US20070232365A1 - Overheating and Spill Resistant Mobile Device Docking Cradle - Google Patents

Overheating and Spill Resistant Mobile Device Docking Cradle Download PDF

Info

Publication number
US20070232365A1
US20070232365A1 US11/759,424 US75942407A US2007232365A1 US 20070232365 A1 US20070232365 A1 US 20070232365A1 US 75942407 A US75942407 A US 75942407A US 2007232365 A1 US2007232365 A1 US 2007232365A1
Authority
US
United States
Prior art keywords
battery
docking station
recess
channel
device receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/759,424
Inventor
Eduard Kogan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symbol Technologies LLC
Original Assignee
Symbol Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbol Technologies LLC filed Critical Symbol Technologies LLC
Priority to US11/759,424 priority Critical patent/US20070232365A1/en
Assigned to SYMBOL TECHNOLOGIES, INC. reassignment SYMBOL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOGAN, EDUARD M.
Publication of US20070232365A1 publication Critical patent/US20070232365A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers

Definitions

  • the present invention is directed to a docking station for a portable electronic device including a rechargeable battery, the docking station comprising a device receiving recess including a device receiving bottom surface and at least one device guiding structure sized to slidingly receive therein a device to be docked in the docking station and to guide the device toward, and maintain the device in, a desired position within the device receiving recess and an air flow channel which, when a device is received within the device receiving recess, is adjacent to a battery of the device, the air flow channel extending from an open top end to the device receiving bottom surface in combination with a first lumen extending through the device receiving bottom surface to establish fluid communication between the air flow channel and an exterior of the docking station.
  • the present invention is further directed to a docking station for a portable electronic device comprising a device receiving recess including a device receiving bottom surface and at least one device guiding structure sized to slidingly receive therein a device to be docked in the docking station and to guide the device toward, and maintain the device in, a desired position within the device receiving recess in which an electrical connector of the device mates with an electrical connector of the docking station in combination a well formed in the bottom surface of the device receiving recess, the well extending downward from the electrical connector of the docking station to a drainage opening formed at a lower-most point of the well in combination with a first lumen extending from the drainage opening to an outlet at an exterior of the docking station.
  • FIG. 1 shows a perspective view of a docking station according to the present invention with a mobile device inserted therein;
  • FIG. 2 shows a perspective view of the docking cradle of FIG. 1 with no device received therein;
  • FIG. 3 shows a top view of the mobile device of FIG. 1 with a battery received in a battery charging station thereof;
  • FIG. 4 shows a front view of the a docking station of FIG. 1 with the mobile device of FIG. 1 received therein;
  • FIG. 5 shows a top view of the docking station of FIG. 1 with the mobile device inserted therein;
  • FIG. 6 shows a bottom view of the docking station of FIG. 1 ;
  • FIG. 7 shows a front view of the mobile device of FIG. 1 ;
  • FIG. 8 shows a bottom view of the mobile device of FIG. 1 .
  • the present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals.
  • the present invention will be described in regard to docking stations for personal digital assistants (“PDA's”).
  • PDA's personal digital assistants
  • the docking cradle according to the present invention is equally suited for any mobile electronic device relying on a rechargeable battery.
  • a mobile device in this case a PDA 10
  • a PDA 10 is received within a first recess 14 of a docking station 12 according to the invention with a bottom surface 38 of the PDA 10 including a connector 28 thereof facing a lower-most surface 18 of the recess 14 .
  • the lower-most surface 18 includes a power/data connector 20 sized and shaped to mate with the connector 28 of the PDA 10 .
  • the PDA 10 includes a battery 22 received within a battery receiving recess (not shown) in a rear portion 24 of the PDA 10 .
  • the battery 22 is held in place within this battery receiving recess by a cover 26 .
  • the PDA 10 may include a male power/data connector with the docking station 12 including a mating female connector or vice versa and that these connectors may take any form without departing from the scope of the invention.
  • the recess 14 when received within the recess 14 , a lower portion of the PDA 10 is entirely surrounded on three sides with a front face 25 of the PDA 10 exposed except for a bottom edge and lateral portions thereof which are covered by projections 27 of a wall 29 surrounding the recess 14 . A lower portion of the portion of the PDA 10 holding the battery 22 is completely surrounded by the walls of the recess 14 .
  • the recess 14 includes a channel 30 which extends rearward from a back surface of the PDA 10 to form an open space behind the PDA 10 extending to the lower-most surface 18 of the recess 14 .
  • this channel 30 will not only serve to increase air flow around the adjacent portion of the PDA 10 , but may also receive a hand strap, or other accessory attached to the PDA 10 .
  • Projections 32 grip the rearward edges of the PDA 10 to provide positive guidance of the PDA 10 and the connector 28 into alignment with the connector 20 as the PDA 10 is inserted into the recess 14 .
  • additional guiding features may be included in the docking station 12 according to the invention for mating with corresponding features on the device(s) to be received therein to further ensure proper alignment of the connectors 20 and 28 .
  • Extending rearward from the center of the wall 29 is a battery latch 31 which maintains a battery 22 in the desired position within a battery receiving station 52 which will be described below.
  • the lower-most surface 18 may also include a well 34 extending downward from a contoured surface 36 which may, for example, correspond to a shape of the bottom surface 38 of the PDA 10 .
  • the bottom surface 38 extends generally along a part of a curved surface (e.g., a cylinder) with the connector 28 extending along a substantially flat, substantially centered portion of the bottom surface 38 .
  • a surface extending below the battery 22 includes a recess 40 with vents 42 to the battery receiving recess.
  • the well 34 provides an air space below the vents 42 to promote circulation therethrough.
  • the well 34 includes an opening 44 to a channel which extends to an opening 46 in a bottom surface 48 of the docking station 12 .
  • the docking station 12 includes four (4) feet 50 which raise the bottom surface 48 off the surface on which the docking station 12 is placed.
  • the channel 30 is fluidly connected to the space beneath the docking station 12 and air circulation through the channel 30 is promoted via the opening 44 and the open, top end of the channel 30 .
  • any liquid spilled into the docking station 12 will drain therefrom via the opening 44 and the channel.
  • the channel will preferably extend from the opening 44 to a lower surface of the docking station 12 whether or not this surface forms a base of the docking station 12 .
  • the docking station 12 includes a battery receiving station 52 located behind the channel 30 .
  • the battery receiving station 52 is formed as a recess 58 in a rear portion of the docking station 12 configured to receive the battery 22 when it has been removed from the battery receiving recess of the PDA 10 . That is, while a PDA 10 including a battery 22 is charging in the recess 14 , a spare battery 22 may be charged in the battery receiving station 52 .
  • a lower-most surface 54 of the battery receiving station 52 includes a connector 56 similar to that included within the battery receiving recess of the PDA 10 for electrically coupling the battery 22 to the PDA 10 .
  • the connector 20 is coupled to the one or more ports (not shown) on the docking station 12 which may be coupled to sources of power and/or data via external cabling while it is necessary only to connect the connector 56 to a port supplying power.
  • the recess 58 is preferably sized to allow a gap around the entire perimeter of the battery 22 when received therein with fins 60 maintaining a separation between the battery 22 and the walls of the recess 58 .
  • the lower-most surface 54 includes an opening 62 extending via a channel to an opening 64 in the bottom surface 48 of the docking station 12 .
  • the opening 64 is preferably formed at the lowest point on the lower-most surface 54 so that, if liquid is spilled into the recess 58 , it will drain therefrom via the opening 64 .

Abstract

A docking station for a portable electronic device comprises a device receiving recess including a device receiving bottom surface and at least one device guiding structure sized to slidingly receive therein a device to be docked in the docking station and to guide the device toward, and maintain the device in, a desired position within the device receiving recess in which an electrical connector of the device mates with an electrical connector of the docking station and a well formed in the bottom surface of the device receiving recess, the well extending downward from the electrical connector of the docking station to a drainage opening formed at a lower-most point of the well in combination with a first lumen extending from the drainage opening to an outlet at an exterior of the docking station.

Description

    BACKGROUND
  • As mobile computing devices are more and more heavily relied on, minimizing device downtime has become increasingly important. However, battery life remains limited and the recharging process is a periodic and unavoidable source of downtime. In addition, over time employees increasingly take these devices for granted and spills and other accidents further increase device downtime. As businesses become more reliant on these devices, the negative impact of downtime due to recharging and accidents, etc. is increased.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a docking station for a portable electronic device including a rechargeable battery, the docking station comprising a device receiving recess including a device receiving bottom surface and at least one device guiding structure sized to slidingly receive therein a device to be docked in the docking station and to guide the device toward, and maintain the device in, a desired position within the device receiving recess and an air flow channel which, when a device is received within the device receiving recess, is adjacent to a battery of the device, the air flow channel extending from an open top end to the device receiving bottom surface in combination with a first lumen extending through the device receiving bottom surface to establish fluid communication between the air flow channel and an exterior of the docking station.
  • The present invention is further directed to a docking station for a portable electronic device comprising a device receiving recess including a device receiving bottom surface and at least one device guiding structure sized to slidingly receive therein a device to be docked in the docking station and to guide the device toward, and maintain the device in, a desired position within the device receiving recess in which an electrical connector of the device mates with an electrical connector of the docking station in combination a well formed in the bottom surface of the device receiving recess, the well extending downward from the electrical connector of the docking station to a drainage opening formed at a lower-most point of the well in combination with a first lumen extending from the drainage opening to an outlet at an exterior of the docking station.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of a docking station according to the present invention with a mobile device inserted therein;
  • FIG. 2 shows a perspective view of the docking cradle of FIG. 1 with no device received therein;
  • FIG. 3 shows a top view of the mobile device of FIG. 1 with a battery received in a battery charging station thereof;
  • FIG. 4 shows a front view of the a docking station of FIG. 1 with the mobile device of FIG. 1 received therein;
  • FIG. 5 shows a top view of the docking station of FIG. 1 with the mobile device inserted therein;
  • FIG. 6 shows a bottom view of the docking station of FIG. 1; and
  • FIG. 7 shows a front view of the mobile device of FIG. 1; and
  • FIG. 8 shows a bottom view of the mobile device of FIG. 1.
  • DETAILED DESCRIPTION
  • The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The present invention will be described in regard to docking stations for personal digital assistants (“PDA's”). However, those skilled in the art will understand that the docking cradle according to the present invention is equally suited for any mobile electronic device relying on a rechargeable battery.
  • As shown in FIGS. 1 to 8, a mobile device, in this case a PDA 10, is received within a first recess 14 of a docking station 12 according to the invention with a bottom surface 38 of the PDA 10 including a connector 28 thereof facing a lower-most surface 18 of the recess 14. The lower-most surface 18 includes a power/data connector 20 sized and shaped to mate with the connector 28 of the PDA 10. The PDA 10 includes a battery 22 received within a battery receiving recess (not shown) in a rear portion 24 of the PDA 10. The battery 22 is held in place within this battery receiving recess by a cover 26. Those skilled in the art will understand that the PDA 10 may include a male power/data connector with the docking station 12 including a mating female connector or vice versa and that these connectors may take any form without departing from the scope of the invention.
  • As can be seen most clearly in FIGS. 1, 4 and 5, when received within the recess 14, a lower portion of the PDA 10 is entirely surrounded on three sides with a front face 25 of the PDA 10 exposed except for a bottom edge and lateral portions thereof which are covered by projections 27 of a wall 29 surrounding the recess 14. A lower portion of the portion of the PDA 10 holding the battery 22 is completely surrounded by the walls of the recess 14. However, as can be seen in FIGS. 1 and 5, the recess 14 includes a channel 30 which extends rearward from a back surface of the PDA 10 to form an open space behind the PDA 10 extending to the lower-most surface 18 of the recess 14. Those skilled in the art will understand that this channel 30 will not only serve to increase air flow around the adjacent portion of the PDA 10, but may also receive a hand strap, or other accessory attached to the PDA 10. Projections 32 grip the rearward edges of the PDA 10 to provide positive guidance of the PDA 10 and the connector 28 into alignment with the connector 20 as the PDA 10 is inserted into the recess 14. Those skilled in the art will understand that additional guiding features may be included in the docking station 12 according to the invention for mating with corresponding features on the device(s) to be received therein to further ensure proper alignment of the connectors 20 and 28. Extending rearward from the center of the wall 29 is a battery latch 31 which maintains a battery 22 in the desired position within a battery receiving station 52 which will be described below.
  • When the battery 22 of the PDA 10 is charged, heat is generated. This is a limiting factor in reducing the charging time as increasing the charging current to speed the charging involves a-proportionate increase in the heat generated. For most mobile devices such as the PDA 10, when the battery 22 heats to a predetermined level, the device will shut down the recharging process to prevent damage thereto. For example, many devices include a thermal sensor which directs the device to stop charging when a predetermined temperature is reached. When additional guiding features sufficient to ensure proper mating of the connectors 20 and 28 are included in the docking station 12, portions of the walls of the recess 14 and, specifically, of the channel 30, not necessary to support these guiding features may be omitted to enhance cooling of the battery 22.
  • In addition, liquids spilled into the docking station 12 may short out the docking station and/or the PDA 10 further increasing downtime. To reduce spill related downtime and decrease the occurrence of overheating, the lower-most surface 18 may also include a well 34 extending downward from a contoured surface 36 which may, for example, correspond to a shape of the bottom surface 38 of the PDA 10. For example, as shown in FIGS. 7 and 8, the bottom surface 38 extends generally along a part of a curved surface (e.g., a cylinder) with the connector 28 extending along a substantially flat, substantially centered portion of the bottom surface 38. Behind the connector 28, a surface extending below the battery 22 includes a recess 40 with vents 42 to the battery receiving recess. Thus, the well 34 provides an air space below the vents 42 to promote circulation therethrough. In addition, the well 34 includes an opening 44 to a channel which extends to an opening 46 in a bottom surface 48 of the docking station 12. As can be seen in FIG. 1, 2, 4 and 6, the docking station 12 includes four (4) feet 50 which raise the bottom surface 48 off the surface on which the docking station 12 is placed. Thus, the channel 30 is fluidly connected to the space beneath the docking station 12 and air circulation through the channel 30 is promoted via the opening 44 and the open, top end of the channel 30. In addition, as all portions of the lower-most surface 18 slope downward to the well 34 and the opening 44 is in the lowest part of the well 34, any liquid spilled into the docking station 12 will drain therefrom via the opening 44 and the channel. Those skilled in the art will understand that, if the docking station 12 is supported on a surface which is not horizontal (e.g., if it is wall mounted), the channel will preferably extend from the opening 44 to a lower surface of the docking station 12 whether or not this surface forms a base of the docking station 12.
  • As seen in FIG. 3, the docking station 12 includes a battery receiving station 52 located behind the channel 30. Specifically, the battery receiving station 52 is formed as a recess 58 in a rear portion of the docking station 12 configured to receive the battery 22 when it has been removed from the battery receiving recess of the PDA 10. That is, while a PDA 10 including a battery 22 is charging in the recess 14, a spare battery 22 may be charged in the battery receiving station 52. Thus, a lower-most surface 54 of the battery receiving station 52 includes a connector 56 similar to that included within the battery receiving recess of the PDA 10 for electrically coupling the battery 22 to the PDA 10. Those skilled in the art will understand that the connector 20 is coupled to the one or more ports (not shown) on the docking station 12 which may be coupled to sources of power and/or data via external cabling while it is necessary only to connect the connector 56 to a port supplying power. The recess 58 is preferably sized to allow a gap around the entire perimeter of the battery 22 when received therein with fins 60 maintaining a separation between the battery 22 and the walls of the recess 58. In addition, the lower-most surface 54 includes an opening 62 extending via a channel to an opening 64 in the bottom surface 48 of the docking station 12. Thus, air can circulate through the channel to the space between the battery 22 and the walls of the recess 58 to aid in cooling the battery 22 during charging. In addition, the opening 64 is preferably formed at the lowest point on the lower-most surface 54 so that, if liquid is spilled into the recess 58, it will drain therefrom via the opening 64.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the structure and the methodology of the present invention, without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (13)

1-9. (canceled)
10. A docking station for a portable electronic device including a rechargeable battery, the docking station comprising:
a device receiving recess including a device receiving bottom surface, the device receiving recess receiving therein a device to be docked;
an air flow channel which, when a device is received within the device receiving recess, is adjacent to a battery of the device, the air flow channel extending from an open top end to the device receiving bottom surface; and
a second channel extending through the device receiving bottom surface to establish fluid communication between the air flow channel and an exterior of the docking station.
11. The docking station according to claim 10, wherein the device receiving bottom surface includes a docking station connector for mating with a device connector on a device received in the device receiving recess and wherein a portion of the device receiving bottom surface immediately beneath the air channel forms a well extending downward from the docking station connector to form a space beneath a battery of a device received in the device receiving recess.
12. The docking station according to claim 11, wherein the second channel extends from an opening at a lower-most point of the well.
13. The docking station according to claim 10, further comprising a battery receiving station including a battery recess configured to receive a battery from the device to be received within the device receiving recess, a battery receiving bottom surface of the battery recess including a battery connector configured to mate with connections on the battery, the battery recess being sized so that, when a battery is received therein a perimeter of the battery is separated from walls of the battery recess to permit air flow therearound.
14. The docking station according to claim 13, further including a plurality of fins extending from the walls of the battery recess to maintain a desired separation between the walls of the battery recess and a battery received therein.
15. The docking station according to claim 13, further comprising at least one fin for maintaining a desired separation between the battery and the battery receiving bottom surface.
16. The docking station according to claim 13, further comprising a third channel extending through the battery receiving bottom surface establishing fluid communication between the battery receiving recess and an exterior of the docking station.
17. The docking station according to claim 16, wherein the third channel extends from a lower-most point of the battery receiving bottom surface.
18. The docking station according to claim 10, wherein the second channel includes a cylindrical channel.
19. A docking station for a portable electronic device including a rechargeable battery, the docking station comprising:
a device receiving recess including a device receiving bottom surface, the device receiving recess receiving therein a device to be docked in which an electrical connector of the device mates with an electrical connector of the docking station;
a well formed in the bottom surface of the device receiving recess, the well extending downward from the electrical connector of the docking station to a drainage opening formed at a lower-most point of the well; and
a channel extending from the drainage opening to an outlet at an exterior of the docking station.
20. The docking station according to claim 19, wherein the second channel includes a cylindrical channel.
21. The docking station according to claim 20, wherein the second channel includes a cylindrical channel.
US11/759,424 2005-05-13 2007-06-07 Overheating and Spill Resistant Mobile Device Docking Cradle Abandoned US20070232365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/759,424 US20070232365A1 (en) 2005-05-13 2007-06-07 Overheating and Spill Resistant Mobile Device Docking Cradle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/128,911 US7257429B2 (en) 2005-05-13 2005-05-13 Overheating and spill resistant mobile device docking cradle
US11/759,424 US20070232365A1 (en) 2005-05-13 2007-06-07 Overheating and Spill Resistant Mobile Device Docking Cradle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/128,911 Continuation US7257429B2 (en) 2005-05-13 2005-05-13 Overheating and spill resistant mobile device docking cradle

Publications (1)

Publication Number Publication Date
US20070232365A1 true US20070232365A1 (en) 2007-10-04

Family

ID=37419823

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/128,911 Active 2025-11-14 US7257429B2 (en) 2005-05-13 2005-05-13 Overheating and spill resistant mobile device docking cradle
US11/759,424 Abandoned US20070232365A1 (en) 2005-05-13 2007-06-07 Overheating and Spill Resistant Mobile Device Docking Cradle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/128,911 Active 2025-11-14 US7257429B2 (en) 2005-05-13 2005-05-13 Overheating and spill resistant mobile device docking cradle

Country Status (1)

Country Link
US (2) US7257429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105803A1 (en) * 2004-11-16 2006-05-18 Lg Electronics Inc. Mobile terminal holder
US20110095555A1 (en) * 2009-10-23 2011-04-28 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle Console Assemblies with Cup Holders and Spill Control Features
US8317519B1 (en) * 2008-05-09 2012-11-27 Rapid Response Solutions, LLC Resuscitation metronome
JP2013255376A (en) * 2012-06-08 2013-12-19 Seiko Epson Corp Charger and arrangement structure of charging terminal
WO2014104554A1 (en) * 2012-12-24 2014-07-03 스카이파워텔 주식회사 Extendable portable terminal auxiliary device having portable terminal support function

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257429B2 (en) * 2005-05-13 2007-08-14 Symbol Technologies, Inc. Overheating and spill resistant mobile device docking cradle
KR101409458B1 (en) * 2007-11-28 2014-06-19 삼성전자주식회사 Portable communication terminal having an aromatic function and apparatus for charging communication terminal having the same
US8600457B2 (en) * 2007-11-30 2013-12-03 Microsoft Corporation Sleep mode for mobile communication device
KR101736863B1 (en) * 2010-06-30 2017-05-17 엘지전자 주식회사 Mobile terminal and terminal system having the same
JP5229754B2 (en) * 2011-09-26 2013-07-03 Necインフロンティア株式会社 Portable information terminal holder and desk phone
CN103178559B (en) * 2011-12-21 2016-06-29 富泰华工业(深圳)有限公司 Connection equipment and charging device
US9007017B2 (en) * 2012-04-23 2015-04-14 Google Technology Holdings LLC Intelligent battery management method and device
CN103713697B (en) * 2012-10-08 2016-12-21 英华达(上海)科技有限公司 Display system and portable electronic devices thereof and display frame
CN104284560B (en) * 2013-07-12 2017-02-08 佛山市建准电子有限公司 Protecting cover of handheld electronic device
US10050658B2 (en) 2014-02-24 2018-08-14 National Products, Inc. Docking sleeve with electrical adapter
US9602639B2 (en) 2014-02-24 2017-03-21 National Products, Inc. Docking sleeve with electrical adapter
US9195279B2 (en) * 2014-02-24 2015-11-24 National Products, Inc. Docking sleeve with electrical adapter
US9331444B2 (en) 2014-02-24 2016-05-03 National Products, Inc. Docking sleeve with electrical adapter
US9529387B2 (en) 2014-02-24 2016-12-27 National Products, Inc. Docking sleeve with electrical adapter
US9706026B2 (en) 2014-02-24 2017-07-11 National Products, Inc. Docking sleeve with electrical adapter
WO2018005345A1 (en) 2016-06-27 2018-01-04 National Products, Inc. Slide dock and methods of making and using
US9831904B1 (en) 2016-12-14 2017-11-28 National Products, Inc. Adjustable cradle for mobile devices and methods of making and using
US11489350B2 (en) 2019-12-23 2022-11-01 National Products, Inc. Cradle for mobile devices with resilient guides and methods of making and using
USD972127S1 (en) * 2019-12-24 2022-12-06 Sensile Medical Ag Drug delivery device with docking station
USD971434S1 (en) 2019-12-24 2022-11-29 Sensile Medical Ag Reservoir for drug delivery device
US11029731B1 (en) 2020-04-20 2021-06-08 National Products, Inc. Cradles and cases for mobile devices incorporating guide elements or modular components and methods of making and using
US11289864B2 (en) 2020-04-20 2022-03-29 National Products, Inc. Cases for mobile devices with a flexible covering and rigid frame or with two different connector arrangements and methods of making and using
US10812643B1 (en) 2020-05-04 2020-10-20 National Products, Inc. Cases for mobile devices incorporating a light within the case and methods of making and using
US11076032B1 (en) 2020-05-26 2021-07-27 National Products, Inc. Cradles for mobile devices with a plunger lock and methods of making and using
US11277506B2 (en) 2020-05-26 2022-03-15 National Products, Inc. Cradles for mobile devices with one or more biasing tabs and methods of making and using
USD968620S1 (en) * 2020-06-03 2022-11-01 Pulsenmore Ltd. Ultrasonic imaging diagnostic device
US20220253097A1 (en) * 2021-02-11 2022-08-11 National Products, Inc. Mounting dock with module receptacle and methods of making and using
US11652326B2 (en) 2021-04-30 2023-05-16 National Products, Inc. Dock with flexible locator pins and methods of making and using
US20240128996A1 (en) 2022-10-13 2024-04-18 National Products, Inc. Remote repeater device for mobile device dock and methods of making and using

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029195A1 (en) * 2000-04-07 2001-10-11 Chien-Min Lin Recharge apparatus for holding the rechargeable device
US20030083115A1 (en) * 2001-10-26 2003-05-01 Kabushiki Kaisha Toshiba Radio device holder
US20050168191A1 (en) * 2004-02-02 2005-08-04 Jensen Lee Handheld electronic device cradle with enhanced heat-dissipating capability
US7257429B2 (en) * 2005-05-13 2007-08-14 Symbol Technologies, Inc. Overheating and spill resistant mobile device docking cradle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029195A1 (en) * 2000-04-07 2001-10-11 Chien-Min Lin Recharge apparatus for holding the rechargeable device
US20030083115A1 (en) * 2001-10-26 2003-05-01 Kabushiki Kaisha Toshiba Radio device holder
US20050168191A1 (en) * 2004-02-02 2005-08-04 Jensen Lee Handheld electronic device cradle with enhanced heat-dissipating capability
US7257429B2 (en) * 2005-05-13 2007-08-14 Symbol Technologies, Inc. Overheating and spill resistant mobile device docking cradle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105803A1 (en) * 2004-11-16 2006-05-18 Lg Electronics Inc. Mobile terminal holder
US7519402B2 (en) * 2004-11-16 2009-04-14 Lg Electronics Inc. Mobile terminal holder
US8317519B1 (en) * 2008-05-09 2012-11-27 Rapid Response Solutions, LLC Resuscitation metronome
US20110095555A1 (en) * 2009-10-23 2011-04-28 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle Console Assemblies with Cup Holders and Spill Control Features
US8210589B2 (en) 2009-10-23 2012-07-03 Toyota Motor Engineering And Manufacturing North America, Inc. Vehicle console assemblies with cup holders and spill control features
JP2013255376A (en) * 2012-06-08 2013-12-19 Seiko Epson Corp Charger and arrangement structure of charging terminal
WO2014104554A1 (en) * 2012-12-24 2014-07-03 스카이파워텔 주식회사 Extendable portable terminal auxiliary device having portable terminal support function

Also Published As

Publication number Publication date
US7257429B2 (en) 2007-08-14
US20060258409A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
US7257429B2 (en) Overheating and spill resistant mobile device docking cradle
US9786878B2 (en) Battery pack
EP2182608B1 (en) Docking charger for charging a hand held electronic device with or without a protective cover case fitted thereon
US10148104B2 (en) Docking station and device adapter for use in a docking station
US9634503B2 (en) Battery chargers
US8143850B2 (en) Inductive charger battery replacement system and device
US9356267B1 (en) Protective battery case to partially enclose a mobile electronic device
US9793744B2 (en) Interface and mounting structure for a wireless charger or intermediate piece
US20060089178A1 (en) Cordless telephone set
AU4623600A (en) Portable battery charger
CN105391106B (en) Charger for accumulator battery
CN102530399A (en) Efficiently compartmentalized box for multiple functions
KR20190003114A (en) Wireless power transfer apparatus for vehicle
CN104917219B (en) Wireless charging pedestal
JP2011249018A (en) Battery charger for battery pack
CN110972491A (en) Connecting device and handheld cloud platform equipment
US20170331082A1 (en) Electric device
US6171127B1 (en) Holder for a portable electronic device
JP6203664B2 (en) Charger
JP2015162296A (en) charger
GB2305361A (en) Mobile phone jacket for coupling to a charger
US20060049695A1 (en) Portable power supply with computer ports
CN211379628U (en) Electronic cigarette charging shell cup charger
CN218683464U (en) Bathroom mirror
EP1643345A2 (en) Portable power supply with computer ports

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYMBOL TECHNOLOGIES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOGAN, EDUARD M.;REEL/FRAME:019431/0979

Effective date: 20050531

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION