US20070164501A1 - Device for depositing individual printed products, supplied in succession, in shingle formation - Google Patents

Device for depositing individual printed products, supplied in succession, in shingle formation Download PDF

Info

Publication number
US20070164501A1
US20070164501A1 US11/635,955 US63595506A US2007164501A1 US 20070164501 A1 US20070164501 A1 US 20070164501A1 US 63595506 A US63595506 A US 63595506A US 2007164501 A1 US2007164501 A1 US 2007164501A1
Authority
US
United States
Prior art keywords
grippers
printed products
clamping element
conveyor
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/635,955
Inventor
Carsten Brommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kolbus GmbH and Co KG
Original Assignee
Kolbus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kolbus GmbH and Co KG filed Critical Kolbus GmbH and Co KG
Assigned to KOLBUS GMBH & CO. KG reassignment KOLBUS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROMMER, CARSTEN
Publication of US20070164501A1 publication Critical patent/US20070164501A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/38Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
    • B65H29/40Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/02Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles
    • B65H29/06Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles the grippers being carried by rotating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/66Advancing articles in overlapping streams
    • B65H29/6609Advancing articles in overlapping streams forming an overlapping stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/4471Grippers, e.g. moved in paths enclosing an area
    • B65H2301/44714Grippers, e.g. moved in paths enclosing an area carried by rotating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/4473Belts, endless moving elements on which the material is in surface contact
    • B65H2301/44732Belts, endless moving elements on which the material is in surface contact transporting articles in overlapping stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/4474Pair of cooperating moving elements as rollers, belts forming nip into which material is transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/65Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
    • B65H2404/655Means for holding material on element

Definitions

  • This disclosure pertains to a device for depositing individual printed products that are supplied in succession in shingle formation.
  • DE 198 46 032 C2 describes devices for depositing flat objects such as tubular sections or bags consisting of paper, wherein the supplied objects are decelerated with a device that settles on the deposited objects from the top.
  • Devices of this type are also suitable for depositing thicker printed products in shingle formation, e.g., magazines, brochures or book blocks.
  • the objects are transported with a relatively high speed on a conveyor belt while being spaced apart from one another and transferred to an obliquely ascending downstream conveyor belt that revolves with a slower speed.
  • the supplied objects are decelerated by one or more deceleration rolls that are rotatably supported on swiveling levers and roll on the shingle formation being produced with an adjustable pressing force.
  • the device is adjusted to the length of the objects to be deposited by respectively displacing the deceleration rolls or the assigned lever relative to the cut-off of the first conveyor belt.
  • auxiliary measures were developed in order to ensure that the printed products are properly positioned and therefore aligned on the bottom of the compartments, wherein said auxiliary measures generally consist of effectively taking hold of the trailing edge of the printed products with a slightly higher transport speed than that of the fan wheel.
  • EP 0 265 735 B1 proposes to already take hold of the printed products on their trailing edge and to transport away the printed products before they are removed from the compartments of the fan wheel.
  • the printed products consist of relatively thin, flexible objects that are able to rebound during the alignment contrary to thicker and/or less flexible printed products, e.g., magazines, brochures or book blocks. These products usually have a rigidity that prevents a reliable penetration into the curved compartments of the fan wheel from the outset.
  • DE 34 04 459 A1 Another device of this type for depositing flat objects in shingle formation is known from DE 34 04 459 A1. It essentially consists of a stream feeder that receives the arc-shaped products transported without overlap from the feed conveyor with the aid of rotating grippers that are opened and closed in the appropriate cycle by means of a stationary control cam and deposited on the downstream conveyor in shingle formation with a slower speed.
  • the rotating grippers can be decelerated on a transport segment that extends from the feed conveyor to the downstream conveyor referred to the transport direction, namely from approximately the feed speed to approximately the delivery speed, wherein the grippers can be accelerated once again in the ensuing transport segment.
  • the products are always transported while being taken hold of by the decelerating grippers during their deceleration and only released once the stream feeding speed is reached.
  • the grippers slide along the surface of the respective leading product such that markings may be produced.
  • the drum serving as the supporting device for the printed products revolves with a constant speed such that a relative speed results between the printed products transported by the decelerating grippers and the drum, wherein this relative speed is directed in such a way at the end of the closed gripper movement that the drum delays the printed products.
  • the device according to DE 34 04 459 A1 has a complicated construction and is only conditionally suitable for processing thicker and/or less flexible printed products.
  • the present embodiment is based on the objective of developing a device for depositing individual printed products, supplied in succession, in shingle formation, wherein said device should also make it possible to reliably and flawlessly deposit thicker and/or less flexible printed products at high processing speeds. It should be possible, in particular, to reliably deposit printed products with short dimensions referred to the shingle spacing if changes in the transport speed occur.
  • this objective is attained by reducing the compartments known from the fan wheel feed to relatively short pockets such that the printed products also quickly come in contact with the bottom stop of the pockets if the difference between the feed speed and the speed of the rotating grippers is relatively small. This is particularly beneficial when processing small format lengths and less flexible printed products.
  • the printed products aligned on the bottom stop can no longer be displaced during their additional transport and are therefore transferred in a precisely positioned fashion, the printed products are subsequently transported while being taken hold of and deflected approximately in the stream feeding direction of the downstream conveyor during this process.
  • the grippers are opened before the stripping element is reached, wherein the printed products drop on the downstream conveyor in the direction of the product thickness along the shortest path possible due to the centrifugal force and the downwardly acting weight.
  • the dropping time therefore is so short that a faulty shingle formation is no longer produced, namely even if significant speed changes occur.
  • the stripping element ensures that the printed products are reliably removed from the pocket of the opened gripper. To sum up, the printed products supplied with a high speed practically are reliably and carefully decelerated to the stream feeding speed in several successive deceleration processes.
  • the embodiment allows a constant rotational speed of the grippers such that a simple construction of the device is achieved and no relative speed occurs between the printed products transported while being taken hold of by a gripper and the supporting disk.
  • a format adjustment with respect to the format length of the printed products can be easily realized by turning the control cam.
  • the trailing edge is displaced out of the moving path of the following printed product due to the deflection of the printed products by a defined angle in the stream feeder during the transport phase in which the printed products are taken hold of by the grippers.
  • a constant shingle spacing is preferably realized during the depositing or dropping of the printed products in cooperation with pushers that are arranged at fixed distances from one another on the downstream conveyor.
  • the FIGURE shows a partially schematic side view of a stream feeder 1 for depositing individual brochures 4 ( 4 I , 4 II , 4 III , 4 IV ), supplied in succession by means of a feed conveyor 2 , on a downstream conveyor 3 with a slower transport speed v 3 in shingle formation 5 .
  • the brochures 4 have a format length L and are successively transported obliquely downward with a feed speed v 1 by the feed conveyor 2 that clamps the brochures 4 between conveyor belts 26 , 27 such that they are spaced apart from one another by a distance A, wherein the brochures are then fed to the stream feeder 1 with their spine 4 a pointing forward.
  • the bottom conveyor belt 26 extends slightly farther than the upper conveyor belt 27 such that the brochures 4 are provided with a supporting surface.
  • the stream feeder 1 features a plurality of rotating grippers 6 a to 6 e that are continuously driven in a rotative fashion with a constant gripper speed v 2 .
  • the grippers 6 a to 6 e are respectively realized in the form of a gripper row featuring at least two adjacently arranged parallel grippers. Only one respective gripper of a gripper row is visible in the illustration shown in the FIGURE.
  • the short pocket 7 realized on the respective grippers 6 a to 6 e features a bottom stop 8 and sides that are formed by a clamp 9 and the surface area 11 a of a supporting disk 11 .
  • the supporting disk 11 simultaneously serves as a receptacle for the grippers and consequently rotates synchronously with the grippers 6 a to 6 e.
  • the brochures 4 are fed to the stream feeder 1 tangentially referred to the rotational path of the grippers and obliquely from the top.
  • the spine 4 a represents the leading edge of a brochure 4 III and is introduced into the pocket 7 of the assigned grippers 6 a that is in an open state. Since the feed speed v 1 is higher than the gripper speed v 2 , the brochures 4 come in contact with the bottom stop 8 such that they are aligned and can subsequently be additionally transported while being held by the closed grippers, wherein the moving direction of the brochures 4 is changed during the further motion sequence. The latter is indicated in the FIGURE in the form of the gripper 6 e and the brochure 4 II .
  • the rotational movement of the stream feeder 1 or of its grippers 6 a to 6 e, respectively, is adapted to the feed of the brochures 4 in such a way that an opened gripper 6 b is introduced into a gap between a leading brochure 4 III and the brochure 4 IV to be transferred.
  • the above-described phase in which the contacting and aligning of the brochure 4 III takes place, occurs in a first angular range ⁇ in which the gripper 6 a is still open, wherein an insertion aid in the form of an insertion ramp 9 a is provided on the clamp 9 of the grippers 6 a to 6 e.
  • the brochure 4 III only lies on the supporting surface of the lower conveyor belt 26 by the time it comes in contact with the bottom stop 8 such that the brochure 4 III can be decelerated to the gripper speed v 2 without being compressed by the bottom stop.
  • the clamped transport takes place in a second angular range ⁇ of the rotational movement of the grippers, namely up to a defined distance upstream of the stripping element 10 where the grippers 6 a to 6 e are reopened in order to release and drop the respective brochure 4 II onto the downstream conveyor 3 situated thereunder.
  • the release of the brochure 4 II consequently takes place in a third angular range ⁇ of the rotational movement of the grippers in which the grippers are opened once again and the downwardly acting weight is accelerated by the centrifugal force, wherein the brochure 4 II is pushed out of the pocket 7 of the gripper 6 e by the stripping element 10 in order to ensure that the brochure 4 II is released from the gripper 6 e.
  • Two brushes that are stationarily arranged on the stream feeder 1 adjacent to the grippers 6 a to 6 e serve as stripping elements 10 , wherein said brushes are oriented approximately tangential to the supporting disk 11 and feature bristles that are inclined in the feed direction (v 3 ). Due to their elasticity, the brochures 4 are carefully pushed out of the grippers 6 a to 6 e and deflected downward onto the downstream conveyor 3 .
  • a guide plate 13 that guides and supports the trailing edge of the brochure 4 II against the centrifugal force acting thereupon extends from the lower conveyor belt 26 in the direction of the rotational path of the grippers and essentially opens perpendicularly toward the downstream conveyor 3 .
  • the downstream conveyor 3 is arranged with an ascending incline and features at least two transport chains 14 , on which pusher cams 15 are arranged within identical distances B from one another, wherein said pusher cams effectively act upon and thusly transport the trailing edges of the dropped brochures 4 .
  • brochures 4 Due to the insignificant drop from the stream feeder 1 to the downstream conveyor 3 , brochures 4 are also deposited in a timely fashion on the respectively leading brochure 4 I such that they lie in front of the assigned pusher cam 15 for their additional transport if the speed of the conveyor system changes. Brochures 4 with a small format referred to the shingle spacing B are reliably placed on top of one another in this fashion.
  • Brochures 4 of the stream feed 5 that are not yet aligned when they come in contact with the pusher cams 15 are pressed against the pusher cams 15 by means of a holding element in the form of a brush 16 arranged above the downstream conveyor 3 .
  • the uniform stream feed 5 being produced has a constant shingle spacing B and is delivered to an additional processing machine with a stream feed speed v 3 .
  • the design and the function of the grippers 6 a to 6 e is illustrated in a partial section of the FIGURE.
  • one clamping jaw of the grippers 6 a to 6 e is formed by the surface area 11 a of a supporting disk 11 , wherein this clamping jaw is arranged stationarily referred to the clamping movement.
  • the clamp 9 serves as the second, movable clamping jaw for opening and closing the grippers and is received on a holder 18 that, in turn, is displaceably guided relative to a slide 17 and spring-loaded with the aid of a pressure spring 20 .
  • a bolt 19 fixed on the holder 18 serves as a guide arbor for the pressure spring 20 .
  • the pressure spring 20 is arranged in such a way that the clamp 9 exerts an inwardly directed clamping force. Its movement relative to the slide 17 is limited by a set screw 21 .
  • the slides 17 of the grippers 6 a to 6 e are guided radially referred to the rotational path of the grippers on rails 23 that are fixed on the supporting disk 11 , namely with the aid of linear guides 22 .
  • the holder 18 guided relative to the slide 17 is also guided on this rail 23 with a linear guide 24 .
  • the grippers 6 a to 6 e are adjusted between an open position and a closed position during their rotation due to the engagement of a cam roller 25 provided on the respective slide 17 and a stationary control cam 12 , wherein the holder 18 with the clamp 9 yields outward against the force of the spring during the clamping of a brochure 4 independently of the product thickness.
  • Different format lengths L of the pushers 4 are adjusted by means of a format adjusting mechanism FV 1 that is symbolically indicated in the form of a double arrow drawn with broken lines, wherein this format adjusting mechanism serves for turning the plate cam 12 in order to adjust the closing and opening times of the grippers 6 a to 6 e, and wherein this adjustment is equivalent to turning the second angular range ⁇ of the rotational path of the grippers.
  • the distance of the downstream conveyor 3 from the rotational path of the grippers can be adjusted in dependence on the product thickness with the aid of a height adjusting mechanism FV 2 for adjusting the height of the downstream conveyor 3 relative to the stream feeder 1 .

Abstract

A device for depositing individual printed products (4), preferably magazines, brochures or book blocks, that are supplied in succession by means of a feed conveyor (2) on a downstream conveyor (3) with slower transport speed (v3) in shingle formation (5), wherein said device comprises a stream feeder (1) that receives the printed products (4) from the feed conveyor (2) by means of rotating grippers (6 a to e) that are opened and closed in the appropriate cycle with the aid of a stationary cam (12) and deposits the printed products on the downstream conveyor (3). In order to reliably and flawlessly deposit the printed products, particularly thick and/or less flexible printing products, in shingle formation, the stream feeder includes a plurality of grippers (6 a to e) that are rotatively driven with a slower speed (v2) than the feed speed (v1), wherein the grippers (6 a to e), opened for receiving the printed products, respectively include a short pocket (7) with a bottom stop (8), with which the respectively supplied printed product (4) comes in contact due to the higher feed speed (v1). The clamped transport takes place within an angular range (β) of the rotational movement of the grippers, namely up to a defined distance upstream of a stripping element (10) for reliably releasing the printed products (4). They drop on the downstream conveyor (3) along a short path.

Description

    TECHNICAL FIELD
  • This disclosure pertains to a device for depositing individual printed products that are supplied in succession in shingle formation.
  • BACKGROUND OF THE INVENTION
  • DE 198 46 032 C2 describes devices for depositing flat objects such as tubular sections or bags consisting of paper, wherein the supplied objects are decelerated with a device that settles on the deposited objects from the top. Devices of this type are also suitable for depositing thicker printed products in shingle formation, e.g., magazines, brochures or book blocks. The objects are transported with a relatively high speed on a conveyor belt while being spaced apart from one another and transferred to an obliquely ascending downstream conveyor belt that revolves with a slower speed. In order to produce the shingle formation, the supplied objects are decelerated by one or more deceleration rolls that are rotatably supported on swiveling levers and roll on the shingle formation being produced with an adjustable pressing force. The device is adjusted to the length of the objects to be deposited by respectively displacing the deceleration rolls or the assigned lever relative to the cut-off of the first conveyor belt.
  • In this case, it is complicated to adjust the device to the formats of the objects to be deposited and disruptions may occur due to objects being positioned obliquely when they come in contact with the deceleration rolls. The objects are not deposited with a constant shingle spacing, particularly when the transport speed changes, e.g., when powering up and powering down the conveyor system, namely because the objects approach the deceleration rolls along a speed-dependent trajectory over a relatively long distance. Gaps in the stream feed may occur, particularly when processing short formats. This results in corresponding disruptions during the mechanical finishing of the objects transported in shingle formation.
  • It is known to utilize fan wheels driven in a revolving fashion, e.g., as described in EP 0 265 735 B1, for delivering flat printed products that emerge from the folding apparatus of a printing machine in shingle formation. The printed products are introduced into the pocket-shaped compartments of the fan wheel from the top about tangentially, wherein the printed products come in contact with the bottom of the compartments with their leading edge due to the higher feed speed and, after slightly more than one-quarter revolution of the fan wheel, are pushed out of the compartment once again by a stripping element (band, wheel or the like) and deposited in shingle formation. On the downstream conveyor, the printed products are taken hold of by pusher cams on their trailing edge referred to the transport direction and transported away.
  • In devices with fan wheels, it is problematic that the printed products do not always lie on the bottom of the compartments due to rebound effects or the lack of an excess speed such that corresponding variations of the shingle spacing occur. Different auxiliary measures were developed in order to ensure that the printed products are properly positioned and therefore aligned on the bottom of the compartments, wherein said auxiliary measures generally consist of effectively taking hold of the trailing edge of the printed products with a slightly higher transport speed than that of the fan wheel. For example, EP 0 265 735 B1 proposes to already take hold of the printed products on their trailing edge and to transport away the printed products before they are removed from the compartments of the fan wheel. However, all these measures can only be realized if the printed products consist of relatively thin, flexible objects that are able to rebound during the alignment contrary to thicker and/or less flexible printed products, e.g., magazines, brochures or book blocks. These products usually have a rigidity that prevents a reliable penetration into the curved compartments of the fan wheel from the outset.
  • Another device of this type for depositing flat objects in shingle formation is known from DE 34 04 459 A1. It essentially consists of a stream feeder that receives the arc-shaped products transported without overlap from the feed conveyor with the aid of rotating grippers that are opened and closed in the appropriate cycle by means of a stationary control cam and deposited on the downstream conveyor in shingle formation with a slower speed. The rotating grippers can be decelerated on a transport segment that extends from the feed conveyor to the downstream conveyor referred to the transport direction, namely from approximately the feed speed to approximately the delivery speed, wherein the grippers can be accelerated once again in the ensuing transport segment.
  • In contrast to the known fan wheel feed, the products are always transported while being taken hold of by the decelerating grippers during their deceleration and only released once the stream feeding speed is reached. In this case, the grippers slide along the surface of the respective leading product such that markings may be produced. Another disadvantage can be seen in that the drum serving as the supporting device for the printed products revolves with a constant speed such that a relative speed results between the printed products transported by the decelerating grippers and the drum, wherein this relative speed is directed in such a way at the end of the closed gripper movement that the drum delays the printed products. The device according to DE 34 04 459 A1 has a complicated construction and is only conditionally suitable for processing thicker and/or less flexible printed products.
  • SUMMARY OF THE INVENTION
  • The present embodiment is based on the objective of developing a device for depositing individual printed products, supplied in succession, in shingle formation, wherein said device should also make it possible to reliably and flawlessly deposit thicker and/or less flexible printed products at high processing speeds. It should be possible, in particular, to reliably deposit printed products with short dimensions referred to the shingle spacing if changes in the transport speed occur.
  • According to the embodiment, this objective is attained by reducing the compartments known from the fan wheel feed to relatively short pockets such that the printed products also quickly come in contact with the bottom stop of the pockets if the difference between the feed speed and the speed of the rotating grippers is relatively small. This is particularly beneficial when processing small format lengths and less flexible printed products. In order to ensure that the printed products aligned on the bottom stop can no longer be displaced during their additional transport and are therefore transferred in a precisely positioned fashion, the printed products are subsequently transported while being taken hold of and deflected approximately in the stream feeding direction of the downstream conveyor during this process. The grippers are opened before the stripping element is reached, wherein the printed products drop on the downstream conveyor in the direction of the product thickness along the shortest path possible due to the centrifugal force and the downwardly acting weight. The dropping time therefore is so short that a faulty shingle formation is no longer produced, namely even if significant speed changes occur. In addition, the stripping element ensures that the printed products are reliably removed from the pocket of the opened gripper. To sum up, the printed products supplied with a high speed practically are reliably and carefully decelerated to the stream feeding speed in several successive deceleration processes.
  • The embodiment allows a constant rotational speed of the grippers such that a simple construction of the device is achieved and no relative speed occurs between the printed products transported while being taken hold of by a gripper and the supporting disk. A format adjustment with respect to the format length of the printed products can be easily realized by turning the control cam. In order to achieve a trouble-free operation with high processing speeds, the trailing edge is displaced out of the moving path of the following printed product due to the deflection of the printed products by a defined angle in the stream feeder during the transport phase in which the printed products are taken hold of by the grippers. A constant shingle spacing is preferably realized during the depositing or dropping of the printed products in cooperation with pushers that are arranged at fixed distances from one another on the downstream conveyor.
  • BRIEF DESCRIPTION OF THE DRAWING
  • One embodiment is described in greater detail below with reference to the drawing, consisting of a single FIGURE.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The FIGURE shows a partially schematic side view of a stream feeder 1 for depositing individual brochures 4 (4 I, 4 II, 4 III, 4 IV), supplied in succession by means of a feed conveyor 2, on a downstream conveyor 3 with a slower transport speed v3 in shingle formation 5. The brochures 4 have a format length L and are successively transported obliquely downward with a feed speed v1 by the feed conveyor 2 that clamps the brochures 4 between conveyor belts 26, 27 such that they are spaced apart from one another by a distance A, wherein the brochures are then fed to the stream feeder 1 with their spine 4 a pointing forward. The bottom conveyor belt 26 extends slightly farther than the upper conveyor belt 27 such that the brochures 4 are provided with a supporting surface.
  • The stream feeder 1 features a plurality of rotating grippers 6 a to 6 e that are continuously driven in a rotative fashion with a constant gripper speed v2. The grippers 6 a to 6 e are respectively realized in the form of a gripper row featuring at least two adjacently arranged parallel grippers. Only one respective gripper of a gripper row is visible in the illustration shown in the FIGURE. The short pocket 7 realized on the respective grippers 6 a to 6 e features a bottom stop 8 and sides that are formed by a clamp 9 and the surface area 11 a of a supporting disk 11. The supporting disk 11 simultaneously serves as a receptacle for the grippers and consequently rotates synchronously with the grippers 6 a to 6 e.
  • The brochures 4 are fed to the stream feeder 1 tangentially referred to the rotational path of the grippers and obliquely from the top. The spine 4 a represents the leading edge of a brochure 4 III and is introduced into the pocket 7 of the assigned grippers 6 a that is in an open state. Since the feed speed v1 is higher than the gripper speed v2, the brochures 4 come in contact with the bottom stop 8 such that they are aligned and can subsequently be additionally transported while being held by the closed grippers, wherein the moving direction of the brochures 4 is changed during the further motion sequence. The latter is indicated in the FIGURE in the form of the gripper 6 e and the brochure 4 II.
  • The rotational movement of the stream feeder 1 or of its grippers 6 a to 6 e, respectively, is adapted to the feed of the brochures 4 in such a way that an opened gripper 6 b is introduced into a gap between a leading brochure 4 III and the brochure 4 IV to be transferred. The above-described phase, in which the contacting and aligning of the brochure 4 III takes place, occurs in a first angular range α in which the gripper 6 a is still open, wherein an insertion aid in the form of an insertion ramp 9 a is provided on the clamp 9 of the grippers 6 a to 6 e. The brochure 4 III only lies on the supporting surface of the lower conveyor belt 26 by the time it comes in contact with the bottom stop 8 such that the brochure 4 III can be decelerated to the gripper speed v2 without being compressed by the bottom stop.
  • The clamped transport takes place in a second angular range β of the rotational movement of the grippers, namely up to a defined distance upstream of the stripping element 10 where the grippers 6 a to 6 e are reopened in order to release and drop the respective brochure 4 II onto the downstream conveyor 3 situated thereunder. The release of the brochure 4 II consequently takes place in a third angular range γ of the rotational movement of the grippers in which the grippers are opened once again and the downwardly acting weight is accelerated by the centrifugal force, wherein the brochure 4 II is pushed out of the pocket 7 of the gripper 6 e by the stripping element 10 in order to ensure that the brochure 4 II is released from the gripper 6 e.
  • Two brushes that are stationarily arranged on the stream feeder 1 adjacent to the grippers 6 a to 6 e serve as stripping elements 10, wherein said brushes are oriented approximately tangential to the supporting disk 11 and feature bristles that are inclined in the feed direction (v3). Due to their elasticity, the brochures 4 are carefully pushed out of the grippers 6 a to 6 e and deflected downward onto the downstream conveyor 3.
  • A guide plate 13 that guides and supports the trailing edge of the brochure 4 II against the centrifugal force acting thereupon extends from the lower conveyor belt 26 in the direction of the rotational path of the grippers and essentially opens perpendicularly toward the downstream conveyor 3.
  • The downstream conveyor 3 is arranged with an ascending incline and features at least two transport chains 14, on which pusher cams 15 are arranged within identical distances B from one another, wherein said pusher cams effectively act upon and thusly transport the trailing edges of the dropped brochures 4. Due to the insignificant drop from the stream feeder 1 to the downstream conveyor 3, brochures 4 are also deposited in a timely fashion on the respectively leading brochure 4 I such that they lie in front of the assigned pusher cam 15 for their additional transport if the speed of the conveyor system changes. Brochures 4 with a small format referred to the shingle spacing B are reliably placed on top of one another in this fashion.
  • Brochures 4 of the stream feed 5 that are not yet aligned when they come in contact with the pusher cams 15 are pressed against the pusher cams 15 by means of a holding element in the form of a brush 16 arranged above the downstream conveyor 3. The uniform stream feed 5 being produced has a constant shingle spacing B and is delivered to an additional processing machine with a stream feed speed v3.
  • The design and the function of the grippers 6 a to 6 e is illustrated in a partial section of the FIGURE. As indicated above, one clamping jaw of the grippers 6 a to 6 e is formed by the surface area 11 a of a supporting disk 11, wherein this clamping jaw is arranged stationarily referred to the clamping movement. The clamp 9 serves as the second, movable clamping jaw for opening and closing the grippers and is received on a holder 18 that, in turn, is displaceably guided relative to a slide 17 and spring-loaded with the aid of a pressure spring 20. A bolt 19 fixed on the holder 18 serves as a guide arbor for the pressure spring 20. The pressure spring 20 is arranged in such a way that the clamp 9 exerts an inwardly directed clamping force. Its movement relative to the slide 17 is limited by a set screw 21.
  • The slides 17 of the grippers 6 a to 6 e are guided radially referred to the rotational path of the grippers on rails 23 that are fixed on the supporting disk 11, namely with the aid of linear guides 22. The holder 18 guided relative to the slide 17 is also guided on this rail 23 with a linear guide 24. The grippers 6 a to 6 e are adjusted between an open position and a closed position during their rotation due to the engagement of a cam roller 25 provided on the respective slide 17 and a stationary control cam 12, wherein the holder 18 with the clamp 9 yields outward against the force of the spring during the clamping of a brochure 4 independently of the product thickness.
  • Different format lengths L of the pushers 4 are adjusted by means of a format adjusting mechanism FV1 that is symbolically indicated in the form of a double arrow drawn with broken lines, wherein this format adjusting mechanism serves for turning the plate cam 12 in order to adjust the closing and opening times of the grippers 6 a to 6 e, and wherein this adjustment is equivalent to turning the second angular range β of the rotational path of the grippers. The distance of the downstream conveyor 3 from the rotational path of the grippers can be adjusted in dependence on the product thickness with the aid of a height adjusting mechanism FV2 for adjusting the height of the downstream conveyor 3 relative to the stream feeder 1.

Claims (25)

1. A device for depositing individual printed products such as magazines, brochures or book blocks that are supplied in succession by means of a feed conveyor having a feed speed onto a downstream conveyor having a slower transport speed in shingle formation, said device comprising:
a stream feeder that receives the printed products from the feed conveyor;
rotating grippers on said stream feeder that are opened and closed in an appropriate cycle, said rotating grippers being driven with a slower speed than the feed speed of said feed conveyor, said grippers when opened for receiving the printed products having a short pocket with a bottom stop with which the respectively supplied printed product comes in contact due to the higher feed speed of said feed conveyor; and
a stripping element on the stream feeder, wherein the printed products are transported up to a defined distance upstream of said stripping element while being clamped by the grippers whereupon said grippers are opened to release and drop the printed products onto the downstream conveyor.
2. The device according to claim 1, wherein said grippers are continuously driven with a constant speed.
3. The device according to claim 1, wherein said stream feeder includes a stationary control cam for causing said grippers to open and close.
4. The device according claim 3 wherein said control cam for the grippers is rotatable on said stream feeder in order to adjust the closing and opening times of the grippers.
5. The device according to claim 1, wherein said stream feeder includes a supporting disk having a surface area that rotates synchronous with said grippers, each said gripper includes a clamping element, said short pocket being formed by said surface area of said supporting disk and said clamping element of the gripper, and each said clamping element has an insertion ramp that points away from the bottom stop.
6. The device according to claim 1, wherein said stream feeder includes a supporting disk having a surface area that rotates synchronous with said grippers, each said gripper includes a clamping element, said short pocket being formed by said surface area of said supporting disk and said clamping element of the gripper, each said clamping element has an insertion ramp that points away from the bottom stop, and said stream feeder includes a stationary cam, said stationary cam for the grippers being rotatable in order to adjust the closing and opening times of the grippers.
7. The device according to claim 1, wherein said stripping element has elasticity.
8. The device according claim 1 wherein said stripping element is arranged approximately tangential to said supporting disk.
9. The device according to claim 1, further including a guide plate that guides the trailing edges of the printed products, said guide plate extending from a path in the direction of the rotational path of the grippers to a path that is essentially directed perpendicular to the downstream conveyor.
10. The device according to claim 1, wherein said stream feeder includes a supporting disk having a surface area that rotates synchronous with said grippers, each said gripper includes a clamping element, said short pocket being formed by said surface area of said supporting disk and said clamping element of the gripper, each said clamping element has an insertion ramp that points away from the bottom stop, and further including a guide plate that guides the trailing edges of the printed products, said guide plate extending from a path in the direction of the rotational path of the grippers to a path that is essentially directed perpendicular to the downstream conveyor.
11. The device according of claim 1, wherein said feed conveyor is arranged such that it extends tangentially toward the rotational path of the grippers and conveys in an obliquely descending fashion.
12. The device according to claim 11, wherein the downstream conveyor is arranged in an obliquely ascending fashion.
13. The device according to claim 12, further including a height adjusting mechanism for the downstream conveyor in order to adjust the distance of the conveyor to the rotational path of the grippers.
14. The device according claim 1, wherein the rotational path segment of said grippers from the receiving of the supplied printed products to the release thereof includes a first angular range in which the printed products come in contact with and are aligned on the bottom stop of the still opened grippers, a second angular range in which the printed products are transported in a clamped fashion and subjected to a change in direction, and a third angular range in which the printed products are released from the reopened grippers.
15. The device according to claim 1, further including a guide plate that guides the trailing edges of the printed products, said guide plate extending from a path in the direction of the rotational path of the grippers to a path that is essentially directed perpendicular to the downstream conveyor, and wherein said stream feeder includes a supporting disk having a surface area that rotates synchronous with the grippers, each said gripper including a clamping element, said short pocket being formed by said surface area of said supporting disk and said clamping element of the gripper, each said clamping element has an insertion ramp that points away from the bottom stop, and the rotational path segment of the grippers from the receiving of the supplied printed products to the release thereof includes a first angular range in which the printed products come in contact with and are aligned on the bottom stop of the still opened grippers, a second angular range in which the printed products are transported in a clamped fashion and subjected to a change in direction, and a third angular range in which the printed products are released from the reopened the grippers.
16. The device according to claim 1, further including a guide plate that guides the trailing edges of the printed products, said guide plate extending from a path in the direction of the rotational path of the grippers to a path that is essentially directed perpendicular to the downstream conveyor, and a supporting disk having a surface area that rotates synchronous with said grippers, each said gripper including a clamping element, said short pocket being formed by said surface area of said supporting disk and each said clamping element of the gripper, said clamping element having an insertion ramp that points away from the bottom stop, and wherein said stream feeder includes a stationary control cam for causing said grippers to open and close, said control cam for the grippers is rotatable on said stream feeder in order to adjust the closing and opening times of the grippers.
17. The device according to claim 1, wherein the downstream conveyor includes at least two conveying means that revolve around deflection pulleys parallel to one another and include pushers that are arranged within identical distances from one another and act upon the trailing edges of the dropped printed product.
18. The device according to claim 1, further including a holding element that is arranged above the downstream conveyor and pushes the deposited printed product against the pushers of the conveyor.
19. The device according to claim 1, wherein said stripping element is arranged approximately tangential to the supporting disk, and said stripping element has elasticity.
20. The device according to claim 1, further including a guide plate that guides the trailing edges of the printed products, said guide plate extending from a path in the direction of the rotational path of the grippers to a path that is essentially directed perpendicular to the downstream conveyor, and wherein said stream feeder includes a stationary control cam for causing said grippers to open and close, said control cam for the grippers being rotatable on said stream feeder in order to adjust the closing and opening times of the grippers, said stream feeder includes a supporting disk having a surface area that rotates synchronous with said grippers, each said gripper including a clamping element, said short pocket being formed by said surface area of said supporting disk and said clamping element of the gripper, said clamping element having an insertion ramp that points away from the bottom stop, and the downstream conveyor includes of at least two conveying means that revolve around deflection pulleys parallel to one another and include pushers that are arranged within identical distances from one another and act upon the trailing edges of the dropped printed product and a holding element that is arranged above the downstream conveyor and pushes the deposited printed product against the pushers of the conveyor.
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
US11/635,955 2006-01-14 2006-12-08 Device for depositing individual printed products, supplied in succession, in shingle formation Abandoned US20070164501A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006001940 2006-01-14
DE102006001940.7 2006-01-14
DE102006005156A DE102006005156A1 (en) 2006-01-14 2006-02-04 Device for depositing individually sequentially fed printed products in a scaled superimposed formation
DE102006005156.4 2006-02-04

Publications (1)

Publication Number Publication Date
US20070164501A1 true US20070164501A1 (en) 2007-07-19

Family

ID=37912505

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/635,955 Abandoned US20070164501A1 (en) 2006-01-14 2006-12-08 Device for depositing individual printed products, supplied in succession, in shingle formation

Country Status (4)

Country Link
US (1) US20070164501A1 (en)
EP (1) EP1808390A3 (en)
JP (1) JP2007186346A (en)
DE (1) DE102006005156A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184164A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Overlaying device
EP2184166A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Overlaying device
EP2184165A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Sheet-fed printing press
EP2206603A1 (en) * 2007-08-31 2010-07-14 Komori Corporation Overlaying device
US20100300847A1 (en) * 2009-06-02 2010-12-02 Ferag Ag Device and method for conveying and simultaneously stabilising flexible, two-dimensional objects
US20110005893A1 (en) * 2009-07-13 2011-01-13 Ferag Ag Method and device for opening printed products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198573B2 (en) * 2013-10-30 2017-09-20 トッパン・フォームズ株式会社 Sheet manufacturing equipment
DE102019005466B4 (en) * 2019-08-03 2022-09-01 Sdf Schnitt-Druck-Falz Spezialmaschinen Gmbh Device and method for guiding sheets

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526360A (en) * 1981-08-07 1985-07-02 Focke & Co. Process and apparatus for feeding bands to a pack
US4537390A (en) * 1984-06-14 1985-08-27 Rockwell International Corporation High speed folder fly
US4629175A (en) * 1984-02-08 1986-12-16 Albert-Frankenthal Ag Method and apparatus for the stream feeding delivery of sheet products
US4736941A (en) * 1985-12-20 1988-04-12 Man Roland Druckmaschinen Aktiengessellschaft Method and apparatus for braking and delivering printed sheets or sheet packages
US4865307A (en) * 1987-08-03 1989-09-12 Rockwell International Corporation High speed fly stripping device
US4886260A (en) * 1986-10-22 1989-12-12 Ferag Ag Method and apparatus for receiving folded printed products from printing machines or the like
US5927712A (en) * 1996-11-12 1999-07-27 Heidelberg Harris Sample signature delivery having alternate transport path away from deceleration device
US6000334A (en) * 1998-01-30 1999-12-14 Tokyo Kikai Seisakusho, Ltd. Paper guide unit for folding machine
US6131904A (en) * 1998-09-01 2000-10-17 Goss Graphic Systems, Inc. Stripping mechanism for a delivery fly assembly
US6398010B1 (en) * 1998-10-06 2002-06-04 Windmöller & Hölscher Device for depositing flat objects, conveyed individually in succession, on a forwarding conveyor in shingle formation
US7422212B2 (en) * 2005-06-21 2008-09-09 Graphic Management Associates, Inc. Transfer wheel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526360A (en) * 1981-08-07 1985-07-02 Focke & Co. Process and apparatus for feeding bands to a pack
US4629175A (en) * 1984-02-08 1986-12-16 Albert-Frankenthal Ag Method and apparatus for the stream feeding delivery of sheet products
US4537390A (en) * 1984-06-14 1985-08-27 Rockwell International Corporation High speed folder fly
US4736941A (en) * 1985-12-20 1988-04-12 Man Roland Druckmaschinen Aktiengessellschaft Method and apparatus for braking and delivering printed sheets or sheet packages
US4886260A (en) * 1986-10-22 1989-12-12 Ferag Ag Method and apparatus for receiving folded printed products from printing machines or the like
US4865307A (en) * 1987-08-03 1989-09-12 Rockwell International Corporation High speed fly stripping device
US5927712A (en) * 1996-11-12 1999-07-27 Heidelberg Harris Sample signature delivery having alternate transport path away from deceleration device
US6000334A (en) * 1998-01-30 1999-12-14 Tokyo Kikai Seisakusho, Ltd. Paper guide unit for folding machine
US6131904A (en) * 1998-09-01 2000-10-17 Goss Graphic Systems, Inc. Stripping mechanism for a delivery fly assembly
US6398010B1 (en) * 1998-10-06 2002-06-04 Windmöller & Hölscher Device for depositing flat objects, conveyed individually in succession, on a forwarding conveyor in shingle formation
US7422212B2 (en) * 2005-06-21 2008-09-09 Graphic Management Associates, Inc. Transfer wheel

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094684A1 (en) * 2007-08-31 2011-04-28 Shin Ohsawa Sheet-fed offset printing press
EP2184164A4 (en) * 2007-08-31 2010-12-01 Komori Printing Mach Overlaying device
US8651161B2 (en) 2007-08-31 2014-02-18 Komori Corporation Sheet-fed offset printing press
EP2206603A1 (en) * 2007-08-31 2010-07-14 Komori Corporation Overlaying device
US20110120656A1 (en) * 2007-08-31 2011-05-26 Shin Ohsawa Sheet overlap device
EP2184165A4 (en) * 2007-08-31 2010-12-01 Komori Printing Mach Sheet-fed printing press
EP2184166A4 (en) * 2007-08-31 2010-12-01 Komori Printing Mach Overlaying device
US20110108197A1 (en) * 2007-08-31 2011-05-12 Shin Ohsawa Sheet overlap device
EP2184165A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Sheet-fed printing press
EP2184166A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Overlaying device
EP2206603A4 (en) * 2007-08-31 2010-12-01 Komori Printing Mach Overlaying device
US20110048646A1 (en) * 2007-08-31 2011-03-03 Shin Ohsawa Sheet overlap device
EP2184164A1 (en) * 2007-08-31 2010-05-12 Komori Corporation Overlaying device
CH701204A1 (en) * 2009-06-02 2010-12-15 Ferag Ag Device and method for promoting and simultaneous stabilization of flexible, flat objects.
US20100300847A1 (en) * 2009-06-02 2010-12-02 Ferag Ag Device and method for conveying and simultaneously stabilising flexible, two-dimensional objects
US20110005893A1 (en) * 2009-07-13 2011-01-13 Ferag Ag Method and device for opening printed products
US8328001B2 (en) 2009-07-13 2012-12-11 Ferag Ag Method and device for opening printed products

Also Published As

Publication number Publication date
EP1808390A2 (en) 2007-07-18
JP2007186346A (en) 2007-07-26
DE102006005156A1 (en) 2007-07-19
EP1808390A3 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US20070164501A1 (en) Device for depositing individual printed products, supplied in succession, in shingle formation
US8770382B2 (en) Device for feeding book blocks into the infeed channel of a subsequent processing arrangement
US8915349B2 (en) Device for feeding book blocks into the infeed channel of a subsequent processing arrangement
US4177979A (en) Signature gathering machine
CA2077244C (en) Method and apparatus for inserting printed products in a folded main product
KR20110079840A (en) Apparatus and method for compiling flat objects
US4886260A (en) Method and apparatus for receiving folded printed products from printing machines or the like
US5556087A (en) Apparatus for processing printed products
US5277413A (en) Rotary signature gathering apparatus with sheet stop
US8235374B2 (en) Insertion apparatus and insertion method
US7073785B2 (en) Apparatus for processing printed products
US6196538B1 (en) Apparatus for processing flexible, sheet-like products
US6578843B2 (en) Method and apparatus for conveying printed products
JPH0373748A (en) Apparatus for taking over printed matter in bucket wheel driven to rotation
US3552740A (en) Apparatus for the destacking of sheets especially folded sheets adapted to receive an insert
US20090309289A1 (en) Apparatus and method for removing flat printed products from a stack and transfering the printed products to a moving transporting device
US20070216082A1 (en) Apparatus for receiving and conveying sheet-like products
US20130149096A1 (en) Device and method for composing two-dimensional products, in particular printed products
US20060097440A1 (en) Method and apparatus for placing or inserting printed supplements into printed core products
AU2004203812B2 (en) Method and device for the conversion of a conveyed stream of flat articles
US20100326795A1 (en) Method and device for conveying planar products
US7588238B2 (en) Method and device for gathering sheets
US6773008B2 (en) Apparatus for transporting sheet-like articles
US7850158B2 (en) Method and device for supplying, opening and depositing folded printed products
GB2340825A (en) Signature feed

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOLBUS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROMMER, CARSTEN;REEL/FRAME:018693/0369

Effective date: 20061204

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION