US20070147314A1 - Network processing node and method for manipulating packets - Google Patents

Network processing node and method for manipulating packets Download PDF

Info

Publication number
US20070147314A1
US20070147314A1 US11/275,325 US27532505A US2007147314A1 US 20070147314 A1 US20070147314 A1 US 20070147314A1 US 27532505 A US27532505 A US 27532505A US 2007147314 A1 US2007147314 A1 US 2007147314A1
Authority
US
United States
Prior art keywords
link
packets
received
mrfp
redundancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/275,325
Other languages
English (en)
Inventor
Anisse Taleb
Stefan Bruhn
Moo Kim
Ingemar Johansson
Stefan Hakansson
Klas Jansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to US11/275,325 priority Critical patent/US20070147314A1/en
Assigned to TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHANSSON, INGEMAR, BRUHN, STEFAN, HAKANSSON, STEFAN, JANSSON, KLAS FREDRIK JANIS, KIM, MOO YOUNG, TALEB, ANISSE
Priority to EP06824626.3A priority patent/EP1964340B1/en
Priority to JP2008547182A priority patent/JP2009521833A/ja
Priority to PCT/SE2006/050560 priority patent/WO2007073328A2/en
Priority to CN2006800478002A priority patent/CN101341702B/zh
Publication of US20070147314A1 publication Critical patent/US20070147314A1/en
Priority to US13/195,315 priority patent/US8315238B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Prevention, detection or correction of errors
    • H04L49/552Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to the communications field and, in particular, to a network processing node (e.g., MGW, MRFP) and method that can: (1) receive packets on a first heterogeneous link (e.g., wireless link); (2) manipulate the received packets based on known characteristics about a second heterogeneous link (e.g., “Internet” link); and (3) send the manipulated packets on the second heterogeneous link (e.g., “Internet” link).
  • a network processing node e.g., MGW, MRFP
  • C. E. Shannon discussed channel coding when he demonstrated that by proper encoding of source data, errors induced by a communication link can be reduced without sacrificing the rate of information transfer.
  • C. E. Shannon developed a separation theorem which states that source and channel coding can be designed separately to optimize the performance of a communications network assuming a block length is infinite and an entropy rate of the source data is less than the capacity of a time-invariant communications link.
  • FEC forward error correction
  • MDC multiple description coding
  • joint source-channel coding has been successfully used in a homogeneous communications network (e.g. wireless link). It would be desirable to be able to efficiently implement joint-source channel coding in a heterogeneous communications network (e.g. wireless link merged with the Internet). Unfortunately, today the use of joint-source channel coding in a heterogeneous communications network is not very efficient as is discussed below with respect to FIGS. 1-3 .
  • FIG. 1 there is a block diagram illustrating the basic components of an exemplary heterogeneous communications network 100 .
  • UE- 1 102 mobile unit 102
  • the BTS- 1 106 is connected to a MRFP- 1 108 which is connected to a MRFP- 2 110 via a link 112 (channel B) within the Internet 114 .
  • the MRFP- 2 110 is connected to a BTS- 2 116 which interacts via a wireless link 118 (channel C) with UE- 2 120 (mobile unit 120 ).
  • the characteristics of the three links 104 , 112 and 118 are very different.
  • the two wireless links 104 and 118 most likely have a reasonable low packet loss rate, especially if radio bearers optimized for real time services are used.
  • the “Internet” link 112 can have a much higher packet loss rate.
  • the two UEs 102 and 120 need to add the redundancy to handle the total packet loss rate for all three links 104 , 112 and 118 .
  • the main drawback of this is that the redundancy added to combat the packet loss on the “Internet” link 112 also needs to be carried over the two wireless links 104 and 118 on which capacity is a scarce resource. This drawback is discussed in more detail below with respect to FIGS. 2 and 3 (PRIOR ART).
  • FIGS. 2 and 3 there are respectively illustrated two heterogeneous communications networks 100 a and 100 b configured like the one shown in FIG. 1 which are used to help describe the main drawback of requiring the UEs 102 and 120 to add the redundancy to handle the total packet loss rate for all three links 108 , 112 and 118 .
  • FIG. 2 PRIOR ART
  • channel A wireless link 104
  • channel B Internet link 112
  • a channel C wireless link 118
  • UE- 1 102 sends a packet 200 to UE- 2 120 , then UE- 1 generates source data 202 and also redundancy A, redundancy B. and redundancy C.
  • redundancy A is only used on channel A and not used on channels B and C.
  • redundancy B is only used on channel B and not used on channels A and C.
  • redundancy C is only used on channel C and not used on channels A and B. As can be seen, this scheme results in an inefficient use of redundancy transmission.
  • UE- 1 102 generates a packet 300 with source data 302 and only one redundancy 304 which is transmitted over channels A, B, and C.
  • channels A, B, and C have a FER of 1%, 7%, and 1%, respectively.
  • UE- 1 102 generates the redundancy 304 for the worst case scenario which is 7% in this example and sends it over channels A, B, and C.
  • this amount of redundancy does not result in the efficient use of the capacity on the wireless channels A and C.
  • the present invention relates to a network processing node (e.g., MGW, MRFP) that can: (1) receive packets on a first heterogeneous link (e.g., wireless link); (2) manipulate the received packets based on known characteristics about a second heterogeneous link (e.g., “Internet” link); and (3) send the manipulated packets on the second heterogeneous link (e.g., “Internet” link).
  • a network processing node can manipulate the received packets by adding redundancy, removing redundancy, frame aggregating (re-packetizing the packets), recovering lost packets and/or re-transmitting packets.
  • FIG. 1 is a block diagram illustrating the basic components of an exemplary heterogeneous communications network
  • FIG. 2 (PRIOR ART) is a block diagram used to describe one traditional way that two end-points (UE- 1 and UE- 2 ) add redundancy to packets transmitted/received within the exemplary heterogeneous communications network shown in FIG. 1 ;
  • FIG. 3 is a block diagram used to describe another traditional way that two end-points (UE- 1 and UE- 2 ) add redundancy to packets transmitted/received within the exemplary heterogeneous communications network shown in FIG. 1 ;
  • FIG. 4 is a block diagram of an exemplary heterogeneous communications network which has two network processing nodes (e.g., MRFP- 1 and MRFP- 2 ) each of which is configured to implement a method in accordance with the present invention;
  • MRFP- 1 and MRFP- 2 network processing nodes
  • FIG. 5 is a flow diagram that illustrates the basic steps of a method for manipulating packets in accordance with the present invention
  • FIG. 6 is a block diagram of an exemplary heterogeneous communications network which is used to explain how one network processing node (e.g., MRFP- 2 ) can send feedback information about the characteristics of a link to another network processing node (e.g., MRFP- 1 ) in accordance with the present invention;
  • one network processing node e.g., MRFP- 2
  • another network processing node e.g., MRFP- 1
  • FIG. 7 is a diagram that illustrates exemplary protocol stacks used by a UE- 1 , MRFP- 1 , MRFP- 2 and UE- 2 associated with the exemplary heterogeneous communications network shown in FIG. 4 in accordance with the present invention
  • FIGS. 8A and 8B are two block diagrams which are used to help explain how a network processing node (e.g., MRFP- 1 ) can manipulate received packets by adding redundancy to the received packets in accordance with a first embodiment of the present invention
  • FIG. 9 is a block diagram which is used to help explain how a network processing node (e.g., MRFP- 1 ) can manipulate received packets by removing redundancy from the received packets in accordance with a second embodiment of the present invention
  • FIGS. 10A and 10B there are two diagrams which are used to help explain how a network processing node (e.g., MRFP- 1 ) can manipulate received packets by re-packeting them via frame aggregation in accordance with a third embodiment of the present invention
  • FIGS. 11A and 11B are two block diagrams which are used to help explain how a network processing node (e.g., MRFP- 1 ) can manipulate received packets by recovering a lost packet in accordance with a fourth embodiment of the present invention.
  • a network processing node e.g., MRFP- 1
  • FIGS. 12A and 12B are two block diagrams which are used to help explain how a network processing node (e.g., MRFP- 1 ) can manipulate received packets by transmitting packet(s) more than once to a decoding end (e.g., MRFP- 2 ) when it is not desirable/possible to recover a lost packet in accordance with a fifth embodiment of the present invention.
  • a network processing node e.g., MRFP- 1
  • a decoding end e.g., MRFP- 2
  • the present invention relates to a network processing node which is placed in a connection path between two UEs (for example) and which is able to manipulate the redundancy (for example) of packets according to its knowledge of the characteristics of it's outgoing link.
  • the network processing node e.g., MRFP
  • the two clients e.g., two UEs
  • establish a VoIP session or video telephony session
  • the CSCF server then has the possibility to route this signalling to an application server, e.g. AS.
  • the AS ensures that the connection between the two clients (e.g., UEs) is optimized as far as possible and introduces services that can be used before or during the connection.
  • the AS routes all media from the two clients to a network processing node, e.g. MRFP.
  • the MRFP is described below as being able to adapt the redundancy (for example) of incoming streams based on the characteristics of the outgoing connection. For clarity, only the UEs and the MRFPs associated with an IMS communications network are illustrated and described herein.
  • the present invention can be implemented within another type of network processing node besides a MRFP like for example a MGW.
  • FIG. 4 there is a block diagram of an exemplary IMS communications network 400 which has two MRFPs 402 and 404 each of which is configured to implement method 500 in accordance with the present invention.
  • UE- 1 406 mobile unit 406
  • the BTS- 1 410 is connected to MRFP- 1 402 which is connected to MRFP- 2 404 via a link 412 (channel B) within the Internet 414 .
  • the MRFP- 2 404 is connected to a BTS- 2 416 which interacts via a wireless link 418 (channel C) with UE- 2 420 (mobile unit 420 ).
  • the characteristics of the three links 408 , 412 and 418 are very different.
  • the two wireless links 408 and 418 most likely have a reasonable low packet loss rate, especially if radio bearers optimized for real time services are used.
  • the “Internet” link 412 can have a much higher packet loss rate.
  • the two UEs 406 and 420 would have been required to add IP level redundancy tailored to handle the total packet loss rate for all three links 408 , 412 and 418 (see FIGS. 2 and 3 ). This scheme resulted in an inefficient use of the redundancy transmission.
  • the MRFPs 402 and 404 of the present invention tailor the IP level redundancy to the different links in a connection path in an individual fashion which is more efficient than adding the redundancy in the end points (the UEs 406 and 420 ).
  • the MRFPs 402 and 404 can also manipulate the incoming packets in other ways in addition to (or besides) manipulating the redundancy.
  • Each MRFP 402 and 404 includes a processor 422 , a memory 424 and instructions 426 which are accessible from the memory 424 and processable by the processor 422 to implement method 500 shown in FIG. 5 .
  • MRFP- 1 402 can implement method 500 by: (1) receiving packets on an incoming link 408 (see step 502 ): (2) manipulating the received packets based on known characteristics about an outgoing link 412 (see step 504 ); and (3) sending the manipulated packets on the outgoing link 412 (see step 506 ).
  • MRFP- 2 404 can implement method 500 by: (1) receiving packets on an incoming link 412 (see step 502 ); (2) manipulating the received packets based on known characteristics about an outgoing link 418 (see step 504 ); and (3) sending the manipulated packets on the outgoing link 418 (see step 506 ).
  • both MRFPs 402 and 404 do not need to implement method 500 .
  • Each MRFP 402 and 404 is able to manipulate their received packets by adding redundancy, removing redundancy, frame aggregating/re-packetizing, recovering lost packets and/or re-transmitting packets.
  • An example of redundancy manipulation is shown in FIG. 4 , where UE- 1 406 generates header A and redundancy A for channel A (wireless link 408 ), MRFP- 1 402 generates header B and redundancy B for channel B (“Internet” link 412 ), and MRFP- 2 404 generates header C and redundancy C for channel C (wireless link 418 ).
  • the reverse way can be performed within UE- 2 .
  • each communication channel A, B and C only transmits the corresponding header and needed redundancy.
  • each MRFP 402 and 404 can properly manipulate the incoming packets they need to have knowledge about the characteristics (quality, capacity) of their respective outgoing links 412 and 418 (channels B and C).
  • this knowledge can be adaptive in which case MRFP- 1 402 and MRFP- 2 404 can share feedback information about packet loss etc. . . . related to their shared channel B so they can determine the required level of redundancy (for example).
  • a scenario in which MRFP- 2 404 is sending feedback information 602 to MRFP- 1 402 is shown in FIG. 6 .
  • An advantage of this feature is that the feedback information 602 does not have to be communicated between the UEs 406 and 420 .
  • FIG. 7 there is a diagram illustrating in greater detail some exemplary protocol stacks that can be associated with UE- 1 , MRFP- 1 , MRFP- 2 and UE- 2 in the IMS communications network 400 shown in FIG. 4 .
  • This layered protocol architecture is shown to illustrate that the MRFPs 402 and 404 can manipulate the channel coding for example by adding/removing redundancy to the packets within a higher protocol layer (e.g., RTP/UDP, or any higher protocol layer that is standardized in the future).
  • a higher protocol layer e.g., RTP/UDP, or any higher protocol layer that is standardized in the future.
  • the MRFPs 402 and 404 can perform the redundancy manipulation (and not necessarily the other types of manipulation like frame aggregation and recovery of lost frames) in the higher protocol layer based on their knowledge of the characteristics of their respective outgoing links 412 and 418 .
  • UE- 1 and UE- 2 each have a protocol stack which includes at least the following layers: UE-1/UE-2 Codec RTP/UDP IP Lower Layers
  • MRFP- 1 402 and MRFP- 2 404 each have a protocol stack which includes at least the following layers: MRFP-1/MRFP-2 RTP/UDP IP Lower Layers
  • a network processing node e.g., MRFP- 1 402
  • the network processing node described herein is an interface between a wireless link and an “Internet” link it could for instance be an interface between a wireless packet switched network (e.g. HSPA) with little packet loss and strict requirements on transmission efficiency and a wireline LAN with a higher probability of packet loss but lower requirements on transmission efficiency.
  • the network processing node could interface several other heterogeneous communication links, such as (for example):
  • the two links (channels) described herein have different characteristics (e.g., with respect to packet loss). It can also be seen that the present invention is not limited to a first link and a second link which happen to be different types of channels. For instance, the present invention also works when the first link and the second link are the same type of channel but with different characteristics.
  • FIGS. 8A and 8B there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by adding redundancy to the received packets in accordance with a first embodiment of the present invention.
  • the MRFP- 1 402 is shown receiving six speech packets F n , F n+1 . . . F n+5 and then outputting six speech packets F n /F n ⁇ 1 , F n+1 /F n . . . F n+5 /F n+4 (where the shaded portions of the outgoing packets are redundancy data).
  • the MRFP- 1 402 adds a full set of data from one previous incoming speech frame/packet to the current outgoing speech frame/packet.
  • the MRFP- 1 402 could add a full set of data from more than one of the previous incoming speech frames/packets to the current outgoing speech frame/packet. This type of manipulation is called full redundancy (compare to Sayood's cascade integration coding scheme).
  • the MRFP- 1 402 is shown receiving six speech packets F n , F n+1 . . . F n+5 and then outputting six speech packets F n /F n ⁇ 1′ , F n+1 /F n′ . . . F n+5 /F n+4′ (where the shaded portions of the outgoing packets are redundancy data).
  • the MRFP- 1 402 adds a partial set of data from one previous incoming speech frame/packet to the current outgoing speech frame/packet.
  • the partial set of data would typically be the most important bits in the payload.
  • the MRFP- 1 402 could decode the pitch lags and gains and re-encode them in the partial redundant format. This type of redundancy is called partial redundancy (compare to Sayood's unequal error protection channel coding scheme).
  • the MRFP- 1 402 by performing redundancy manipulation is generally going to cause increase in size of the outgoing stream of packets, the magnitude of which corresponds to the amount of redundancy which is added to the outgoing packet stream. If the MRFP- 1 402 used an AMR/AMR-WB speech codec, then it could use a CMR field in the payload to help compensate for the increase in the packet size.
  • the CMR is used to signal which codec mode (i.e. bitrate) the other end point (e.g., UE- 1 406 ) should use to encode their outgoing stream.
  • a MRFP- 1 402 can manipulate the CMR field sent to the UE- 1 406 to indicate that it should use a lower bitrate codec mode on its outgoing stream of packets to compensate for the increase in the packet size.
  • FIG. 9 there is a diagram which is used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by removing redundancy from the received packets in accordance with a second embodiment of the present invention.
  • the MRFP- 1 402 is shown receiving six speech packets F n /F n ⁇ 1 , F n+1 /F n . . . F n+5 /F n+4 and then outputting six speech packets F n , F n+1 . . . F n+5 (where the shaded portions of the incoming packets are redundancy data).
  • the MRFP- 1 402 removes a full set of data from the incoming speech frames/packets (the opposite of what was done in FIG. 8A ).
  • the MRFP- 1 402 could remove a partial set of data from the incoming speech frames/packets (the opposite of what was done in FIG. 8B ). This type of manipulation is called removing redundancy.
  • FIGS. 10A and 10B there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by re-packeting them via frame aggregation in accordance with a third embodiment of the present invention.
  • the MRFP- 1 402 is shown receiving five speech packets F n , F n+1 , F n+2 , F n+3 , F n+4 and F n+5 and then outputting three re-packetized speech packets F n+1 /F n , F n+3 /F n+2 and F n+5 /F n+4 .
  • the MRFP- 1 402 manipulates the packetization to obtain higher BW efficiency (at the price of delay).
  • the idea is to reduce the transmitted bit rate by reducing the IP packet rate which in turn reduces the overhead due to IP-headers.
  • the TCP/IP protocol requires that each packet be tagged with sender and receiver data contained in an IP header.
  • these IP headers are quite large ( ⁇ 40 bytes) compared to the size of the payload (typically 11 to 40 bytes). Therefore, it may be better to aggregate two or more incoming packets into one outgoing packet as shown in FIG. 10A and thus make the transmission more BW efficient.
  • An alternative scheme may be needed in the case where the incoming stream of packets to the MRFP- 1 402 uses redundancy while the outgoing stream of packets requires BW efficient transmission (re-packetization manipulation) without redundancy.
  • the MRFP- 1 402 may open the received packets and re-packetize the information such that no redundant data is left (or such that the degree of redundancy is changed to another desired degree).
  • Another, possibility which can even be used in the case of encryption, is to discard as many redundant packets as possible such that the receiver (e.g., MRFP- 2 ) is still able to recover all information.
  • FIG. 10B illustrates an example of this particular scheme in which the MRFP- 1 402 receives six incoming packets F n /F n ⁇ 1 , F n+1 /F n , F n+2 /F n+1 , F n+3 /F n+2 , F n+4 /F n+3 and F n+5 /F n+4 and discards as many redundant packets as possible (marked with a cross) which in this case are F n /F n ⁇ 1 , F n+2 /F n+1 and F n+4 /F n+3 such that the receiver (e.g., MRFP- 2 404 ) is still able to recover all of the information.
  • the receiver e.g., MRFP- 2 404
  • FIGS. 11A and 11B there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by recovering a lost packet in accordance with a fourth embodiment of the present invention.
  • FIG. 11A there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by recovering a lost packet in accordance with a fourth embodiment of the present invention.
  • FIGS. 11A and 11B there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by recovering a lost packet in accordance with a fourth embodiment of the present invention.
  • the MRFP- 1 402 is shown receiving five speech packets F n /F n ⁇ 1 , F n+1 /F n , F n+3 /F n+2 , F n+4 /F n+3 and F n+5 /F n+4 and when packet F n+3 /F n+2 is received the sequence number will indicate that packet F n+2 /F n+1 (marked with a cross) has been lost (the shaded portions of the incoming packets are redundancy data). Because, the incoming speech traffic was transmitted with redundancy it is possible to recover one or more lost packet(s) like packet F n+2 /F n+1 .
  • the missing packet can be restored (shown as outgoing packet F n+2 /F n+1 ) using the most recent incoming packet F n+3 /F n+2 and the incoming packet F n+1 /F n that was received prior to noticing their was a missing incoming packet F n+2 /F n+1 .
  • the MRFP- 1 402 outputs six packets F n /F n ⁇ 1 , F n+1 /F n , F n+2 /F n+1 , F n+3 /F n+2 , F n+4 /F n+3 and F n+5 /F n+4 (where the shaded portions of the outgoing packets are redundancy data).
  • This repair action may increase the delay jitter in the transmission path between outgoing packet F n+1 /F n and the recovered outgoing packet F n+2 /F n+1 .
  • the receiving device e.g., UE- 2
  • the receiving device should not have a problem adapting to delay jitter if it implements an adaptive jitter buffer algorithm.
  • FIG. 11B an alternative repair scheme is shown in which MRFP- 1 402 receives five speech packets F n /F n ⁇ 1 , F n+1 /F n , F n+3 /F n+2 , F n+4 /F n+3 and F n+5 /F n+4 and when packet F n+3 /F n+2 is received the sequence number will indicate that packet F n+2 /F n+1 (marked with a cross) has been lost (the shaded portions of the incoming packets are redundancy data).
  • MRFP- 1 402 does not use redundancy in its outgoing packets which are shown as F n , F n+1 , F n+2 (recovered packet), F n+3 , F n+4 and F n+5 (note the delay jitter between packet F n+1 and recovered packet F +2 ).
  • FIGS. 12A and 12B there are two diagrams which are used to help explain how the MRFP- 1 402 (for example) can manipulate received packets by transmitting packet(s) more than once to a decoding end (e.g., MRFP- 2 404 ) when it is not desirable/possible to recover a lost packet in accordance with a fifth embodiment of the present invention.
  • a decoding end e.g., MRFP- 2 404
  • the MRFP- 1 402 is shown receiving five speech packets F n /F n+1 , F n+1 /F n , F n+3 /F n+2 , F n+4 /F n+3 and F n+5 /F n+4 and when packet F n+3 /F n+2 is received the sequence number will indicate that packet F n+2 /F n+1 (marked with a cross) has been lost (the shaded portions of the incoming packets are redundancy data).
  • the packet repair/recovery is not possible due to encryption (for example) or not desirable for complexity reasons (for example).
  • the MRFP- 1 402 can transmit the packets (or a selection of packets) containing at least parts of the lost packet twice (or more).
  • the MRFP- 1 402 transmits the following speech packets F n /F n ⁇ 1 , F n+1 /F n , F n+1 /F n (re-transmitted), F n+3 /F n+2 , F n+3 /F n+2 (re-transmitted), F n+4 /F n+3 and F n+5 /F n+4 (where the shaded portions of the outgoing packets are redundancy data).
  • FIG. 12B there is shown a scenario in which the loss of a packet leads to the loss of real information.
  • the MRFP- 1 402 is shown receiving five speech packets F n , F n+1 , F n+3 , F n+4 and F n+5 and when packet F n+3 is received the sequence number will indicate that packet F n+2 (marked with a cross) has been lost.
  • the incoming speech packets did not contain redundancy data and as a result the information in packet F n+2 has been lost.
  • a possible solution to this problem would be to re-transmit at least some of the packets adjacent to the loss.
  • the MRFP- 1 402 could transmit seven speech packets F n , F n+1 , F n+1 (re-transmitted), F n+3 , F n+3 (re-transmitted), F n+4 and F n+5 .
  • An advantage of this re-transmission scheme would be to decrease the risk of losing consecutive packets (e.g., packets F n+1 and F n+2 or F n+2 and F n+3 ) at the decoding end (e.g., UE- 2 420 ). Because, if consecutive packets where lost then this would likely cause substantial quality degradation. Of course, this solution would leave the error concealment to the decoding end (e.g., MRFP- 2 404 ).
  • An alternative solution relates to recovering as much as possible of the lost information by means of error concealment at the MRFP- 1 402 and to transmit this information instead of the lost packet.
  • this particular solution may not be desirable because it requires the MRFP- 1 402 to execute complex error concealment programs and it also requires that the incoming packets contain non-encrypted information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
US11/275,325 2005-12-22 2005-12-22 Network processing node and method for manipulating packets Abandoned US20070147314A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/275,325 US20070147314A1 (en) 2005-12-22 2005-12-22 Network processing node and method for manipulating packets
EP06824626.3A EP1964340B1 (en) 2005-12-22 2006-12-07 Network processing node and method for manipulating packets
JP2008547182A JP2009521833A (ja) 2005-12-22 2006-12-07 ネットワーク処理ノード、及び、パケットを処理する方法
PCT/SE2006/050560 WO2007073328A2 (en) 2005-12-22 2006-12-07 Network processing node and method for manipulating packets
CN2006800478002A CN101341702B (zh) 2005-12-22 2006-12-07 操纵分组的网络处理节点和方法
US13/195,315 US8315238B2 (en) 2005-12-22 2011-08-01 Network processing node and method for manipulating packets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/275,325 US20070147314A1 (en) 2005-12-22 2005-12-22 Network processing node and method for manipulating packets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/195,315 Continuation US8315238B2 (en) 2005-12-22 2011-08-01 Network processing node and method for manipulating packets

Publications (1)

Publication Number Publication Date
US20070147314A1 true US20070147314A1 (en) 2007-06-28

Family

ID=38189104

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/275,325 Abandoned US20070147314A1 (en) 2005-12-22 2005-12-22 Network processing node and method for manipulating packets
US13/195,315 Active US8315238B2 (en) 2005-12-22 2011-08-01 Network processing node and method for manipulating packets

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/195,315 Active US8315238B2 (en) 2005-12-22 2011-08-01 Network processing node and method for manipulating packets

Country Status (5)

Country Link
US (2) US20070147314A1 (ja)
EP (1) EP1964340B1 (ja)
JP (1) JP2009521833A (ja)
CN (1) CN101341702B (ja)
WO (1) WO2007073328A2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183330A1 (en) * 2006-02-08 2007-08-09 Metin Salt Methods, systems, and apparatus for reducing real time data traffic in a multi-layer network
US20100232297A1 (en) * 2006-08-21 2010-09-16 Ingemar Johansson Method And Arrangement For Adapting Transmission Of Encoded Media
WO2010068600A3 (en) * 2008-12-10 2010-10-14 Motorola, Inc. Method and system for deterministic packet drop
US20110134909A1 (en) * 2009-12-08 2011-06-09 Microsoft Corporation Data communication with compensation for packet loss
US20110158146A1 (en) * 2009-12-29 2011-06-30 Jeelan Poola Method and system for multicast video streaming over a wireless local area network (wlan)
WO2012072278A1 (en) 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Source signal adaptive frame aggregation
US20120140779A1 (en) * 2009-08-28 2012-06-07 Commissariat A L'energie Atomique Et Aux Ene Alt Method for equalizing the size of data packets by blocks of a multimedia stream
US8315238B2 (en) 2005-12-22 2012-11-20 Telefonaktiebolaget L M Ericsson (Publ) Network processing node and method for manipulating packets
CN103238349A (zh) * 2010-11-30 2013-08-07 瑞典爱立信有限公司 用于无线通信中的信道适配的方法和装置
US8824543B2 (en) 2010-06-18 2014-09-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Multilayer decoding using persistent bits
US20180343086A1 (en) * 2015-10-01 2018-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for removing jitter in audio data transmission

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9019934B2 (en) 2007-10-24 2015-04-28 Hmicro, Inc. Systems and networks for half and full duplex wireless communication using multiple radios
WO2009100401A2 (en) * 2008-02-06 2009-08-13 Hmicro, Inc. Wireless communications systems using multiple radios
EP2834753B1 (en) * 2012-04-04 2017-01-18 Huawei Technologies Co., Ltd. Systems and methods for selective data redundancy elimination for resource constrained hosts
US9787758B2 (en) 2012-06-07 2017-10-10 Samsung Electronics Co., Ltd. Apparatus and method for reducing power consumption in electronic device
CN105188075B (zh) * 2014-06-17 2018-10-12 中国移动通信集团公司 语音质量优化方法及装置、终端

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029214A (en) * 1986-08-11 1991-07-02 Hollander James F Electronic speech control apparatus and methods
US5222080A (en) * 1991-03-20 1993-06-22 U S West Advanced Technologies, Inc. Method and apparatus for signal reconstruction
US5559927A (en) * 1992-08-19 1996-09-24 Clynes; Manfred Computer system producing emotionally-expressive speech messages
US5784358A (en) * 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US6167060A (en) * 1997-08-08 2000-12-26 Clarent Corporation Dynamic forward error correction algorithm for internet telephone
US20010023454A1 (en) * 1998-10-28 2001-09-20 Fitzgerald Cary W. Codec-independent technique for modulating band width in packet network
US6356545B1 (en) * 1997-08-08 2002-03-12 Clarent Corporation Internet telephone system with dynamically varying codec
US6389038B1 (en) * 1999-01-26 2002-05-14 Net 2 Phone Voice IP bandwidth utilization
US6771673B1 (en) * 2000-08-31 2004-08-03 Verizon Communications Inc. Methods and apparatus and data structures for providing access to an edge router of a network
US6831898B1 (en) * 2000-08-16 2004-12-14 Cisco Systems, Inc. Multiple packet paths to improve reliability in an IP network
US20050094628A1 (en) * 2003-10-29 2005-05-05 Boonchai Ngamwongwattana Optimizing packetization for minimal end-to-end delay in VoIP networks
US20050180405A1 (en) * 2000-03-06 2005-08-18 Mitel Networks Corporation Sub-packet insertion for packet loss compensation in voice over IP networks
US7072315B1 (en) * 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504744A (en) * 1994-03-09 1996-04-02 British Telecommunications Public Limited Company Broadband switching network
JPH08130541A (ja) * 1994-10-31 1996-05-21 Sekisui Chem Co Ltd データ伝送方法
EP1104141A3 (en) * 1999-11-29 2004-01-21 Lucent Technologies Inc. System for generating composite packets
US20010041981A1 (en) * 2000-02-22 2001-11-15 Erik Ekudden Partial redundancy encoding of speech
JP4405044B2 (ja) * 2000-06-21 2010-01-27 富士通株式会社 ネットワーク中継装置およびパケット結合方法
JP2002344515A (ja) * 2001-05-21 2002-11-29 Ntt Docomo Inc データ中継方法及びデータ中継装置
JP4116470B2 (ja) * 2002-03-06 2008-07-09 ヒューレット・パッカード・カンパニー メディア・ストリーミング配信システム
JP2004015551A (ja) * 2002-06-07 2004-01-15 Sumitomo Electric Ind Ltd 中継装置、中継用プログラム及び自律型誤り訂正ネットワーク
AU2003304024A1 (en) * 2003-03-29 2004-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Device and method for rate adaptation between bit streams
US20040252761A1 (en) * 2003-06-16 2004-12-16 Dilithium Networks Pty Limited (An Australian Corporation) Method and apparatus for handling video communication errors
JP2005065100A (ja) * 2003-08-19 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> データ配信方法、中継装置及びコンピュータプログラム
JP4252596B2 (ja) * 2004-03-03 2009-04-08 三菱電機株式会社 パケット転送装置
JP2005341361A (ja) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd 無線画像伝送システムおよびその伝送方法
JP3967338B2 (ja) * 2004-06-09 2007-08-29 株式会社日立国際電気 無線パケット転送装置
US20070147314A1 (en) 2005-12-22 2007-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Network processing node and method for manipulating packets

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029214A (en) * 1986-08-11 1991-07-02 Hollander James F Electronic speech control apparatus and methods
US5222080A (en) * 1991-03-20 1993-06-22 U S West Advanced Technologies, Inc. Method and apparatus for signal reconstruction
US5559927A (en) * 1992-08-19 1996-09-24 Clynes; Manfred Computer system producing emotionally-expressive speech messages
US5784358A (en) * 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US6356545B1 (en) * 1997-08-08 2002-03-12 Clarent Corporation Internet telephone system with dynamically varying codec
US6167060A (en) * 1997-08-08 2000-12-26 Clarent Corporation Dynamic forward error correction algorithm for internet telephone
US20010023454A1 (en) * 1998-10-28 2001-09-20 Fitzgerald Cary W. Codec-independent technique for modulating band width in packet network
US6389038B1 (en) * 1999-01-26 2002-05-14 Net 2 Phone Voice IP bandwidth utilization
US20050180405A1 (en) * 2000-03-06 2005-08-18 Mitel Networks Corporation Sub-packet insertion for packet loss compensation in voice over IP networks
US6831898B1 (en) * 2000-08-16 2004-12-14 Cisco Systems, Inc. Multiple packet paths to improve reliability in an IP network
US6771673B1 (en) * 2000-08-31 2004-08-03 Verizon Communications Inc. Methods and apparatus and data structures for providing access to an edge router of a network
US7072315B1 (en) * 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
US20050094628A1 (en) * 2003-10-29 2005-05-05 Boonchai Ngamwongwattana Optimizing packetization for minimal end-to-end delay in VoIP networks

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315238B2 (en) 2005-12-22 2012-11-20 Telefonaktiebolaget L M Ericsson (Publ) Network processing node and method for manipulating packets
US20070183330A1 (en) * 2006-02-08 2007-08-09 Metin Salt Methods, systems, and apparatus for reducing real time data traffic in a multi-layer network
US20100232297A1 (en) * 2006-08-21 2010-09-16 Ingemar Johansson Method And Arrangement For Adapting Transmission Of Encoded Media
US8422382B2 (en) * 2006-08-21 2013-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting transmission of encoded media
WO2010068600A3 (en) * 2008-12-10 2010-10-14 Motorola, Inc. Method and system for deterministic packet drop
KR101240808B1 (ko) * 2008-12-10 2013-03-11 모토로라 솔루션즈, 인크. 결정론적 패킷 누락에 대한 방법 및 시스템
US8942241B2 (en) * 2009-08-28 2015-01-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for equalizing the size of data packets by blocks of a multimedia stream
US20120140779A1 (en) * 2009-08-28 2012-06-07 Commissariat A L'energie Atomique Et Aux Ene Alt Method for equalizing the size of data packets by blocks of a multimedia stream
US9237105B2 (en) * 2009-12-08 2016-01-12 Microsoft Technology Licensing, Llc Data communication with compensation for packet loss
US20110134909A1 (en) * 2009-12-08 2011-06-09 Microsoft Corporation Data communication with compensation for packet loss
US8270425B2 (en) 2009-12-29 2012-09-18 Symbol Technologies, Inc. Method and system for multicast video streaming over a wireless local area network (WLAN)
US20110158146A1 (en) * 2009-12-29 2011-06-30 Jeelan Poola Method and system for multicast video streaming over a wireless local area network (wlan)
US8824543B2 (en) 2010-06-18 2014-09-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Multilayer decoding using persistent bits
CN103238349A (zh) * 2010-11-30 2013-08-07 瑞典爱立信有限公司 用于无线通信中的信道适配的方法和装置
CN103238349B (zh) * 2010-11-30 2016-08-10 瑞典爱立信有限公司 用于无线通信中的信道适配的方法和装置
WO2012072278A1 (en) 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Source signal adaptive frame aggregation
US9025504B2 (en) 2010-12-03 2015-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth efficiency in a wireless communications network
US20180343086A1 (en) * 2015-10-01 2018-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for removing jitter in audio data transmission
US10148391B2 (en) * 2015-10-01 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for removing jitter in audio data transmission
US10651976B2 (en) * 2015-10-01 2020-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for removing jitter in audio data transmission

Also Published As

Publication number Publication date
EP1964340A2 (en) 2008-09-03
US20110292924A1 (en) 2011-12-01
JP2009521833A (ja) 2009-06-04
CN101341702A (zh) 2009-01-07
EP1964340B1 (en) 2016-07-06
CN101341702B (zh) 2011-09-07
EP1964340A4 (en) 2013-01-16
WO2007073328A3 (en) 2007-08-16
US8315238B2 (en) 2012-11-20
WO2007073328A2 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US8315238B2 (en) Network processing node and method for manipulating packets
CN105743924B (zh) 无线ip网络中进行有效多媒体传递的方法和基站
US7254765B2 (en) Method and devices for error tolerant data transmission, wherein retransmission of erroneous data is performed up to the point where the remaining number of errors is acceptable
JP4475235B2 (ja) コンテンツの符号化、配信及び受信方法と装置とシステムならびにプログラム
US9537611B2 (en) Method and apparatus for improving the performance of TCP and other network protocols in a communications network using proxy servers
JP5493910B2 (ja) 無線通信装置、無線通信方法、通信制御装置、およびプログラム
EP3940974B1 (en) Transmission method and device for data stream
EP2218204B1 (en) Method and system for data transmission in a data network
JP7343915B2 (ja) メディアコンテンツに基づくfecメカニズム
US20100214970A1 (en) Method and system for transmitting data packets from a source to multiple receivers via a network
Roca et al. Block or convolutional AL-FEC codes? A performance comparison for robust low-latency communications
Lee et al. Optimal allocation of packet-level and byte-level FEC in video multicasting over wired and wireless networks
US7337384B2 (en) Error detection scheme with partial checksum coverage
CN109687934B (zh) 基于媒体内容的自适应系统码fec方法、装置及系统
JP2004289431A (ja) リアルタイム情報の伝達システム、リアルタイム情報の送信装置、リアルタイム情報の伝達方法及びプログラム
KR100739509B1 (ko) 다중 채널 구조 무선 통신 시스템에서 헤더 정보 송수신장치 및 방법
US7769045B2 (en) Method and apparatus for processing header bits and payload bits
JP3730977B2 (ja) データ伝送方法およびデータ処理方法
Qu et al. Source-adaptive FEC/UEP coding for video transport over bursty packet loss 3G UMTS networks: a cross-layer approach
US20060198393A1 (en) Method for transmitting additional information by compression of the header
Hayasaka et al. Referential Loss Recovery for Streaming Audio using Application Level Multicast
Shan et al. Two-stage FEC scheme for scalable video transmission over wireless networks
Lyonnet et al. Architecture Considerations for Video Conferencing in the Internet with Wireless Links
Vehkapera et al. Cross-layer Architecture for Scalable Video
Yao et al. Experiments with error-correcting RTP gateways

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TALEB, ANISSE;BRUHN, STEFAN;KIM, MOO YOUNG;AND OTHERS;REEL/FRAME:018036/0431;SIGNING DATES FROM 20060614 TO 20060615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION