EP2146760B1 - Reservoir filling, bubble management, and infusion medium delivery systems and methods with same - Google Patents

Reservoir filling, bubble management, and infusion medium delivery systems and methods with same Download PDF

Info

Publication number
EP2146760B1
EP2146760B1 EP07814386.4A EP07814386A EP2146760B1 EP 2146760 B1 EP2146760 B1 EP 2146760B1 EP 07814386 A EP07814386 A EP 07814386A EP 2146760 B1 EP2146760 B1 EP 2146760B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
portion
bubble trap
volume
fluidic medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07814386.4A
Other languages
German (de)
French (fr)
Other versions
EP2146760A2 (en
Inventor
Julian D. Kavazov
Sheldon B. Moberg
Benjamin Shen
Truong Gia Luan
Ian B. Hanson
Arsen Ibranyan
Mike Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Minimed Inc
Original Assignee
Medtronic Minimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US92703207P priority Critical
Application filed by Medtronic Minimed Inc filed Critical Medtronic Minimed Inc
Priority to PCT/US2007/076641 priority patent/WO2008136845A2/en
Publication of EP2146760A2 publication Critical patent/EP2146760A2/en
Application granted granted Critical
Publication of EP2146760B1 publication Critical patent/EP2146760B1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1413Modular systems comprising interconnecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/165Filtering accessories, e.g. blood filters, filters for infusion liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M2005/14268Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body with a reusable and a disposable component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M2005/31516Piston or piston-rod constructions, e.g. connection of piston with piston-rod reducing dead-space in the syringe barrel after delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/34Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
    • A61M2005/341Constructions for connecting the needle, e.g. to syringe nozzle or needle hub angularly adjustable or angled away from the axis of the injector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/04Tools for specific apparatus
    • A61M2209/045Tools for specific apparatus for filling, e.g. for filling reservoirs

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • Embodiments of the present invention relate to reservoir filling, bubble management, and infusion medium delivery systems.
  • 2. Related Art
  • According to modern medical techniques, certain chronic diseases may be treated by delivering a medication or other substance to the body of a patient. For example, diabetes is a chronic disease that is commonly treated by delivering defined amounts of insulin to a patient at appropriate times. Traditionally, manually operated syringes and insulin pens have been employed for delivering insulin to a patient. More recently, modern systems have been designed to include programmable pumps for delivering controlled amounts of medication to a patient.
  • Pump type delivery devices have been configured in external devices, which connect to a patient, and have also been configured in implantable devices, which are implanted inside of the body of a patient. External pump type delivery devices include devices designed for use in a stationary location, such as a hospital, a clinic, or the like, and further include devices configured for ambulatory or portable use, such as devices that are designed to be carried by a patient, or the like. External pump type delivery devices may be connected in fluid flow communication to a patient or user, for example, through a suitable hollow tubing. The hollow tubing may be connected to a hollow needle that is designed to pierce the skin of the patient and to deliver a fluidic medium there-through. Alternatively, the hollow tubing may be connected directly to the patient as through a cannula, or the like.
  • Examples of some external pump type delivery devices are described in the following references: (i) Published PCT Application WO 01/70307 ( PCT/US01/09139 ), entitled "Exchangeable Electronic Cards for Infusion Devices"; (ii) Published PCT Application WO 04/030716 ( PCT/US2003/028769 ), entitled "Components and Methods for Patient Infusion Device"; (iii) Published PCT Application WO 04/030717 ( PCT/US2003/029019 ), entitled "Dispenser Components and Methods for Infusion Device"; (iv) U.S. Patent Application Pub. No. 2005/0065760 , entitled "Method for Advising Patients Concerning Doses Of Insulin"; and (v) U.S. Patent No. 6,589,229 , entitled "Wearable Self-Contained Drug Infusion Device".
  • As compared to syringes and insulin pens, pump type delivery devices can be significantly more convenient to a patient, in that doses of insulin may be calculated and delivered automatically to a patient at any time during the day or night. Furthermore, when used in conjunction with glucose sensors or monitors, insulin pumps may be automatically controlled to provide appropriate doses of a fluidic medium at appropriate times of need, based on sensed or monitored levels of blood glucose. As a result, pump type delivery devices have become an important aspect of modern medical treatments of various types of medical conditions, such as diabetes, and the like. As pump technologies improve and doctors and patients become more familiar with such devices, external medical infusion pump treatments are expected to increase in popularity and are expected to increase substantially in number over the next decade.
  • US2002/ 0165496 published 7 November 2002 discloses a syringe having an air release assembly slidingly clamped to the syringe barrel, the air release assembly having a slider valve.
  • SUMMARY OF THE DISCLOSURE
  • The invention is as set out in claim 1. Optional features are as set out in the dependent claims.
  • Described arrangements relate to reservoir filling, bubble management, and infusion medium delivery systems. Various embodiments of the present invention are directed to limiting a presence of air bubbles in a fluidic medium expelled from a reservoir. In various embodiments, a reservoir is shaped so as to limit a presence of air bubbles in a fluidic medium expelled from the reservoir. Also, in various embodiments, a plunger head within a reservoir is shaped so as to limit a presence of air bubbles in a fluidic medium expelled from the reservoir. In some arrangements, a reservoir is vibrated so as to shake air bubbles free in a fluidic medium being filled into the reservoir.
  • A system in accordance with another embodiment of the present invention includes a reservoir. The reservoir includes a body portion, a port, and a bubble trap portion. The body portion has an interior volume for containing a fluidic medium. The port is in fluid flow communication with the interior volume. The bubble trap portion has a volume within the interior of the reservoir in fluid flow communication with the interior volume for trapping air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume.
  • In various embodiments, the port is located to a particular side of the interior volume, and the bubble trap portion is located to the particular side of the interior volume. In some embodiments, the bubble trap portion has a first portion that extends from the body portion away from the interior volume, and a second portion that returns back toward the interior volume. In various embodiments, the body portion and the bubble trap portion are a single seamless unit.
  • In some embodiments, the bubble trap portion has a first portion that extends from the body portion away from the interior volume, and a second portion that extends from the first portion toward the interior volume. Also, in some embodiments, the bubble trap portion includes a curved surface, and the curved surface has a first end region, a second end region, and a middle region between the first end region and the second end region. In further embodiments, the first end region and the second end region are closer to the interior volume than the middle region. Also, in further arrangements, the first end region is in contact with the body portion, and the second end region is located adjacent to the interior volume of the body portion.
  • In various arrangements, the bubble trap portion is shaped approximately as a semi-toroid. Also, in various arrangements, a surface of the bubble trap portion that is in contact with the fluidic medium when the fluidic medium is in the volume of the bubble trap portion is approximately U-shaped. In some arrangements, the bubble trap portion includes a first surface that defines an edge of the volume of the bubble trap portion, and a second surface that defines another edge of the volume of the bubble trap portion, where the second surface is positioned at an angle with respect to the first surface. In further embodiments, the angle between the first surface and the second surface is less than 90 degrees. Also, in further arrangements, the first surface is planar with respect to an inner surface of the body portion.
  • In various embodiments, the port is located to a particular side of the interior volume, and a first portion of the bubble trap portion extends from the body portion to the particular side. In further embodiments, the first portion is curved, and a second portion of the bubble trap portion extends from an end of the first portion toward the interior volume. In some embodiments, the reservoir is shaped such that in order for the fluidic medium to flow from the volume of the bubble trap portion to the port, the fluidic medium must flow through the interior volume. Also, in some embodiments, the reservoir further includes a channel that leads from the interior volume to the port, and the bubble trap portion encircles at least a portion of the channel.
  • In various embodiments, the system further includes a plunger head having a plunger body portion and a plunger protruding portion, where the plunger head is moveable within the reservoir. In further embodiments, a contour of the plunger protruding portion substantially matches an inner contour of the bubble trap portion. In some arrangements, the plunger protruding portion has a size such that when the plunger head is fully advanced within the reservoir the plunger protruding portion fills at least 80% of the volume of the bubble trap portion. Also, in some arrangements, the plunger protruding portion fills less than 98% of the volume of the bubble trap portion when the plunger head is fully advanced within the reservoir, so that one or more air pockets for holding air exist between the plunger protruding portion and an inner surface of the bubble trap portion when the plunger head is fully advanced within the reservoir.
  • In various embodiments, the plunger protruding portion extends at least partially into the volume of the bubble trap portion when the plunger head is sufficiently advanced within the reservoir. Also, in various arrangements, the system further includes a plunger head moveable within the reservoir, where the plunger head has a relief for receiving at least a portion of a needle when the plunger head is sufficiently advanced within the reservoir and the portion of the needle is inserted into the reservoir. In some embodiments, the reservoir includes at least one of a hydrophobic material and a hydrophilic material on at least part of a surface of the bubble trap portion. Also, in some arrangements, the reservoir includes a material for shunting air bubbles in the fluidic medium away from the port and toward the volume of the bubble trap portion when the fluidic medium is being expelled from the interior volume.
  • In various arrangements, the system further includes a plunger head moveable within the reservoir, a drive device including a linkage portion and a motor for moving the linkage portion, and a plunger arm connected to the plunger head, where the plunger arm has a mating portion for mating with the linkage portion of the drive device. Also, in various arrangements, the system includes a disposable housing for housing the reservoir and for being secured to a user, and a durable housing for housing the motor of the drive device, where the durable housing is configured to be selectively engaged with and disengaged from the disposable housing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 illustrates a generalized representation of a system in accordance with the described arrangements;
    • FIG. 2 illustrates an example of a system in accordance with the described arrangements;
    • FIG. 3 illustrates an example of a delivery device;
    • FIG. 4 illustrates a delivery device;
    • FIG. 5A illustrates a durable portion of a delivery device;
    • FIG. 5B illustrates a section view of a durable portion of a delivery device;
    • FIG. 5C illustrates a section view of a durable portion of a delivery device;
    • FIG. 6A illustrates a disposable portion of a delivery device;
    • FIG. 6B illustrates a section view of a disposable portion of a delivery device;
    • FIG. 6C illustrates a section view of a disposable portion of a delivery device;
    • FIG. 7A,
    • FIG. 7B,
    • FIG. 7C,
    • FIG. 7D, and
    • FIG. 8 are deleted;
    • FIG. 9A illustrates a cross-sectional view of a system in accordance with an embodiment of the present invention;
    • FIG. 9B illustrates a cross-sectional view of a reservoir in accordance with an embodiment of the present invention;
    • FIG. 10A illustrates a cross-sectional view of a system in accordance with an embodiment of the present invention;
    • FIG. 10B illustrates a cross-sectional view of a reservoir in accordance with an embodiment of the present invention;
    • FIG. 11A illustrates a cross-sectional view of a system in accordance with an embodiment of the present invention;
    • FIG. 11B illustrates a cross-sectional view of a reservoir in accordance with an embodiment of the present invention;
    • FIG. 12A illustrates a cross-sectional view of a system in accordance with an embodiment of the present invention;
    • FIG. 12B illustrates a cross-sectional view of a reservoir in accordance with an embodiment of the present invention;
    • FIG. 12C illustrates a cross-sectional view of a system in accordance with an embodiment of the present invention;
    • FIGS. 13A - 33 are deleted.
    DETAILED DESCRIPTION
  • FIG. 1 illustrates a generalized representation of a system 10 in accordance with the described arrangements. The system 10 includes a delivery device 12. The system 10 may further include a sensing device 14, a command control device (CCD) 16, and a computer 18. In various arrangements, the delivery device 12 and the sensing device 14 may be secured at desired locations on the body 5 of a patient or user 7. The locations at which the delivery device 12 and the sensing device 14 are secured to the body 5 of the user 7 in FIG. 1 are provided only as representative, non-limiting, examples.
  • The delivery device 12 is configured to deliver a fluidic medium to the body 5 of the user 7. In various arrangements, the fluidic medium includes a liquid, a fluid, a gel, or the like. In some embodiments, the fluidic medium includes a medicine or a drug for treating a disease or a medical condition. For example, the fluidic medium may include insulin for treating diabetes, or may include a drug for treating pain, cancer, a pulmonary disorder, HIV, or the like. In some arrangements, the fluidic medium includes a nutritional supplement, a dye, a tracing medium, a saline medium, a hydration medium, or the like.
  • The sensing device 14 includes a sensor, a monitor, or the like, for providing sensor data or monitor data. In various arrangements, the sensing device 14 may be configured to sense a condition of the user 7. For example, the sensing device 14 may include electronics and enzymes reactive to a biological condition, such as a blood glucose level, or the like, of the user 7. In various arrangements the sensing device 14 may be secured to the body 5 of the user 7 or embedded in the body 5 of the user 7 at a location that is remote from the location at which the delivery device 12 is secured to the body 5 of the user 7. In various other embodiments, the sensing device 14 may be incorporated within the delivery device 12.
  • Each of the delivery device 12, the sensing device 14, the CCD 16, and the computer 18 may include transmitter, receiver, or transceiver electronics that allow for communication with other components of the system 10. The sensing device 14 may be configured to transmit sensor data or monitor data to the delivery device 12. The sensing device 14 may also be configured to communicate with the CCD 16. The delivery device 12 may include electronics and software that are configured to analyze sensor data and to deliver the fluidic medium to the body 5 of the user 7 based on the sensor data and/or preprogrammed delivery routines.
  • The CCD 16 and the computer 18 may include electronics and other components configured to perform processing, delivery routine storage, and to control the delivery device 12. By including control functions in the CCD 16 and/or the computer 18, the delivery device 12 may be made with more simplified electronics. However, in some arrangements, the delivery device 12 may include all control functions, and may operate without the CCD 16 and the computer 18. In various embodiments, the CCD 16 may be a portable electronic device. Also, in various arrangements, the delivery device 12 and/or the sensing device 14 may be configured to transmit data to the CCD 16 and/or the computer 18 for display or processing of the data by the CCD 16 and/or the computer 18. Examples of the types of communications and/or control capabilities, as well as device feature sets and/or program options may be found in the following references: (i) U.S. Patent Application US 2003/ 212364 published 13 November 2003 , entitled "External Infusion Device with Remote" Programming, Bolus Estimator and/or Vibration Alarm Capabilities"; (ii) U.S. Patent Application US 2004/73095 published 15 April 2004 , entitled "Handheld Personal Data Assistant (PDA) with a Medical Device and Method of Using the Same"; and (iii) U.S. Patent Application US 2001/41869 published 15 November 2001 , entitled "Control Tabs for Infusion Devices and Methods of Using the Same".
  • FIG. 2 illustrates an example of the system 10. The system 10 in accordance with the arrangement illustrated in FIG. 2 includes the delivery device 12 and the sensing device 14. The delivery device 12 includes a disposable housing 20, a durable housing 30, and a reservoir 40. The delivery device 12 may further include an infusion path 50.
  • Elements of the delivery device 12 that ordinarily contact the body of a user or that ordinarily contact a fluidic medium during operation of the delivery device 12 may be considered as a disposable portion of the delivery device 12. For example, a disposable portion of the delivery device 12 may include the disposable housing 20 and the reservoir 40. The disposable portion of the delivery device 12 may be recommended for disposal after a specified number of uses.
  • On the other hand, elements of the delivery device 12 that do not ordinarily contact the body of the user or the fluidic medium during operation of the delivery device 12 may be considered as a durable portion of the delivery device 12. For example, a durable portion of the delivery device 12 may include the durable housing 30, electronics (not shown in FIG. 2), a drive device having a motor and drive linkage (not shown in FIG. 2), and the like. Elements of the durable housing portion of the delivery device 12 are typically not contaminated from contact with the user or the fluidic medium during normal operation of the delivery device 12 and, thus, may be retained for re-use with replaced disposable portions of the delivery device 12.
  • In various arrangements, the disposable housing 20 supports the reservoir 40 and has a bottom surface (facing downward and into the page in FIG. 2) that is configured to secure to the body of a user. An adhesive may be employed at an interface between the bottom surface of the disposable housing 20 and the skin of a user, so as to adhere the disposable housing 20 to the skin of the user. In various arrangements, the adhesive may be provided on the bottom surface of the disposable housing 20, with a peelable cover layer covering the adhesive material. In this manner, the cover layer may be peeled off to expose the adhesive material, and the adhesive side of the disposable housing 20 may be placed against the skin of the user.
  • The reservoir 40 is configured for containing or holding a fluidic medium, such as, but not limited to insulin. In various arrangements, the reservoir 40 includes a hollow interior volume for receiving the fluidic medium, such as, but not limited to, a cylinder-shaped volume, a tubular-shaped volume, or the like. In some arrangements, the reservoir 40 may be provided as a cartridge or canister for containing a fluidic medium. In various embodiments, the reservoir 40 is able to be refilled with a fluidic medium.
  • The reservoir 40 may be supported by the disposable housing 20 in any suitable manner. For example, the disposable housing 20 may be provided with projections or struts (not shown), or a trough feature (not shown), for holding the reservoir 40. In some embodiments, the reservoir 40 may be supported by the disposable housing 20 in a manner that allows the reservoir 40 to be removed from the disposable housing 20 and replaced with another reservoir. Alternatively, or in addition, the reservoir 40 may be secured to the disposable housing 20 by a suitable adhesive, a strap, or other coupling structure.
  • In various arrangements, I the reservoir 40 includes a port 41 for allowing a fluidic medium to flow into and/or flow out of the interior volume of the reservoir 40. In some embodiments, the infusion path 50 includes a connector 56, a tube 54, and a needle apparatus 52. The connector 56 of the infusion path 50 may be connectable to the port 41 of the reservoir 40. In various arrangements, the disposable housing 20 is configured with an opening near the port 41 of the reservoir 40 for allowing the connector 56 of the infusion path 50 to be selectively connected to and disconnected from the port 41 of the reservoir 40.
  • In various arrangements, the port 41 of the reservoir 40 is covered with or supports a septum (not shown in FIG. 2), such as a self-sealing septum, or the like. The septum may be configured to prevent a fluidic medium from flowing out of the reservoir 40 through the port 41 when the septum is not pierced. Also, in various arrangements, the connector 56 of , the infusion path 50 includes a needle for piercing the septum covering the port 41 of the reservoir 40 so as to allow the fluidic medium to flow out of the interior volume of the reservoir 40. Examples of needle/septum connectors can be found in U.S. Patent Application US 2003/125672 published 3 July 2003 , entitled "Reservoir Connector". In other alternatives, non-septum connectors such as Luer locks, or the like may be used. In various arrangements, the needle apparatus 52 of the infusion path 50 includes a needle that is able to puncture the skin of a user. Also, in various arrangements, the tube 54 connects the connector 56 with the needle apparatus 52 and is hollow, such that the infusion path 50 is able to provide a path to allow for the delivery of a fluidic medium from the reservoir 40 to the body of a user.
  • The durable housing 30 of the delivery device 12 includes a housing shell configured to mate with and secure to the disposable housing 20. The durable housing 30 and the disposable housing 20 may be provided with correspondingly shaped grooves, notches, tabs, or other suitable features, that allow the two parts to easily connect together, by manually pressing the two housings together, by twist or threaded connection, or other suitable manner of connecting the parts that is well known in the mechanical arts. In various arrangements, the durable housing 30 and the disposable housing 20 may be connected to each other using a twist action. The durable housing 30 and the disposable housing 20 may be configured to be separable from each other when a sufficient force is applied to disconnect the two housings from each other. For example, in some arrangements the disposable housing 20 and the durable housing 30 may be snapped together by friction fitting. In various embodiments, a suitable seal, such as an o-ring seal, may be placed along a peripheral edge of the durable housing 30 and/or the disposable housing 20, so as to provide a seal against water entering between the durable housing 30 and the disposable housing 20.
  • The durable housing 30 of the delivery device 12 may support a drive device (not shown in FIG. 2), including a motor and a drive device linkage portion, for applying a force to the fluidic medium within the reservoir 40 to force the fluidic medium out of the reservoir 40 and into an infusion path, such as the infusion path 50, for delivery to a user. For example, in some arrangements, an electrically driven motor may be mounted within the durable housing 30 with appropriate linkage for operatively coupling the motor to a plunger arm (not shown in FIG. 2) connected to a plunger head (not shown in FIG. 2) that is within the reservoir 40 and to drive the plunger head in a direction to force the fluidic medium out of the port 41 of the reservoir 40 and to the user. Also, in some arrangements, the motor may be controllable to reverse direction so as to move the plunger arm and the plunger head to cause fluid to be drawn into the reservoir 40 from a patient. The motor may be arranged within the durable housing 30 and the reservoir 40 may be correspondingly arranged on the disposable housing 20, such that the operable engagement of the motor with the plunger head, through the appropriate linkage, occurs automatically upon the user connecting the durable housing 30 with the disposable housing 20 of the delivery device 12. Further examples of linkage and control structures may be found in U.S. Patent Application US 2001/ 41869 published 15 November 2001 , entitled "Control Tabs for Infusion Devices and Methods of Using the Same".
  • In various arrangements,! the durable housing 30 and the disposable housing 20 may be made of suitably rigid materials that maintain their shape, yet provide sufficient flexibility and resilience to effectively connect together and disconnect, as described above. The material of the disposable housing 20 may be selected for suitable compatibility with skin. For example, the disposable housing 20 and the durable housing 30 of the delivery device 12 may be made of any suitable plastic, metal, composite material, or the like. The disposable housing 20 may be made of the same type of material or a different material relative to the durable housing 30. In some arrangements, the disposable housing 20 and the durable housing 30 may be manufactured by injection molding or other molding processes, machining processes, or combinations thereof.
  • For example, the disposable housing 20 may be made of a relatively flexible material, such as a flexible silicone, plastic, rubber, synthetic rubber, or the like. By forming the disposable housing 20 of a material capable of flexing with the skin of a user, a greater level of user comfort may be achieved when the disposable housing 20 is secured to the skin of the user. Also, a flexible disposable housing 20 may result in an increase in site options on the body of the user at which the disposable housing 20 may be secured.
  • In the arrangement illustrated in FIG. 2, the delivery device 12 is connected to the sensing device 14 through a connection element 16 of the sensing device 14. The sensing device 14 may include a sensor 15 that includes any suitable biological or environmental sensing device, depending upon a nature of a treatment to be administered by the delivery device 12. For example, in the context of delivering insulin to a diabetes patient, the sensor 15 may include a blood glucose sensor, or the like.
  • The sensor 15 may be an external sensor that secures to the skin of a user or, in other arrangements, may be an implantable sensor that is located in an implant site within the body of the user. In further alternatives, the sensor may be included with as a part or along side the infusion cannula and/or needle, such as for example as shown in U.S. Patent Application US 2006/253085 published 9 November 2006 , entitled "Dual Insertion Set". In the illustrated example of FIG. 2, the sensor 15 is an external sensor having a disposable needle pad that includes a needle for piercing the skin of the user and enzymes and/or electronics reactive to a biological condition, such as blood glucose level or the like, of the user. In this manner, the delivery device 12 may be provided with sensor data from the sensor 15 secured to the user at a site remote from the location at which the delivery device 12 is secured to the user.
  • While the arrangement shown in FIG. 2 includes a sensor 15 connected by the connection element 16 for providing sensor data to sensor electronics (not shown in FIG. 2) located within the durable housing 30 of the delivery device 12, other arrangements may employ a sensor 15 located within the delivery device 12. Yet other arrangements may employ a sensor 15 having a transmitter for communicating sensor data by a wireless communication link with receiver electronics (not shown in FIG. 2) located within the durable housing 30 of the delivery device 12. In various arrangements, a wireless connection between the sensor 15 and the receiver electronics within the durable housing 30 of the delivery device 12 may include a radio frequency (RF) connection, an optical connection, or another suitable wireless communication link. Further arrangements need not employ the sensing device 14 and, instead, may provide fluidic medium delivery functions without the use of sensor data.
  • As described above, by separating disposable elements of the delivery device 12 from durable elements, the disposable elements may be arranged on the disposable housing 20, while durable elements may be arranged within a separable durable housing 30. In this regard, after a prescribed number of uses of the delivery device 12, the disposable housing 20 may be separated from the durable housing 30, so that the disposable housing 20 may be disposed of in a proper manner. The durable housing 30 may then be mated with a new (unused) disposable housing 20 for further delivery operation with a user.
  • FIG. 3 illustrates an example of the delivery device 12. The delivery device 12 of the arrangement of FIG. 3 is similar to the delivery device 12 of the arrangement of FIG 2. While the delivery device 12 in the arrangement illustrated in FIG. 2 provides for the durable housing 30 to cover the reservoir 40, the delivery device 12 in the arrangement of FIG. 3 provides for the durable housing 30 to secure to the disposable housing 20 without covering the reservoir 40. The delivery device 12 of the arrangement illustrated in FIG. 3 includes the disposable housing 20, and the disposable housing 20 in accordance with the arrangement illustrated in FIG. 3 includes a base 21 and a reservoir retaining portion 24. In one arrangement, the base 21 and reservoir retaining portion 24 may be formed as a single, unitary structure.
  • The base 21 of the disposable housing 20 is configured to be secured to the body of a user. The reservoir retaining portion 24 of the disposable housing 20 is configured to house the reservoir 40. The reservoir retaining portion 24 of the disposable housing 20 may be configured to have an opening to allow for the port 41 of the reservoir 40 to be accessed from outside of the reservoir retaining portion 24 while the reservoir 40 is housed in the reservoir retaining portion 24. The durable housing 30 may be configured to be attachable to and detachable from the base 21 of the disposable housing 20. The delivery device 12 in the arrangement illustrated in FIG. 3 includes a plunger arm 60 that is connected to or that is connectable to a plunger head (not shown in FIG. 3) within the reservoir 40.
  • FIG. 4 illustrates another view of the delivery device 12 of the embodiment of FIG. 3. The delivery device 12 of the embodiment illustrated in FIG. 4 includes the disposable housing 20, the durable housing 30, and the infusion path 50. The disposable housing 20 in the embodiment of FIG. 4 includes the base 21, the reservoir retaining portion 24, and a peelable cover layer 25. The peelable cover layer 25 may cover an adhesive material on the bottom surface 22 of the base 21. The peelable cover layer 25 may be configured to be peelable by a user to expose the adhesive material on the bottom surface 22 of the base 21. In some embodiments, there may be multiple adhesive layers on the bottom surface 22 of the base 21 that are separated by peelable layers.
  • The infusion path 50 illustrated in FIG. 4 includes the needle 58 rather than the connector 56, the tube 54, and the needle apparatus 52 as shown in the embodiment of FIG. 2. The base 21 of the disposable housing 20 may be provided with an opening or pierceable wall in alignment with a tip of the needle 58, to allow the needle 58 to pass through the base 21 and into the skin of a user under the base 21, when extended. In this manner, the needle 58 may be used to pierce the skin of the user and deliver a fluidic medium to the user.
  • Alternatively, the needle 58 may be extended through a hollow cannula (not shown in FIG. 4), such that upon piercing the skin of the user with the needle 58, an end of the hollow cannula is guided through the skin of the user by the needle 58. Thereafter, the needle 58 may be removed, leaving the hollow cannula in place, with one end of the cannula located within the body of the user and the other end of the cannula in fluid flow connection with the fluidic medium within the reservoir 40, to convey pumped infusion media from the reservoir 40 to the body of the user.
  • FIG. 5A illustrates a durable portion 8 of the delivery device 12 (refer to FIG. 3). FIG. 5B illustrates a section view of the durable portion 8. FIG. 5C illustrates another section view of the durable portion 8. With reference to FIGs. 5A, 5B, and 5C, in various embodiments, the durable portion 8 includes the durable housing 30, and a drive device 80. The drive device 80 includes a motor 84 and a drive device linkage portion 82.
  • The durable housing 30 may include an interior volume for housing the motor 84, the drive device linkage portion 82, other electronic circuitry, and a power source (not shown in FIGs. 5A, 5B, and 5C). Also the durable housing 30 may be configured with an opening 32 for receiving a plunger arm 60 (refer to FIG. 3). Also, in various embodiments, the durable housing 30 may include one or more connection members 34, such as tabs, insertion holes, or the like, for connecting with the base 21 of the disposable housing 20 (refer to FIG. 3).
  • FIG. 6A illustrates a disposable portion 9 of the delivery device 12 (refer to FIG. 3). FIG. 6B illustrates a section view of the disposable portion 9. FIG. 6C illustrates another section view of the disposable portion 9. With reference to FIGs. 6A, 6B, and 6C, in various arrangements, the disposable portion 9 includes the disposable housing 20, the reservoir 40, the plunger arm 60, and a plunger head 70. In some arrangements, the disposable housing 20 includes the base 21 and the reservoir retaining portion 24. In various arrangements, the base 21 includes a top surface 23 having one or more connection members 26, such as tabs, grooves, or the like, for allowing connections with the one or more connection members 34 of arrangements of the durable housing 30 (refer to FIG. 5B).
  • In various arrangements, the reservoir 40 is housed within the reservoir retaining portion 24 of the disposable housing 20, and the reservoir 40 is configured to hold a fluidic medium. Also, in various arrangements, the plunger head 70 is disposed at least partially within the reservoir 40 and is moveable within the reservoir 40 to allow the fluidic medium to fill into the reservoir 40 and to force the fluidic medium out of the reservoir 40. In some embodiments, the plunger arm 60 is connected to or is connectable to the plunger head 70. Also, in some arrangements, a portion of the plunger arm 60 extends to outside of the reservoir retaining portion 24 of the disposable housing 20. In various embodiments, the plunger arm 60 has a mating portion for mating with the drive device linkage portion 82 of the drive device 80 (refer to FIG. 5C). With reference to FIGs. 5C and 6C, in some arrangements, the durable housing 30 may be snap fitted onto the disposable housing 20, whereupon the drive device linkage portion 82 automatically engages the mating portion of the plunger arm 60.
  • When the durable housing 30 and the disposable housing 20 are fitted together with the drive device linkage portion 82 engaging or mating with the plunger arm 60, the motor 84 may be controlled to drive the drive device linkage portion 82 and, thus, move the plunger arm 60 to cause the plunger head 70 to move within the reservoir 40. When the interior volume of the reservoir 40 is filled with a fluidic medium and an infusion path is provided from the reservoir 40 to the body of a user, the plunger head 70 may be moved within the reservoir 40 to force the fluidic medium from the reservoir 40 and into the infusion path, so as to deliver the fluidic medium to the body of the user.
  • In various arrangements, once the reservoir 40 has been sufficiently emptied or otherwise requires replacement, a user may simply remove the durable housing 30 from the disposable housing 20, and replace the disposable portion 9, including the reservoir 40, with a new disposable portion having a new reservoir. The durable housing 30 may be connected to the new disposable housing of the new disposable portion, and the delivery device including the new disposable portion may be secured to the skin of a user. In various other arrangements, rather than replacing the entire disposable portion 9 every time the reservoir 40 is emptied, the reservoir 40 may be refilled with a fluidic medium. In some embodiments, the reservoir 40 may be refilled while remaining within the reservoir retaining portion 24 (refer to FIG. 6B) of the disposable housing 20. Also, in various arrangements, the reservoir 40 may be replaced with a new reservoir (not shown), while the disposable housing 20 may be re-used with the new reservoir. In such arrangements, the new reservoir may be inserted into the disposable portion 9.
  • With reference to FIGs. 3, 5A, 6B, and 6C, in various arrangements, the delivery device 12 includes reservoir status circuitry (not shown), and the reservoir 40 includes reservoir circuitry (not shown). In various arrangements, the reservoir circuitry stores information such as, but not limited to, at least one of (i) an identification string identifying the reservoir 40; (ii) a manufacturer of the reservoir 40; (iii) contents of the reservoir 40; and (iv) an amount of contents in the reservoir 40. In some arrangements, the delivery device 12 includes the reservoir status circuitry (not shown), and the reservoir status circuitry is configured to read data from the reservoir circuitry when the reservoir 40 is inserted into the disposable portion 9.
  • In various arrangements, the reservoir status circuitry is further configured to store data to the reservoir circuitry after at least some of the contents of the reservoir 40 have been transferred out of the reservoir 40, so as to update information in the reservoir circuitry related to an amount of contents still remaining in the reservoir 40. In some arrangements, the reservoir status circuitry is configured to store data to the reservoir circuitry, so as to update information in the reservoir circuitry related to an amount of contents still remaining in the reservoir 40, when the reservoir 40 is inserted into the disposable portion 9. In some arrangements, the delivery device 12 includes the reservoir status circuitry (not shown) and the reservoir 40 includes the reservoir circuitry (not shown), and the reservoir status circuitry selectively inhibits use of the delivery device 12 or selectively provides a warning signal based on information read by the reservoir status circuitry from the reservoir circuitry.
  • FIGS. 9A, 10A, 11A, 12A, and 12C illustrate systems in accordance with various embodiments of the present invention that include reservoirs with geometries that allow for capturing air bubbles so as to reduce a number of air bubbles that are delivered with a fluidic medium. Such systems allow for air bubble management since they have bubble trapping shapes and, by reducing a number of air bubbles that are delivered with a fluidic medium, such systems may be able to improve a delivery accuracy when attempting to deliver a specified volume of the fluidic medium. Thus, such systems provide reservoir geometries that allow for capturing a greater amount of air bubbles than with standard reservoir geometries, so that the captured air bubbles remain in the reservoir and are not dispensed with the fluidic medium.
  • In some embodiments, the systems in FIGS. 9A, 10A, 11A, 12A, and 12C may include similar elements as elements of embodiments of the delivery device 12 (refer to FIGS. 2 and 3), in which case the reservoirs in those systems would correspond to the reservoir 40 (refer to FIGS. 2, 3, and 6C). In various embodiments, reservoirs of the systems in FIGS. 9A, 10A, 11A, 12A, and 12C may be made of a material, such as but not limited to a suitable metal, plastic, ceramic, glass, composite material, or the like. In various embodiments, the plunger heads of the systems in those figures may be made of a suitably rigid material such as, but not limited to, metal, plastic, ceramic, glass, composite material, or the like. In various other embodiments, the plunger heads in those systems may be made of a compressible material such as, but not limited to, an elastically compressible plastic, rubber, silicone, or the like.
  • FIG. 9A illustrates a cross-sectional view of a system 200 in accordance with an embodiment of the present invention. The system 200 includes a reservoir 210, a plunger head 220, and a plunger arm 230. The reservoir 210 includes a body portion 211, a bubble trap portion 212, and a port 217. The reservoir 210 has an outer surface 213 and an inner surface 214. The inner surface 214 of the reservoir 210 defines a hollow interior of the reservoir 210, and the hollow interior of the reservoir 210 is able to contain a fluidic medium. The port 217 of the reservoir 210 allows for the fluidic medium to be filled into or expelled from the hollow interior of the reservoir 210. The body portion 211 of the reservoir 210 may have any suitable shape, such as but not limited to, a cylinder shape, a tube shape, a barrel shape, a spherical shape, a shape with a rectangular cross-section, or the like.
  • The plunger head 220 is located within the reservoir 210, and is moveable in an axial direction of the reservoir 210, to expand or contract a volume of the reservoir 210 in which a fluidic medium may be contained. The plunger head 220 is connected to the plunger arm 230, such that movement of the plunger arm 230 in the axial direction of the reservoir 210 causes movement of the plunger head 220 in the axial direction of the reservoir 210. The plunger head 220 includes a plunger body portion 221 and a plunger protruding portion 222. In various embodiments, the plunger head 220 further includes one or more O-rings 225 that surround a portion of the plunger body portion 221. In various embodiments, the one or more O-rings 225 may be made of any suitable material, such as but not limited to, rubber, plastic, composite material, or the like.
  • The bubble trap portion 212 of the reservoir 210 is shaped to have a volume 216 within an interior of the reservoir 210, such that air bubbles in a fluidic medium may be trapped in the volume 216 when the fluidic medium is expelled from the reservoir 210 through the port 217. In various embodiments, an interior surface of the bubble trap portion 212 is curved or angled near the port 217, so as to define the volume 216. In some embodiments, the bubble trap portion 212 extends from the body portion 211 of the reservoir 210 past a point 218 of the reservoir 210 where a fluidic medium from an interior volume of the body portion 211 is able to move into an area or channel 272 of the reservoir 210 that leads to the port 217.
  • In various embodiments, the reservoir 210 is shaped such that as the plunger head 220 is advanced within the reservoir 210, a fluidic medium is able to pass through the port 217 while air bubbles in the reservoir 210 collect in the volume 216 defined by a curved or angled surface of the bubble trap portion 212 of the reservoir 210. Such a geometry of the reservoir 210 allows for decreasing an amount of air bubbles that are delivered with a fluidic medium as compared with traditional reservoir geometries. In some embodiments, the bubble trap portion 212 of the reservoir 210 is curved outward from an interior volume defined by the body portion 211, and a fluidic medium is able to pass directly from the interior volume defined by the body portion 211 to the port 217. In some embodiments, a surface 215 of the bubble trap portion 212 of the reservoir 210 includes a surface finish or material such that air bubbles substantially do no stick to the surface 215 and are shunted away from the port 217 toward the volume 216. In various embodiments, such a surface finish or material includes a hydrophobic material, a hydrophilic material, or other suitable material.
  • The plunger body portion 221 is shaped such that a contour of the plunger body portion 221 substantially matches or is substantially the same as an inner contour of the body portion 211 of the reservoir 210. In various embodiments, the plunger body portion 221 has a diameter that is slightly smaller than a diameter of the inner surface of the body portion 211 of the reservoir 210, such that the plunger head 220 is able to slide within the reservoir 210. In some embodiments, an O-ring 225 on the plunger body portion 221 is in contact with the inner surface of the body portion 211 of the reservoir 210 when the plunger head 220 is within the reservoir 210.
  • In various embodiments, the plunger protruding portion 222 is shaped such that a contour of the plunger protruding portion 222 substantially matches or is substantially the same as an inner contour of the bubble trap portion 212 of the reservoir 210. In some embodiments, the plunger protruding portion 222 is curved and protrudes from the plunger body portion 221. In various embodiments, the plunger protruding portion 222 has a size that is slightly smaller than a region defined by the inner surface of the bubble trap portion 212 of the reservoir 210, such that the plunger protruding portion 222 is able to slide within the volume 216 of the reservoir 210, and such that a space for a dead volume of air is left when the plunger head 220 is fully advanced within the reservoir 210. Thus, in various embodiments, the geometry of the reservoir 210 and the plunger head 220 allow for capturing air bubbles in a volume 216 of the bubble trap portion 212 when a fluidic medium is being expelled from the port 217 of the reservoir 210.
  • In various embodiments, the plunger protruding portion 222 has a size such that when the plunger head 220 is fully advanced within the reservoir 210, the plunger protruding portion 222 fills at least 80% of the volume 216 of the bubble trap portion 212. Also, in various embodiments, the plunger protruding portion 222 fills less than 98% of the volume 216 of the bubble trap portion 212 when the plunger head 220 is fully advanced within the reservoir 210, so that one or more air pockets for holding air exist between the plunger protruding portion 222 and an inner surface of the bubble trap portion 212 when the plunger head 220 is fully advanced within the reservoir 210. In some embodiments, the plunger protruding portion 222 extends at least partially into the volume 216 of the bubble trap portion 212 when the plunger head 220 is sufficiently advanced within the reservoir 210.
  • FIG. 9B illustrates a cross-sectional view of the reservoir 210 in accordance with an embodiment of the present invention. FIG. 9B is shaded to highlight various features of the reservoir 210. The reservoir 210 includes the body portion 211, the bubble trap portion 212, and the port 217. The body portion 211 has an interior volume 270 for containing a fluidic medium. The port 217 is in fluid flow communication with the interior volume 270 of the body portion 211. The bubble trap portion 212 has the volume 216 in fluid flow communication with the interior volume 270 of the body portion 211 for trapping air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume 270.
  • In various embodiments, the port 217 is located to a particular side of the interior volume 270, and the bubble trap portion 212 is located to the particular side of the interior volume 270. Also, in various embodiments, the bubble trap portion 212 has a first portion 281 that extends from the body portion 211 away from the interior volume 270, and a second portion 282 that returns back toward the interior volume 270. In some embodiments, the body portion 211 and the bubble trap portion 212 are formed together as a single seamless unit. Also, in some embodiments, the first portion 281 of the bubble trap portion 212 extends from the body portion 211 away from the interior volume 270 and the second portion 282 of the bubble trap portion 212 extends from the first portion 281 toward the interior volume 270.
  • In various embodiments, the bubble trap portion 212 includes a curved surface 283 having a first end region 284, a second end region 285, and a middle region 286 between the first end region 284 and the second end region 285. In some embodiments, the first end region 284 and the second end region 285 are closer to the interior volume 270 of the body portion 211 than the middle region 286 is to the interior volume 270. Also, in some embodiments, the first end region 284 is in contact with the body portion 211, and the second end region 285 is located adjacent to the interior volume 270 of the body portion 211.
  • In various embodiments, the curved surface 283 of the bubble trap portion 212 is in contact with the fluidic medium when the fluidic medium is in the volume 216 of the bubble trap portion 212. In further embodiments, the curved surface 283 is approximately U-shaped. FIG. 9B illustrates a cross-sectional view, but in three-dimensions the bubble trap portion 212 may be shaped, for example, approximately as a semi-toroid. In various embodiments, the reservoir 210 is shaped such that in order for a fluidic medium to flow from the volume 216 of the bubble trap portion 212 to the port 217, the fluidic medium must flow through the interior volume 270 of the body portion 211. In some embodiments, the reservoir 210 includes the channel 272 that leads from the interior volume 270 of the body portion 211 to the port 217, and the bubble trap portion 212 encircles at least a portion of the channel 272.
  • FIG. 10A illustrates a cross-sectional view of a system 300 in accordance with an embodiment of the present invention. The system 300 includes a reservoir 310, a plunger head 320, and a plunger arm 330. The reservoir 310 includes a body portion 311, a bubble trap portion 312, and a port 317. The reservoir 310 has an outer surface 313 and an inner surface 314. The inner surface 314 of the reservoir 310 defines a hollow interior of the reservoir 310, and the hollow interior of the reservoir 310 is able to contain a fluidic medium. The port 317 of the reservoir 310 allows for the fluidic medium to be filled into or expelled from the hollow interior of the reservoir 310. The body portion 311 of the reservoir 310 may have any suitable shape, such as but not limited to, a cylinder shape, a tube shape, a barrel shape, a spherical shape, a shape with a rectangular cross-section, or the like.
  • The plunger head 320 is located within the reservoir 310, and is moveable in an axial direction of the reservoir 310, to expand or contract a volume of the reservoir 310 in which a fluidic medium may be contained. The plunger head 320 is connected to the plunger arm 330, such that movement of the plunger arm 330 in the axial direction of the reservoir 310 causes movement of the plunger head 320 in the axial direction of the reservoir 310. The plunger head 320 includes a plunger body portion 321 and a plunger protruding portion 322. In various embodiments, the plunger head 320 further includes one or more O-rings 325 that surround a portion of the plunger body portion 321.
  • The bubble trap portion 312 of the reservoir 310 is shaped so as to form a volume 316 within an interior of the reservoir 310, such that air bubbles in a fluidic medium may be trapped in the volume 316 of the bubble trap portion 312 when the fluidic medium is expelled from the reservoir 310 through the port 317. In various embodiments, an interior surface of the bubble trap portion 312 is angled at a substantially straight angle near the port 317, so as to define the volume 316. In some embodiments, the bubble trap portion 312 extends from the body portion 311 of the reservoir 310 past a point 318 of the reservoir 310 where a fluidic medium from an interior volume of the body portion 311 is able to move into an area or channel 372 of the reservoir 310 that leads to the port 317.
  • In various embodiments, the reservoir 310 is shaped such that as the plunger head 320 is advanced within the reservoir 310, a fluidic medium is able to pass through the port 317 while air bubbles in the reservoir 310 collect in the volume 316 defined by a substantially straight angled surface of the bubble trap portion 312 of the reservoir 310. Such a geometry of the reservoir 310 may allow for decreasing an amount of air bubbles that are delivered with a fluidic medium as compared with traditional reservoir geometries. In some embodiments, the bubble trap portion 312 of the reservoir 310 is angled outward from an interior region of the reservoir 310 defined by the body portion 311, and a fluidic medium is able to pass directly from the interior region of the reservoir 310 defined by the body portion 311 to the port 317. In some embodiments, a surface 315 of the bubble trap portion 312 of the reservoir 310 includes a surface finish or material such that air bubbles substantially do no stick to the surface 315 and are shunted away from the port 317 toward the volume 316.
  • The plunger body portion 321 is shaped such that a contour of the plunger body portion 321 substantially matches or is substantially the same as a contour of an inner surface of the body portion 311 of the reservoir 310. In various embodiments, the plunger body portion 321 has a diameter that is slightly smaller than a diameter of the inner surface of the body portion 311 of the reservoir 310, such that the plunger head 320 is able to slide within the reservoir 310. In some embodiments, the one or more O-rings 325 on the plunger body portion 321 are in contact with the inner surface of the body portion 311 of the reservoir 310 when the plunger head 320 is within the reservoir 310.
  • In various embodiments, the plunger protruding portion 322 is shaped such that a contour of the plunger protruding portion 322 substantially matches or is substantially the same as an inner contour of the bubble trap portion 312 of the reservoir 310. In some embodiments, the plunger protruding portion 322 is angled from the plunger body portion 321 at a substantially straight angle and protrudes from the plunger body portion 321. In various embodiments, the plunger protruding portion 322 has a size that is slightly smaller than a region defined by the inner surface of the bubble trap portion 312 of the reservoir 310, such that the plunger protruding portion 322 is able to slide within the volume 316 of the bubble trap portion 312, and such that a space for a dead volume of air is left when the plunger head 320 is fully advanced within the reservoir 310. Thus, in various embodiments, the geometry of the reservoir 310 and the plunger head 320 allow for capturing air bubbles in a volume 316 of the bubble trap portion 312 when a fluidic medium is being expelled from the port 317 of the reservoir 310.
  • In various embodiments, the plunger protruding portion 322 has a size such that when the plunger head 320 is fully advanced within the reservoir 310, the plunger protruding portion 322 fills at least 80% of the volume 316 of the bubble trap portion 312. Also, in various embodiments, the plunger protruding portion 322 fills less than 98% of the volume 316 of the bubble trap portion 312 when the plunger head 320 is fully advanced within the reservoir 310, so that one or more air pockets for holding air exist between the plunger protruding portion 322 and an inner surface of the bubble trap portion 312 when the plunger head 320 is fully advanced within the reservoir 310. In some embodiments, the plunger protruding portion 322 extends at least partially into the volume 316 of the bubble trap portion 312 when the plunger head 320 is sufficiently advanced within the reservoir 310.
  • FIG. 10B illustrates a cross-sectional view of the reservoir 310 in accordance with an embodiment of the present invention. FIG. 10B is shaded to highlight various features of the reservoir 310. The reservoir 310 includes the body portion 311, the bubble trap portion 312, and the port 317. The body portion 311 has an interior volume 370 for containing a fluidic medium. The port 317 is in fluid flow communication with the interior volume 370 of the body portion 311. The bubble trap portion 312 has the volume 316 in fluid flow communication with the interior volume 370 of the body portion 311 for trapping air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume 370.
  • In various embodiments, the port 317 is located to a particular side of the interior volume 370, and the bubble trap portion 312 is located to the particular side of the interior volume 370. Also, in various embodiments, the bubble trap portion 312 has a first portion 381 that extends from the body portion 311 away from the interior volume 370, and a second portion 382 that returns back toward the interior volume 370. In some embodiments, the body portion 311 and the bubble trap portion 312 are formed together as a single seamless unit. Also, in some embodiments, the first portion 381 of the bubble trap portion 312 extends from the body portion 311 away from the interior volume 370 and the second portion 382 of the bubble trap portion 312 extends from the first portion 381 toward the interior volume 370.
  • In various embodiments, the reservoir 310 is shaped such that in order for a fluidic medium to flow from the volume 316 of the bubble trap portion 312 to the port 317, the fluidic medium must flow through the interior volume 370 of the body portion 311. In some embodiments, the reservoir 310 includes the channel 372 that leads from the interior volume 370 of the body portion 311 to the port 317, and the bubble trap portion 312 encircles at least a portion of the channel 372.
  • In various embodiments, the bubble trap portion 312 includes a first surface 383 that defines an edge of the volume 316 of the bubble trap portion 312, and a second surface 384 that defines another edge of the volume 316 of the bubble trap portion 312, where the second surface 384 is positioned at an angle with respect to the first surface 383. In some embodiments, the angle between the first surface 383 and the second surface 384 is less than 90 degrees. Also, in some embodiments, the first surface 383 is planar with respect to an inner surface of the body portion 311 of the reservoir 310. In various embodiments, the port 317 is located to a particular side of the interior volume 370 and the first portion 381 of the bubble trap portion 312 extends from the body portion 311 to the particular side.
  • FIG. 11A illustrates a cross-sectional view of a system 400 in accordance with an embodiment of the present invention. The system 400 includes a reservoir 410, a plunger head 420, and a plunger arm 430. The reservoir 410 includes a body portion 411, a bubble trap portion 412, and a port 417. The reservoir 410 has an outer surface 413 and an inner surface 414. The inner surface 414 of the reservoir 410 defines a hollow interior of the reservoir 410, and the hollow interior of the reservoir 410 is able to contain a fluidic medium. The port 417 of the reservoir 410 allows for the fluidic medium to be filled into or expelled from the hollow interior of the reservoir 410. The body portion 411 of the reservoir 410 may have any suitable shape, such as but not limited to, a cylinder shape, a tube shape, a barrel shape, a spherical shape, a shape with a rectangular cross-section, or the like.
  • The plunger head 420 is located within the reservoir 410, and is moveable in an axial direction of the reservoir 410, to expand or contract a volume of the reservoir 410 in which a fluidic medium may be contained. The plunger head 420 is connected to the plunger arm 430, such that movement of the plunger arm 430 in the axial direction of the reservoir 410 causes movement of the plunger head 420 in the axial direction of the reservoir 410. The plunger head 420 includes a plunger body portion 421 and a plunger protruding portion 422. In various embodiments, the plunger head 420 further includes one or more O-rings 425 that surround a portion of the plunger body portion 421.
  • The bubble trap portion 412 of the reservoir 410 is shaped so as to form a volume 416 within an interior of the reservoir 410, such that air bubbles in a fluidic medium may be trapped in the volume 416 of the bubble trap portion 412 when the fluidic medium is expelled from the reservoir 410 through the port 417. In various embodiments, the reservoir 410 is shaped such that as the plunger head 420 is advanced within the reservoir 410, a fluidic medium is able to pass through the port 417 while air bubbles in the reservoir 410 collect in the volume 416 of the reservoir 410. Such a geometry of the reservoir 410 may allow for decreasing an amount of air bubbles that are delivered with a fluidic medium as compared with traditional reservoir geometries.
  • The plunger body portion 421 is shaped such that a contour of an outer surface of the plunger body portion 421 substantially matches or is substantially the same as a contour of an inner surface of the body portion 411 of the reservoir 410. In various embodiments, the plunger body portion 421 has a diameter that is slightly smaller than a diameter of the inner surface of the body portion 411 of the reservoir 410, such that the plunger head 420 is able to slide within the reservoir 410. In some embodiments, the one or more O-rings 425 on the plunger body portion 421 are in contact with the inner surface of the body portion 411 of the reservoir 410 when the plunger head 420 is within the reservoir 410. In various embodiments, the plunger protruding portion 422 is shaped such that a contour of an outer surface of the plunger protruding portion 422 substantially matches or is substantially the same as a contour of an inner surface of the bubble trap portion 412 of the reservoir 410.
  • FIG. 11B illustrates a cross-sectional view of the reservoir 410 in accordance with an embodiment of the present invention. FIG. 11B is shaded to highlight various features of the reservoir 410. The reservoir 410 includes the body portion 411, the bubble trap portion 412, and the port 417. The body portion 411 has an interior volume 470 for containing a fluidic medium. The port 417 is in fluid flow communication with the interior volume 470 of the body portion 411. The bubble trap portion 412 has the volume 416 in fluid flow communication with the interior volume 470 of the body portion 411 for trapping air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume 470.
  • In various embodiments, the port 417 is located to a particular side of the interior volume 470, and the bubble trap portion 412 is located to the particular side of the interior volume 470. Also, in various embodiments, the bubble trap portion 412 has a first portion 481 that extends from the body portion 411 away from the interior volume 470, and a second portion 482 that returns back toward the interior volume 470. In some embodiments, the body portion 411 and the bubble trap portion 412 are formed together as a single seamless unit. Also, in some embodiments, the first portion 481 of the bubble trap portion 412 extends from the body portion 411 away from the interior volume 470 and the second portion 482 of the bubble trap portion 412 extends from the first portion 481 toward the interior volume 470.
  • In various embodiments, the bubble trap portion 412 includes a curved surface 483. In some embodiments, the curved surface 483 of the bubble trap portion 412 is in contact with the fluidic medium when the fluidic medium is in the volume 416 of the bubble trap portion 412. In various embodiments, the reservoir 410 is shaped such that in order for a fluidic medium to flow from the volume 416 of the bubble trap portion 412 to the port 417, the fluidic medium must flow through the interior volume 470 of the body portion 411. In some embodiments, the reservoir 410 includes a channel 472 that leads from the interior volume 470 of the body portion 411 to the port 417, and the bubble trap portion 412 encircles at least a portion of the channel 472.
  • With reference to FIGS. 11A and 11B, in various embodiments, the plunger protruding portion 422 is shaped such that a contour of the plunger protruding portion 422 substantially matches or is substantially the same as an inner contour of the bubble trap portion 412 of the reservoir 410. In some embodiments, the plunger protruding portion 422 is at least partially curved and protrudes from the plunger body portion 421. Also, in some embodiments, the plunger protruding porting includes a surface that is substantially parallel to an inner surface of the body portion 411 of the reservoir 410. In various embodiments, the plunger protruding portion 422 has a size that is slightly smaller than a region defined by the inner surface of the bubble trap portion 412 of the reservoir 410, such that the plunger protruding portion 422 is able to slide within the volume 416 of the reservoir 410, and such that a space for a dead volume of air is left when the plunger head 420 is fully advanced within the reservoir 410. Thus, in various embodiments, the geometry of the reservoir 410 and the plunger head 420 allow for capturing air bubbles in a volume 416 of the bubble trap portion 412 when a fluidic medium is being expelled from the port 417 of the reservoir 410.
  • In various embodiments, the plunger protruding portion 422 has a size such that when the plunger head 420 is fully advanced within the reservoir 410, the plunger protruding portion 422 fills at least 80% of the volume 416 of the bubble trap portion 412. Also, in various embodiments, the plunger protruding portion 422 fills less than 98% of the volume 416 of the bubble trap portion 412 when the plunger head 420 is fully advanced within the reservoir 410, so that one or more air pockets for holding air exist between the plunger protruding portion 422 and an inner surface of the bubble trap portion 412 when the plunger head 420 is fully advanced within the reservoir 410. In some embodiments, the plunger protruding portion 422 extends at least partially into the volume 416 of the bubble trap portion 412 when the plunger head 420 is sufficiently advanced within the reservoir 410.
  • FIG. 12A illustrates a cross-sectional view of a system 500 in accordance with an embodiment of the present invention. The system 500 includes a reservoir 510, a plunger head 520, and a plunger arm 530. In various embodiments, the system 500 further includes a needle 550. The reservoir 510 is similar to the reservoir 210 of the system 200 (refer to FIG. 9A), and includes a body portion 511 and a bubble trap portion 512. The bubble trap portion 512 defines a volume 516 for trapping air bubbles. Thus, the reservoir 510 has an air trap geometry that allows for capturing air bubbles.
  • The plunger head 520 is similar to the plunger head 220 of the system 200 (refer to FIG. 9A). The plunger head 520 includes a plunger body portion 521 and a plunger protruding portion 522. The plunger head 520 further includes a depression or relief 523 for allowing at least a portion of the needle 550 to be inserted into an interior of the reservoir 510 when the plunger head 520 is fully advanced within the reservoir 510. In various embodiments, the plunger head 520 has the relief 523 for receiving at least a portion of the needle 550 when the plunger head 520 is sufficiently advanced within the reservoir 510 and the portion of the needle 550 is inserted into the reservoir 510. In various embodiments, the reservoir 510 is shaped to trap air bubbles. Also, in various embodiments, the reservoir 510 and the plunger head 520 are shaped so as to minimize a delivery of air bubbles when a fluidic medium is expelled from the reservoir 510.
  • FIG. 12B illustrates a cross-sectional view of the reservoir 510 in accordance with an embodiment of the present invention. FIG. 12B is shaded to highlight various features of the reservoir 510. The reservoir 510 includes the body portion 511, the bubble trap portion 512, and a port 517. The body portion 511 has an interior volume 570 for containing a fluidic medium. The port 517 is in fluid flow communication with the interior volume 570 of the body portion 511. The bubble trap portion 512 has the volume 516 in fluid flow communication with the interior volume 570 of the body portion 511 for trapping air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume 570.
  • In various embodiments, the port 517 is located to a particular side of the interior volume 570, and the bubble trap portion 512 is located to the particular side of the interior volume 570. Also, in various embodiments, the bubble trap portion 512 has a first portion 581 that extends from the body portion 511 away from the interior volume 570, and a second portion 582 that returns back toward the interior volume 570. In some embodiments, the body portion 511 and the bubble trap portion 512 are formed together as a single seamless unit. Also, in some embodiments, the first portion 581 of the bubble trap portion 512 extends from the body portion 511 away from the interior volume 570 and the second portion 582 of the bubble trap portion 512 extends from the first portion 581 toward the interior volume 570.
  • In various embodiments, the bubble trap portion 512 includes a curved surface 583 having a first end region 584, a second end region 585, and a middle region 586 between the first end region 584 and the second end region 585. In some embodiments, the first end region 584 and the second end region 585 are closer to the interior volume 570 of the body portion 511 than the middle region 586 is to the interior volume 570. Also, in some embodiments, the first end region 584 is in contact with the body portion 511, and the second end region 585 is located adjacent to the interior volume 570 of the body portion 511.
  • In various embodiments, the curved surface 583 of the bubble trap portion 512 is in contact with the fluidic medium when the fluidic medium is in the volume 516 of the bubble trap portion 512. In further embodiments, the curved surface 583 is approximately U-shaped. FIG. 9B illustrates a cross-sectional view, but in three-dimensions the bubble trap portion 512 may be shaped, for example, approximately as a semi-toroid. In various embodiments, the reservoir 510 is shaped such that in order for a fluidic medium to flow from the volume 516 of the bubble trap portion 512 to the port 517, the fluidic medium must flow through the interior volume 570 of the body portion 511. In some embodiments, the reservoir 510 includes a channel 572 that leads from the interior volume 570 of the body portion 511 to the port 517, and the bubble trap portion 512 encircles at least a portion of the channel 572.
  • FIG. 12C illustrates a cross-sectional view of the system 500 of FIG. 12A in accordance with another embodiment of the present invention. In the embodiment illustrated in FIG. 12C, the system 500 further includes a plug 560. In various embodiments, the plug 560 is located between an interior surface 515 of the bubble trap portion 512 of the reservoir 510 and a location of the reservoir where a fluidic medium is able to be expelled from the reservoir. The plug 560 may comprise, for example, a hydrophilic material or a hydrophobic material, that will substantially keep air bubbles from being dispensed through a port 517 of the reservoir 510. As a consequence, a delivery accuracy may be able to be improved since a number of air bubbles expelled from the reservoir 510 is further limited by the plug 560. In various embodiments, the plug 560 shunts air bubbles in a fluidic medium away from the port 517 of the reservoir 510 and toward the volume 516 of the bubble trap portion 512 when the fluidic medium is being expelled from an interior volume of the body portion 511 of the reservoir 510.

Claims (11)

  1. An infusion medium delivery system (200), comprising:
    a reservoir (210), comprising:
    a body portion (211) having an interior volume for containing a fluidic medium;
    a port (217) in fluid flow communication with the interior volume;
    a bubble trap portion (212) having an interior surface being curved or angled near the port (217) so as to define a volume (216) being in fluid flow communication with the interior volume configured to trap air bubbles that are in the fluidic medium as the fluidic medium is being expelled from the interior volume; and
    a channel (272) that leads from the interior volume to the port (217);
    a plunger head (220) located within the reservoir 210 and moveable in an axial direction of the reservoir (210) to expand or contract a volume of the reservoir (210);
    wherein the bubble trap portion (212) encircles at least a portion of the channel (272).
  2. The system of claim 1, wherein the bubble trap portion is shaped approximately as a semi-toroid.
  3. The system of claim 1, wherein a surface of the bubble trap portion (212) that is in contact with the fluidic medium when the fluidic medium is in the volume (216) of the bubble trap portion (212) is approximately U-shaped.
  4. The system of claim 1, wherein the bubble trap portion (212) includes a first surface that defines an edge of the volume of the bubble trap portion, and a second surface that defines another edge of the volume of the bubble trap portion, where the second surface is positioned at an angle with respect to the first surface.
  5. The system of claim 4, wherein the angle between the first surface and the second surface is less than 90 degrees.
  6. The system of claim 4, wherein the first surface is planar with respect to an inner surface of the body portion (211).
  7. The system of claim 1, said body portion (211) and said bubble trap portion (212) having been formed together as a single seamless unit.
  8. The system of claim 1, wherein said reservoir (210) is shaped such that in order for the fluidic medium to flow from the volume (216) of the bubble trap portion (212) to the port (217), the fluidic medium must flow through the interior volume (270).
  9. The system of claim 1, wherein the plunger head (220) has a plunger body portion (221) and a plunger protruding portion (222).
  10. The system of claim 9, wherein a contour of the plunger protruding portion (222) substantially matches an inner contour of the bubble trap portion (212).
  11. The system of claim 9, wherein the plunger protruding portion (222) extends at least partially into the volume (216) of the bubble trap portion (212) when the plunger head (220) is sufficiently advanced within the reservoir (210).
EP07814386.4A 2007-04-30 2007-08-23 Reservoir filling, bubble management, and infusion medium delivery systems and methods with same Active EP2146760B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US92703207P true 2007-04-30 2007-04-30
PCT/US2007/076641 WO2008136845A2 (en) 2007-04-30 2007-08-23 Reservoir filling, bubble management, and infusion medium delivery systems and methods with same

Publications (2)

Publication Number Publication Date
EP2146760A2 EP2146760A2 (en) 2010-01-27
EP2146760B1 true EP2146760B1 (en) 2018-10-10

Family

ID=38961454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07814386.4A Active EP2146760B1 (en) 2007-04-30 2007-08-23 Reservoir filling, bubble management, and infusion medium delivery systems and methods with same

Country Status (6)

Country Link
US (3) US8083716B2 (en)
EP (1) EP2146760B1 (en)
JP (1) JP5102350B2 (en)
CA (1) CA2685474C (en)
DK (1) DK2146760T3 (en)
WO (1) WO2008136845A2 (en)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7999435B2 (en) * 2004-06-14 2011-08-16 Massachusetts Institute Of Technology Electrochemical actuator
WO2005124918A2 (en) 2004-06-14 2005-12-29 Massachusetts Institute Of Technology Electrochemical actuating methods, devices and structures
US8247946B2 (en) 2004-06-14 2012-08-21 Massachusetts Institute Of Technology Electrochemical actuator
US7872396B2 (en) 2004-06-14 2011-01-18 Massachusetts Institute Of Technology Electrochemical actuator
US7994686B2 (en) * 2004-06-14 2011-08-09 Massachusetts Institute Of Technology Electrochemical methods, devices, and structures
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US9358033B2 (en) * 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
DE602006008494D1 (en) 2005-11-08 2009-09-24 M2 Medical As Infusion pump system
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9839743B2 (en) * 2006-02-09 2017-12-12 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
JP5448460B2 (en) 2006-02-09 2014-03-19 デカ・プロダクツ・リミテッド・パートナーシップ Apparatus and method according to the adhesive for medical devices and peripheral devices and methods,
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US20070282269A1 (en) * 2006-05-31 2007-12-06 Seattle Medical Technologies Cannula delivery apparatus and method for a disposable infusion device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
JP5102350B2 (en) 2007-04-30 2012-12-19 メドトロニック ミニメド インコーポレイテッド A method using a reservoir filling / bubble management / infusion medium delivery system and the system
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8814822B2 (en) * 2007-05-07 2014-08-26 Roche Diagnostics Operations, Inc. Reciprocating delivery of fluids to the body with analyte concentration monitoring
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US8002752B2 (en) * 2007-06-25 2011-08-23 Medingo, Ltd. Protector apparatus
EP2178584A2 (en) * 2007-07-26 2010-04-28 Entra Pharmaceuticals Inc. Skin-patch pump comprising a changing-volume electrochemical actuator
AU2008302516B2 (en) * 2007-09-17 2013-09-19 Tecpharma Licensing Ag Insertion devices for infusion devices
US9345836B2 (en) 2007-10-02 2016-05-24 Medimop Medical Projects Ltd. Disengagement resistant telescoping assembly and unidirectional method of assembly for such
US9656019B2 (en) 2007-10-02 2017-05-23 Medimop Medical Projects Ltd. Apparatuses for securing components of a drug delivery system during transport and methods of using same
BRPI0817907A2 (en) 2007-10-02 2015-04-07 Lamodel Ltd External drug pump
US8313467B2 (en) 2007-12-27 2012-11-20 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
US8881774B2 (en) * 2007-12-31 2014-11-11 Deka Research & Development Corp. Apparatus, system and method for fluid delivery
US9526830B2 (en) 2007-12-31 2016-12-27 Deka Products Limited Partnership Wearable pump assembly
US10188787B2 (en) * 2007-12-31 2019-01-29 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US9295776B2 (en) * 2008-04-11 2016-03-29 Medtronic Minimed, Inc. Reservoir plunger head systems and methods
US8206353B2 (en) * 2008-04-11 2012-06-26 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US8858501B2 (en) * 2008-04-11 2014-10-14 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
EP2276537B1 (en) * 2008-05-14 2018-02-14 Becton, Dickinson and Company Separatable infusion set with cleanable interface and straight line attachment
EP3384942A3 (en) 2009-01-12 2019-01-16 Becton, Dickinson and Company Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
CN104434136A (en) 2009-03-02 2015-03-25 第七感生物系统有限公司 Devices for blood drawing
US8608699B2 (en) 2009-03-31 2013-12-17 Tandem Diabetes Care, Inc. Systems and methods to address air, leaks and occlusions in an insulin pump system
EP2445556B1 (en) * 2009-06-24 2019-05-15 Becton Dickinson France Improved luer connector
US8393357B2 (en) * 2009-07-08 2013-03-12 Medtronic Minimed, Inc. Reservoir filling systems and methods
CN102724946B (en) * 2009-07-29 2015-06-10 Icu医学有限公司 Fluid transfer devices and methods of use
AU2010278894B2 (en) 2009-07-30 2014-01-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US10092691B2 (en) * 2009-09-02 2018-10-09 Becton, Dickinson And Company Flexible and conformal patch pump
US8157769B2 (en) 2009-09-15 2012-04-17 Medimop Medical Projects Ltd. Cartridge insertion assembly for drug delivery system
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
EP2327433B1 (en) 2009-11-26 2012-04-18 F. Hoffmann-La Roche AG Externally triggerable cannula assembly
US8998840B2 (en) * 2009-12-30 2015-04-07 Medtronic Minimed, Inc. Connection and alignment systems and methods
US7967795B1 (en) 2010-01-19 2011-06-28 Lamodel Ltd. Cartridge interface assembly with driving plunger
US8348898B2 (en) 2010-01-19 2013-01-08 Medimop Medical Projects Ltd. Automatic needle for drug pump
WO2011094573A1 (en) 2010-01-28 2011-08-04 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
JP6150523B2 (en) * 2010-02-05 2017-06-21 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump apparatus, a method and system
AU2011269796A1 (en) 2010-03-24 2012-02-16 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8337457B2 (en) 2010-05-05 2012-12-25 Springleaf Therapeutics, Inc. Systems and methods for delivering a therapeutic agent
WO2011141907A1 (en) 2010-05-10 2011-11-17 Medimop Medical Projects Ltd. Low volume accurate injector
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
JP5748595B2 (en) * 2010-08-30 2015-07-15 アークレイ株式会社 Sensor insertion and recovery apparatus
US8915879B2 (en) 2010-09-24 2014-12-23 Perqflo, Llc Infusion pumps
US9498573B2 (en) * 2010-09-24 2016-11-22 Perqflo, Llc Infusion pumps
US9320849B2 (en) 2010-09-24 2016-04-26 Perqflo, Llc Infusion pumps
US9216249B2 (en) 2010-09-24 2015-12-22 Perqflo, Llc Infusion pumps
EP2992827B1 (en) 2010-11-09 2017-04-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US8905972B2 (en) * 2010-11-20 2014-12-09 Perqflo, Llc Infusion pumps
US8795234B2 (en) 2010-11-30 2014-08-05 Becton, Dickinson And Company Integrated spring-activated ballistic insertion for drug infusion device
US8814831B2 (en) 2010-11-30 2014-08-26 Becton, Dickinson And Company Ballistic microneedle infusion device
US8784383B2 (en) 2010-11-30 2014-07-22 Becton, Dickinson And Company Insulin pump dermal infusion set having partially integrated mechanized cannula insertion with disposable activation portion
US9950109B2 (en) 2010-11-30 2018-04-24 Becton, Dickinson And Company Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion
US8795230B2 (en) 2010-11-30 2014-08-05 Becton, Dickinson And Company Adjustable height needle infusion device
CA2821979A1 (en) 2010-12-17 2012-06-21 Yet-Ming Chiang Electrochemical actuators
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
WO2012108955A2 (en) * 2011-02-09 2012-08-16 Becton, Dickinson And Company Subcutaneous infusion device
US10130761B2 (en) * 2011-02-09 2018-11-20 Becton, Dickinson And Company Infusion systems
USD702834S1 (en) 2011-03-22 2014-04-15 Medimop Medical Projects Ltd. Cartridge for use in injection device
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US20120265140A1 (en) * 2011-04-18 2012-10-18 Thorne Consulting And Intellectual Property, Llc Medical syrnge prime and cross-contamination free devices
CA2833275A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
EP3106092A3 (en) 2011-04-29 2017-03-08 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
EP3235429A1 (en) 2011-04-29 2017-10-25 Seventh Sense Biosystems, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
CN106943645A (en) 2011-10-14 2017-07-14 安姆根有限公司 Injector and method of assembly
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
AU2012324021A1 (en) 2011-12-22 2013-07-11 Icu Medical, Inc. Fluid transfer devices and methods of use
US9463280B2 (en) 2012-03-26 2016-10-11 Medimop Medical Projects Ltd. Motion activated septum puncturing drug delivery device
US9072827B2 (en) 2012-03-26 2015-07-07 Medimop Medical Projects Ltd. Fail safe point protector for needle safety flap
WO2013149186A1 (en) 2012-03-30 2013-10-03 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith
US10071196B2 (en) 2012-05-15 2018-09-11 West Pharma. Services IL, Ltd. Method for selectively powering a battery-operated drug-delivery device and device therefor
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
EP2674179A1 (en) * 2012-06-15 2013-12-18 Ares Trading S.A. Injection device
RU2648446C1 (en) 2012-08-22 2018-03-26 Ф.Хоффманн-Ля Рош Аг Automatic fluid displacement device
BR112015008224A2 (en) 2012-10-16 2017-07-04 Swissinnov Product Sarl Device release fluid to release small amounts of a fluid to a patient, a system for releasing small amounts of fluid to a patient, adjustable bifunctional connector removably in the insert releasing fluid and method for installing release fluid device in a patient
US10071198B2 (en) 2012-11-02 2018-09-11 West Pharma. Servicees IL, Ltd. Adhesive structure for medical device
US9950106B2 (en) 2012-12-05 2018-04-24 Cook Medical Technologies Llc Antimicrobial barrier device
USD760374S1 (en) * 2012-12-28 2016-06-28 Insuline Medical Ltd. Drug delivery system
US9421323B2 (en) 2013-01-03 2016-08-23 Medimop Medical Projects Ltd. Door and doorstop for portable one use drug delivery apparatus
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
DE102013004860B3 (en) * 2013-03-21 2014-09-04 Fresenius Medical Care Deutschland Gmbh Means for receiving a syringe to a fluid delivery device and method therefor, and use of such a recording
JP2014200349A (en) * 2013-04-02 2014-10-27 セイコーエプソン株式会社 Liquid transport device and liquid transport method
US9011164B2 (en) 2013-04-30 2015-04-21 Medimop Medical Projects Ltd. Clip contact for easy installation of printed circuit board PCB
US9889256B2 (en) 2013-05-03 2018-02-13 Medimop Medical Projects Ltd. Sensing a status of an infuser based on sensing motor control and power input
US20150032053A1 (en) 2013-07-29 2015-01-29 Medtronic, Inc. Titration for medical infusion devices and systems
EP3073982A4 (en) 2013-11-25 2017-06-14 ICU Medical, Inc. Methods and system for filling iv bags with therapeutic fluid
CN106029004B (en) * 2013-12-30 2018-03-27 目标点技术有限公司 Injection equipment
KR101440838B1 (en) 2014-02-05 2014-09-23 진세훈 Syringe for highly selective dermal rejuvenation
US10279106B1 (en) 2014-05-08 2019-05-07 Tandem Diabetes Care, Inc. Insulin patch pump
US10159786B2 (en) 2014-09-30 2018-12-25 Perqflo, Llc Hybrid ambulatory infusion pumps
US9795534B2 (en) 2015-03-04 2017-10-24 Medimop Medical Projects Ltd. Compliant coupling assembly for cartridge coupling of a drug delivery device
US10251813B2 (en) 2015-03-04 2019-04-09 West Pharma. Services IL, Ltd. Flexibly mounted cartridge alignment collar for drug delivery device
US9744297B2 (en) 2015-04-10 2017-08-29 Medimop Medical Projects Ltd. Needle cannula position as an input to operational control of an injection device
US10293120B2 (en) 2015-04-10 2019-05-21 West Pharma. Services IL, Ltd. Redundant injection device status indication
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
US10149943B2 (en) 2015-05-29 2018-12-11 West Pharma. Services IL, Ltd. Linear rotation stabilizer for a telescoping syringe stopper driverdriving assembly
US9987432B2 (en) 2015-09-22 2018-06-05 West Pharma. Services IL, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
CA3006951A1 (en) 2015-12-04 2017-06-08 Icu Medical, Inc. Systems, methods, and components for transferring medical fluids
USD851745S1 (en) 2016-07-19 2019-06-18 Icu Medical, Inc. Medical fluid transfer system
EP3290073A1 (en) * 2016-08-29 2018-03-07 Roche Diabetes Care GmbH Connector device
USD838367S1 (en) 2016-09-26 2019-01-15 West Pharma. Services IL, Ltd. Syringe barrel
USD851244S1 (en) 2016-09-26 2019-06-11 West Pharma. Services IL, Ltd. Syringe barrel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165496A1 (en) * 2001-05-04 2002-11-07 Garey Thompson Airless syringe

Family Cites Families (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734504A (en) 1956-02-14 Hypodermic injection devices
US1948982A (en) * 1932-08-15 1934-02-27 Cutter Lab Hypodermic syringe
US2064815A (en) * 1933-08-10 1936-12-22 James L Armstrong Apparatus for filling syringe cartridges and the like
US2570625A (en) * 1947-11-21 1951-10-09 Zimmerman Harry Magnetic toy blocks
US2627857A (en) 1949-07-21 1953-02-10 Marcelli Attilio Syringe holder
USRE24918E (en) 1949-10-07 1961-01-03 Dispensing package and method
US2644450A (en) * 1952-02-06 1953-07-07 Josephine E Krewson Holder and operator for hypodermic syringes
US2973758A (en) * 1956-12-27 1961-03-07 Invenex Pharmaceuticals Apparatus for manufacturing parenteral solutions
US3085454A (en) 1961-11-16 1963-04-16 Stero Chemical Mfg Co Pressurized device for uncorking bottles
FR1314002A (en) 1961-11-24 1963-01-04 Method and device for dispensing a non-compact substance
US3342180A (en) * 1964-04-24 1967-09-19 American Cyanamid Co Disposable liquid-powder package and hypodermic syringe
US3343422A (en) 1965-08-12 1967-09-26 Dwight G Mcsmith Pipette safety device
US3623474A (en) 1966-07-25 1971-11-30 Medrad Inc Angiographic injection equipment
FR1496026A (en) 1966-10-07 1967-09-22 Elios Vantini Degli Eredi Vant adjustable dosage injection syringe having means for receiving a bottle or other container merely the liquid to be injected
US3572552A (en) 1969-07-25 1971-03-30 Perry W Guinn Diaphragm dispenser
US3650093A (en) 1970-01-08 1972-03-21 Pall Corp Sterile disposable medicament administration system
US3662753A (en) * 1970-05-25 1972-05-16 Kitchener B Tassell Syringe
US3729032A (en) 1971-12-06 1973-04-24 Mpl Inc Liquid dispenser and method and apparatus for filling same
US3923058A (en) 1972-05-19 1975-12-02 Kendall & Co Multi-chamber syringe
US3807119A (en) 1972-06-21 1974-04-30 W Shields Method of assembling a multiple compartment hypodermic syringe
US3802430A (en) * 1972-06-30 1974-04-09 L Arnold Disposable pyrotechnically powered injector
DE2239432B2 (en) 1972-08-10 1976-08-26 Geraet for the delivery of drugs
US4093108A (en) 1974-07-11 1978-06-06 Carl Schleicher & Schull Syringe adapted to overcome a pressure resistance
US3963151A (en) * 1974-08-05 1976-06-15 Becton, Dickinson And Company Fluid dispensing system
US3993061A (en) 1975-02-28 1976-11-23 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4064879A (en) 1976-04-06 1977-12-27 Metatech Corporation Pressure-indicating syringe
US4089624A (en) 1976-06-04 1978-05-16 Becton, Dickinson And Company Controlled pumping system
US4219055A (en) * 1977-01-21 1980-08-26 Wright George R Syringe filling aid
US4117841A (en) * 1977-02-07 1978-10-03 Anthony Perrotta Medicated bandage pocket
US4234108A (en) 1977-11-25 1980-11-18 Diamond George B Piston for aerosol container
US4215701A (en) * 1978-08-21 1980-08-05 Concord Laboratories, Inc. Elastomeric plunger tip for a syringe
US4572210A (en) * 1981-07-01 1986-02-25 Marquest Medical Products, Inc. Syringe with means for allowing passage of air while preventing the passage of blood to obtain a gas-free blood sample
US4373535A (en) * 1981-08-17 1983-02-15 Martell Michael D Venting, self-stopping, aspirating syringe
US4448206A (en) * 1981-08-17 1984-05-15 Martell Michael D Vented, aspirating syringe
US4392850A (en) * 1981-11-23 1983-07-12 Abbott Laboratories In-line transfer unit
US4447225A (en) 1982-03-22 1984-05-08 Taff Barry E Multidose jet injector
US4458733A (en) 1982-04-06 1984-07-10 Baxter Travenol Laboratories, Inc. Mixing apparatus
US4434820A (en) * 1982-05-05 1984-03-06 Glass John P Syringe loader and method
US4493704A (en) * 1982-11-29 1985-01-15 Oximetrix, Inc. Portable fluid infusion apparatus
US4508532A (en) 1983-09-09 1985-04-02 Ninetronix, Inc. Ophthalmic aspirator/irrigator and cystotome
US4749109A (en) 1983-11-15 1988-06-07 Kamen Dean L Volumetric pump with replaceable reservoir assembly
US4568336A (en) * 1984-04-26 1986-02-04 Microbiological Applications, Inc. Pre-filled hypodermic syringes
US4585435A (en) * 1984-05-31 1986-04-29 The Telescope Folding Furniture Co., Inc. Extension set for drug delivery
US4759756A (en) * 1984-09-14 1988-07-26 Baxter Travenol Laboratories, Inc. Reconstitution device
US4684365A (en) * 1985-01-24 1987-08-04 Eaton Corporation Disposable refill unit for implanted medication infusion device
US4684366A (en) * 1985-03-15 1987-08-04 Denny Christopher G Syringe for the remote injection of animals and fish
US4838857A (en) 1985-05-29 1989-06-13 Becton, Dickinson And Company Medical infusion device
US4703763A (en) 1985-06-17 1987-11-03 Sherwood Medical Company Blood sample syringe
CA1270693A (en) * 1986-01-24 1990-06-26 Eldon L. Robinson Edible fruit and nut product
US4743249A (en) * 1986-02-14 1988-05-10 Ciba-Geigy Corp. Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4865592A (en) * 1986-02-20 1989-09-12 Becton, Dickinson And Company Container and needle assembly
US5049129A (en) * 1986-05-29 1991-09-17 Zdeb Brian D Adapter for passive drug delivery system
US4744955A (en) 1986-08-08 1988-05-17 Shapiro Justin J Adjustable volume pipette sampler
DE8710421U1 (en) 1987-07-29 1987-10-15 Chen, Shih-Chiang
US4976696A (en) 1987-08-10 1990-12-11 Becton, Dickinson And Company Syringe pump and the like for delivering medication
US4913703B1 (en) * 1987-09-30 1992-06-16 Pasqualucci Joseph
JPH0572830B2 (en) 1988-03-31 1993-10-13 Fujisawa Pharmaceutical Co
IL86076A (en) 1988-04-14 1992-12-01 Inventor S Funding Corp Ltd Transdermal drug delivery device
US4957637A (en) * 1988-05-23 1990-09-18 Sherwood Medical Company Serum separator system for centrifuge with piercable membrane
US4883101A (en) * 1988-06-27 1989-11-28 Jordan Enterprises Filling device with sound indicator for filling injection syringe
NL8802106A (en) * 1988-08-26 1990-03-16 Abraham Van Den Haak The safety device for a syringe.
DE3832028C2 (en) 1988-09-21 1991-04-25 Minh Dr.-Ing. Dr.Med. 2406 Stockelsdorf De Bach Quang
JPH02147069A (en) * 1988-11-29 1990-06-06 Terumo Corp Disposable syringe
US5190522A (en) 1989-01-20 1993-03-02 Institute Of Biocybernetics And Biomedical Engineering P.A.S. Device for monitoring the operation of a delivery system and the method of use thereof
US5062834A (en) 1989-02-24 1991-11-05 Product Development (S.G.Z.) Ltd Device for dispensing a liquid particularly useful for delivering medicaments at a predetermined rate
US5242406A (en) 1990-10-19 1993-09-07 Sil Medics Ltd. Liquid delivery device particularly useful for delivering drugs
US5425706A (en) 1989-02-24 1995-06-20 S. I. Scientific Innovations Ltd. Dispensing device particularly useful for dispensing nutritional liquids
CA1337167C (en) 1989-03-14 1995-10-03 Eastman Kodak Company Needle housing with retractable needle
WO1990013420A1 (en) 1989-05-11 1990-11-15 Landec Labs, Inc. Temperature-activated adhesive assemblies
US4986820A (en) * 1989-06-23 1991-01-22 Ultradent Products, Inc. Syringe apparatus having improved plunger
US4994034A (en) * 1989-07-11 1991-02-19 Botich Michael J Retractable needle hypodermic syringe system
US5176502A (en) 1990-04-25 1993-01-05 Becton, Dickinson And Company Syringe pump and the like for delivering medication
US5115948A (en) 1990-06-15 1992-05-26 Johnson Robin L Toothpaste dispenser with a flexible air compressing bag used to bring about dispensing
US5090963A (en) 1990-10-19 1992-02-25 Product Development (Z.G.S.) Ltd. Electrochemically driven metering medicament dispenser
US5156591A (en) 1990-12-13 1992-10-20 S. I. Scientific Innovations Ltd. Skin electrode construction and transdermal drug delivery device utilizing same
TW279133B (en) 1990-12-13 1996-06-21 Elan Med Tech
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
IL97099D0 (en) 1991-01-30 1992-03-29 Scient Innovations Ltd Infusion pump with safety means controlling the electrolytic cell
US5984894A (en) 1991-04-18 1999-11-16 Novo Nordisk A/S Infuser
US5284570A (en) * 1991-06-26 1994-02-08 Ppg Industries, Inc. Fluid sample analyte collector and calibration assembly
AU2446392A (en) * 1991-08-07 1993-03-02 Habley Medical Technology Corporation Metered syringe filling device for pharmaceutical containers
US5219099A (en) 1991-09-06 1993-06-15 California Institute Of Technology Coaxial lead screw drive syringe pump
US5356632A (en) 1991-09-12 1994-10-18 S.I. Scientific Innovations Ltd. Transdermal drug delivery device
AT397467B (en) * 1991-10-22 1994-04-25 Wimmer Erwin disposable syringe
US5308333A (en) 1991-12-06 1994-05-03 Baxter International Inc. Air eliminating intravenous infusion pump set
US5329976A (en) 1991-12-09 1994-07-19 Habley Medical Technology Corporation Syringe-filling and medication mixing dispenser
US5203506A (en) 1991-12-16 1993-04-20 Product Development (Z.G.S.) Ltd. Liquid pump and nebulizer constructed therewith
US5261884A (en) 1992-04-29 1993-11-16 Becton, Dickinson And Company Syringe pump control system
US5232449A (en) 1992-04-29 1993-08-03 Becton, Dickinson And Company Syringe pump pusher
US5259732A (en) 1992-04-29 1993-11-09 Becton, Dickinson And Company Syringe pump with syringe barrel position detector
US5295966A (en) 1992-04-29 1994-03-22 Becton, Dickinson And Company Syringe pump with biased lockable syringe clamp
US5246147A (en) 1992-05-20 1993-09-21 Sil Medics Ltd. Liquid material dispenser
JPH06127U (en) * 1992-06-15 1994-01-11 有限会社古山商事 Fasteners such as necklace
US5242408A (en) 1992-09-23 1993-09-07 Becton, Dickinson And Company Method and apparatus for determining pressure and detecting occlusions in a syringe pump
US5254096A (en) 1992-09-23 1993-10-19 Becton, Dickinson And Company Syringe pump with graphical display or error conditions
US5295967A (en) 1992-09-23 1994-03-22 Becton, Dickinson And Company Syringe pump having continuous pressure monitoring and display
ES2158886T3 (en) * 1992-12-01 2001-09-16 Tetsuro Higashikawa Syringe.
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
US5851549A (en) 1994-05-25 1998-12-22 Becton Dickinson And Company Patch, with system and apparatus for manufacture
US5415648A (en) 1993-07-08 1995-05-16 Malay; Manuel R. Multiple purpose syringe
IE930532A1 (en) 1993-07-19 1995-01-25 Elan Med Tech Liquid material dispenser and valve
US5312364A (en) * 1993-08-06 1994-05-17 Pyng Intraosseous infusion device
CA2172539A1 (en) 1993-09-24 1995-03-30 Kathleen M. Mah Extension device, assembly thereof, heater for use therewith and method
US5957889A (en) 1993-09-27 1999-09-28 Novo Nordisk A/S Displacement system for controlled infusion of a liquid
US5997501A (en) 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
DE4339528C2 (en) * 1993-11-19 1995-09-07 Freudenberg Carl Fa disposable syringe
US5385559A (en) * 1993-12-20 1995-01-31 R. Jason Newsom Syringe filling and metering device
US5409236A (en) * 1993-12-23 1995-04-25 Therrien; Joel M. Magnetic game or puzzle and method for making same
US5407434A (en) * 1994-01-27 1995-04-18 The Kendall Company Automatic lumen viscous reseal
US5450993A (en) * 1994-02-07 1995-09-19 Motorola, Inc. Carry holder
US5533964A (en) * 1994-02-17 1996-07-09 Rossmark Medical Publishers Inc. Apparatus for removal of excess hydrogen ions from humans
KR960704591A (en) 1994-05-25 1996-10-09 메이어 가브리엘 Device for the preparation of the solution of medicine materials, suspensions or emulsions (device for the preparation fo a solution. An emulsion or a suspension of a medicinal substance)
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
GB9501218D0 (en) 1995-01-21 1995-03-15 Boc Group Plc Medical devices
EP0812178A1 (en) 1995-03-02 1997-12-17 Novo Nordisk A/S Kit for storage and mixing of agents of which at least one is liquid
US5900245A (en) * 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
SE9501828D0 (en) * 1995-05-17 1995-05-17 Astra Ab Cutting guide
US5647851A (en) 1995-06-12 1997-07-15 Pokras; Norman M. Method and apparatus for vibrating an injection device
AU7093096A (en) 1995-09-05 1997-03-27 Elan Medical Technologies Limited Chemically driven liquid delivery pumping device
IE77523B1 (en) 1995-09-11 1997-12-17 Elan Med Tech Medicament delivery device
US6277095B1 (en) * 1995-10-11 2001-08-21 Science Incorporated Fluid delivery device with full adapter
US5697916A (en) * 1995-11-21 1997-12-16 Stat Medical Devices Inc. Hypodermic dosage measuring device
ZA9610374B (en) 1995-12-11 1997-06-23 Elan Med Tech Cartridge-based drug delivery device
AUPN999296A0 (en) 1996-05-21 1996-06-13 Needle Technology (Aust) Limited Needle housing
GB9611562D0 (en) 1996-06-03 1996-08-07 Applied Research Systems Device
IE80772B1 (en) 1996-06-10 1999-02-10 Elan Corp Plc Delivery needle
EP0910420B1 (en) 1996-06-10 2003-02-05 Elan Corporation Plc Needle for subcutaneous delivery of fluids
US5796965A (en) * 1996-06-14 1998-08-18 Texas Instruments Incorporated Intelligent power circuit for external data drive
US5887752A (en) 1996-08-27 1999-03-30 Chrysler Corporation Method and apparatus for extracting excess material from containers
DE122009000079I2 (en) 1996-08-30 2011-06-16 Novo Nordisk As Novo Alle GLP-1 derivatives
US6042565A (en) 1996-10-18 2000-03-28 Medrad, Inc. Syringe, injector and injector system
IE960927A1 (en) 1996-12-31 1998-07-01 Elan Med Tech A device for generating a pulsatile fluid drug flow
JP2001511033A (en) 1997-02-04 2001-08-07 ノボ ノルディスク アクティーゼルスカブ Delivery device of liquid medicament suspension
US20070142776A9 (en) 1997-02-05 2007-06-21 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6607509B2 (en) 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6126643A (en) * 1997-03-06 2000-10-03 Vaillancouert; Vincent L. Blood collecting syringe
US5873859A (en) 1997-04-24 1999-02-23 Muntz; Robert L. Method and apparatus for self injecting medicine
US5865803A (en) * 1997-05-19 1999-02-02 Major; Miklos Syringe device having a vented piston
US6003736A (en) 1997-06-09 1999-12-21 Novo Nordisk A/S Device for controlled dispensing of a dose of a liquid contained in a cartridge
US6067906A (en) 1997-06-10 2000-05-30 Walter Stobb Assoicates, Inc. Method and apparatus for dispensing ink to a printing press
CA2294610A1 (en) 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
DE19727032A1 (en) 1997-06-25 1999-01-07 Hartmann Paul Ag plaster
DE29712274U1 (en) 1997-07-11 1997-09-18 Zeiss Carl Fa optical arrangement
US5893838A (en) 1997-08-15 1999-04-13 Therox, Inc. System and method for high pressure delivery of gas-supersaturated fluids
AU9743298A (en) 1997-09-16 1999-04-05 Novartis Ag Crosslinkable polyurea polymers
CN1127357C (en) 1997-09-16 2003-11-12 黄吴顺 Safe syringe for intravenous injection with positioning
US6077252A (en) 1997-09-17 2000-06-20 Siegel; Robert Single or multiple dose syringe
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
IE970782A1 (en) 1997-10-22 1999-05-05 Elan Corp An improved automatic syringe
CA2311935A1 (en) * 1997-12-22 1999-07-01 Celgard, Llc Device for removal of gas bubbles and dissolved gasses in liquid
US5957895A (en) 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US5954697A (en) 1998-03-02 1999-09-21 Srisathapat; Chad Threaded nut syringe plunger for use with a medication infusion pump
AU6309799A (en) * 1998-03-19 2001-02-13 Sims Portex, Inc. Anticoagulant internally coated needle
WO1999048546A1 (en) 1998-03-23 1999-09-30 Elan Corporation, Plc Drug delivery device
US6679864B2 (en) 1998-04-17 2004-01-20 Becton Dickinson And Company Safety shield system for prefilled syringes
US6186982B1 (en) 1998-05-05 2001-02-13 Elan Corporation, Plc Subcutaneous drug delivery device with improved filling system
TW406018B (en) 1998-05-21 2000-09-21 Elan Corp Plc Improved adhesive system for medical devices
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6248093B1 (en) * 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
AT289523T (en) * 1998-10-29 2005-03-15 Medtronic Minimed Inc Compact pump drive system
US6645181B1 (en) 1998-11-13 2003-11-11 Elan Pharma International Limited Drug delivery systems and methods
BR9916142A (en) 1998-11-30 2001-09-04 Novo Nordisk As Method and system to assist the user in a medical self treatment, said self treatment comprising a plurality of actions a
US6406455B1 (en) 1998-12-18 2002-06-18 Biovalve Technologies, Inc. Injection devices
GB2344526B (en) * 1999-01-12 2001-05-23 Dumaresq Lucas Alison Jayne Syringe with filter,and filter therefor
US6364866B1 (en) 1999-01-22 2002-04-02 Douglas Furr Syringe loading aid
US6645177B1 (en) 1999-02-09 2003-11-11 Alaris Medical Systems, Inc. Directly engaged syringe driver system
US6918887B1 (en) 1999-02-17 2005-07-19 Medtronic, Inc. Venous filter for assisted venous return
CA2362814A1 (en) 1999-02-18 2000-08-24 Biovalve Technologies, Inc. Electroactive pore
DE29905147U1 (en) 1999-03-23 2000-08-03 Suhl Elektro & Hausgeraetewerk About air pressure emptying container
SE9901736D0 (en) 1999-05-12 1999-05-12 Pharmacia & Upjohn Ab Injectino device and method for ITS surgery
US20010041869A1 (en) 2000-03-23 2001-11-15 Causey James D. Control tabs for infusion devices and methods of using the same
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
WO2001008727A1 (en) * 1999-07-30 2001-02-08 Medrad, Inc. Injector systems and syringe adapters for use therewith
AU7839900A (en) * 1999-09-29 2001-04-30 Sterling Medivations, Inc. Reusable medication delivery device
US6776776B2 (en) 1999-10-14 2004-08-17 Becton, Dickinson And Company Prefillable intradermal delivery device
US6585698B1 (en) 1999-11-01 2003-07-01 Becton, Dickinson & Company Electronic medical delivery pen having a multifunction actuator
US6453956B2 (en) 1999-11-05 2002-09-24 Medtronic Minimed, Inc. Needle safe transfer guard
US6253804B1 (en) 1999-11-05 2001-07-03 Minimed Inc. Needle safe transfer guard
US6450993B1 (en) * 1999-11-12 2002-09-17 Bih-Chern Lin Half-disposable syringe barrel
US6229584B1 (en) 1999-11-15 2001-05-08 Compal Electronics, Inc. Liquid crystal display monitor having a monitor stand with a replaceable housing part
CA2396569C (en) 2000-01-07 2010-03-23 Biovalve Technologies, Inc. Injection device
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6572600B1 (en) * 2000-02-15 2003-06-03 The Procter & Gamble Company Disposable article with deactivatable adhesive
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6461329B1 (en) * 2000-03-13 2002-10-08 Medtronic Minimed, Inc. Infusion site leak detection system and method of using the same
TW523415B (en) 2000-03-24 2003-03-11 Novo Nordisk As A flexible piston rod
US6485465B2 (en) * 2000-03-29 2002-11-26 Medtronic Minimed, Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
TW499314B (en) 2000-05-30 2002-08-21 Novo Nordisk As A medication delivery device with replaceable cooperating modules and a method of making same
US6551285B1 (en) 2000-06-08 2003-04-22 Venetec International, Inc. Medical line securement device for use with neonates
US6607513B1 (en) 2000-06-08 2003-08-19 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US7530964B2 (en) 2000-06-30 2009-05-12 Elan Pharma International Limited Needle device and method thereof
US6440096B1 (en) 2000-07-14 2002-08-27 Becton, Dickinson And Co. Microdevice and method of manufacturing a microdevice
JP2004503337A (en) 2000-07-14 2004-02-05 ノボ ノルディスク アクティーゼルスカブNovo Nordisk Aktie Selsxab Method for injecting a liquid medication injection device and desired dosage
US6656147B1 (en) * 2000-07-17 2003-12-02 Becton, Dickinson And Company Method and delivery device for the transdermal administration of a substance
US6589229B1 (en) * 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
WO2002011793A1 (en) * 2000-08-08 2002-02-14 Medical Information Services, Inc. Kit preparation syringe, intermediate slide valve for syringes, and kit preparation
AT354389T (en) 2000-08-10 2007-03-15 Novo Nordisk As Device for administration of drugs with a holder for a cassette
DE60110236T2 (en) 2000-08-18 2006-03-09 Becton, Dickinson And Co. A device for administering a fluid at a constant volume flow and a button for an adjustable bolus
US20040260233A1 (en) 2000-09-08 2004-12-23 Garibotto John T. Data collection assembly for patient infusion system
CN1471413A (en) 2000-09-08 2004-01-28 茵斯莱特有限公司 Devices, systems and methods for patient infusion
EP1332440B1 (en) 2000-10-04 2012-04-11 Insulet Corporation Data collection assembly for patient infusion system
US6537251B2 (en) 2000-10-05 2003-03-25 Novo Nordisk A/S Medication delivery device with bended piston rod
US6508788B2 (en) 2000-10-27 2003-01-21 Novo Nordisk A/S Medication delivery device with telescopic piston rod
DE60135042D1 (en) 2000-11-09 2008-09-04 Insulet Corp Device for transcutaneous delivery of drugs
US20040078028A1 (en) 2001-11-09 2004-04-22 Flaherty J. Christopher Plunger assembly for patient infusion device
EP2554196B1 (en) 2000-11-30 2018-10-17 Valeritas, Inc. Fluid delivery and measurement systems
JP4434583B2 (en) 2000-11-30 2010-03-17 バイオバルブ テクノロジーズ インコーポレイテッド Injection system
DE60115707T2 (en) 2000-12-21 2006-08-10 Insulet Corp., Beverly A medical device for remote control
US7027478B2 (en) 2000-12-21 2006-04-11 Biovalve Technologies, Inc. Microneedle array systems
US6899699B2 (en) 2001-01-05 2005-05-31 Novo Nordisk A/S Automatic injection device with reset feature
US6474375B2 (en) 2001-02-02 2002-11-05 Baxter International Inc. Reconstitution device and method of use
EP1361908B1 (en) 2001-02-14 2007-12-19 Novo Nordisk A/S Electronically controlled injection or infusion device
US6749587B2 (en) * 2001-02-22 2004-06-15 Insulet Corporation Modular infusion device and method
JP4450556B2 (en) 2001-04-06 2010-04-14 ディセトロニック・ライセンシング・アクチェンゲゼルシャフト Injection device
US8034026B2 (en) 2001-05-18 2011-10-11 Deka Products Limited Partnership Infusion pump assembly
WO2003006090A1 (en) 2001-07-10 2003-01-23 Janet Murphy Syringe pump mechanism
US6648860B2 (en) 2001-07-13 2003-11-18 Liebel-Flarsheim Company Contrast delivery syringe with internal hydrophilic surface treatment for the prevention of bubble adhesion
US6964406B2 (en) 2001-08-10 2005-11-15 Alaris Medical Systems, Inc. Valved male luer
US6602229B2 (en) 2001-08-24 2003-08-05 Ronald G. Coss Vibrating injection needle
KR20040027934A (en) 2001-08-27 2004-04-01 노보 노르디스크 에이/에스 A cartridge and a medical delivery system accommodating such a cartridge
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
US6740072B2 (en) 2001-09-07 2004-05-25 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
US6915147B2 (en) 2001-09-07 2005-07-05 Medtronic Minimed, Inc. Sensing apparatus and process
US7323142B2 (en) 2001-09-07 2008-01-29 Medtronic Minimed, Inc. Sensor substrate and method of fabricating same
FR2829691B1 (en) 2001-09-17 2004-07-09 Sedat A two-way transfer of a liquid between a vial and an ampoule
US20030055380A1 (en) 2001-09-19 2003-03-20 Flaherty J. Christopher Plunger for patient infusion device
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
US6689100B2 (en) 2001-10-05 2004-02-10 Becton, Dickinson And Company Microdevice and method of delivering or withdrawing a substance through the skin of an animal
US6669669B2 (en) 2001-10-12 2003-12-30 Insulet Corporation Laminated patient infusion device
EP2319561B1 (en) 2001-12-13 2013-07-17 Panasonic Corporation Administration instrument for medical use
US6715516B2 (en) 2001-12-19 2004-04-06 Novo Nordisk A/S Method and apparatus for filling cartridges with a liquid
US6952604B2 (en) 2001-12-21 2005-10-04 Becton, Dickinson And Company Minimally-invasive system and method for monitoring analyte levels
EP1790353A1 (en) 2001-12-29 2007-05-30 Novo Nordisk A/S Combined use of a GLP-1 compound and a modulator of diabetic late complications
WO2006096746A1 (en) 2005-03-11 2006-09-14 Becton, Dickinson And Company Entrapped binding protein as biosensors
US7306578B2 (en) 2002-01-04 2007-12-11 Deka Products Limited Partnership Loading mechanism for infusion pump
US6808506B2 (en) 2002-02-04 2004-10-26 Becton, Dickinson And Company Device and method for delivering or withdrawing a substance through the skin
GB0204640D0 (en) 2002-02-27 2002-04-10 Torsana Diabetes Diagnostics A Injection apparatus
US7041082B2 (en) 2002-02-28 2006-05-09 Smiths Medical Md, Inc. Syringe pump control systems and methods
US7858112B2 (en) * 2002-02-28 2010-12-28 Lintec Corporation Percutaneous absorption system and percutaneous absorption method
US6830558B2 (en) 2002-03-01 2004-12-14 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6692457B2 (en) 2002-03-01 2004-02-17 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
US6780171B2 (en) 2002-04-02 2004-08-24 Becton, Dickinson And Company Intradermal delivery device
US7115108B2 (en) 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US6723074B1 (en) 2002-04-09 2004-04-20 Thor R. Halseth Sequential delivery syringe
US6960192B1 (en) 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
US6656159B2 (en) * 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
EP1874390B1 (en) 2005-03-28 2014-10-01 Insulet Corporation Fluid delivery device
US6719734B1 (en) * 2002-05-28 2004-04-13 Willie E. Harkless Anesthetic delivery tool and method of using
US20080132842A1 (en) 2002-06-06 2008-06-05 Flaherty J Christopher Plunger assembly for patient infusion device
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US7018361B2 (en) 2002-06-14 2006-03-28 Baxter International Inc. Infusion pump
US7081107B2 (en) 2002-07-02 2006-07-25 Terumo Kabushiki Kaisha Syringe and prefilled syringe
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US7018360B2 (en) 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
WO2004010363A2 (en) * 2002-07-17 2004-01-29 Eurofloral Method and system for selling and deliverying comsumer products
EP1391794A1 (en) 2002-07-23 2004-02-25 Lifescan, Inc. Device with time indicating means
US6767188B2 (en) 2002-08-15 2004-07-27 Becton, Dickinson And Company Constant output fluidic system
AU2003258489A1 (en) 2002-09-09 2004-03-29 Novo Nordisk A/S Flow restrictor
CA2498722A1 (en) 2002-09-12 2004-03-25 Children's Hospital Medical Center Method and device for painless injection of medication
EP1403519A1 (en) 2002-09-27 2004-03-31 Novo Nordisk A/S Membrane pump with stretchable pump membrane
US7144384B2 (en) 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
US7128727B2 (en) 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
JP2006507912A (en) 2002-11-26 2006-03-09 バソジェン アイルランド リミテッド Medical procedures controller, the system and method
US7086431B2 (en) 2002-12-09 2006-08-08 D'antonio Consultants International, Inc. Injection cartridge filling apparatus
US20040116866A1 (en) 2002-12-17 2004-06-17 William Gorman Skin attachment apparatus and method for patient infusion device
US7361156B2 (en) 2002-12-20 2008-04-22 Medrad, Inc. Pressure jacket system with pivotal locking members
AU2003294368B2 (en) * 2002-12-31 2009-01-22 Bsn Medical Gmbh Wound dressing
US20040140327A1 (en) 2003-01-02 2004-07-22 Osborne Michael D. Pressurized fluid dispenser
US7214206B2 (en) * 2003-04-03 2007-05-08 Valera Pharmaceuticals, Inc. Implanting device and method of using same
US6886724B2 (en) * 2003-04-04 2005-05-03 Yun-Tung Hung Removable cover piece for belt buckle
US20050022274A1 (en) 2003-04-18 2005-01-27 Robert Campbell User interface for infusion pump remote controller and method of using the same
US7530968B2 (en) * 2003-04-23 2009-05-12 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
AU2004235793A1 (en) 2003-04-30 2004-11-18 Insulet Corporation RF medical device
US20040220551A1 (en) 2003-04-30 2004-11-04 Flaherty J. Christopher Low profile components for patient infusion device
DE602004013140T2 (en) 2003-05-08 2009-07-02 Novo Nordisk A/S internal nadeleinführvorrichtung
AU2004251699A1 (en) 2003-06-04 2005-01-06 Georgia Tech Research Corporation Drilling microneedle device
US6948522B2 (en) 2003-06-06 2005-09-27 Baxter International Inc. Reconstitution device and method of use
DE10327254B4 (en) 2003-06-17 2010-01-28 Disetronic Licensing Ag Modular infusion pump
AT357939T (en) 2003-07-08 2007-04-15 Novo Nordisk As Portable drug delivery device having an encapsulated needle
US20050065760A1 (en) * 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
KR20060099520A (en) 2003-10-21 2006-09-19 노보 노르디스크 에이/에스 Medical skin mountable device
US8360114B2 (en) 2003-10-23 2013-01-29 Niles Clark Apparatus and method for filing a syringe
EP1527792A1 (en) 2003-10-27 2005-05-04 Novo Nordisk A/S Medical injection device mountable to the skin
EP3108911A1 (en) 2003-10-30 2016-12-28 Teva Medical Ltd. Safety drug handling device
US7351228B2 (en) * 2003-11-06 2008-04-01 Becton, Dickinson And Company Plunger rod for arterial blood collection syringes
WO2005072795A2 (en) 2004-01-29 2005-08-11 M 2 Medical A/S Disposable medicine dispensing device
EP1718237A1 (en) 2004-02-02 2006-11-08 Bimeda Research And Development Limited A method and device for treating a teat canal of an animal
DE102004005435B3 (en) 2004-02-04 2005-09-15 Haindl, Hans, Dr. Medical transfer device
WO2005079440A2 (en) * 2004-02-17 2005-09-01 Children's Hospital Medical Center Improved injection devicew for administering a vaccine
EP1732626A1 (en) 2004-03-30 2006-12-20 Novo Nordisk A/S Actuator system comprising lever mechanism
AT468142T (en) 2004-03-31 2010-06-15 Lilly Co Eli Injection device with a needle cassette for relief in a pharmaceutical liquid
US7220245B2 (en) 2004-05-26 2007-05-22 Kriesel Marshall S Infusion apparatus
US7390294B2 (en) 2004-05-28 2008-06-24 Ethicon Endo-Surgery, Inc. Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band
US7399484B2 (en) * 2004-06-30 2008-07-15 Kimberly-Clark Worldwide, Inc. System and method for providing therapy to an individual
EP1781164A1 (en) 2004-08-10 2007-05-09 Novo Nordisk A/S A method of forming a sterilised sensor package and a sterilised sensor package
JP2008510154A (en) 2004-08-16 2008-04-03 ノボ ノルディスク アクティーゼルスカブNovo Nordisk Aktie Selsxab Semipermeable membrane of a multiphase system biocompatible type for biosensors
WO2006018447A2 (en) 2004-08-20 2006-02-23 Novo Nordisk A/S Manufacturing process for producing narrow sensors
WO2006024672A1 (en) 2004-09-03 2006-03-09 Novo Nordisk A/S System and method for estimating the glucose concentration in blood
WO2006024671A1 (en) 2004-09-03 2006-03-09 Novo Nordisk A/S A method of calibrating a system for measuring the concentration of substances in body and an apparatus for exercising the method
WO2006032692A1 (en) 2004-09-22 2006-03-30 Novo Nordisk A/S Medical device with cannula inserter
US7507221B2 (en) 2004-10-13 2009-03-24 Mallinckrodt Inc. Powerhead of a power injection system
WO2006042811A2 (en) 2004-10-18 2006-04-27 Novo Nordisk A/S A sensor film for transcutaneous insertion and a method for making the sensor film
US7192423B2 (en) 2004-11-17 2007-03-20 Cindy Wong Dispensing spike assembly with removable indicia bands
DE102004055870A1 (en) 2004-11-19 2006-05-24 Robert Bosch Gmbh One-way syringe comprises cylinder element, plastic squirted piston with head, opening and plug having fluid-close gas permeable teflon diaphragm placed in cylinder element
EP1816995A4 (en) 2004-12-03 2009-11-11 Duoject Inc Cartridge, device and method for pharmaceutical storage, mixing and delivery
WO2006072416A2 (en) 2005-01-06 2006-07-13 Novo Nordisk A/S A system for analysing data and for assisting a person in navigating the data
AT514440T (en) 2005-01-17 2011-07-15 Novo Nordisk As Liquid dispensing device with integrated monitoring of physiological characteristics
CN101107028B (en) 2005-01-24 2013-04-10 诺和诺德公司 Transcutaneous device assembly
WO2006084464A1 (en) 2005-02-08 2006-08-17 Novo Nordisk A/S A medical apparatus with a code reader and a method for operating such apparatus
US20060184103A1 (en) 2005-02-17 2006-08-17 West Pharmaceutical Services, Inc. Syringe safety device
CN101115516A (en) 2005-02-21 2008-01-30 诺和诺德公司 A method for ensuring constant speed of a motor in an injection device
EP1861138A1 (en) 2005-02-23 2007-12-05 Novo Nordisk A/S Method and apparatus for reversing a piston rod in an injection device
WO2006089548A1 (en) 2005-02-23 2006-08-31 Novo Nordisk A/S Method for testing an electronic circuit for driving a dc-motor
EP1866010A1 (en) 2005-02-28 2007-12-19 Novo Nordisk A/S Device for providing a change in a drug delivery rate
WO2006097453A1 (en) 2005-03-17 2006-09-21 Novo Nordisk A/S Securing pairing of electronic devices
WO2006108775A2 (en) 2005-04-08 2006-10-19 Novo Nordisk A/S Pump assembly with active and passive valve
WO2006108809A1 (en) 2005-04-13 2006-10-19 Novo Nordisk A/S Medical skin mountable device and system
WO2006116997A1 (en) 2005-04-29 2006-11-09 Novo Nordisk A/S Handheld injection device with integrated force sensor
US20060253085A1 (en) * 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US7569050B2 (en) 2005-05-06 2009-08-04 Medtronic Minimed, Inc. Infusion device and method with drive device in infusion device and method with drive device in separable durable housing portion
EP1898975A2 (en) 2005-05-13 2008-03-19 Novo Nordisk A/S Medical device adapted to detect disengagement of a transcutaneous device
WO2006125692A1 (en) 2005-05-26 2006-11-30 Novo Nordisk A/S A dosing operation in a medical device
WO2007000425A2 (en) 2005-06-27 2007-01-04 Novo Nordisk A/S User interface for delivery system providing graphical programming of profile
EP1904942A2 (en) 2005-06-27 2008-04-02 Novo Nordisk A/S User interface for delivery system providing shortcut navigation
WO2007000427A1 (en) 2005-06-27 2007-01-04 Novo Nordisk A/S User interface for delivery system providing dual setting of parameters
US20070088293A1 (en) 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
AU2006278693A1 (en) 2005-08-08 2007-02-15 Eli Lilly And Company Assembly for filling a container of a delivery device with a pharmaceutical
US20070066939A1 (en) 2005-09-19 2007-03-22 Lifescan, Inc. Electrokinetic Infusion Pump System
US20070062068A1 (en) 2005-09-20 2007-03-22 Li Pei S Shoe cushion for safety shoes
DK1933902T3 (en) 2005-09-26 2015-03-23 Asante Solutions Inc Infusion Pump WITH A DRIVE THAT HAVE AN PALLEGEME- AND CONGEST HAGE-COMBINATION
US8794929B2 (en) 2005-11-23 2014-08-05 Eksigent Technologies Llc Electrokinetic pump designs and drug delivery systems
PT1962926E (en) 2005-12-23 2009-08-27 Unomedical As Injection device
CN2870376Y (en) 2006-01-05 2007-02-14 史俊生 High-voltage sodium-lamp electronic ballast starting out-pup current limit circuit
JP2009525085A (en) 2006-02-02 2009-07-09 コロプラスト アクティーゼルスカブ Pumps and systems for wound treatment
US7621429B2 (en) 2006-02-27 2009-11-24 Aerojet- General Corporation Piston tank with compound piston for high loading and expulsion efficiency
WO2007109002A1 (en) 2006-03-13 2007-09-27 Merial Limited Adjustable dosage syringe with dose volume scale disposed along the longitudinal axis of the plunger
DE202006011365U1 (en) 2006-05-04 2006-10-05 Isotopen Technologien München AG Connection piece for the transfer of liquids, comprises an opening with a closure, and a further connection piece with a tube
WO2007130809A2 (en) 2006-05-06 2007-11-15 Volodymyr Brodskyy An automatic injectable drug mixing device
US20080051765A1 (en) 2006-08-23 2008-02-28 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US8137314B2 (en) 2006-08-23 2012-03-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with compressible or curved reservoir or conduit
US7455663B2 (en) 2006-08-23 2008-11-25 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US7794434B2 (en) 2006-08-23 2010-09-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7811262B2 (en) * 2006-08-23 2010-10-12 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7828764B2 (en) 2006-08-23 2010-11-09 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US8840586B2 (en) 2006-08-23 2014-09-23 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US8512288B2 (en) 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US20080097291A1 (en) 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
US20080048125A1 (en) 2006-08-25 2008-02-28 Daniel Navarro Convertible radiation beam analyzer system
US8167863B2 (en) 2006-10-16 2012-05-01 Carefusion 303, Inc. Vented vial adapter with filter for aerosol retention
US8382704B2 (en) 2006-12-29 2013-02-26 Medrad, Inc. Systems and methods of delivering a dilated slurry to a patient
US8057426B2 (en) 2007-01-03 2011-11-15 Medtronic Vascular, Inc. Devices and methods for injection of multiple-component therapies
AT485069T (en) 2007-01-30 2010-11-15 Hoffmann La Roche An apparatus for transferring a substance
JP2010527248A (en) 2007-02-01 2010-08-12 ピーエー ノウレッジ リミテッドPA Knowledge Limited Automatic injectors and injector needle covering Adapter
DE202007006363U1 (en) 2007-02-07 2007-08-23 Isotopen Technologien München AG Device for filling a catheter with radioactive substance, comprises a device for receiving a syringe, a housing exhibiting a window, an intake device comprising container for the radioactive substance, and a shielding device
US7883499B2 (en) 2007-03-09 2011-02-08 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
JP2008259704A (en) 2007-04-12 2008-10-30 Hisamitsu Pharmaceut Co Inc Prefilled syringe
US7753239B2 (en) 2007-04-17 2010-07-13 Chang Hsu-Pin Pressurized water container with water chamber replacement arrangement
US8597243B2 (en) * 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
JP5102350B2 (en) 2007-04-30 2012-12-19 メドトロニック ミニメド インコーポレイテッド A method using a reservoir filling / bubble management / infusion medium delivery system and the system
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
AU2008261084B2 (en) 2007-06-04 2011-07-28 Becton, Dickinson And Company Positive displacement stopper for a pre-filled syringe
DK2178583T3 (en) 2007-07-20 2014-02-24 Roche Diagnostics Gmbh Distribution device with bleeding
EP2170437A2 (en) 2007-07-20 2010-04-07 Amylin Pharmaceuticals, Inc. Pen injection device and method of using same
FR2927668B1 (en) 2008-02-19 2017-10-06 Snecma Reservoir piston is pressurized by the hot gases.
US20110282316A1 (en) 2008-05-21 2011-11-17 Onpharma Inc. Methods for buffering medical solutions
US8142403B2 (en) 2008-06-30 2012-03-27 Tyco Healthcare Group Lp Syringe assembly with plunger having a secondary dispensing reservoir
US8435209B2 (en) 2009-12-30 2013-05-07 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US8308679B2 (en) 2009-12-30 2012-11-13 Medtronic Minimed, Inc. Alignment systems and methods
US8668671B2 (en) 2010-08-26 2014-03-11 Carefusion 303, Inc. Automatic loading of IV pump cassette
US9526848B2 (en) 2013-07-06 2016-12-27 Choon Kee Lee Anti-nociceptive apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165496A1 (en) * 2001-05-04 2002-11-07 Garey Thompson Airless syringe

Also Published As

Publication number Publication date
US20090198191A1 (en) 2009-08-06
WO2008136845A2 (en) 2008-11-13
DK2146760T3 (en) 2019-01-28
JP5102350B2 (en) 2012-12-19
US8025658B2 (en) 2011-09-27
CA2685474C (en) 2014-07-08
US20080269681A1 (en) 2008-10-30
CA2685474A1 (en) 2008-11-13
US9522225B2 (en) 2016-12-20
JP2010525868A (en) 2010-07-29
US20090198215A1 (en) 2009-08-06
US8083716B2 (en) 2011-12-27
EP2146760A2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
CA2481102C (en) Dispenser for patient infusion device
EP2301601B1 (en) Injection device
US9138534B2 (en) Positive displacement pump
US8641670B2 (en) Portable infusion device with means for monitoring and controlling fluid delivery
EP1933901B1 (en) Portable infusion pump having a flexible pushrod with hinged portions
EP1427471B1 (en) Plunger for patient infusion device
CN103338797B (en) Insertion device systems and methods
US8308679B2 (en) Alignment systems and methods
US9248232B2 (en) Analyte monitoring and fluid dispensing system
JP4303467B2 (en) Transdermal administration means
CA2658730C (en) Infusion pumps and methods and delivery devices and methods with same
JP5506780B2 (en) A system for feeding the fluid, the apparatus and method
US7736344B2 (en) Infusion medium delivery device and method with drive device for driving plunger in reservoir
CN102835007B (en) Motor assembly sensor capture systems and methods
US8679062B2 (en) Apparatus and method for pumping fluid
US9399094B2 (en) Assembly comprising skin-mountable device and packaging therefore
JP5090454B2 (en) Infusion medium delivery device and methods of using compressible or curved reservoir or conduit
US8277415B2 (en) Infusion medium delivery device and method with drive device for driving plunger in reservoir
US20100198157A1 (en) Cannula and Delivery Device
EP1495775A1 (en) Portable drug delivery device having an encapsulated needle
CA2858333C (en) Connection and alignment systems and methods
CA2659005C (en) Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
JP5480401B2 (en) Engagement and detection systems and methods
US20090163874A1 (en) Skin-Mountable Device in Packaging Comprising Coated Seal Member
US7128727B2 (en) Components and methods for patient infusion device

Legal Events

Date Code Title Description
AX Request for extension of the european patent to:

Extension state: AL BA HR MK RS

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20091110

R17D Deferred search report published (corrected)

Effective date: 20081113

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAVAZOV, JULIAN, D.

Inventor name: LEE, MIKE

Inventor name: MOBERG, SHELDON, B.

Inventor name: SHEN, BENJAMIN

Inventor name: LUAN, TRUONG, GIA

Inventor name: IBRANYAN, ARSEN

Inventor name: HANSON, IAN, B.

DAX Request for extension of the european patent (to any country) (deleted)
17Q First examination report despatched

Effective date: 20130320

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IBRANYAN, ARSEN

Inventor name: LUAN, TRUONG, GIA

Inventor name: MOBERG, SHELDON, B.

Inventor name: SHEN, BENJAMIN

Inventor name: KAVAZOV, JULIAN, D.

Inventor name: LEE, MIKE

Inventor name: HANSON, IAN, B.

INTG Intention to grant announced

Effective date: 20180626

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1050493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007056468

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190123

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1050493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010