US20070258832A1 - Fluid-Working Machine with Displacement Control - Google Patents
Fluid-Working Machine with Displacement Control Download PDFInfo
- Publication number
- US20070258832A1 US20070258832A1 US10/599,475 US59947505A US2007258832A1 US 20070258832 A1 US20070258832 A1 US 20070258832A1 US 59947505 A US59947505 A US 59947505A US 2007258832 A1 US2007258832 A1 US 2007258832A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- chamber
- working
- controller
- machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000006073 displacement reaction Methods 0.000 title claims description 9
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 230000008602 contraction Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
Definitions
- This invention relates to a fluid-working machine.
- the time-averaged flow of fluid is variable in all four quadrants of motion.
- the invention is applicable to any machine with working chambers, which alternately expand and contract, whether by pistons and cylinders, vanes, lobes or gears and where the primary method of commutating fluid to the working chambers is by a rotating port plate, synchronised to the phase of the chamber expansion and contraction cycle, which alternately connects high and then low pressure fluid manifolds to each working chamber.
- the invention provides a fluid-working machine according to claim 1 .
- the insertion of a valve into the fluid connection between the commutating means and each of the working chambers allows each working chamber to be isolated from the commutating means. Chambers which are isolated in this way by the valve operate in an idle condition, whereby no useful fluid work is done by the chamber, and thus the displacement per revolution of the machine is reduced.
- such valves may be controlled mechanically, allowing the machine to be used in a reduced displacement mode when it is desired, for instance, to operate at high speed.
- Such mechanical control may be automatic, for instance reducing the displacement of the machine as the speed of rotation increases above a threshold.
- valves are individually controlled by an electronic signal, allowing each of the chambers to be isolated according to the command of an electronic controller.
- an electronic controller has an input signal of the position of the shaft of the machine, allowing the timing of the valve actuation to be phased relative to the position of the shaft, allowing each chamber to be isolated from the commutator on a stroke-by-stroke basis.
- FIGURE is a schematic section of a machine according to the invention.
- the drawing shows a machine comprising a working chamber 4 in the form of cylinder containing a piston actuating a crankshaft 5 .
- a conventional commutator plate 2 alternately connects the chamber 4 to port A or, via a toroidal cavity 10 , to port B, one of the ports being a high-pressure port and the other a low-pressure port.
- the machine operates as a motor with fluid being supplied at high pressure at port A and exhausted at low pressure at port B, but both the pressures and the direction of flow could be reversed separately without changing the apparatus shown.
- an actively controllable on-off valve 1 By placing an actively controllable on-off valve 1 , in series with a rotating commutator plate 2 , into the fluid passage 3 between the commutator plate and the working chamber 4 , the flow into the working chamber can be controlled.
- the expansion stroke of the working chamber will occur in a partial vacuum. If the fluid is a liquid such as oil, a bubble is formed as air is drawn out of the liquid. The return stroke will collapse the bubble by the time the chamber returns to its minimum volume. In doing so the working volume will have exchanged no work with the fluid system while absorbing very little parasitic work.
- the working chamber When the valve 1 is left in the open position the working chamber functions, as normal, to produce a working cycle.
- the time averaged flow is varied by deciding on a chamber-by-chamber basis whether to effect idle or working cycles. The decisions are taken as each successive chamber nears the minimum volume condition, irrespective of whether the machine is working as a pump or a motor.
- An electronic controller 6 senses the phase of the working chamber cycle using a once-per-revolution shaft sensor 7 , an encoder, a resolver or some similar means. At times coinciding with the minimum working chamber volume the controller can either leave the on-off valve in its de-energised open state or pull it closed through electromagnetic means.
- the controller reads the system demand, either through an analogue or digital input line or a bus 8 , and decides whether the working chamber reaching the minimum volume condition should be left working or idled by closing the valve 1 .
- the on-off valve 1 defaults to the open position and is pulsed to close, but it is possible to see that the opposite operating mode, i.e. default closed, pulse to open would also have application where a power-off freewheel characteristic was required.
- the controller decisions can also be made entirely on the basis of shaft speed in order to limit the rate of increase of shaft power.
- the electronic controller would require no external demand signal and would make the sequential on-off valve actuation decisions on the basis of a pre-programmed flow versus speed function.
- the decision sequence can be determined in order to limit individual wheel slip, to create a skid steering effect or to create graded changes in torque and thus controlled vehicle accelerations.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid-Pressure Circuits (AREA)
- Hydraulic Motors (AREA)
- Lifting Devices For Agricultural Implements (AREA)
- Servomotors (AREA)
- Reciprocating Pumps (AREA)
- Details Of Reciprocating Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB0407297.1A GB0407297D0 (en) | 2004-03-31 | 2004-03-31 | Fluid working machine with displacement control |
| GB0407297.1 | 2004-03-31 | ||
| PCT/GB2005/001235 WO2005095800A1 (en) | 2004-03-31 | 2005-03-31 | Fluid-working machine with displacement control |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070258832A1 true US20070258832A1 (en) | 2007-11-08 |
Family
ID=32247599
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/599,475 Abandoned US20070258832A1 (en) | 2004-03-31 | 2005-03-31 | Fluid-Working Machine with Displacement Control |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20070258832A1 (enExample) |
| EP (1) | EP1738077B1 (enExample) |
| JP (1) | JP2007530865A (enExample) |
| CN (1) | CN100587269C (enExample) |
| AT (1) | ATE467049T1 (enExample) |
| DE (1) | DE602005021087D1 (enExample) |
| GB (1) | GB0407297D0 (enExample) |
| WO (1) | WO2005095800A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110226342A1 (en) * | 2008-06-20 | 2011-09-22 | Artemis Intelligent Power Limited | Fluid working machines and methods |
| US20120057991A1 (en) * | 2010-02-23 | 2012-03-08 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US20120063919A1 (en) * | 2010-02-23 | 2012-03-15 | Artemis Intelligent Power Limited | Fluid-working machine valve timing |
| US8534687B2 (en) | 2010-07-05 | 2013-09-17 | Fluid Ride Ltd. | Suspension strut for a vehicle |
| US20140147293A1 (en) * | 2010-09-21 | 2014-05-29 | Robert Bosch Gmbh | Hydraulic machine with electronically controlled valves |
| US8869521B2 (en) | 2009-04-02 | 2014-10-28 | Husco International, Inc. | Fluid working machine with cylinders coupled to split exterior ports by electrohydraulic valves |
| EP2851585A1 (en) * | 2013-09-18 | 2015-03-25 | Artemis Intelligent Power Limited | Hydraulic transmission and method of controlling hydraulic transmission |
| US9091254B2 (en) | 2009-04-07 | 2015-07-28 | Artemis Intelligent Power Limited | Fluid working machine and method of operating a fluid working machine |
| US9574582B2 (en) | 2012-04-23 | 2017-02-21 | Fluid Ride, Ltd. | Hydraulic pump system and method of operation |
| US9739266B2 (en) | 2010-02-23 | 2017-08-22 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US12454945B2 (en) | 2022-05-03 | 2025-10-28 | Regents Of The University Of Minnesota | Partial stroke fluidic pump-motor with high mechanical efficiency |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7364409B2 (en) | 2004-02-11 | 2008-04-29 | Haldex Hydraulics Corporation | Piston assembly for rotary hydraulic machines |
| US7380490B2 (en) | 2004-02-11 | 2008-06-03 | Haldex Hydraulics Corporation | Housing for rotary hydraulic machines |
| US7086225B2 (en) | 2004-02-11 | 2006-08-08 | Haldex Hydraulics Corporation | Control valve supply for rotary hydraulic machine |
| US7402027B2 (en) | 2004-02-11 | 2008-07-22 | Haldex Hydraulics Corporation | Rotating group of a hydraulic machine |
| EP1824699B1 (en) | 2004-11-22 | 2010-10-06 | Bosch Rexroth Corporation | Hydro-electric hybrid drive system for motor vehicle |
| CA2588290A1 (en) | 2004-12-01 | 2006-06-08 | Haldex Hydraulics Corporation | Hydraulic drive system |
| DE102007016517A1 (de) | 2007-04-05 | 2008-10-09 | Muller, Katherina | Hydrostatischer Fahrantrieb |
| DE112008002963A5 (de) * | 2007-11-09 | 2010-09-02 | Muller, Katherina | Hydraulischer Drucktransformator und Verfahren zu dessen Betrieb |
| EP2322802B1 (en) * | 2009-11-13 | 2014-01-08 | Artemis Intelligent Power Limited | Electronically controlled valve |
| GB201012743D0 (en) | 2010-07-29 | 2010-09-15 | Isentropic Ltd | Valves |
| US8936135B2 (en) * | 2010-11-29 | 2015-01-20 | Lincoln Industrial Corporation | Pump having heated reservoir |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1774662A (en) * | 1928-04-12 | 1930-09-02 | Arthur S Parks | Vacuum pump |
| US3696710A (en) * | 1969-11-07 | 1972-10-10 | Riva Calzoni Spa | Distributor for hydraulic motors |
| US5259738A (en) * | 1988-09-29 | 1993-11-09 | University Of Edinburgh | Fluid-working machine |
| US5456581A (en) * | 1994-08-12 | 1995-10-10 | The United States Of America As Represented By The Secretary Of The Navy | Control system for a multi-piston pump with solenoid valves for the production of constant outlet pressure flow |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6341586Y2 (enExample) * | 1978-09-29 | 1988-11-01 | ||
| JPS55137374A (en) * | 1979-04-13 | 1980-10-27 | Kawasaki Heavy Ind Ltd | Radial piston motor with valve plate type distributor |
| JP2684804B2 (ja) * | 1990-01-19 | 1997-12-03 | 日産自動車株式会社 | 容積ポンプの制御装置 |
| JP2979904B2 (ja) * | 1993-06-29 | 1999-11-22 | 日産自動車株式会社 | 容積型液圧ポンプの流量制御装置 |
| US5564905A (en) * | 1994-10-18 | 1996-10-15 | Caterpillar Inc. | Displacement control for a variable displacement axial piston pump |
| JPH08303325A (ja) * | 1995-05-01 | 1996-11-19 | Aisan Ind Co Ltd | 高圧燃料ポンプ用流量制御弁の制御方法 |
| DE69919658T2 (de) * | 1998-05-26 | 2005-09-15 | Caterpillar Inc., Peoria | Hydrauliksystem mit einer pumpe mit variabler fördermenge |
| JP3374770B2 (ja) * | 1998-11-18 | 2003-02-10 | トヨタ自動車株式会社 | 吐出量可変式ポンプの制御装置 |
| US6176684B1 (en) * | 1998-11-30 | 2001-01-23 | Caterpillar Inc. | Variable displacement hydraulic piston unit with electrically operated variable displacement control and timing control |
| US6681571B2 (en) * | 2001-12-13 | 2004-01-27 | Caterpillar Inc | Digital controlled fluid translating device |
| DE10216951A1 (de) * | 2002-04-17 | 2003-11-06 | Bosch Rexroth Ag | Hydrotransformator |
-
2004
- 2004-03-31 GB GBGB0407297.1A patent/GB0407297D0/en not_active Ceased
-
2005
- 2005-03-31 DE DE602005021087T patent/DE602005021087D1/de not_active Expired - Lifetime
- 2005-03-31 CN CN200580014182A patent/CN100587269C/zh not_active Expired - Fee Related
- 2005-03-31 EP EP05729670A patent/EP1738077B1/en not_active Expired - Lifetime
- 2005-03-31 JP JP2007505631A patent/JP2007530865A/ja active Pending
- 2005-03-31 US US10/599,475 patent/US20070258832A1/en not_active Abandoned
- 2005-03-31 AT AT05729670T patent/ATE467049T1/de not_active IP Right Cessation
- 2005-03-31 WO PCT/GB2005/001235 patent/WO2005095800A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1774662A (en) * | 1928-04-12 | 1930-09-02 | Arthur S Parks | Vacuum pump |
| US3696710A (en) * | 1969-11-07 | 1972-10-10 | Riva Calzoni Spa | Distributor for hydraulic motors |
| US5259738A (en) * | 1988-09-29 | 1993-11-09 | University Of Edinburgh | Fluid-working machine |
| US5456581A (en) * | 1994-08-12 | 1995-10-10 | The United States Of America As Represented By The Secretary Of The Navy | Control system for a multi-piston pump with solenoid valves for the production of constant outlet pressure flow |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110226342A1 (en) * | 2008-06-20 | 2011-09-22 | Artemis Intelligent Power Limited | Fluid working machines and methods |
| US9091253B2 (en) * | 2008-06-20 | 2015-07-28 | Artemis Intelligent Power Limited | Fluid working machines and methods |
| US8869521B2 (en) | 2009-04-02 | 2014-10-28 | Husco International, Inc. | Fluid working machine with cylinders coupled to split exterior ports by electrohydraulic valves |
| US9091254B2 (en) | 2009-04-07 | 2015-07-28 | Artemis Intelligent Power Limited | Fluid working machine and method of operating a fluid working machine |
| US9133839B2 (en) * | 2010-02-23 | 2015-09-15 | Artemis Intelligent Power Limited | Fluid-working machine and method of detecting a fault |
| US20120076670A1 (en) * | 2010-02-23 | 2012-03-29 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US9010104B2 (en) * | 2010-02-23 | 2015-04-21 | Artemis Intelligent Power Limited | Fluid-working machine valve timing |
| US20120063919A1 (en) * | 2010-02-23 | 2012-03-15 | Artemis Intelligent Power Limited | Fluid-working machine valve timing |
| US20120057991A1 (en) * | 2010-02-23 | 2012-03-08 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US20150211513A1 (en) * | 2010-02-23 | 2015-07-30 | Artemis Intelligent Power Limited | Fluid-working machine valve timing |
| US9739266B2 (en) | 2010-02-23 | 2017-08-22 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US9133838B2 (en) * | 2010-02-23 | 2015-09-15 | Artemis Intelligent Power Limited | Fluid-working machine and method of operating a fluid-working machine |
| US9797393B2 (en) * | 2010-02-23 | 2017-10-24 | Artemis Intelligent Power Limited | Fluid-working machine valve timing |
| US8534687B2 (en) | 2010-07-05 | 2013-09-17 | Fluid Ride Ltd. | Suspension strut for a vehicle |
| US10125841B2 (en) | 2010-07-05 | 2018-11-13 | Fluid Ride, Ltd. | Suspension strut for a vehicle |
| US9150076B2 (en) | 2010-07-05 | 2015-10-06 | Fluid Ride, Ltd. | Suspension strut for a vehicle |
| US20140147293A1 (en) * | 2010-09-21 | 2014-05-29 | Robert Bosch Gmbh | Hydraulic machine with electronically controlled valves |
| US9574582B2 (en) | 2012-04-23 | 2017-02-21 | Fluid Ride, Ltd. | Hydraulic pump system and method of operation |
| EP2851585A1 (en) * | 2013-09-18 | 2015-03-25 | Artemis Intelligent Power Limited | Hydraulic transmission and method of controlling hydraulic transmission |
| US12454945B2 (en) | 2022-05-03 | 2025-10-28 | Regents Of The University Of Minnesota | Partial stroke fluidic pump-motor with high mechanical efficiency |
Also Published As
| Publication number | Publication date |
|---|---|
| CN100587269C (zh) | 2010-02-03 |
| DE602005021087D1 (enExample) | 2010-06-17 |
| EP1738077B1 (en) | 2010-05-05 |
| JP2007530865A (ja) | 2007-11-01 |
| ATE467049T1 (de) | 2010-05-15 |
| WO2005095800A1 (en) | 2005-10-13 |
| EP1738077A1 (en) | 2007-01-03 |
| CN1973133A (zh) | 2007-05-30 |
| GB0407297D0 (en) | 2004-05-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1738077B1 (en) | Fluid-working machine with displacement control | |
| EP0494236B1 (en) | Improved fluid-working machine | |
| US5259738A (en) | Fluid-working machine | |
| EP2307721B1 (en) | Fluid working machines and methods | |
| US9188119B2 (en) | Fluid-working machine and operating method | |
| EP2049778B1 (en) | A cooling system and a transmission system having said cooling system integrated therewith | |
| FI121090B (fi) | Laitteisto, ohjauspiiri ja menetelmä paineen ja tilavuusvirran tuottamiseksi | |
| WO2010115019A1 (en) | Fluid working machine with cylinders coupled to split exterior ports by electrohydraulic valves | |
| JP2007530865A5 (enExample) | ||
| GB2459520A (en) | Fluid machine with secondary low pressure port opening before controlled primary valve | |
| US11519267B2 (en) | Method and device for expanding a gas with a reciprocating-piston machine | |
| WO2005121555A1 (en) | A pump assembly | |
| US8469677B1 (en) | Check valve pump with electric bypass valve |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ARTEMIS INTELLIGENT POWER LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CALDWELL, NIALL JAMES;RAMPEN, WILLIAM H.S.;STEIN, UWE B.P.;REEL/FRAME:019106/0231 Effective date: 20060929 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |