US20070219564A1 - Implanting device and method of using same - Google Patents

Implanting device and method of using same Download PDF

Info

Publication number
US20070219564A1
US20070219564A1 US11/687,968 US68796807A US2007219564A1 US 20070219564 A1 US20070219564 A1 US 20070219564A1 US 68796807 A US68796807 A US 68796807A US 2007219564 A1 US2007219564 A1 US 2007219564A1
Authority
US
United States
Prior art keywords
cannula
handle
actuator
post
flexible actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/687,968
Inventor
Matthew Rue
David Tierney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indevus Pharmaceuticals Inc
Original Assignee
Valera Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valera Pharmaceuticals Inc filed Critical Valera Pharmaceuticals Inc
Priority to US11/687,968 priority Critical patent/US20070219564A1/en
Publication of US20070219564A1 publication Critical patent/US20070219564A1/en
Assigned to VALERA PHARMACEUTICALS, INC. reassignment VALERA PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RUE, MATTHEW L, TIERNEY, DAVID S
Assigned to INDEVUS PHARMACEUTICALS, INC. reassignment INDEVUS PHARMACEUTICALS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: VALERA PHARMACEUTICALS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0612Devices for protecting the needle; Devices to help insertion of the needle, e.g. wings or holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments

Definitions

  • a flexible actuator that pushes or pulls at least two guide posts to move the cannula from the extended position to the retracted position to release the object from the cannula may flex between a locked and an unlocked position along a curvilinear path.

Abstract

A device for implanting at least one object beneath the skin of a patient includes a handle for grasping the device during insertion of an object. The handle may have a distal end, a proximal end, and an angled track formed on the handle. The angled track may have a stop at the distal portion that permits securing of the actuator and locks the cannula in a loaded position. A base may be connected to the handle. The base may include a post longitudinally fixed to the handle. The post may extend from the distal end of the handle. A hollow cannula may be positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula. A flexible actuator may be slidably engaged to the cannula to move the cannula from the extended position the retracted position to release the object from the cannula. The actuator may flex between a locked and an unlocked position.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Non-Provisional Application No. 10/406,397 filed Apr. 3, 2003 titled “Implanting Device and Method of Using Same” and U.S. Non-Provisional Application No. 11/531,311 filed Sep. 13, 2006, titled “Implanting Device and Method of Using Same” the contents of which are incorporated herein by reference.
  • BACKGROUND
  • 1. Technical Field
  • The present invention relates generally to an implanting device and a method for inserting implantable objects beneath the skin of a patient. More particularly, the present invention relates to an implanting device which provides improved control of implantable object release due to an angled track located on the base of the implanting device.
  • 2. Description of the Related Art
  • Drugs may be delivered to patients by a variety of methods including oral intravenous administration, inhalation of aerosols, an epidermal patch, and subcutaneous implants. The method chosen depends, among other things, upon the desired therapeutic concentration of the drug or pharmaceutical to be achieved in the patient and the duration the concentration must be maintained.
  • Recently released materials and pharmaceuticals have been developed which allow a drug to be subcutaneously introduced or administered beneath the skin of a patient so that the drug is slowly released over a long period of time. Such implants allow a drug to be dispensed in a relatively uniform dose over many months or years. This method of administering drugs is becoming especially important and popular as a method of administering contraceptives.
  • Previously, subcutaneous implants and other types of implants have been inserted beneath the skin by use of a trocar system, which is a two piece system including a cannula and an obdurator. First, an incision is made through the skin and the cannula and obdurator are inserted together through the skin. Next, the obdurator is withdrawn, leaving the cannula in place as a guide for inserting the implant. The implant is inserted through the cannula, and the obdurator is used to push the implant to the end of the cannula. The obdurator is then used to force the implant out of the cannula which the cannula is withdrawn, such that the implant is deposited in the channel previously occupied by the cannula. The cannula and obdurator are then withdrawn completely, leaving the implant in place beneath the skin.
  • This trocar insertion process requires substantial expertise in coordinating the pressings of the obdurator and the withdrawn of the cannula to deposit the implant in the channel. If these two processes are not properly coordinated, the implant may be forced into the tissue so that the implant has to make its own channel as it is inserted, Forcing the implant into the tissue causes additional trauma to the tissue and may cause the implant to become damaged by the force exerted by the obdurator. This is especially true for a hydrogel implant. While subcutaneous implantation may be done surgically using a scalpal to make the incision and a trocar system to place the implant, such methods require a physician or other highly trained person. Recently improved instruments for inserting subcutaneous implants have been developed which typically require far less skill to operate, and thus may be better suited for non-surgical physicians and other less skilled individuals, and require less time to perform the implantation procedure.
  • U.S. Pat. No. 4,105,030 discloses an implanting apparatus for use in subcutaneously implanting multiple pellets in animals. The apparatus provides a one-handed implanting system that reduces the risk of trauma from forcing the implant into the tissue, and it also reduces contamination. The animal implant apparatus includes a handle, a needle containing the pellets to be implanted, and a rod positioned within the needle for pushing the pellets out of the needle. Once the needle containing the pellets has been inserted subcutaneously, a spring loaded trigger on the handle is activated which causes the needle to be automatically withdrawn by a spring leaving the implanted pellets in place. However, the handle configuration of this implanting device is designed for use in animals, such as cattle, and due to its size and shape, it would be difficult to use for inserting implants subcutaneously in humans. Further, it is not possible to control the motion of the needle in this device because the needle will automatically retract upon activation of the trigger. The complex spring loaded propelling system and trigger of this implant apparatus increase the chances that the device will jam and fail to eject the pellets when required.
  • Contraceptive steroids that are implanted subcutaneously are normally imbedded in biologically inert polymers, some of which are biodegradable. The pellets made from such materials are typically long and cylindrical in cross section, and the size of these materials is on the order of the size of a pencil lead. The materials are generally flexible, ranging from somewhat flexible to very flexible nature. See, for example, U.S. Pat. No. 4,451,253, which describes some exemplary contraceptive pellets and an apparatus for individually implanting such pellets subcutaneously.
  • The size and shape of an implant pellet are important in determining the rate of delivery of a particular drug from a subcutaneous implant. Practical considerations put constraints on the dimensions of a subcutaneous implant. In particular, the length of an implant is generally limited. A typical implant is on the order of 1 ½ inches long. Longer implants are much more difficult to accurately locate. They are also more susceptible to breakage, which may affect the drug delivery rate and, in general, are simply more cumbersome and cosmetically apparent. Because of this, it is frequently necessary to implant a desired amount of a drug as a plurality of individual, shorter implant pellets rather than as a single longer pellet. Thus, an instrument which can quickly allow a physician or nurse to implant a plurality of pellets with minimal physical and psychological trauma to a patient would be desirable. When implanting several implants, care must be taken to accurately place the implants in a manner such that one does not interfere with the dissolution of the others.
  • SUMMARY
  • Embodiments of the present invention include a device which may be used for implanting various pharmaceuticals and therapeutic drug delivery devices. Such implantable objects may include those such as silicone rubber capsules or tubes that contain a synthetic progestin birth control hormone. The flexible tubes maw steadily release a low dose of hormone into the bloodstream.
  • One embodiment of the present invention is an implant device for inserting implantable objects subcutaneously into a patient, comprising a handle for grasping the device during insertion of an implantable object and a base connected to the handle. The base comprises a post, a cannula, and a flexible actuator positioned in an angled track. The cannula is positioned coaxially around and is longitudinally slidable over the post from an extended position, where an implantable object is retained in the cannula, to a retracted position, where the implantable object is released from the cannula. A flexible actuator positioned on an angled track in the base is slidably engaged with a boss on the cannula and is used to move the cannula from an extended position to a retracted position to release the implantable object from the cannula; the actuator flexes between a locked and an unlocked position.
  • The flexible actuator of the implant device may be locked to prevent movement of the cannula and thereby prevents any undesired dispensing or insertion of implantable objects. By pressing the flexible actuator into a second position (when the actuator is in the track in a distal position with respect to the handle) a locking feature is engaged to prevent retraction of the cannula. The lock may be released by alternately pressing the flexible actuator to a first position.
  • The implanting device may further include one or more implantable objects within the cannula. The implanting device may also include a cartridge for holding multiple implantable objects that are sequentially fed into the cannula after an implantable object is dispensed by movement of the actuator and cannula. The cartridge may be removably mounted and have a channel containing an implantable object that is parallel to a central bore of the cannula.
  • According to a further aspect of the present invention, a method of inserting a subcutaneously implantable object with an implanting device of the present invention includes inserting a cannula of the implanting device beneath the skin of a patient with an implantable object positioned within the cannula and manually retracting the cannula along the angled track using the flexible actuator to release the implantable object beneath the skin. The implanting device may then be withdrawn from the patient or another implantable object from a cartridge positioned within the cannula may be subsequently inserted. The implanting device used in the method includes a handle, a base and a cannula slidably engaged with a flexible actuator located in an angled track.
  • According to another further aspect of the present invention, a kit for inserting an implantable object an maintaining sterile conditions includes an implanting device including a handle and a base connected to the handle, the base comprising a post, a cannula, and a flexible actuator positioned in an angled track, where the cannula is positioned coaxially around and is longitudinally slidable over the post from an extended position, where an implantable object is retained in the cannula, to a retracted position, where the implantable object is released from the cannula, and where the actuator is positioned on an angled track in the base is slidably engaged with a boss on the cannula and is used to move the cannula from an extended position to a retracted position to release the implantable object from the cannula; a cutting device for making an implanting incision in a patient's tissue; supplies for maintaining sterility of the implant insertion process; and wound dressings.
  • The implantable object and implanting device of the present invention may be useful for insertion of implants coated with sol-gel coatings. The active agent may be slowly released by the implant or the coating on the implant when placed in watery environments such as blood or tissue. The device may be used to implant any such implant.
  • The present invention provides embodiments of an implanting device for inserting implantable objects which provides improved control of implantable object release due to the angled track located on the base of the implanting device. The flexible actuator is positioned on the angled track, which helps to prevent the forcing of the implantable object into the tissue, as such uncontrollable forcing can cause trauma to the tissue and may cause the implant to become damaged.
  • According to a further aspect of the present invention a device for implanting at least one object beneath the skin of a patient includes a handle for grasping the device during insertion of an object. The handle may have a distal end, a proximal end, and an angled track formed on the handle. The angled track may have a stop at the distal portion that permits securing of the actuator and locks the cannula in a loaded position. A base may be connected to the handle. The base may include a post longitudinally fixed to the handle. The post may extend from the distal end of the handle. A hollow cannula may be positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula. A flexible actuator may be slidably engaged to the cannula to move the cannula from the extended position to the retracted position to release the object from the cannula. The actuator may flex between a locked and an unlocked position.
  • According to a further aspect of the present invent, a device for implanting at least one object beneath the skin of a patient including a handle for grasping the device during insertion of an object. The handle may have a distal end, a proximal end, and an angled track formed on the handle. A base may be connected to the handle. The base may include a post longitudinally fixed to the handle. The post may extend from the distal end of the handle. A hollow cannula may be positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula. A flexible actuator that pushes or pulls at least two guide posts to move the cannula from the extended position to the retracted position to release the object from the cannula, may flex between a locked and an unlocked position along a curvilinear path.
  • According to a further aspect of the present invent, a method of inserting an object beneath the skin of a patient may include grasping a handle of a device during insertion of an object. The handle may have a distal end, a proximal end, and an angled track formed on the handle. The angled track may have a stop at the distal portion that permits securing of the actuator and locks the cannula in a loaded position. A base may be connected to the handle and the base may include extending a post from the distal end of the handle wherein the post is longitudinally fixed to the handle. A hollow cannula may be positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula. A flexible actuator may be slidably engaged to the cannula to move the cannula from the extended position to the retracted position to release the object from the cannula. The actuator may flex between a locked and an unlocked position.
  • DESCRIPTION OF THE DRAWINGS
  • In part, other aspects, features, benefits and advantages of the embodiments of the present invention will be apparent with regard to the following description, appended claims and accompanying drawings where:
  • FIG. 1 is an isometric view of an implanting device according to the present invention with the cannula retracted and the flexible actuator is in an unlocked position;
  • FIG. 2 is an isometric view of the implanting device with the cannula in a fully extended position with the flexible actuator in a locked position;
  • FIG. 3 is an exploded view of an implanting device according to an embodiment of the present invention.
  • FIG. 3A is an enlarged exploded view of an implanting device according to an embodiment of the present invention.
  • FIG. 4 is a side view of an implanting device according to the present invention with the cannula in a fully extended position with the flexible actuator in a locked position;
  • FIG. 5 is a top view of an implanting device according to the present invention with the cannula in a fully extended position with the flexible actuator in a locked position.
  • DETAILED DESCRIPTION
  • Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular molecules, compositions, methodologies or protocols described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
  • It must also be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
  • The present invention provides an implanting device for subcutaneously inserting implantable objects containing beneficial agents, such as pharmaceuticals for the prevention, treatment, and diagnosis of disease. The implanting device 200 according to one embodiment of the present invention is illustrated in the perspective view in FIG. 1. The implanting device 200 includes a handle 220, a movable elongated cannula 240 (shown in a retracted position), a flexible actuator button 262 connected to a flexible actuator 260 (shown in FIG. 3) for moving the cannula 240 along a post rod 244 (shown in FIG. 3), and a base 280. The base 280 is distal to the handle end 222. In the retracted position, the cannula 240 is drawn into the interior of the handle base 280 by the flexible actuator button 262 as it glides or slides along a gradually curved path 300 toward the handle end. The flexible actuator button 262 is guided by an angled track 300 which is non-parallel with respect to the axis of motion of the cannula 240 or the axis of the post rod 244 (shown in FIG. 3). The cannula 240 may be moved with respect to the post rod 244 (shown in FIG. 3) and housing base 280 with cannula guide 340. Movement of the flexible actuator 260 in a direction toward the cannula guide 340 and along the track 300 away from the handle 220 results in extension of the cannula 240 through the cannula guide 340.
  • In FIG. 2 the implanting device 200 is shown with the cannula 240 in an extended position. The flexible actuator button 262 is shown distal to the handle end 222. In this position the flexible actuator may be locked to prevent withdrawal of the cannula 240 and unintended insertion of implantable objects. Movement of the flexible actuator button 262 in a direction away from the cannula guide 340 and along the angled track 300 towards the handle 220 causes retraction of the cannula 240 and release of an implantable object (not shown) positioned within the bore 242 of the cannula.
  • Motion of the flexible actuator is along an angled ramp which provides increased precision in control of the movement of the cannula along the post rod axis. In one embodiment, the flexible actuator 260 follows an obtusely angled ramp throughout its path. This provides the user with the advantage of greater control of insertion of implantable objects.
  • FIGS. 3 and 3A, show an exploded isometric view of the embodiment shown in FIGS. 1 and 2. IN FIG. 3, the implanting device 200 is shown in two portions 200 a and 200 b, which includes a handle 220 having first and second portions 220 a and 220 b, a base 280 having first and second portions 280 a and 280 b; a cannula guide 340 having first and second cannula guide portions 340 a and 340 b; and a handle end 222 including handle end portions 222 a and 222 b. The angled track 300 is formed from two opposing recessed track walls 300 a and 300 b which, when the portions 200 a and 200 b of the implanting device assembled, form the angled track 300. Within the implanter handle 220 are portions of a flexible actuator channel 248 a, (and 248 b in handle 220 b not shown in FIG. 3), which, when assembled, form a flexible actuator channel 248 for guiding the tab 268 of the flexible actuator within the assembled implanter handle 220.
  • The flexible actuator 260 in FIG. 3 includes a button 262, a boss channel 272, a lower guide post 264 (not shown FIG. 3), lower guide post 266, thin profile guide 270, and tab 268. The button 260 is seated in the scoop 310. The flexible actuator's guide posts 264 and 266 rest upon, but are not attached to, the cannula guide post 368. The boss channel 272 receives the guide posts 362 and 364 from the cannula boss 360. Movement of the flexible actuator 260 along the angled track 300, in the direction away from the cannula guide 340 and toward the post boss retainer 248, allows cannula boss guide posts 362 and 364 within the boss channel 272 to remain at a constant position relative to the post 244, while the boss channel 272 moves relative to them and at the same time pulls the cannula 240 toward the post retainer 248. The boss channel 272 engages the cannula boss guide posts 362 and 364 and permits a pulling or pushing force to be exerted on the cannula 240, for extension and retraction, as the flexible actuator 260 is moved along the angled track 300.
  • Flexible actuator guide post 266 and flexible actuator guide post 264 (not shown in FIG. 3.) are attached to flexible actuator 260 and rest on top of angled guide ramp 350 b (not shown in FIG. 3) and angled guide ramp 350 a respectively. An angled guide ramp 350 is formed by joining guide ramp portion 350 a shown in FIG. 3 and guide ramp portion 350 b (not shown in FIG. 3) together. The flexible actuator guide posts 264 (not shown in FIG. 3) and 266 shown in FIG. 3 move parallel to the angled guide ramp 350 b (not shown in FIG. 3) and angled guide ramp 350 b respectively translating movement of the flexible actuator 260 along the angled track 300 into movement of the boss channel 272 perpendicular to the axis of the cannula 240 as the flexible actuator 260 is moved toward or away from the post retainer 248. Cannula boss guide posts 366 (not shown in FIG. 3) and 368 lie below linear guide 352 a and 352 b (not shown in FIG. 1C) and on top of base step 354 a and 354 b (not shown it FIG. 3) maintains the cannula 240 in a substantially fixed orientation with respect to the base 280.
  • The degree to which movement of the flexible actuator 260 between any two points along the guide ramp 350 is translated into linear motion of the cannula 242 along the post 244 depends upon the angle of the base guide ramp 350. The greater the angle that the base guide 350 makes with respect to the post 244, the more control that may be exerted over lateral movement of the cannula 240. The shape of the base guide ramp portions 350 a in FIG. 3 and 350 b (not shown in FIG. 3) may be a linear or curvilinear.
  • Post 244 is coaxially located within cannula bore 242 and is secured to the housing base 280 by post retainer 248 through post boss 246. The post 244 is inserted into the end of the cannula 242 where the cannula boss 360 is located and protrudes through cannula guide 340 which provides support and alignment for the post 244. The diameter of the cannula guide 340 is made so that movement of the cannula 260 into and out of the base 280 along the post 244 occurs without binding or restriction of the cannula 240 with the inner diameter of the cannula guide 340. The diameter of the cannula guide 340 may also be sized so that it prevents entrainment of fluids, particles, and other debris adhering to the cannula 240 from being drawn into the implanter base 280.
  • In FIG. 3A, the locking feature 299 locks the cannula in the initial loaded position and prevents an unintended release of the implantable object from the device. The locking feature 299 provides a stop for the flexible actuator by using the guide posts 264 and 266 to prevent retraction of the cannula. The locking feature's stop secures the flexible actuator by locking the cannula in the initial loaded position and preventing the unintended release of the implantable object from the device. The flexible actuator 260 is released from the locked position by pressing the flexible actuator button 262 which releases guide posts 264 and 266 from locking feature 299.
  • FIG. 4 shows a side view of the implanting device of the present invention with the cannula in an extended position. In FIG. 4, the flexible actuator button 262 is shown distal to the handle end 222. In this position, the flexible actuator may be locked to prevent withdrawal of the cannula 240 and unintended insertion of implantable objects. Movement of the flexible actuator button 262 in a direction away from the cannula guide 340 and along the angled track 300 towards the handle 220 causes retraction of the cannula 240 and release of an implantable object (not shown) positioned within the bore 242 of the cannula 240.
  • FIG. 5 shows a top view of the implanting device of the present invention with the cannula 240 in an extended position. In FIG. 5, the flexible actuator button 262 is shown distal to the handle end 222. In this position, the flexible actuator may be locked to prevent the withdrawal of the cannula 240 and unintended insertion of implantable objects. Movement of the flexible actuator button 262 in a direction away from the cannula guide 340 and along the angled track 300 toward the handle 220 causes retraction of the cannula 240 and release of an implantable object (not shown) position within the bore 242 of the cannula 240.
  • The implanting device may be made from molded, cast, machined components or combinations of these. For example the implanter portions 200 a and 200 b may be molded from chemically and mechanically suitable plastics such a polyvinylidine fluoride (PVDF) or ultrahigh molecular weight polyethylene (UPE). The cannula 240 may be made from a variety of surgically acceptable stainless or titanium alloys, and the post may be made using similar materials or plastics like PVDF.
  • The implanter handle 220 includes a grasping portion and may fit into the palm of the user's hand. The handle is substantially symmetrical so that the implanting device can be used by either right or left handed users. Extending from the handle is a base portion 280 which includes a track 300 in which a flexible actuator 260, using the boss channel 272 and the lower guide posts 264 and 266, slides on the cannula guide post 368 to extend or retract the cannula 240. The boss channel 272 and the flexible actuator's lower guide posts 264, 266 are not attached the cannula guide post 364. Thus, the flexible actuator button 262 cannot pivot at the distal end. Also, the boss channel 272 does not pivot around the cannula guide posts 264 and 266. The track is formed by two opposed track side walls 300 a and 300 b angled with respect to the device post 244, and that form a slot extending through the track 300 along a length of the track to receive the actuator 260 and thin profile guide 272.
  • The cannula 240 includes a boss fitting at an end proximal to the handle 220 of the device. The cannula boss 360 is secured around the proximal end of the cannula 240 and provides guide posts 264 and 266 that fit into a channel on the flexible actuator 260. The cannula boss 360 may be attached to the cannula 240 in any known manner such as by insert molding, press fitting, adhesive bonding, threading, ultrasonic staking, and the like.
  • The flexible actuator 260 includes a channel which receives the cannula boss guide posts 362 and 364 and allows them to slide and move within the channel. The flexible actuator 260 has a thin profile guide 270 which extends through the slot in the track 300 and guides the flexible actuator 260 in the track 300 as it slides longitudinally along the track. The thin profile guide 270 of the flexible actuator is connected to an actuator button 262 for engagement by a user finger to move the actuator along the angled track 300. The actuator button 262 may have a ridged, grooved, or knurled slip surface which may be engaged by the user's thumb.
  • Referring back to FIG. 3A, a longitudinal axis passes through a center of the cannula 240 and the post 244 in the base of the implanting device. The track, along which the flexible actuator 260 moves, is not parallel to this axis along one or more portions of the track; the track may be linear or curvilinear. The track has a distal portion locking feature 299 which provides a stop for the flexible actuator and permits securing of the flexible actuator which locks the cannula in the initial loaded position and prevents unintended release of the implantable object from the device. Locking feature 299 has an angled proximal wall to allow guide posts 264 and 266 to travel along the angled wall while the flexible actuator is flexing until the guide posts travel past the apex of the angled wall of locking feature 299. The flexible actuator 260 is released from the locked position by pressing the flexible actuator button 262 which releases guide posts 264 and 266 from locking feature 299 and allows sliding the flexible actuation 260 back along its track. The flexible actuator 260 is slidably engaged to the cannula to move the cannula from the extended position to the retracted position to release the object from the cannula. When the flexible actuator 260 is in the locked position a substantial force may be applied longitudinally on the distal end of the cannula 240 without causing the cannula to retract.
  • Once the flexible actuator 260 has been unlocked, further manual pressure on the actuator button 262 in the direction toward the handle 220 causes the flexible actuator to slide along the track. As the actuator slides in the direction of the handle, the cannula 240 is withdrawn over the post 244 and one or more implantable objects held stationary by the post 244 may be released from the cannula 240. The flexible actuator 260 allows the user to manually control the motion of the cannula 240 throughout the implant insertion process. The angle or slope of the track with respect to the axis of the post permits the user to exert greater control over the motion of the cannula than could be achieved using a linear track to guide the withdrawal of the cannula.
  • Although the implanting device is preferably a single use device, the implanting device according to the present invention may also be made for reuse. The reusable embodiment of the implanting device will preferably be formed of an autoclavable material known to those skilled in the art for sterilization and reuse.
  • The post 244 is positioned within the base 280 and is fixed within the proximal end of the base by post retainer 248. The post has a protrusion or boss at one of its ends which engages and secures the post 244 to the post retainer 248. The post retainer 248 is secured to an interior surface of the implanter base. The distal end of the post 244 is configured to engage the implantable object as the cannula 240 is retracted over the post 244, This distal end of the post 244 may have a flat leading edge for engaging the implantable object or may also take on other configurations depending on the particular implantable object to be inserted. Some other distal end configurations include but are not limited to blunt, beveled, concave, and convex end surfaces.
  • The post 244 preferably has an outer diameter which is somewhat smaller than an inner diameter of the cannula 240 to provide clearance through the cannula tube and limit binding or restriction of the post within the cannula. The post diameter with respect to the cannula should limit the amount of material that can bypass the cannula and become entrapped within the base.
  • The handle of the present invention is designed for one handed operation with the handle grasped by the hand while the thumb is used to slide the flexible actuator in the angled track. The handle preferably has a size and shape that can be easily manipulated during implant insertion. The orientation of the handle relative to the cannula allows the user to firmly grip the handle, yet easily keep the handle parallel to the skin surface to prevent the cannula from diving into other tissue or piercing out through the skin during insertion. The implanting device includes a bottom surface of the base which is substantially planar and parallel to the cannula.
  • A distal tip of the cannula 240 may be formed at various beveled angles, such as between about 30 degrees and about 45 degrees, or at a sharp point, such as 27 degrees which can cut skin. The preferred design of the cannula tip is a design with a beveled tip which does not cut unbroken skin and does not require special sharps disposal. The cannula of the implanting device is preferably inserted into the patient through a small incision made in the patient's skin to minimize scaring.
  • In operation the implanting device may be loaded with an implantable object either manually or with a cartridge. An incision is made at an implantation site and the cannula 240 is inserted through the incision to a desired depth. Preferably, a depth indicating marker, such as a ring, is provided on the cannula to assist in locating the implantable object at a particular depth. Once the cannula is placed under the skin at a desired location for the implantable object, the flexible actuator 260 is drawn back manually from its locked position causing the cannula to be withdrawn over the implantable object and the post. When the cannula has been fully withdrawn, the implanting device is withdrawn from the patient leaving the implantable object in place.
  • The two handle portions and base portions may be assembled in any known manner such as by ultrasonic welding, adhesive bonding, press-fit bosses, or a snap fit. A rear surface of the handle rests against the palm of the user to steady the implanting device as the thumb moves the flexible actuator 260 along the obtusely angled track 300. Pressure may also be applied to the base by the index finger of the user during insertion of the cannula.
  • The assembly of the implanting device will be described with reference to the exploded view, which illustrates the implanting device prior to assembly. A cannula 240 with boss 360 secured to it is slid over a post 244 and the flexible actuator 260 is slid onto the upper cannula boss guide posts. This subassembly is oriented in one portion of an implanting device so that the proximal end of the post 244 is secured to a post boss retainer 248. Next, the flexible actuator 260 may be received within the actuator channel, the lower cannula boss guide post is positioned below the linear guide within the base, and the cannula 240 with the post 244 inside of it is received into a cannula guide portion. Placement of the second implanter portion over the first implanter portion with the previously described subassembly positioned inside of its traps the cannula, its guide posts, and the flexible actuator 260 and its guide posts between cutouts in the second portion of the implanter.
  • When the implanting device is assembled, the flexible actuator 260 is slidably connected to the upper cannula boss guide posts mounted to the cannula 240. The flexible actuator 260 slides along the linear or curvilinear angled track 300 from a distal portion of the track, which contains a locking feature 299, to the proximal end of the track.
  • One embodiment of the present invention is a kit which may include additional parts along with an implanting device may be combined together to implant therapeutics, pharmaceuticals, or microencapsulated sensors into a patient. The kit may include the implanter in a first compartment. A second compartment may include a syringe, needles, scalpel, and any other instruments needed. A third compartment may includes gloves, drapes, wound dressings and other procedural supplies for maintaining sterility of the implanting process, as well as an instruction booklet. A fourth compartment may include additional cannula and posts. Each tool may be separately packaged in a plastic pouch that is radiation sterilized. A cover of the kit may include illustrations of the implanting procedure and a clear plastic cover may be placed over the compartments to maintain sterility.
  • Embodiments of the present invention include a device which may be used for implanting various pharmaceuticals, therapeutic drug delivery devices such as silicone rubber capsules that contain a synthetic progestin birth control hormone, or encapsulated microsensors. The angled guide track of the device permits finer control of the cannula motion during implantation which aids in the proper positioning of implants within the patient. Embodiments of the present invention contain fewer parts than other implant devices.
  • Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contained within this specification.

Claims (27)

1. A device for implanting at least one object beneath the skin of a patient comprising:
a handle for grasping the device during insertion of an object, the handle having a distal end, a proximal end and an angled track formed on the handle, wherein the angled track has a stop at the distal portion that permits securing of the actuator and locks the cannula in a loaded position;
a base connected to the handle, the base comprising:
a post longitudinally fixed to the handle, the post extending from the distal end of the handle;
a hollow cannula positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula;
and a flexible actuator slidably engaged to the cannula to move the cannula from the extended position to the retracted position to release the object from the cannula, wherein the actuator flexes between a locked and an unlocked position.
2. The device of claim 1 further comprising one or more implantable objects.
3. The device of claim 2, wherein the implantable objects comprise one or more of either therapeutics, pharmaceuticals, or microencapsulated sensors.
4. The device of claim 1, wherein pressing the flexible actuator in the distal position of the angled track engages a locking feature to prevent retraction of the cannula.
5. The device of claim 1, wherein the flexible actuator is released from the locked position by pressing the actuator.
6. The device of claim 1 further comprising a cartridge removably mounted and parallel to a central bore of said cannula and a means for moving objects into the cannula for delivery upon retraction of said cannula.
7. The device of claim 1, wherein the angled track is either linear or curvilinear.
8. The device of claim 1, wherein the base includes a bottom surface that is substantially planar and parallel to the cannula.
9. The device of claim 1, wherein the cannula includes a tip at the distal end that is formed from at least one beveled angle of between 30 and 45 degrees.
10. The device of claim 1, wherein the cannula includes a tip at the distal end that is formed at a sharp point of 27 degrees.
11. The device of claim 1, wherein the cannula includes a depth indicating marker.
12. A device for implanting at least one object beneath the skin of a patient comprising:
a handle for grasping the device during the insertion of an object, the handle having a distal end, a proximal end, and an angled track formed on the handle,
a base connected to the handle, the base comprising:
a post longitudinally fixed to the handle, the post extending from the distal end of the handle;
a hollow cannula positioned coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula;
and a flexible actuator that pushes or pulls at least two guide posts to move the cannula from the extended position to the retracted position to release the object from the cannula, wherein the actuator flexes between a locked and an unlocked position along a curvilinear path.
13. The device of claim 12, wherein a flexible actuator further comprises a boss channel that engages the guide posts and permits a pulling or pushing force to be exerted on the cannula, for extension or retraction.
14. The device of claim 13, wherein the boss channel and the cannula guide posts are not attached.
15. The device of claim 13, wherein the boss channel does not pivot around the cannula guide posts.
16. The device of claim 12 further comprising one or more implantable objects.
17. The device of claim 16, wherein the implantable objects comprise one or more of with therapeutics, pharmaceuticals, or microencapsulated sensors.
18. The device of claim 12 further comprising a cartridge removably mounted and parallel to a central bore of said cannula and a means for moving objects into the cannula for delivery upon retraction of said cannula.
19. The device of claim 12, wherein pressing the actuator in the distal position of the angled track engages a locking feature to prevent retraction of the cannula.
20. The device of claim 9, wherein the actuator is released from the locked position by pressing the actuator.
21. The device of claim 12, wherein the base includes a bottom surface that is substantially planar and parallel to the cannula.
22. The device of claim 12, wherein the cannula includes a tip at the distal end that is formed from at least one beveled angle of between 30 and 45 degrees.
23. The device of claim 12, wherein the cannula includes a tip at the distal end that is formed at a sharp point of 27 degrees.
24. The device of claim 12, wherein the cannula includes a depth indicating marker.
25. A method of inserting an object beneath the skin of a patient, comprising:
grasping a handle of a device during insertion of an object, the handle having a distal end, a proximal end, and an angled track formed on the handle, wherein the angled track has a Stop at the distal portion that permits securing of the actuator and locks the cannula in a loaded position; and
connecting a base to the handle, the base comprising:
extending a post from the distal end of the handle wherein the post is longitudinally fixed to the handle,
positioning a hollow cannula coaxially around and longitudinally slidable over the post from an extended position, in which at least one object is retained in the cannula, to a retracted position, in which at least one object is released from the cannula; and
slidably engaging a flexible actuator to the cannula to move the cannula from the extended position to the retracted position to release the object from the cannula, wherein the actuator flexes between a locked and an unlocked position.
26. The method of claim 25, further comprising pressing the flexible actuator in the distal position of the angled track to engage a locking feature to prevent retraction of the cannula.
27. The method of claim 25, further comprising pressing the flexible actuator to release the actuator from the locked position.
US11/687,968 2003-04-03 2007-03-19 Implanting device and method of using same Abandoned US20070219564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/687,968 US20070219564A1 (en) 2003-04-03 2007-03-19 Implanting device and method of using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/406,397 US7214206B2 (en) 2003-04-03 2003-04-03 Implanting device and method of using same
US11/531,311 US7510549B2 (en) 2003-04-03 2006-09-13 Method of inserting an object under the skin
US11/687,968 US20070219564A1 (en) 2003-04-03 2007-03-19 Implanting device and method of using same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/406,397 Continuation-In-Part US7214206B2 (en) 2003-04-03 2003-04-03 Implanting device and method of using same
US11/531,311 Continuation-In-Part US7510549B2 (en) 2003-04-03 2006-09-13 Method of inserting an object under the skin

Publications (1)

Publication Number Publication Date
US20070219564A1 true US20070219564A1 (en) 2007-09-20

Family

ID=33097314

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/406,397 Active 2025-03-10 US7214206B2 (en) 2003-04-03 2003-04-03 Implanting device and method of using same
US11/531,311 Expired - Lifetime US7510549B2 (en) 2003-04-03 2006-09-13 Method of inserting an object under the skin
US11/687,968 Abandoned US20070219564A1 (en) 2003-04-03 2007-03-19 Implanting device and method of using same
US12/415,681 Expired - Lifetime US7850639B2 (en) 2003-04-03 2009-03-31 Implantation device for subcutaneous implantation of an object under the skin

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/406,397 Active 2025-03-10 US7214206B2 (en) 2003-04-03 2003-04-03 Implanting device and method of using same
US11/531,311 Expired - Lifetime US7510549B2 (en) 2003-04-03 2006-09-13 Method of inserting an object under the skin

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/415,681 Expired - Lifetime US7850639B2 (en) 2003-04-03 2009-03-31 Implantation device for subcutaneous implantation of an object under the skin

Country Status (17)

Country Link
US (4) US7214206B2 (en)
EP (1) EP1608428B1 (en)
JP (1) JP4575367B2 (en)
KR (1) KR101106474B1 (en)
CN (2) CN101596337B (en)
AT (1) ATE510579T1 (en)
AU (1) AU2004228033B2 (en)
BR (1) BRPI0408577B1 (en)
CA (1) CA2521008C (en)
DK (1) DK1608428T3 (en)
ES (1) ES2366698T3 (en)
HK (1) HK1078281A1 (en)
IL (2) IL171197A (en)
MX (1) MXPA05010554A (en)
PT (1) PT1608428E (en)
WO (1) WO2004089458A1 (en)
ZA (1) ZA200508025B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131908A1 (en) * 2007-11-20 2009-05-21 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US20100106133A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US20100106132A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising superior and inferior covers
US20100106136A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug delivery device with sliding cartridge
US9033912B2 (en) 2012-03-28 2015-05-19 Warsaw Orthopedic, Inc. Drug delivery system
US9764122B2 (en) 2014-07-25 2017-09-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US9775978B2 (en) 2014-07-25 2017-10-03 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
USD802755S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
USD809652S1 (en) 2014-07-25 2018-02-06 Warsaw Orthopedic, Inc. Drug delivery device
US9901684B2 (en) 2013-10-17 2018-02-27 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
US10349956B2 (en) 2014-10-29 2019-07-16 Jonathan Peter Cabot Arrangement and method used in the preparation of the proximal surface of the tibia for the tibial component of a prosthetic knee joint
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1545705A4 (en) 2000-11-16 2010-04-28 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US20070265582A1 (en) * 2002-06-12 2007-11-15 University Of Southern California Injection Devices for Unimpeded Target Location Testing
US7214206B2 (en) * 2003-04-03 2007-05-08 Valera Pharmaceuticals, Inc. Implanting device and method of using same
TWI434676B (en) 2004-03-19 2014-04-21 Merck Sharp & Dohme X-ray visible drug delivery device
FI3417905T4 (en) * 2005-01-24 2023-12-04 Merck Sharp & Dohme Applicator for inserting an implant
EP1841492B1 (en) * 2005-01-24 2016-08-10 Merck Sharp & Dohme B.V. Applicator for inserting an implant
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8512288B2 (en) 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
CA2636145C (en) 2006-01-19 2014-04-22 N.V. Organon Kit for and method of assembling an applicator for inserting an implant
GB2436526B (en) * 2006-03-29 2010-01-27 Arash Bakhtyari-Nejad-Esfahani Syringe
GB0610553D0 (en) 2006-05-26 2006-07-05 Bakhtyari Nejad Esfahani Arash Dressing
GB0620617D0 (en) * 2006-10-17 2006-11-29 Glaxo Group Ltd Novel device
US8597243B2 (en) * 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8434528B2 (en) 2007-04-30 2013-05-07 Medtronic Minimed, Inc. Systems and methods for reservoir filling
US7959715B2 (en) * 2007-04-30 2011-06-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
EP2146760B1 (en) 2007-04-30 2018-10-10 Medtronic MiniMed, Inc. Reservoir filling, bubble management, and infusion medium delivery systems and methods with same
US8613725B2 (en) 2007-04-30 2013-12-24 Medtronic Minimed, Inc. Reservoir systems and methods
WO2008133702A1 (en) * 2007-04-30 2008-11-06 Medtronic Minimed, Inc. Needle inserting and fluid flow connection for infusion medium delivery system
WO2009033177A1 (en) * 2007-09-07 2009-03-12 Imtec, Llc Method and device for dialysis
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
FR2925342B1 (en) * 2007-12-21 2011-01-21 Rexam Pharma La Verpilliere DEVICE FOR INJECTING AN IMPLANT
US8353812B2 (en) 2008-06-04 2013-01-15 Neovista, Inc. Handheld radiation delivery system
WO2009149474A1 (en) 2008-06-06 2009-12-10 Vital Access Corporation Tissue management methods, apparatus, and systems
US20100152640A1 (en) * 2008-09-05 2010-06-17 Imtecbiomedical, Inc. Methods and apparatus for vascular access
US11197952B2 (en) 2009-01-29 2021-12-14 Advent Access Pte. Ltd. Vascular access ports and related methods
CA2751185C (en) 2009-01-29 2018-07-03 Vital Access Corporation Vascular access ports and related methods
US8057483B2 (en) * 2009-02-14 2011-11-15 Ocular Transplantation Llc Subretinal implantation instrument
AU2010241934B2 (en) * 2009-04-30 2014-01-16 Cook Medical Technologies Llc System and method for fiducial deployment
WO2011063349A1 (en) * 2009-11-20 2011-05-26 Talima Therapeutics, Inc. Devices for implanting compositions and methods and kits therefor
JP5748595B2 (en) * 2010-08-30 2015-07-15 アークレイ株式会社 Sensor insertion / recovery device
US8679093B2 (en) 2010-11-23 2014-03-25 Microchips, Inc. Multi-dose drug delivery device and method
GB2487899A (en) 2011-02-01 2012-08-15 Olberon Ltd Needle holder with grip means
US8657760B2 (en) 2011-03-04 2014-02-25 Cook Medical Technologies Llc Ergonomic biopsy instrument
US20120283705A1 (en) * 2011-05-05 2012-11-08 Medtronic, Inc. Percutaneous delivery tool
US9131936B2 (en) * 2011-06-10 2015-09-15 Ethicon, Inc. Anchor tip orientation device and method
US8838208B2 (en) 2011-06-28 2014-09-16 Cook Medical Technologies Llc Fiducial deployment needle system
GB201112933D0 (en) 2011-07-27 2011-09-14 Olberon Ltd Improvements relating to needle insertion or cannulation
WO2013063082A1 (en) 2011-10-24 2013-05-02 Endo Pharmaceuticals Solutions Inc. Implantable rasagiline compositions and methods of treatment thereof
EP2770981B1 (en) 2011-10-24 2017-05-24 Braeburn Pharmaceuticals, Inc. Implantable tizanidine compositions and methods of treatment thereof
BR112014009819A2 (en) 2011-10-24 2017-04-18 Endo Pharmaceuticals Solutions "implantable reservoir-based drug release compositions and uses thereof"
JP2015509778A (en) * 2012-02-10 2015-04-02 サイヴィーダ ユーエス,インコーポレイテッド Injector device with fixed plunger and method of use
CN104302236A (en) * 2012-04-19 2015-01-21 瑞福德有限公司 Device for removing an item implanted underneath the skin
USD702342S1 (en) * 2012-06-03 2014-04-08 Renew Medical Inc. Finger tip applicator
US10391291B2 (en) 2012-10-02 2019-08-27 Robert F. Wallace Implant insertion system
AU2013344388A1 (en) * 2012-11-19 2015-07-09 Braeburn Pharmaceuticals, Inc. Implantable drug delivery compositions and methods of treatment thereof
US9522264B2 (en) 2013-02-26 2016-12-20 Cook Medical Technologies Llc Ratchet-slide handle and system for fiducial deployment
WO2014160026A2 (en) 2013-03-14 2014-10-02 Endo Pharmaceuticals Solutions Inc. Implantable drug delivery compositions comprising sugar-based sorption enhancers and methods of treatment thereof
RU2015143995A (en) 2013-03-14 2017-04-20 Халлюкс, Инк. METHOD FOR TREATING INFECTIONS, DISEASES OR DISEASES OF THE NAIL LODGE
WO2014160167A1 (en) 2013-03-14 2014-10-02 Endo Pharmaceuticals Solutions Inc. Implantable drug delivery compositions comprising aromatic polyurethanes and methods of treatment thereof
US20160022571A1 (en) 2013-03-14 2016-01-28 Braeburn Pharmaceuticals Bvba Sprl Implantable drug delivery compositions comprising non-polymeric sorption enhancers and methods of treatment thereof
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
RU2728195C2 (en) 2014-02-26 2020-07-28 Аллерган, Инк. Device for delivery of intraocular implant and methods of its use
US9770262B2 (en) 2014-06-09 2017-09-26 Cook Medical Technologies Llc Screw-driven handles and systems for fiducial deployment
EP3154458B1 (en) 2014-06-16 2018-08-29 Cook Medical Technologies LLC Plunger-driven collet handle for fiducial deployment
WO2016012482A1 (en) * 2014-07-22 2016-01-28 Roche Diagnostics Gmbh Insertion device with protection against reuse
WO2016040605A1 (en) 2014-09-11 2016-03-17 Psivida Us, Inc. Injector apparatus
CN104826220B (en) * 2014-10-23 2017-09-22 重庆金山科技(集团)有限公司 A kind of pH operating capsule handles with interlock
WO2016089667A1 (en) 2014-12-03 2016-06-09 Cook Medical Technologies Llc Endoscopic ultrasound fiducial needle stylet handle assembly
US10588664B2 (en) 2015-01-08 2020-03-17 Agency For Science, Technology And Research Subcutaneous implant delivery apparatus and method of delivering a subcutaneous implantable device for accessing a vascular site
AU2016270984B2 (en) * 2015-06-03 2021-02-25 Intarcia Therapeutics, Inc. Implant placement and removal systems
USD851755S1 (en) 2015-10-22 2019-06-18 Eyepoint Pharmaceuticals Us, Inc. Ocular inserter
CA3005616A1 (en) 2015-12-04 2017-06-08 First Ray, LLC Devices for anchoring tissue
WO2017120027A1 (en) 2016-01-07 2017-07-13 Intuitive Surgical Operations, Inc. Telescoping cannula arm
US11058830B2 (en) 2016-04-15 2021-07-13 The Regents Of The University Of Michigan Assistive device for subcutaneous injections or implants
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) * 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
EP3263056A1 (en) * 2016-06-29 2018-01-03 BIOTRONIK SE & Co. KG Device for implantation of medical devices
US20180256108A1 (en) * 2017-03-13 2018-09-13 Profusa, Inc. Inserter and method of inserting an implant under the skin
FI3595551T3 (en) * 2017-03-14 2023-03-17 Roche Diabetes Care Gmbh An implant needle
DE202017105048U1 (en) 2017-08-23 2017-09-05 H & B Electronic Gmbh & Co. Kg Device for implantation
EP3691586A2 (en) * 2017-10-06 2020-08-12 Glaukos Corporation Systems and methods for delivering multiple ocular implants
WO2019125457A1 (en) * 2017-12-21 2019-06-27 Pellecome Llc Pellet implantation device and tool kit
US10888364B2 (en) 2018-01-02 2021-01-12 Medtronic Holding Company Sarl Scoop cannula with deflectable wings
USD933219S1 (en) 2018-07-13 2021-10-12 Intarcia Therapeutics, Inc. Implant removal tool and assembly
US11432845B2 (en) 2019-04-09 2022-09-06 Senseonics, Incorporated Insertion tool with a dissector
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US20210153813A1 (en) * 2019-11-21 2021-05-27 Bardy Diagnostics, Inc. Insertable physiological monitor injector tool
GB2608691B (en) * 2021-05-20 2023-12-06 Tymphany Worldwide Enterprises Ltd Drug Injection Device
WO2023086434A2 (en) 2021-11-12 2023-05-19 Lupin Inc. Applicator for implant insertion
WO2023152596A1 (en) * 2022-02-11 2023-08-17 Medtronic, Inc. Tunneling and insertion tool for implantable medical device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669104A (en) * 1970-06-15 1972-06-13 Pfizer Implant gun
US3744493A (en) * 1972-01-10 1973-07-10 Syntex Corp Implanter having an improved cartridge ejector
GB1525841A (en) * 1976-05-18 1978-09-20 Hundon Forge Ltd Drug implanters
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4105030A (en) * 1977-01-03 1978-08-08 Syntex (U.S.A.) Inc. Implant apparatus
US4263910A (en) * 1978-09-27 1981-04-28 Eli Lilly And Company Implantate package, system and method
US4451254A (en) * 1982-03-15 1984-05-29 Eli Lilly And Company Implant system
US4451523A (en) * 1982-11-12 1984-05-29 Loctite Corporation Conformal coating systems
US4820267A (en) * 1985-02-19 1989-04-11 Endocon, Inc. Cartridge injector for pellet medicaments
US4661103A (en) * 1986-03-03 1987-04-28 Engineering Development Associates, Ltd. Multiple implant injector
US5002548A (en) * 1986-10-06 1991-03-26 Bio Medic Data Systems, Inc. Animal marker implanting system
US4994028A (en) * 1987-03-18 1991-02-19 Endocon, Inc. Injector for inplanting multiple pellet medicaments
US4846793A (en) * 1987-03-18 1989-07-11 Endocon, Inc. Injector for implanting multiple pellet medicaments
ATE71543T1 (en) * 1987-08-18 1992-02-15 Akzo Nv INJECTION DEVICE FOR AN IMPLANT.
US5279555A (en) * 1992-08-24 1994-01-18 Merck & Co., Inc. Device for injecting implants
DE9403161U1 (en) * 1994-02-25 1994-04-21 Sueddeutsche Feinmechanik Cannula
US5984890A (en) * 1996-09-27 1999-11-16 American Home Products Corporation Medical device for the placement of solid materials
DE69823390T2 (en) * 1997-12-29 2004-08-26 Alza Corp., Mountain View DEVICE FOR IMPLANTING SUBCUTANEOUS IMPLANTS
US6258056B1 (en) * 1999-06-10 2001-07-10 Mark L. Anderson Implanter apparatus
US7214206B2 (en) * 2003-04-03 2007-05-08 Valera Pharmaceuticals, Inc. Implanting device and method of using same
US20060190350A1 (en) * 2005-02-23 2006-08-24 Eric Maas Systems and methods for finding, presenting and selling compatible goods

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131908A1 (en) * 2007-11-20 2009-05-21 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US8221358B2 (en) 2007-11-20 2012-07-17 Warsaw Orthopedic, Inc. Devices and methods for delivering drug depots to a site beneath the skin
US20100106133A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US20100106132A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising superior and inferior covers
US20100106136A1 (en) * 2008-10-29 2010-04-29 Warsaw Orthopedic, Inc. Drug delivery device with sliding cartridge
US9352137B2 (en) 2008-10-29 2016-05-31 Warsaw Orthopedic, Inc. Drug cartridge for delivering a drug depot comprising a bulking agent and/or cover
US9033912B2 (en) 2012-03-28 2015-05-19 Warsaw Orthopedic, Inc. Drug delivery system
US11027069B2 (en) 2013-10-17 2021-06-08 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
US9901684B2 (en) 2013-10-17 2018-02-27 Warsaw Orthopedic, Inc. Drug delivery device with retaining member
USD809652S1 (en) 2014-07-25 2018-02-06 Warsaw Orthopedic, Inc. Drug delivery device
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11504513B2 (en) 2014-07-25 2022-11-22 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11464958B2 (en) 2014-07-25 2022-10-11 Warsaw Orthopedic, Inc. Drug delivery methods having an occluding member
US9775978B2 (en) 2014-07-25 2017-10-03 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10080877B2 (en) 2014-07-25 2018-09-25 Warsaw Orthopedic, Inc. Drug delivery device and methods having a drug cartridge
US9764122B2 (en) 2014-07-25 2017-09-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US10349956B2 (en) 2014-10-29 2019-07-16 Jonathan Peter Cabot Arrangement and method used in the preparation of the proximal surface of the tibia for the tibial component of a prosthetic knee joint
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
USD802756S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11413442B2 (en) 2016-06-23 2022-08-16 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
USD802755S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
USD802757S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
US11478587B2 (en) 2016-11-08 2022-10-25 Warsaw Orthopedic, Inc. Drug depot delivery system and method

Also Published As

Publication number Publication date
AU2004228033B2 (en) 2009-08-27
ATE510579T1 (en) 2011-06-15
AU2004228033A1 (en) 2004-10-21
CN100518852C (en) 2009-07-29
IL199502A0 (en) 2011-07-31
ES2366698T3 (en) 2011-10-24
PT1608428E (en) 2011-09-01
US20040199140A1 (en) 2004-10-07
WO2004089458A8 (en) 2004-12-29
CN101596337B (en) 2012-07-18
US7510549B2 (en) 2009-03-31
BRPI0408577A (en) 2006-03-21
US7850639B2 (en) 2010-12-14
KR20050123138A (en) 2005-12-29
CA2521008C (en) 2010-08-24
IL199502A (en) 2014-07-31
JP4575367B2 (en) 2010-11-04
IL171197A (en) 2012-04-30
KR101106474B1 (en) 2012-01-20
HK1078281A1 (en) 2006-03-10
JP2006521904A (en) 2006-09-28
EP1608428A1 (en) 2005-12-28
US20070073265A1 (en) 2007-03-29
MXPA05010554A (en) 2005-12-05
CA2521008A1 (en) 2004-10-21
US20090247939A1 (en) 2009-10-01
CN1767871A (en) 2006-05-03
DK1608428T3 (en) 2011-09-12
US7214206B2 (en) 2007-05-08
BRPI0408577B1 (en) 2017-03-21
ZA200508025B (en) 2007-04-25
WO2004089458A1 (en) 2004-10-21
EP1608428B1 (en) 2011-05-25
CN101596337A (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US7510549B2 (en) Method of inserting an object under the skin
JP4188560B2 (en) Transplant device for subcutaneous implant
AU2006207455B2 (en) Applicator for inserting an implant
EP0354918B1 (en) Injector for implanting multiple pellet medicaments
US4994028A (en) Injector for inplanting multiple pellet medicaments
EP1300174B1 (en) Implant insertion kit
NZ247291A (en) Subcutaneous implantation device for medicinal implants
MXPA00006440A (en) Implanter device for subcutaneous implants

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDEVUS PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:VALERA PHARMACEUTICALS, INC.;REEL/FRAME:020089/0879

Effective date: 20070417

Owner name: VALERA PHARMACEUTICALS, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUE, MATTHEW L;TIERNEY, DAVID S;REEL/FRAME:020089/0698

Effective date: 20070403

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION