing ( PODC 2001), August 2001 proposes layering a RAID abstraction over RAID controllers, and handling change simply by masking failures using RAID techniques.
  • HiRAID may not be optimally goal-oriented and may focus on DASD failures only (i.e., as if DASDs attached to all storage controllers were part of a single DASD pool). It may not take into account the additional complexity and heterogeneity of the storage controllers themselves and thus may not be appropriate in some circumstances.
  • Total Recall (see R. Bhagwan et al., “Total Recall: System Support for Automated Availability Management”, in Proc. of USENIX Conference on Networked Systems Design and Implementations ' 04, San Francisco, Calif., March 2004) characterizes peer-to-peer storage node availability simply based on past behavior and treats all nodes as identical in terms of their availability profiles; it is thus more appropriate for Internet environments, which are characterized by simple storage nodes (e.g., desktop PCs) and large “churn”, i.e., large numbers of nodes going out of service and returning to service at any time, rather than enterprise environments and generally heterogeneous storage controllers.
  • VPA Volume Performance Advisor
  • an exemplary method includes the steps of obtaining deterministic component availability information pertaining to the system, obtaining probabilistic component availability information pertaining to the system, and checking for violation of availability goals based on both the deterministic component availability information and the probabilistic component availability information.
  • an exemplary method includes the steps of obtaining a request for change, obtaining an estimated replication time associated with a replication to accommodate the change, and taking the estimated replication time into account in evaluating the request for change.
  • the methods can be computer-implemented. The methods can advantageously be combined.
  • One or more embodiments of the invention can be implemented in the form of a computer product including a computer usable medium with computer usable program code for performing the method steps indicated. Furthermore, one or more embodiments of the invention can be implemented in the form of an apparatus including a memory and at least one processor that is coupled to the memory and operative to perform exemplary method steps.
  • One or more embodiments of the invention may provide one or more beneficial technical effects, such as, for example, automatic management of availability and performance goals in enterprise data centers in the face of standard maintenance and/or failure events, automatic management of storage consolidation and migration activities, which are standard parts of IT infrastructure lifecycle management, and the like.
  • FIG. 1 is a flowchart showing exemplary method steps according to an aspect of the invention
  • FIG. 2 shows an example of initial volume placement according to probabilistic information
  • FIG. 3 shows an example of volume replication for availability according to probabilistic information
  • FIG. 4 shows an example of initial volume placement according to deterministic information
  • FIG. 5 shows an example of volume replication for availability according to deterministic information
  • FIG. 6 depicts a computer system that may be useful in implementing one or more aspects and/or elements of the present invention.
  • FIG. 1 shows a flowchart 100 with exemplary method steps for controlling a computer storage system, according to an aspect of the invention.
  • the method can be computer-implemented.
  • Step 102 includes obtaining deterministic component availability information pertaining to the system, for example, a calendar time t and a duration Dt associated with a request for change RFC.
  • the request for change RFC (t, Dt) can be added into a downtime schedule.
  • Step 104 includes obtaining probabilistic component availability information pertaining to the system, e.g., an estimated controller failure probability.
  • decision block 106 a check is made for violation of availability goals, based on both the deterministic component availability information and the probabilistic component availability information.
  • an additional step includes maintaining the current status, responsive to the block 106 checking indicating no violation of the availability goals.
  • additional step 108 includes determining replication parameters, responsive to the block 106 checking indicating a violation of the availability goals.
  • the replication parameters can include at least how to replicate and where to replicate.
  • obtaining deterministic component availability information pertaining to the system can include obtaining a request for change.
  • Step 110 can include obtaining an estimated replication time.
  • Decision block 112 can be employed to take the estimated replication time into account in evaluating the request for change. Specifically, in block 112 , in can be determined whether sufficient time is available to replicate to accommodate the request for change.
  • the request for change can be rejected, and/or an alternative plan to accommodate the request for change can be searched for.
  • the change plan can include, e.g., one or more of: (i) preparation information indicative of replica locations, relationships, and timing; (ii) execution information indicative of replication performance; (iii) failover detection information indicative of how to execute necessary failover actions no later than a time of an action associated with the request for change; (iv) completion information indicative of replication relationship maintenance and discard; and (v) information indicative of how to execute necessary failback actions no earlier than a time of another action associated with the request for change.
  • the plan can provide the details of how to execute the necessary failover actions prior to or at the time of a failure or maintenance action, i.e., the switch over from the original storage volumes to their replicas on functioning storage controllers.
  • the plan can provide the details of how to execute the necessary failback actions at the time or after recovery or completion of a maintenance action, i.e., the switch over from replicas to the original volumes.
  • an inventive method could include steps of obtaining a request for change as at block 102 , obtaining an estimated replication time associated with a replication to accommodate the change, as at block 110 , and taking the estimated replication time into account in evaluating the request for change.
  • the latter can include, e.g., one or more of steps 112 , 114 , and 116 .
  • One or more embodiments of the invention may offer a proactive solution to maintaining the availability levels of datasets by dynamically and continuously determining the availability of individual storage controllers using a combination of statistical (probabilistic) and deterministic methods. Given such availability characterization of individual controllers, one or more exemplary inventive methods can periodically analyze the impact of probable or anticipated changes and come up with a change plan to maintain the availability goals of datasets. This can typically be accomplished without conflicting with existing reactive high-availability systems, such as RAID; in fact, one or more inventive embodiments can co-exist with and leverage these systems, which typically operate within individual storage controllers.
  • the probabilistic methods used in one or more embodiments of the invention can take into account past observations of controller availability (e.g., how many and what type of unavailability intervals has each controller undergone in the past), operator beliefs (e.g., operator believes that controller is vulnerable during a probation period immediately after it has undergone a firmware upgrade), as well as the state of storage controller configuration (e.g., how many standby and/or hot spare DASDs are currently available to mask an active-DASD failure; how many redundant storage controller system-boards and internal data-paths between controller system-boards and DASD arrays are in place) in coming up with a probabilistic estimate of future availability.
  • controller availability e.g., how many and what type of unavailability intervals has each controller undergone in the past
  • operator beliefs e.g., operator believes that controller is vulnerable during a probation period immediately after it has undergone a firmware upgrade
  • state of storage controller configuration e.g., how many standby and/or hot spare DASDs are currently available
  • the deterministic methods employed in one or more embodiments of the invention take into account exact information about forthcoming changes, such as scheduled storage controller maintenance actions, which can be submitted by system operators and/or administrators via the aforementioned RFC.
  • One or more embodiments of the invention can combine controller availability measures estimated by the deterministic and probabilistic methods and come up with a volume placement plan (i.e., how many replicas to create and on which controllers to place them) and a change management plan (i.e., what type of failover and failback actions to invoke as a response to controllers going out of service or returning to service).
  • a volume placement plan i.e., how many replicas to create and on which controllers to place them
  • a change management plan i.e., what type of failover and failback actions to invoke as a response to controllers going out of service or returning to service.
  • the “Decide how/where to replicate” block 108 and “Output Change Plan” block 116 are of significance for the system administrator and/or manager.
  • the “Add RFC” block 102 and the “Estimate controller failure probability” block 104 can be thought of as triggers.
  • One or more inventive embodiments can come up with a placement and a change plan which are feasible.
  • a dataset can potentially be accessible to one or more host servers and used by applications installed on these servers.
  • the desirable availability level of a dataset can be expressed as the ratio of the expected “uptime” (i.e., the time that the dataset is or expected to be accessible to applications on host servers) over the total amount of time considered.
  • dataset availability is measured as a percentile; for example, availability of 99.99% or 0.9999 (otherwise referred to as “four 9s”) over a period of a month means that the maximum tolerated downtime cannot exceed about five minutes.
  • the outage in the above formula can be caused by downtime of storage controllers, which may or may not have been anticipated.
  • Anticipated downtime can be caused by scheduled maintenance operations.
  • Unanticipated downtime is typically caused by failures of hardware or software components or by operator errors.
  • One or more inventive methods can rely on the continuous characterization of the availability of individual storage controllers, based on deterministic and probabilistic calculations.
  • one or more embodiments of the invention use exact information about future downtime at time t i and for a duration ⁇ t i to calculate the operational availability (represented by the symbol A d ) of a dataset based on estimates of the mean-time-between-maintenance (MTBM) and the mean-downtime (MDT) measures, as follows:
  • a d MTBM/ ( MTBM+MDT ).
  • one or more embodiments of the invention combine information such as:
  • the probability ⁇ that a controller will be available in the future can be estimated from (a)-(c) above. This estimate of controller availability can be used in probabilistic calculations to derive a probabilistic estimate for the availability of an entire data set.
  • Statistical/probabilistic and deterministic information as described above can be used to estimate the degree of availability of a storage controller. There are multiple options regarding how to combine these sources of information. By way of example, one option is to take the minimum estimate among the deterministic estimate and (a)-(c).
  • Controller Availability min ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ ,A d ).
  • Binding the estimate of controller availability to the strictest estimate available, as expressed in the formula above, is expected to work well.
  • exemplary inventive techniques for placing a set of storage volumes on a set of storage controllers in order to achieve a certain availability goal are presented, based on volume-level replication (i.e., each volume potentially being continuously replicated—or mirrored—to one or more other storage volumes on zero or more other storage controllers).
  • volume-level replication i.e., each volume potentially being continuously replicated—or mirrored—to one or more other storage volumes on zero or more other storage controllers.
  • v i may be replicated one or more times to volumes v i1 , v i2 , etc., which are members of a replica-set VG′.
  • outage i.e., data inaccessibility
  • This outage is unavoidable in most cases, and due to the amount of time it takes to failover to the secondary storage volume replica. This time depends on the replication technology and the particular storage infrastructure used.
  • One problem that can be addressed in this embodiment is the determination of the number of storage volumes (i.e., number of primary volumes and replicas), as well as their placement on storage controllers, to achieve the set availability goals.
  • a two phases approach can be used: (i) in the first phase, the initial placement of volumes is decided based on capacity and performance goals only, producing the set VG and the mapping between volumes in VG and storage controllers, and (ii) in the second phase, the storage volumes are replicated as necessary to achieve the data availability goals. This phase results in the set VG′ as well as the mapping between volume replicas and storage controllers.
  • the first (initial placement) phase can be performed purely based on capacity and performance considerations and using known methods, such as the well-known and aforementioned IBM Volume Performance Advisor. Such placement of volumes to storage controllers, however, may not fully satisfy the availability goals for the dataset, which is why a second (data replication) phase may be necessary.
  • data replication can be used to achieve the availability goals.
  • This embodiment determines the degree of data replication necessary to achieve the availability goals (e.g., how many replicas of a volume are needed) as well as the placement (e.g., which storage controller to place a volume replica on).
  • the placement e.g., which storage controller to place a volume replica on.
  • an implementation plan for executing these changes is presented.
  • One principle in this phase is to progressively improve the overall availability of a dataset by iteratively replicating storage volumes across storage controllers until the availability goal is reached.
  • the process starts by calculating the initial—baseline—availability of the dataset VG without any replication.
  • the availability can then be improved by selecting a storage volume from a storage controller with a low degree of availability (preferably, the lowest between any controller with volumes in VG) and deciding on which controller to replicate this volume to increase the overall dataset availability.
  • the availability can further be improved by replicating other volumes or by replicating certain volumes more than once.
  • the choice of the controller that can host a replica of A is made using the following criteria.
  • controller availability is estimated using the combination of deterministic and probabilistic methods described earlier.
  • the time necessary to synchronize two storage volume replicas is estimated taking into account the replication technology, the amount of data that needs to be transferred, and the data transfer speed.
  • this embodiment examines each candidate controller in some order (e.g., in random order) and determines whether the availability of the resulting dataset (calculated using the combined prediction of the deterministic and probabilistic methods) achieves the desired target.
  • a potentially more accurate way to estimate overall availability is the use of simulation-based Decision Analysis, which was used in the aforementioned Crespo reference for the design of archival repositories. Such an analysis would be based on event-based simulations using the probabilistic estimates of storage controller availability (sources (a)-(c) described earlier).
  • a drawback of this method is that it may not be suitable in an online scenario where near-immediate response is needed. In those cases, straightforward use of the probabilistic formulas (as described in Example 1 below) may be more appropriate.
  • one of the volumes in a set of replicas is designated as the primary; this is the replica that is to be the first active representative of the set. This is usually determined to be the storage volume on the controller with the latest scheduled downtime.
  • the exemplary method After the initial placement of volumes from VG and VG′ to storage controllers, the exemplary method periodically checks whether the availability goals of the data set are maintained in light of the most recent and up-to-date availability characterizations of storage controllers and RFCs submitted by operators (refer back to FIG. 1 for one example).
  • the availability level of a storage controller changes (e.g., it either goes into the “watch-list” due to some configuration change or one or more RFCs on it are submitted)
  • the availability level of one or more datasets (those who have one or more storage volume replicas stored on that controller) is expected to change and thus new storage volume replicas will most likely have to be created.
  • One particularly interesting case in practice is that of “draining” (i.e., removing all volumes from) a storage controller.
  • all storage volumes from that storage controller must be moved to other controllers, which may further require the creation and placement of replicas.
  • This case can be treated using the general process described earlier. Note however, that the migration of storage volumes between controllers involves data movement, which can be a slow process for large volumes.
  • an alternative time t may be proposed by RAIC if that will result in significantly lower system impact (e.g., fewer replica creations or less data movement). If the operator/administrator insists on the original RFC specification, new replicas will proactively be built to guard against data unavailability at the expense of disk space dedicated to redundant data.
  • the proposed embodiment maintains information about availability characteristics of storage controllers (as described earlier) and listens for (a) requests for change RFC(t, ⁇ t) in the status of a storage controller; an RFC may or may not specify the time of the change t but should specify an estimate on the duration of change ⁇ t; (b) other events that may signal changes in the availability characteristics of storage controllers; examples include hardware or software controller failures, operator errors, or revised beliefs on the controller's ability to sustain failures.
  • the method checks whether any availability goals are violated. If so, volume(s) may be replicated as necessary. Besides purely availability-based estimates, the replication plan may also reflect business rules based on policy, e.g., use higher-quality controllers for important data.
  • a typical availability management plan includes three phases: PREPARE, EXECUTE, and COMPLETE. These phases handle the mechanics of implementing the solution proposed by the techniques described earlier and are specific to the replication technologies used in the particular deployed infrastructure.
  • the PREPARE phase is relevant prior to a controller failure or shutdown and involves creating and synchronizing replicas and setting up the necessary replication relationships.
  • the EXECUTE phase becomes relevant at the time that a controller fails or shuts down and involves handling the failover action to secondary replicas.
  • the objective of this phase is to re-establish the availability of a dataset by masking volume failures and by redirecting data access to surviving storage volumes.
  • the COMPLETE phase becomes relevant at the time a storage controller that was previously taken out of service recovers and re-enters service. This phase involves resuming (or discarding, if deemed to be stale) replication relationships, re-synchronizing storage volumes, and optionally “failing back” data access into the recovered storage volumes.
  • the estimate of the overall probability is based on the following theorem from the Theory of Probabilities, which states that for any two events A and B, the probability that either A or B or both occur is given by:
  • Pr ⁇ A or B ⁇ Pr ⁇ A ⁇ +Pr ⁇ B ⁇ Pr ⁇ A and B ⁇ (5)
  • Pr ⁇ A or B ⁇ Pr ⁇ A ⁇ +Pr ⁇ B ⁇ Pr ⁇ A ⁇ Pr ⁇ B ⁇ . (6)
  • the above formula (or a similarly derived formula adapted to a given configuration of replication relationships and number and type of controllers) can be used to determine the availability of the data set.
  • a data set can be spread over five storage controllers (labeled A-D). Each controller is characterized by availability ⁇ A - ⁇ E .
  • the data set comprises 7 storage volumes initially spread over three storage controllers (A, B, and C); this initial allocation is decided based on capacity (xGB) and performance (e.g., y IOs/sec) goals, using known techniques such as VPA.
  • the availability goal ( ⁇ ) of the data set can be satisfied as described herein.
  • the resulting placement satisfying the availability goal ( ⁇ ) is shown in FIG. 3 .
  • volume for each dataset are assigned to storage controllers based on capacity and performance goals.
  • a single volume (A) is allocated on SC 1 .
  • three volumes (B, C, and D) are allocated on SC 3 -SC 5 .
  • a single volume (E) is allocated SC 7 .
  • volume A is assigned to the controller with the highest availability (SC 1 ) since that controller most closely approximates (but falls short off) the dataset's availability goal.
  • volume replication To satisfy the availability goals. Observing that the availability goal of the first volume group is quite ambitious (four 9's over one month implies outage of only about 4-5 minutes over the same time interval), storage volume A must be replicated on another highly-available controller. The technique thus selects storage controller SC 2 for hosting A′, the replica of A). Similarly, for the second data set, the algorithm chooses storage controllers SC 4 , SC 3 , and SC 6 to progressively improve the availability of that data set by replicating volumes B, C, and D (to B′, C′, and D′), respectively. Finally, the algorithm selects SC 5 to replicate volume E on SC 7 and reach the availability goal of the third dataset.
  • primed volumes designate secondary replicas.
  • the primary volume should be on the controller that will have its first failure later than the other; RAIC should ensure that there is enough time between the time that A comes back in service to the time A′ disappears so that A can go back in sync.
  • the only outage time that affects operational availability is the failover time from A′ to A. Everything else can typically be done in the background and thus does not affect availability.
  • One or more embodiments of the invention can be implemented in the form of a computer product including a computer usable medium with computer usable program code for performing the method steps indicated. Furthermore, one or more embodiments of the invention can be implemented in the form of an apparatus including a memory and at least one processor that is coupled to the memory and operative to perform exemplary method steps.
  • processors As used herein is intended to include any processing device, such as, for example, one that includes a CPU (central processing unit) and/or other forms of processing circuitry. Further, the term “processor” may refer to more than one individual processor.
  • memory is intended to include memory associated with a processor or CPU, such as, for example, RAM (random access memory), ROM (read only memory), a fixed memory device (e.g., hard drive), a removable memory device (e.g., diskette), a flash memory and the like.
  • input/output interface is intended to include, for example, one or more mechanisms for inputting data to the processing unit (e.g., mouse), and one or more mechanisms for providing results associated with the processing unit (e.g., printer).
  • the processor 602 , memory 604 , and input/output interface such as display 606 and keyboard 608 can be interconnected, for example, via bus 610 as part of a data processing unit 612 . Suitable interconnections, for example via bus 610 , can also be provided to a network interface 614 , such as a network card, which can be provided to interface with a computer network, and to a media interface 616 , such as a diskette or CD-ROM drive, which can be provided to interface with media 618 .
  • a network interface 614 such as a network card, which can be provided to interface with a computer network
  • media interface 616 such as a diskette or CD-ROM drive
  • computer software including instructions or code for performing the methodologies of the invention, as described herein, may be stored in one or more of the associated memory devices (e.g., ROM, fixed or removable memory) and, when ready to be utilized, loaded in part or in whole (e.g., into RAM) and executed by a CPU.
  • Such software could include, but is not limited to, firmware, resident software, microcode, and the like.
  • the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium (e.g., media 618 ) providing program code for use by or in connection with a computer or any instruction execution system.
  • a computer usable or computer readable medium can be any apparatus for use by or in connection with the instruction execution system, apparatus, or device.
  • the medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
  • Examples of a computer-readable medium include a semiconductor or solid-state memory (e.g. memory 604 ), magnetic tape, a removable computer diskette (e.g. media 618 ), a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk.
  • Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
  • a data processing system suitable for storing and/or executing program code will include at least one processor 602 coupled directly or indirectly to memory elements 604 through a system bus 610 .
  • the memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
  • I/O devices including but not limited to keyboards 608 , displays 606 , pointing devices, and the like
  • I/O controllers can be coupled to the system either directly (such as via bus 610 ) or through intervening I/O controllers (omitted for clarity).
  • Network adapters such as network interface 614 may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
US11/475,496 2006-06-27 2006-06-27 Controlling computer storage systems Abandoned US20080010513A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/475,496 US20080010513A1 (en) 2006-06-27 2006-06-27 Controlling computer storage systems
JP2009518408A JP5090447B2 (ja) 2006-06-27 2007-03-21 コンピュータ・ストレージ・システムの制御のための方法およびコンピュータ・プログラム
PCT/US2007/064504 WO2008002693A2 (en) 2006-06-27 2007-03-21 Controlling computer storage systems
US12/130,216 US8185779B2 (en) 2006-06-27 2008-05-30 Controlling computer storage systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/475,496 US20080010513A1 (en) 2006-06-27 2006-06-27 Controlling computer storage systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/130,216 Continuation US8185779B2 (en) 2006-06-27 2008-05-30 Controlling computer storage systems

Publications (1)

Publication Number Publication Date
US20080010513A1 true US20080010513A1 (en) 2008-01-10

Family

ID=38846348

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/475,496 Abandoned US20080010513A1 (en) 2006-06-27 2006-06-27 Controlling computer storage systems
US12/130,216 Expired - Fee Related US8185779B2 (en) 2006-06-27 2008-05-30 Controlling computer storage systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/130,216 Expired - Fee Related US8185779B2 (en) 2006-06-27 2008-05-30 Controlling computer storage systems

Country Status (3)

Country Link
US (2) US20080010513A1 (ja)
JP (1) JP5090447B2 (ja)
WO (1) WO2008002693A2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062885A1 (en) * 2006-09-12 2008-03-13 Microsoft Corporation Major problem review and trending system
US20080065680A1 (en) * 2006-09-12 2008-03-13 Microsoft Corporation Change and release management system
US20110029840A1 (en) * 2009-07-31 2011-02-03 Microsoft Corporation Erasure Coded Storage Aggregation in Data Centers
US20140081916A1 (en) * 2009-10-26 2014-03-20 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US9135283B2 (en) 2009-10-07 2015-09-15 Amazon Technologies, Inc. Self-service configuration for data environment
US9207984B2 (en) 2009-03-31 2015-12-08 Amazon Technologies, Inc. Monitoring and automatic scaling of data volumes
US9600365B2 (en) 2013-04-16 2017-03-21 Microsoft Technology Licensing, Llc Local erasure codes for data storage
US9705888B2 (en) 2009-03-31 2017-07-11 Amazon Technologies, Inc. Managing security groups for data instances
US20180046691A1 (en) * 2016-08-10 2018-02-15 International Business Machines Corporation Query governor rules for data replication
US10127149B2 (en) 2009-03-31 2018-11-13 Amazon Technologies, Inc. Control service for data management

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019732B2 (en) 2008-08-08 2011-09-13 Amazon Technologies, Inc. Managing access of multiple executing programs to non-local block data storage
US9672126B2 (en) 2011-12-15 2017-06-06 Sybase, Inc. Hybrid data replication
US20130159253A1 (en) * 2011-12-15 2013-06-20 Sybase, Inc. Directing a data replication environment through policy declaration
US10425352B2 (en) 2015-03-09 2019-09-24 International Business Machines Corporation Policy driven storage hardware allocation
US9710178B2 (en) 2015-04-10 2017-07-18 International Business Machines Corporation Optimizing volume placement based upon desired response time and priority

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331579A (en) * 1989-08-02 1994-07-19 Westinghouse Electric Corp. Deterministic, probabilistic and subjective modeling system
US5719884A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Error correction method and apparatus based on two-dimensional code array with reduced redundancy
US20010051861A1 (en) * 2000-06-09 2001-12-13 Fujitsu Limited Method and apparatus for simulation, and a computer product
US6397348B1 (en) * 1994-10-12 2002-05-28 International Business Machines Corporation Redundant array of disk drives with asymmetric mirroring and asymmetric mirroring data processing method
US20020174419A1 (en) * 2001-04-30 2002-11-21 Alvarez Guillermo A. Method and system for online data migration on storage systems with performance guarantees
US20030110263A1 (en) * 2001-12-10 2003-06-12 Avraham Shillo Managing storage resources attached to a data network
US20030135783A1 (en) * 2001-12-28 2003-07-17 Martin Marcia Reid Data management appliance
US20030220899A1 (en) * 2002-05-23 2003-11-27 Tadashi Numanoi Storage device management method, system and program
US20030225801A1 (en) * 2002-05-31 2003-12-04 Devarakonda Murthy V. Method, system, and program for a policy based storage manager
US20040117369A1 (en) * 2002-12-12 2004-06-17 Sun Microsystems, Inc. Method and apparatus for centralized management of a storage virtualization engine and data services
US20040243692A1 (en) * 2003-05-29 2004-12-02 International Business Machines Corporation Policy-based, autonomically allocated storage
US20050066078A1 (en) * 2003-02-17 2005-03-24 Ikuya Yagisawa Storage system
US20050138285A1 (en) * 2003-12-17 2005-06-23 Hitachi, Ltd. Computer system management program, system and method
US20050144538A1 (en) * 2001-11-01 2005-06-30 Microsoft Corporation System and method for replicating data in a distributed system
US20050154852A1 (en) * 2004-01-14 2005-07-14 Hirotaka Nakagawa Method, device and program for managing volume
US20050210096A1 (en) * 2004-03-17 2005-09-22 Bishop Thomas P Method and system for agentless discovery of application infrastructure resources
US6993458B1 (en) * 2000-11-07 2006-01-31 International Business Machines Corporation Method and apparatus for preprocessing technique for forecasting in capacity management, software rejuvenation and dynamic resource allocation applications
US20060095656A1 (en) * 2004-09-10 2006-05-04 Atsushi Ueoka System and device for managing storage area network, volume allocation method, and computer software
US20060129779A1 (en) * 2004-12-10 2006-06-15 Cannon David M Storage pool space allocation across multiple locations
US20060161753A1 (en) * 2005-01-18 2006-07-20 Aschoff John G Method, apparatus and program storage device for providing automatic performance optimization of virtualized storage allocation within a virtualized storage subsystem
US20070061180A1 (en) * 2005-09-13 2007-03-15 Joseph Offenberg Centralized job scheduling maturity model
US20070143497A1 (en) * 2005-12-19 2007-06-21 Rajiv Kottomtharayil System and method for performing multi-path storage operations
US20070180087A1 (en) * 2005-12-12 2007-08-02 Hitachi, Ltd. Computer allocation method
US20070186068A1 (en) * 2005-12-19 2007-08-09 Agrawal Vijay H Network redirector systems and methods for performing data replication
US20080120462A1 (en) * 2005-09-22 2008-05-22 Paul Nehse System And Method For Flexible Physical-Logical Mapping Raid Arrays
US7406617B1 (en) * 2004-11-22 2008-07-29 Unisys Corporation Universal multi-path driver for storage systems including an external boot device with failover and failback capabilities
US7493300B2 (en) * 2004-09-30 2009-02-17 International Business Machines Corporation Model and system for reasoning with N-step lookahead in policy-based system management
US20090094380A1 (en) * 2004-01-08 2009-04-09 Agency For Science, Technology And Research Shared storage network system and a method for operating a shared storage network system

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339427A (en) * 1992-03-30 1994-08-16 International Business Machines Corporation Method and apparatus for distributed locking of shared data, employing a central coupling facility
LTIP1892A (en) * 1993-06-15 1994-12-27 Combustion Eng Corrosian analysis system and method
US5592618A (en) * 1994-10-03 1997-01-07 International Business Machines Corporation Remote copy secondary data copy validation-audit function
US5603029A (en) * 1995-06-07 1997-02-11 International Business Machines Corporation System of assigning work requests based on classifying into an eligible class where the criteria is goal oriented and capacity information is available
FR2762695B1 (fr) * 1997-04-29 1999-05-28 Bull Sa Procede et dispositif de connexion de l'unite centrale d'un systeme de traitement de donnees a un sous-systeme de stockage de donnees a redondance
US7263476B1 (en) * 2000-06-12 2007-08-28 Quad Research High speed information processing and mass storage system and method, particularly for information and application servers
US7178147B2 (en) * 2001-09-21 2007-02-13 International Business Machines Corporation Method, system, and program for allocating processor resources to a first and second types of tasks
JP2003140946A (ja) * 2001-11-02 2003-05-16 Hitachi Ltd 記憶装置
US7035971B1 (en) * 2002-09-23 2006-04-25 Hewlett-Packard Development Company, L.P. Request scheduling to mirrored heterogeneous storage arrays
US20040221123A1 (en) * 2003-05-02 2004-11-04 Lam Wai Tung Virtual data switch and method of use
JP2004341961A (ja) * 2003-05-16 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> ストレージシステムおよびストレージプログラム
US7328366B2 (en) * 2003-06-06 2008-02-05 Cascade Basic Research Corp. Method and system for reciprocal data backup
JP2005038071A (ja) * 2003-07-17 2005-02-10 Hitachi Ltd ストレージの容量を最適化する管理方法
US7388681B2 (en) * 2003-07-29 2008-06-17 International Business Machines Corporation Method for scanning maintenance prediction
US7254744B2 (en) * 2003-08-19 2007-08-07 Intel Corporation BIOS for saving and restoring operational state in the absence of AC power
US6912482B2 (en) * 2003-09-11 2005-06-28 Veritas Operating Corporation Data storage analysis mechanism
US7558850B2 (en) * 2003-09-15 2009-07-07 International Business Machines Corporation Method for managing input/output (I/O) performance between host systems and storage volumes
JP4267420B2 (ja) * 2003-10-20 2009-05-27 株式会社日立製作所 ストレージ装置及びバックアップ取得方法
JP4568502B2 (ja) * 2004-01-09 2010-10-27 株式会社日立製作所 情報処理システムおよび管理装置
US7305520B2 (en) * 2004-01-30 2007-12-04 Hewlett-Packard Development Company, L.P. Storage system with capability to allocate virtual storage segments among a plurality of controllers
US7120769B2 (en) * 2004-03-08 2006-10-10 Hitachi, Ltd. Point in time remote copy for multiple sites
US7350046B2 (en) * 2004-04-02 2008-03-25 Seagate Technology Llc Managed reliability storage system and method monitoring storage conditions
JP2005301436A (ja) * 2004-04-07 2005-10-27 Hitachi Ltd クラスタシステムおよびクラスタシステムにおける障害回復方法
JP4308086B2 (ja) * 2004-05-31 2009-08-05 富士通株式会社 自律制御プログラム及びその記録媒体、自律制御装置並びに自律制御方法
US7219204B2 (en) * 2004-06-02 2007-05-15 International Business Machines Corporation Dynamic, policy-based control of copy service precedence
US7383462B2 (en) * 2004-07-02 2008-06-03 Hitachi, Ltd. Method and apparatus for encrypted remote copy for secure data backup and restoration
JP4174497B2 (ja) * 2004-09-30 2008-10-29 東芝ソリューション株式会社 情報システムの信頼性評価システム、信頼性評価方法、信頼性評価プログラム
US20060080574A1 (en) * 2004-10-08 2006-04-13 Yasushi Saito Redundant data storage reconfiguration
JP2006113667A (ja) * 2004-10-12 2006-04-27 Hitachi Ltd ストレージ装置およびその制御方法
US7904906B2 (en) * 2004-11-23 2011-03-08 Stratus Technologies Bermuda Ltd. Tracking modified pages on a computer system
US20060155591A1 (en) * 2005-01-10 2006-07-13 Faheem Altaf Systems, methods, and media for managing a travel itinerary
US7675856B2 (en) * 2005-03-24 2010-03-09 Microsoft Corporation Bandwidth estimation in broadband access networks
JP4843976B2 (ja) * 2005-03-25 2011-12-21 日本電気株式会社 レプリケーションシステムと方法
US7584226B2 (en) * 2005-05-24 2009-09-01 International Business Machines Corporation System and method for peer-to-peer grid based autonomic and probabilistic on-demand backup and restore
US20060277384A1 (en) * 2005-06-01 2006-12-07 Hitachi, Ltd. Method and apparatus for auditing remote copy systems
US7626717B2 (en) * 2005-07-20 2009-12-01 Xerox Corporation Print job allocation system and method
JP4903415B2 (ja) * 2005-10-18 2012-03-28 株式会社日立製作所 記憶制御システム及び記憶制御方法
US8655850B2 (en) * 2005-12-19 2014-02-18 Commvault Systems, Inc. Systems and methods for resynchronizing information
US7752417B2 (en) * 2006-06-05 2010-07-06 Oracle America, Inc. Dynamic selection of memory virtualization techniques
US7689743B2 (en) * 2006-12-20 2010-03-30 International Business Machines Corporation Data copy system apparatus and method

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331579A (en) * 1989-08-02 1994-07-19 Westinghouse Electric Corp. Deterministic, probabilistic and subjective modeling system
US6397348B1 (en) * 1994-10-12 2002-05-28 International Business Machines Corporation Redundant array of disk drives with asymmetric mirroring and asymmetric mirroring data processing method
US5719884A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Error correction method and apparatus based on two-dimensional code array with reduced redundancy
US20010051861A1 (en) * 2000-06-09 2001-12-13 Fujitsu Limited Method and apparatus for simulation, and a computer product
US6993458B1 (en) * 2000-11-07 2006-01-31 International Business Machines Corporation Method and apparatus for preprocessing technique for forecasting in capacity management, software rejuvenation and dynamic resource allocation applications
US20020174419A1 (en) * 2001-04-30 2002-11-21 Alvarez Guillermo A. Method and system for online data migration on storage systems with performance guarantees
US20050144538A1 (en) * 2001-11-01 2005-06-30 Microsoft Corporation System and method for replicating data in a distributed system
US20030110263A1 (en) * 2001-12-10 2003-06-12 Avraham Shillo Managing storage resources attached to a data network
US20030135783A1 (en) * 2001-12-28 2003-07-17 Martin Marcia Reid Data management appliance
US20030220899A1 (en) * 2002-05-23 2003-11-27 Tadashi Numanoi Storage device management method, system and program
US20030225801A1 (en) * 2002-05-31 2003-12-04 Devarakonda Murthy V. Method, system, and program for a policy based storage manager
US20040117369A1 (en) * 2002-12-12 2004-06-17 Sun Microsystems, Inc. Method and apparatus for centralized management of a storage virtualization engine and data services
US20050066078A1 (en) * 2003-02-17 2005-03-24 Ikuya Yagisawa Storage system
US20040243692A1 (en) * 2003-05-29 2004-12-02 International Business Machines Corporation Policy-based, autonomically allocated storage
US7480912B2 (en) * 2003-05-29 2009-01-20 International Business Machines Corporation Method for policy-based, autonomically allocated storage
US20050138285A1 (en) * 2003-12-17 2005-06-23 Hitachi, Ltd. Computer system management program, system and method
US20090094380A1 (en) * 2004-01-08 2009-04-09 Agency For Science, Technology And Research Shared storage network system and a method for operating a shared storage network system
US20050154852A1 (en) * 2004-01-14 2005-07-14 Hirotaka Nakagawa Method, device and program for managing volume
US20050210096A1 (en) * 2004-03-17 2005-09-22 Bishop Thomas P Method and system for agentless discovery of application infrastructure resources
US20060095656A1 (en) * 2004-09-10 2006-05-04 Atsushi Ueoka System and device for managing storage area network, volume allocation method, and computer software
US7493300B2 (en) * 2004-09-30 2009-02-17 International Business Machines Corporation Model and system for reasoning with N-step lookahead in policy-based system management
US7406617B1 (en) * 2004-11-22 2008-07-29 Unisys Corporation Universal multi-path driver for storage systems including an external boot device with failover and failback capabilities
US20060129779A1 (en) * 2004-12-10 2006-06-15 Cannon David M Storage pool space allocation across multiple locations
US20060161753A1 (en) * 2005-01-18 2006-07-20 Aschoff John G Method, apparatus and program storage device for providing automatic performance optimization of virtualized storage allocation within a virtualized storage subsystem
US20070061180A1 (en) * 2005-09-13 2007-03-15 Joseph Offenberg Centralized job scheduling maturity model
US20080120462A1 (en) * 2005-09-22 2008-05-22 Paul Nehse System And Method For Flexible Physical-Logical Mapping Raid Arrays
US20070180087A1 (en) * 2005-12-12 2007-08-02 Hitachi, Ltd. Computer allocation method
US20070143497A1 (en) * 2005-12-19 2007-06-21 Rajiv Kottomtharayil System and method for performing multi-path storage operations
US20070186068A1 (en) * 2005-12-19 2007-08-09 Agrawal Vijay H Network redirector systems and methods for performing data replication

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062885A1 (en) * 2006-09-12 2008-03-13 Microsoft Corporation Major problem review and trending system
US20080065680A1 (en) * 2006-09-12 2008-03-13 Microsoft Corporation Change and release management system
US10798101B2 (en) 2009-03-31 2020-10-06 Amazon Technologies, Inc. Managing security groups for data instances
US11770381B2 (en) 2009-03-31 2023-09-26 Amazon Technologies, Inc. Managing security groups for data instances
US9705888B2 (en) 2009-03-31 2017-07-11 Amazon Technologies, Inc. Managing security groups for data instances
US11550630B2 (en) 2009-03-31 2023-01-10 Amazon Technologies, Inc. Monitoring and automatic scaling of data volumes
US11132227B2 (en) 2009-03-31 2021-09-28 Amazon Technologies, Inc. Monitoring and automatic scaling of data volumes
US10282231B1 (en) 2009-03-31 2019-05-07 Amazon Technologies, Inc. Monitoring and automatic scaling of data volumes
US9207984B2 (en) 2009-03-31 2015-12-08 Amazon Technologies, Inc. Monitoring and automatic scaling of data volumes
US10225262B2 (en) 2009-03-31 2019-03-05 Amazon Technologies, Inc. Managing security groups for data instances
US10127149B2 (en) 2009-03-31 2018-11-13 Amazon Technologies, Inc. Control service for data management
US20110029840A1 (en) * 2009-07-31 2011-02-03 Microsoft Corporation Erasure Coded Storage Aggregation in Data Centers
US20130275390A1 (en) * 2009-07-31 2013-10-17 Microsoft Corporation Erasure coded storage aggregation in data centers
US8458287B2 (en) * 2009-07-31 2013-06-04 Microsoft Corporation Erasure coded storage aggregation in data centers
US8918478B2 (en) * 2009-07-31 2014-12-23 Microsoft Corporation Erasure coded storage aggregation in data centers
US10977226B2 (en) 2009-10-07 2021-04-13 Amazon Technologies, Inc. Self-service configuration for data environment
US9135283B2 (en) 2009-10-07 2015-09-15 Amazon Technologies, Inc. Self-service configuration for data environment
US20160210205A1 (en) * 2009-10-26 2016-07-21 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US9298728B2 (en) * 2009-10-26 2016-03-29 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US10860439B2 (en) 2009-10-26 2020-12-08 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US20140081916A1 (en) * 2009-10-26 2014-03-20 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US11714726B2 (en) 2009-10-26 2023-08-01 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US9817727B2 (en) * 2009-10-26 2017-11-14 Amazon Technologies, Inc. Failover and recovery for replicated data instances
US9600365B2 (en) 2013-04-16 2017-03-21 Microsoft Technology Licensing, Llc Local erasure codes for data storage
US20180046691A1 (en) * 2016-08-10 2018-02-15 International Business Machines Corporation Query governor rules for data replication

Also Published As

Publication number Publication date
US20080228687A1 (en) 2008-09-18
JP5090447B2 (ja) 2012-12-05
US8185779B2 (en) 2012-05-22
WO2008002693A2 (en) 2008-01-03
WO2008002693A3 (en) 2008-05-02
JP2009543216A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
US8185779B2 (en) Controlling computer storage systems
US11704044B2 (en) Modifying a cloned image of replica data
US8185505B1 (en) Techniques for processing recovery points
US12045252B2 (en) Providing quality of service (QoS) for replicating datasets
Weygant Clusters for high availability: a primer of HP solutions
US8229897B2 (en) Restoring a file to its proper storage tier in an information lifecycle management environment
US8041684B2 (en) Techniques for determining an implemented data protection policy
US11625185B2 (en) Transitioning between replication sources for data replication operations
US20070260834A1 (en) Systems and methods for migrating components in a hierarchical storage network
Zhao et al. Exploring reliability of exascale systems through simulations.
US7426616B2 (en) Method for determining a recovery schedule
US11893263B2 (en) Coordinated checkpoints among storage systems implementing checkpoint-based replication
CN1770115A (zh) 存储网络中的恢复操作
Torbjornsen Multi-Site Declustering strategies for very high database service availability
EP2799992A2 (en) Storage system, control apparatus, control program, and control method
Wang et al. Improving the availability of supercomputer job input data using temporal replication
US12131049B2 (en) Creating a modifiable cloned image of a dataset
Borisov et al. Warding off the dangers of data corruption with Amulet
Nachiappan Efficient data reliability management of cloud storage systems for big data applications
Farrow et al. ThaNks TO Our summarIzers
Yang et al. A reliability optimization method for RAID-structured storage systems based on active data migration
WO2023211578A1 (en) Coordinated snapshots among storage systems implementing a promotion/demotion model
Weygant Primer on Clusters for High Availability
Wang et al. Transparent Fault Tolerance for Job Input Data in HPC Environments
Koopmann Achieving High Availability on a Linux Two-Node Cluster Using Oracle’s Maximum Availability Architecture

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEVARAKONDA, MURTHY V.;MAGOUTIS, KONSTANTINOS;VOGLE, NORBERT GEORGE;AND OTHERS;REEL/FRAME:018134/0714;SIGNING DATES FROM 20060622 TO 20060626

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910