US20070088337A1 - Minimally compliant, volume efficient piston for osmotic drug delivery systems - Google Patents
Minimally compliant, volume efficient piston for osmotic drug delivery systems Download PDFInfo
- Publication number
- US20070088337A1 US20070088337A1 US11/526,983 US52698306A US2007088337A1 US 20070088337 A1 US20070088337 A1 US 20070088337A1 US 52698306 A US52698306 A US 52698306A US 2007088337 A1 US2007088337 A1 US 2007088337A1
- Authority
- US
- United States
- Prior art keywords
- piston
- osmotic
- agent
- capsule
- delivery system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003204 osmotic effect Effects 0.000 title claims abstract description 95
- 238000012377 drug delivery Methods 0.000 title 1
- 239000002775 capsule Substances 0.000 claims abstract description 113
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 98
- 230000009286 beneficial effect Effects 0.000 claims abstract description 88
- 239000002357 osmotic agent Substances 0.000 claims abstract description 72
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 239000012530 fluid Substances 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 34
- -1 but not limited to Chemical class 0.000 description 20
- 229920002678 cellulose Polymers 0.000 description 17
- 239000001913 cellulose Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000499 gel Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 230000000541 pulsatile effect Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 229920002449 FKM Polymers 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- QZVCTJOXCFMACW-UHFFFAOYSA-N Phenoxybenzamine Chemical compound C=1C=CC=CC=1CN(CCCl)C(C)COC1=CC=CC=C1 QZVCTJOXCFMACW-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002614 Polyether block amide Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 2
- 229960003529 diazepam Drugs 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 2
- 229960004801 imipramine Drugs 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229960004502 levodopa Drugs 0.000 description 2
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229940053934 norethindrone Drugs 0.000 description 2
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229960003418 phenoxybenzamine Drugs 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229920013730 reactive polymer Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000004767 rumen Anatomy 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- RXPRRQLKFXBCSJ-GIVPXCGWSA-N vincamine Chemical compound C1=CC=C2C(CCN3CCC4)=C5[C@@H]3[C@]4(CC)C[C@](O)(C(=O)OC)N5C2=C1 RXPRRQLKFXBCSJ-GIVPXCGWSA-N 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- BJFIDCADFRDPIO-DZCXQCEKSA-N (2S)-N-[(2S)-6-amino-1-[(2-amino-2-oxoethyl)amino]-1-oxohexan-2-yl]-1-[[(4R,7S,10S,13S,16S,19R)-19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-16-[(4-hydroxyphenyl)methyl]-6,9,12,15,18-pentaoxo-13-(phenylmethyl)-1,2-dithia-5,8,11,14,17-pentazacycloeicos-4-yl]-oxomethyl]-2-pyrrolidinecarboxamide Chemical compound NCCCC[C@@H](C(=O)NCC(N)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](N)CSSC1 BJFIDCADFRDPIO-DZCXQCEKSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 description 1
- LSBUIZREQYVRSY-CYJZLJNKSA-N (6r,7r)-7-[[(2r)-2-amino-2-phenylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;hydrochloride Chemical compound Cl.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 LSBUIZREQYVRSY-CYJZLJNKSA-N 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- PVHUJELLJLJGLN-INIZCTEOSA-N (S)-nitrendipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC([N+]([O-])=O)=C1 PVHUJELLJLJGLN-INIZCTEOSA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- VWXFUOAKGNJSBI-UHFFFAOYSA-N 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(2,6-dichloroanilino)-2-oxoethyl]piperazine-2-carboxamide Chemical compound C1CN(CCCC(C=2C=CC(F)=CC=2)C=2C=CC(F)=CC=2)C(C(=O)N)CN1CC(=O)NC1=C(Cl)C=CC=C1Cl VWXFUOAKGNJSBI-UHFFFAOYSA-N 0.000 description 1
- KEDVUOWPLAHMLZ-UHFFFAOYSA-N 1-cyano-3-[2-[(5-methyl-1h-imidazol-4-yl)methylsulfanyl]ethyl]-2-prop-2-ynylguanidine Chemical compound CC=1NC=NC=1CSCCNC(NC#N)=NCC#C KEDVUOWPLAHMLZ-UHFFFAOYSA-N 0.000 description 1
- VTHUYJIXSMGYOQ-KOORYGTMSA-N 17-hydroxyprogesterone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 VTHUYJIXSMGYOQ-KOORYGTMSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- NVUUMOOKVFONOM-GPBSYSOESA-N 19-Norprogesterone Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 NVUUMOOKVFONOM-GPBSYSOESA-N 0.000 description 1
- TYCOFFBAZNSQOJ-UHFFFAOYSA-N 2-[4-(3-fluorophenyl)phenyl]propanoic acid Chemical compound C1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC(F)=C1 TYCOFFBAZNSQOJ-UHFFFAOYSA-N 0.000 description 1
- ZBIAKUMOEKILTF-UHFFFAOYSA-N 2-[4-[4,4-bis(4-fluorophenyl)butyl]-1-piperazinyl]-N-(2,6-dimethylphenyl)acetamide Chemical compound CC1=CC=CC(C)=C1NC(=O)CN1CCN(CCCC(C=2C=CC(F)=CC=2)C=2C=CC(F)=CC=2)CC1 ZBIAKUMOEKILTF-UHFFFAOYSA-N 0.000 description 1
- LYRSLMWAHYTKIG-UHFFFAOYSA-N 3-(1h-inden-1-yl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C2C3=CC=CC=C3C=C2)=C1 LYRSLMWAHYTKIG-UHFFFAOYSA-N 0.000 description 1
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 1
- ZOLBALGTFCCTJF-UHFFFAOYSA-N 4-[1-hydroxy-2-(propan-2-ylamino)ethyl]benzene-1,2-diol;sulfuric acid Chemical compound OS(O)(=O)=O.CC(C)NCC(O)C1=CC=C(O)C(O)=C1.CC(C)NCC(O)C1=CC=C(O)C(O)=C1 ZOLBALGTFCCTJF-UHFFFAOYSA-N 0.000 description 1
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 description 1
- SKCBPEVYGOQGJN-TXICZTDVSA-N 5-phospho-beta-D-ribosylamine Chemical compound N[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O SKCBPEVYGOQGJN-TXICZTDVSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- QMNAQPMXDMLOLD-UHFFFAOYSA-N 6-methyl-4-oxo-5,6-dihydrothieno[2,3-b]thiopyran-2-sulfonamide Chemical compound S1C(C)CC(=O)C2=C1SC(S(N)(=O)=O)=C2 QMNAQPMXDMLOLD-UHFFFAOYSA-N 0.000 description 1
- 108060003345 Adrenergic Receptor Proteins 0.000 description 1
- 102000017910 Adrenergic receptor Human genes 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- QMBJSIBWORFWQT-DFXBJWIESA-N Chlormadinone acetate Chemical compound C1=C(Cl)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 QMBJSIBWORFWQT-DFXBJWIESA-N 0.000 description 1
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 102000009660 Cholinergic Receptors Human genes 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108090000746 Chymosin Proteins 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- ITRJWOMZKQRYTA-RFZYENFJSA-N Cortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)CC2=O ITRJWOMZKQRYTA-RFZYENFJSA-N 0.000 description 1
- 229920001560 Cyanamer® Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- JYGLAHSAISAEAL-UHFFFAOYSA-N Diphenadione Chemical compound O=C1C2=CC=CC=C2C(=O)C1C(=O)C(C=1C=CC=CC=1)C1=CC=CC=C1 JYGLAHSAISAEAL-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 108010066671 Enalaprilat Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- DKKCQDROTDCQOR-UHFFFAOYSA-L Ferrous lactate Chemical compound [Fe+2].CC(O)C([O-])=O.CC(O)C([O-])=O DKKCQDROTDCQOR-UHFFFAOYSA-L 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- XQLWNAFCTODIRK-UHFFFAOYSA-N Gallopamil Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC(OC)=C(OC)C(OC)=C1 XQLWNAFCTODIRK-UHFFFAOYSA-N 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- BFSMWENDZZIWPW-UHFFFAOYSA-N Isopropamide iodide Chemical compound [I-].C=1C=CC=CC=1C(C(N)=O)(CC[N+](C)(C(C)C)C(C)C)C1=CC=CC=C1 BFSMWENDZZIWPW-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010048179 Lypressin Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- PKVZBNCYEICAQP-UHFFFAOYSA-N Mecamylamine hydrochloride Chemical compound Cl.C1CC2C(C)(C)C(NC)(C)C1C2 PKVZBNCYEICAQP-UHFFFAOYSA-N 0.000 description 1
- OCJYIGYOJCODJL-UHFFFAOYSA-N Meclizine Chemical compound CC1=CC=CC(CN2CCN(CC2)C(C=2C=CC=CC=2)C=2C=CC(Cl)=CC=2)=C1 OCJYIGYOJCODJL-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- ICTXHFFSOAJUMG-SLHNCBLASA-N Norethynodrel Chemical compound C1CC(=O)CC2=C1[C@H]1CC[C@](C)([C@](CC3)(O)C#C)[C@@H]3[C@@H]1CC2 ICTXHFFSOAJUMG-SLHNCBLASA-N 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- VJNXVAVKCZJOFQ-UHFFFAOYSA-N Phenmetrazine hydrochloride Chemical compound Cl.CC1NCCOC1C1=CC=CC=C1 VJNXVAVKCZJOFQ-UHFFFAOYSA-N 0.000 description 1
- 102000006877 Pituitary Hormones Human genes 0.000 description 1
- 108010047386 Pituitary Hormones Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 102100022831 Somatoliberin Human genes 0.000 description 1
- 101710142969 Somatoliberin Proteins 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- ZROUQTNYPCANTN-UHFFFAOYSA-N Tiapamil Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC1(C=2C=C(OC)C(OC)=CC=2)S(=O)(=O)CCCS1(=O)=O ZROUQTNYPCANTN-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- HOBWAPHTEJGALG-JKCMADFCSA-N [(1r,5s)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] 3-hydroxy-2-phenylpropanoate;sulfate Chemical compound [O-]S([O-])(=O)=O.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1 HOBWAPHTEJGALG-JKCMADFCSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- MANKSFVECICGLK-UHFFFAOYSA-K aloxiprin Chemical compound [OH-].[Al+3].CC(=O)OC1=CC=CC=C1C([O-])=O.CC(=O)OC1=CC=CC=C1C([O-])=O MANKSFVECICGLK-UHFFFAOYSA-K 0.000 description 1
- PAZJSJFMUHDSTF-UHFFFAOYSA-N alprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1CC=C PAZJSJFMUHDSTF-UHFFFAOYSA-N 0.000 description 1
- 229960002213 alprenolol Drugs 0.000 description 1
- 229940024544 aluminum aspirin Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 229940008238 amphetamine sulfate Drugs 0.000 description 1
- PYHRZPFZZDCOPH-UHFFFAOYSA-N amphetamine sulfate Chemical compound OS(O)(=O)=O.CC(N)CC1=CC=CC=C1.CC(N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-UHFFFAOYSA-N 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 229960002028 atropine sulfate Drugs 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229960003515 bendroflumethiazide Drugs 0.000 description 1
- HDWIHXWEUNVBIY-UHFFFAOYSA-N bendroflumethiazidum Chemical compound C1=C(C(F)(F)F)C(S(=O)(=O)N)=CC(S(N2)(=O)=O)=C1NC2CC1=CC=CC=C1 HDWIHXWEUNVBIY-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- XXRMYXBSBOVVBH-UHFFFAOYSA-N bethanechol chloride Chemical compound [Cl-].C[N+](C)(C)CC(C)OC(N)=O XXRMYXBSBOVVBH-UHFFFAOYSA-N 0.000 description 1
- 229960002123 bethanechol chloride Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- ICZOIXFFVKYXOM-YCLOEFEOSA-M cefamandole nafate Chemical compound [Na+].CN1N=NN=C1SCC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)[C@H](OC=O)C=3C=CC=CC=3)[C@H]2SC1 ICZOIXFFVKYXOM-YCLOEFEOSA-M 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940084959 cephalexin hydrochloride Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229960004782 chlordiazepoxide Drugs 0.000 description 1
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 1
- 229960001616 chlormadinone acetate Drugs 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- SOELXOBIIIBLRJ-UHFFFAOYSA-M choline theophyllinate Chemical compound C[N+](C)(C)CCO.CN1C(=O)N(C)C([O-])=C2N=CN=C21 SOELXOBIIIBLRJ-UHFFFAOYSA-M 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960003290 cortisone acetate Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical compound CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- 229960000267 diphenadione Drugs 0.000 description 1
- OGAKLTJNUQRZJU-UHFFFAOYSA-N diphenidol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)CCCN1CCCCC1 OGAKLTJNUQRZJU-UHFFFAOYSA-N 0.000 description 1
- 229960003520 diphenidol Drugs 0.000 description 1
- RXPRRQLKFXBCSJ-UHFFFAOYSA-N dl-Vincamin Natural products C1=CC=C2C(CCN3CCC4)=C5C3C4(CC)CC(O)(C(=O)OC)N5C2=C1 RXPRRQLKFXBCSJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229960002680 enalaprilat Drugs 0.000 description 1
- LZFZMUMEGBBDTC-QEJZJMRPSA-N enalaprilat (anhydrous) Chemical compound C([C@H](N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 LZFZMUMEGBBDTC-QEJZJMRPSA-N 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960005450 eritrityl tetranitrate Drugs 0.000 description 1
- SNFOERUNNSHUGP-ZXZARUISSA-N erythrityl tetranitrate Chemical compound [O-][N+](=O)OC[C@@H](O[N+]([O-])=O)[C@@H](O[N+]([O-])=O)CO[N+]([O-])=O SNFOERUNNSHUGP-ZXZARUISSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 229950007285 etintidine Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001596 famotidine Drugs 0.000 description 1
- 229960003580 felodipine Drugs 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 239000004225 ferrous lactate Substances 0.000 description 1
- 229940037907 ferrous lactate Drugs 0.000 description 1
- 235000013925 ferrous lactate Nutrition 0.000 description 1
- 229960001781 ferrous sulfate Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229950001284 fluprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229960000457 gallopamil Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 239000003668 hormone analog Substances 0.000 description 1
- 239000003688 hormone derivative Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 229960002003 hydrochlorothiazide Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- JUMYIBMBTDDLNG-OJERSXHUSA-N hydron;methyl (2r)-2-phenyl-2-[(2r)-piperidin-2-yl]acetate;chloride Chemical compound Cl.C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 JUMYIBMBTDDLNG-OJERSXHUSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000000960 hypophysis hormone Substances 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 229960001543 isopropamide iodide Drugs 0.000 description 1
- 229940018435 isoproterenol sulfate Drugs 0.000 description 1
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 1
- 229960000201 isosorbide dinitrate Drugs 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 229960004400 levonorgestrel Drugs 0.000 description 1
- 229960001941 lidoflazine Drugs 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 229960003837 lypressin Drugs 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960001263 mecamylamine hydrochloride Drugs 0.000 description 1
- 229940018415 meclizine hydrochloride Drugs 0.000 description 1
- IMSSROKUHAOUJS-MJCUULBUSA-N mestranol Chemical compound C1C[C@]2(C)[C@@](C#C)(O)CC[C@H]2[C@@H]2CCC3=CC(OC)=CC=C3[C@H]21 IMSSROKUHAOUJS-MJCUULBUSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- JHPHVAVFUYTVCL-UHFFFAOYSA-M methacholine chloride Chemical compound [Cl-].C[N+](C)(C)CC(C)OC(C)=O JHPHVAVFUYTVCL-UHFFFAOYSA-M 0.000 description 1
- 229960002931 methacholine chloride Drugs 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 229960002532 methamphetamine hydrochloride Drugs 0.000 description 1
- FLOSMHQXBMRNHR-DAXSKMNVSA-N methazolamide Chemical compound CC(=O)\N=C1/SC(S(N)(=O)=O)=NN1C FLOSMHQXBMRNHR-DAXSKMNVSA-N 0.000 description 1
- 229960004083 methazolamide Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- VKQFCGNPDRICFG-UHFFFAOYSA-N methyl 2-methylpropyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCC(C)C)C1C1=CC=CC=C1[N+]([O-])=O VKQFCGNPDRICFG-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960001033 methylphenidate hydrochloride Drugs 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 1
- 229960003574 milrinone Drugs 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 229950008080 mioflazine Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- 229960000715 nimodipine Drugs 0.000 description 1
- 229960000227 nisoldipine Drugs 0.000 description 1
- 229960005425 nitrendipine Drugs 0.000 description 1
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 description 1
- 229960004872 nizatidine Drugs 0.000 description 1
- 229960001858 norethynodrel Drugs 0.000 description 1
- YPVUHOBTCWJYNQ-SLHNCBLASA-N norgesterone Chemical compound C1CC(=O)CC2=C1[C@H]1CC[C@](C)([C@](CC3)(O)C=C)[C@@H]3[C@@H]1CC2 YPVUHOBTCWJYNQ-SLHNCBLASA-N 0.000 description 1
- 229950011191 norgesterone Drugs 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 239000004025 pancreas hormone Substances 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 229950005116 phenaglycodol Drugs 0.000 description 1
- HTYIXCKSEQQCJO-UHFFFAOYSA-N phenaglycodol Chemical compound CC(C)(O)C(C)(O)C1=CC=C(Cl)C=C1 HTYIXCKSEQQCJO-UHFFFAOYSA-N 0.000 description 1
- 229960001753 phenformin hydrochloride Drugs 0.000 description 1
- 229960002315 phenmetrazine hydrochloride Drugs 0.000 description 1
- RNAICSBVACLLGM-GNAZCLTHSA-N pilocarpine hydrochloride Chemical compound Cl.C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C RNAICSBVACLLGM-GNAZCLTHSA-N 0.000 description 1
- 229960002139 pilocarpine hydrochloride Drugs 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- ABTXGJFUQRCPNH-UHFFFAOYSA-N procainamide hydrochloride Chemical compound [H+].[Cl-].CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 ABTXGJFUQRCPNH-UHFFFAOYSA-N 0.000 description 1
- 229960003253 procainamide hydrochloride Drugs 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
- 229960003111 prochlorperazine Drugs 0.000 description 1
- DSKIOWHQLUWFLG-SPIKMXEPSA-N prochlorperazine maleate Chemical compound [H+].[H+].[H+].[H+].[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O.C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 DSKIOWHQLUWFLG-SPIKMXEPSA-N 0.000 description 1
- 229960002153 prochlorperazine maleate Drugs 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 229960003401 ramipril Drugs 0.000 description 1
- HDACQVRGBOVJII-JBDAPHQKSA-N ramipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@@H]2CCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 HDACQVRGBOVJII-JBDAPHQKSA-N 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- WTGQALLALWYDJH-MOUKNHLCSA-N scopolamine hydrobromide (anhydrous) Chemical compound Br.C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 WTGQALLALWYDJH-MOUKNHLCSA-N 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- MNQYNQBOVCBZIQ-JQOFMKNESA-A sucralfate Chemical compound O[Al](O)OS(=O)(=O)O[C@@H]1[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](COS(=O)(=O)O[Al](O)O)O[C@H]1O[C@@]1(COS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)O1 MNQYNQBOVCBZIQ-JQOFMKNESA-A 0.000 description 1
- 229960004291 sucralfate Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229950006904 sulfisoxazole acetyl Drugs 0.000 description 1
- JFNWFXVFBDDWCX-UHFFFAOYSA-N sulfisoxazole acetyl Chemical compound C=1C=C(N)C=CC=1S(=O)(=O)N(C(=O)C)C=1ON=C(C)C=1C JFNWFXVFBDDWCX-UHFFFAOYSA-N 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- OKUCEQDKBKYEJY-UHFFFAOYSA-N tert-butyl 3-(methylamino)pyrrolidine-1-carboxylate Chemical compound CNC1CCN(C(=O)OC(C)(C)C)C1 OKUCEQDKBKYEJY-UHFFFAOYSA-N 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 230000001646 thyrotropic effect Effects 0.000 description 1
- 229950003137 tiapamil Drugs 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 229960002277 tolazamide Drugs 0.000 description 1
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- XJGONMZLEDGBRM-UHFFFAOYSA-M tridihexethyl chloride Chemical compound [Cl-].C=1C=CC=CC=1C(O)(CC[N+](CC)(CC)CC)C1CCCCC1 XJGONMZLEDGBRM-UHFFFAOYSA-M 0.000 description 1
- 229960001205 tridihexethyl chloride Drugs 0.000 description 1
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 229960002726 vincamine Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- ZXVNMYWKKDOREA-UHFFFAOYSA-N zomepirac Chemical compound C1=C(CC(O)=O)N(C)C(C(=O)C=2C=CC(Cl)=CC=2)=C1C ZXVNMYWKKDOREA-UHFFFAOYSA-N 0.000 description 1
- 229960003414 zomepirac Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0004—Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M2005/14513—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons with secondary fluid driving or regulating the infusion
Definitions
- the present invention relates to osmotic systems for delivering beneficial agents. More particularly, the present invention relates to an osmotic pump having a minimally compliant, volume-efficient piston.
- Controlled delivery of beneficial agents has been accomplished by a variety of methods.
- One method for controlled prolonged delivery of beneficial agents involves the use of osmotic delivery systems. These devices can be implanted to release beneficial agents in a controlled manner over a preselected time or administration period.
- osmotic delivery systems operate by imbibing liquid from the outside environment and releasing corresponding amounts of the beneficial agent.
- a known osmotic delivery system commonly referred to as an “osmotic pump,” generally includes some type of capsule or enclosure having a semipermeable portion that may selectively pass water into an interior of the capsule that contains a water-attracting osmotic agent.
- the walls of the capsule included in known osmotic pumps are substantially impermeable to items within and outside the capsule and the semipermeable portion is formed as a plug of semipermeable material.
- the difference in osmolarity between the water-attracting agent and the exterior of the capsule causes water to pass through the semipermeable portion of the capsule, which, in turn, causes the beneficial agent to be delivered from the capsule through the delivery port.
- the water-attracting agent may be the beneficial agent delivered to the patient.
- a separate osmotic agent is used specifically for its ability to draw water into the capsule.
- a piston is required to separate the beneficial agent from the osmotic agent to prevent the osmotic agent from mixing with or contaminating the beneficial agent.
- Examples of systems that use a piston to separate the beneficial agent from the osmotic agent include U.S. Pat. Nos.
- the ratio of length-to-total-width of the piston is typically lengthened 1:0:1.
- the cited references do not provide details regarding the ratio of the core of the pistons to the total diameter of the pistons used in these systems described therein.
- the structure of the capsules described in the cited references is such that the capsule does not expand significantly when the osmotic agent takes in water and expands.
- pressure causes the piston to move and the beneficial agent to be discharged through the delivery orifice at the same rate as the liquid, which is typically water, enters the osmotic agent by osmosis.
- the osmotic pumps described in the cited references may be designed to deliver a beneficial agent at a controlled constant rate, a varying rate, or in a pulsatile manner.
- a piston included in an osmotic pump necessarily occupies space within the device. Hence, if a piston is needed to separate the beneficial agent and the osmotic agent, and the size of the capsule included in an osmotic pump is not changed, the amount of beneficial agent or osmotic agent that can be held within the capsule decreases relative to an osmotic pump that has the same size capsule but lacks a piston. Such a decrease in capacity may work to reduce the net amount of beneficial agent that can be delivered from the osmotic pump over a sustained period of time.
- the decrease in loading capacity caused by the inclusion of a piston may result in a reduction of the amount of osmotic agent included in the osmotic pump, which, in turn, can work to reduce the period of time over which the osmotic pump can achieve a desired release rate or release rate profile of beneficial agent. Therefore, the need to include a piston in an osmotic pump may result in the simultaneous need to increase the size or volume of the capsule included in the osmotic pump in order to achieve delivery of beneficial agent at a desired release rate or release rate profile over a chosen period of time.
- an osmotic pump that includes a piston wherein the piston provides increased space efficiency.
- the piston design of such a device would allow the fabrication of an osmotic pump that includes a piston but can accommodate relatively more osmotic agent or more beneficial agent when compared to an osmotic pump of the same size and volume that incorporates a piston according to previous designs.
- an osmotic pump of given dimensions that includes a piston to accommodate relatively more beneficial agent or relatively more osmotic agent
- such a device would work to increase the amount of beneficial agent that can be delivered from the device, the period of time over which the beneficial agent is released, or both.
- the present invention provides an osmotic pump that includes a piston separating the osmotic agent and beneficial agent included in the pump.
- the piston included in an osmotic pump of the present invention works to provide improved space efficiency relative to previous designs.
- the present invention includes an osmotic pump that includes a capsule.
- the capsule is impermeable to liquids and has an interior for holding a beneficial agent.
- the interior of the capsule has an interior surface.
- An osmotic agent is located in the interior of the capsule.
- a semipermeable body is in liquid communication with the capsule and permits liquid to permeate through the semipermeable body to the osmotic agent.
- a piston is located within the interior of the liquid impermeable capsule. The piston is movable with respect to the interior surface of the capsule and defines a movable seal with the interior surface of the capsule. The movable seal defined by the piston separates the osmotic agent from the beneficial agent.
- the piston has at least one annular ring or rib that forms a seal between the piston and the interior surface of the capsule.
- the osmotic agent is located between the piston and the semipermeable body. The osmotic agent imbibes liquid from a surrounding environment through the semipermeable body to cause the piston to move and in turn cause delivery of the beneficial agent from the capsule.
- the present invention provides an osmotic pump that includes a piston, wherein the piston has a length to total width or diameter of about 1.1:1. This ratio allows for an increase in beneficial agent and/or osmotic agent payload without increasing the size of the capsule.
- the present invention includes a capsule and a piston having one or more annular rings or ribs (“ring,” “rings,” “rib,” and “ribs” are used interchangeably unless otherwise noted), wherein the one or more annular rings provided on the piston have a shallow profile that works to reduce the space for air entrapment during insertion of the piston into the capsule.
- a ring profile is obtained by the piston having a ratio of core-diameter-to-total-width-or-diameter of about 0.9:1.
- the osmotic pump of the present invention includes a piston having rings or ribs characterized by a shallow profile, the rings or ribs may be designed to reduce the springiness and linear compressibility of the piston.
- FIG. 1 is a cross-sectional view of an osmotic pump according to the present invention
- FIG. 2 is a cross-sectional view of a piston according to one embodiment of the present invention.
- FIG. 3 is an end view of a piston according to one embodiment of the present invention.
- the present invention provides a device for the delivery of a beneficial agent to a fluid environment of use that includes a volume-efficient piston that minimizes leakage between the beneficial agent and the osmotic agent and enables larger beneficial agent and/or Osmotic agent payloads.
- beneficial agent is intended to include beneficial agent(s), Optionally, in combination with pharmaceutically acceptable carriers and, optionally, additional ingredients such as antioxidants, stabilizing agents, etc.
- time to start-up of delivery is intended to mean the time from insertion into the fluid environment of use until the beneficial agent is actually delivered at a rate not less than approximately 70% of the intended steady-state rate.
- impermeable means that the material is sufficiently impermeable to environmental fluids, as well as ingredients contained within the dispensing device, such that the migration of such materials into or out of the device through the impermeable device is so low as to have substantially no adverse impact on the function of the device during the delivery period.
- semipermeable means that the material is permeable to external fluids but substantially impermeable to other ingredients contained within the dispensing device and the environment of use.
- the beneficial agent delivery devices of the present invention find use where the prolonged and controlled delivery of a beneficial agent is desired.
- the beneficial agent is susceptible to degradation if exposed to the environment of use prior to delivery.
- the delivery devices protect the agent from such exposure.
- the present invention relates to an osmotic pump 20 for delivering a beneficial agent 24 .
- the osmotic pump 20 includes a minimally compliant, volume-efficient piston 30 .
- the osmotic pump 20 also includes a capsule 22 that encloses the piston 30 and an osmotic agent 26 .
- the piston 30 is movable within the capsule 22 and defines a movable seal that substantially prevents the osmotic agent 26 and the beneficial agent 24 from adversely affecting one another.
- the piston 30 includes at least one annular ring or rib, such that when the piston is inserted into the capsule 22 , the ring or rib forms, along with the core of the pistons a fluid seal with the interior surface of the capsule 22 .
- a semipermeable body 28 is in liquid communication with the osmotic agent 26 and permits liquid to permeate through the semipermeable body 28 to the osmotic agent 26 .
- the osmotic agent 26 imbibes the liquid from a surrounding environment and causes the piston 30 to move, which, in turn, causes the beneficial agent 24 to be released from the osmotic pump 20 .
- the configuration of the osmotic pump 20 is one example of an osmotic delivery device and is not to be construed as limiting the present invention.
- the present invention is generally applicable to all osmotic delivery devices having any number of shapes, and to all such devices administered in any variety of methods, such as oral, ruminal, and implantable osmotic delivery techniques.
- the capsule 22 of the osmotic pump 20 encloses or contains the osmotic agent 26 and the piston body 32 .
- the capsule 22 includes a tubular or elongated and substantially cylindrical capsule 22 illustrated in FIG. 1 .
- the capsule 22 has a first opening 51 at a first end 50 and a second opening 53 at a second end 52 opposite the first end 50 .
- the capsule 22 also includes the semipermeable body 28 that obstructs, blocks, closes off, or plugs the first opening 51 in the capsule 22 to enclose the osmotic agent 26 and piston body 32 .
- the first opening 51 receives the semipermeable body 28 .
- the capsule 22 also includes a delivery port 44 located at the second end 52 of the capsule 22 .
- a delivery port 44 located at the second end 52 of the capsule 22 .
- beneficial agent 24 is delivered from the osmotic pump 20 , the beneficial agent is expelled through the delivery port 44 .
- the delivery port 44 may be an orifice formed by conventional techniques. Included among these methods are mechanical drilling, laser drilling, and molding.
- the capsule 22 will contain at least one such delivery port 44 and, in most configurations, one delivery port 44 will suffice. However, two or more delivery ports 44 may be present without departing from the present invention.
- the delivery port 44 may be formed in the capsule 22 itself, or may be formed in a separate and distinct plug-like member for insertion into the second opening 53 of the capsule 22 .
- the delivery port 44 can be a slit orifice, such as that disclosed in U.S. Pat. No. 5,997,527, the entire disclosure of which is hereby incorporated by reference, or a spiral orifice, such as that disclosed in U.S. Pat. No. 5,728,396, the entire disclosure of which is hereby incorporated by reference.
- the delivery port 44 is made of an inert and biocompatible material selected from, but not limited to, metals including, but not limited to, titanium, stainless steel, platinum and their alloys and cobalt-chromium alloys and the like, and polymers including, but not limited to, polyethylene, polypropylene, polycarbonate and polymethylmethacrylate and the like.
- the dimensions of the delivery port 44 in terms of both diameter and length will vary with the type of beneficial agent 24 , the rate at which the beneficial agent is to be delivered, and the environment into which it is to be delivered.
- the considerations involved in determining the optimum dimensions of the delivery port 44 for any particular capsule or beneficial agent 24 are the same as those for delivery ports or orifices of capsules in the prior art, and selection of the appropriate dimensions will be readily apparent to those skilled in the art.
- the capsule 22 is formed of a material that is sufficiently rigid to withstand expansion of an osmotic agent 26 without significant changes in size or shape.
- the capsule 22 is preferably substantially impermeable to fluids in the environment as well as to ingredients contained within the osmotic pump 20 such that the migration of such materials into or out of the capsule through the impermeable material of the capsule is so low as to have substantially no adverse impact on the function of the osmotic pump 20 .
- Materials that can be used for the capsule 22 are preferably sufficiently strong to ensure that the capsule will not leak, crack, break, or distort under stresses to which it would be subjected during implantation or under stresses due to the pressures generated during operation of the osmotic pump 20 .
- the capsule 22 can be formed of chemically inert and biocompatible, natural or synthetic materials that are known in the art.
- the capsule material is preferably a non-bioerodible material that can remain in a patient after use, such as titanium or a titanium alloy, and is largely impermeable to materials within and outside the capsule 22 .
- the material of the capsule 22 can alternatively be a bioerodible material that bioerodes in the environment after dispensing the beneficial agent.
- preferred materials for the capsule 22 are those acceptable for human implants.
- Materials suitable for construction of the capsule 22 include, but are not limited to, non-reactive polymers or biocompatible metals, alloys, or elastomers.
- the polymers include acrylonitrile polymers such as acrylonitrile-butadiene-styrene terpolymer, and the like; halogenated polymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, copolymer tetrafluoroethylene and hexafluoropropylene; polyimide; polysulfone; polycarbonate; polyethylene; polypropylene; polyvinylchloride-acrylic copolymer; polycarbonate-acrylonitrile-butadiene-styrene; polystyrene, and the like.
- Metallic materials useful for the capsule 22 include stainless steel, titanium, platinum, tantalum, gold, and their alloys, as well as gold-plated ferrous alloys, platinum-plated ferrous alloys, cobalt-chromium alloys and titanium nitride-coated stainless steel.
- Elastomers useful for the capsule 22 include fluorinated or perfluorinated rubbers (e.g., Viton®).
- the capsule 22 can be formed from any of the above-mentioned wall-forming materials by use of a mold, with the materials applied either Over the mold or inside the mold, depending on the mold configuration. Additionally, the capsule 22 can be formed by machining. Any of the wide variety of techniques known in the pharmaceutical industry can be used to form the capsule 22 .
- the interior of the capsule 22 receives the osmotic agent 26 , which in the embodiment of the present invention depicted in FIG. 1 is an osmotic tablet.
- the osmotic agent 26 specifically the osmotic tablet of the embodiment of the present invention illustrated in FIG. 1 , drives the osmotic flow of the osmotic pump 20 .
- the osmotic agent 26 need not be a tablet; it may be other conceivable shapes, textures, densities, and consistencies and still be within the confines of the present invention. Additionally, more than one osmotic tablet may be used to drive the osmotic flow of the osmotic pump 20 .
- the capsule 22 contains the osmotic agent 26 .
- the osmotic agent 26 is a liquid-attracting agent used to drive the flow of the beneficial agent 24 from the osmotic pump 20 .
- the osmotic agent 26 may be an osmagent, an osmopolymer, or a mixture of the two. Species that fall within the category of osmagent, i.e., the non-volatile species which are soluble in water and create the osmotic gradient driving the osmotic inflow of water, vary widely.
- Examples are well known in the art and include magnesium sulfate; magnesium chloride; potassium sulfate; sodium chloride; sodium sulfate; lithium sulfate; sodium phosphate; potassium phosphate; d-mannitol; sorbitol; inositol; urea; magnesium succinate; tartaric acid; raffinose and various monosaccharides; oligosaccharides and polysaccharides, such as sucrose, glucose, lactose, fructose, and dextran; as well as mixtures of any of these various species.
- osmopolymers that fall within the category of osmopolymer are hydrophilic polymers that swell upon contact with water, and these vary widely as well.
- Osmopolymers may be of plant or animal origin, or synthetic, and examples of osmopolymers are well known in the art.
- Examples include: poly(hydroxy-alkyl methacrylates) with molecular weight of 30,000 to 5,000,000; poly(vinylpyrrolidone) with molecular weight of 10,000 to 360,000; anionic and cationic hydrogels; polyelectrolyte complexes; poly(vinyl alcohol) having low acetate residual, optionally cross-linked with glyoxal, formaldehyde or glutaraldehyde and having a degree of polymerization of 200 to 30,000; a mixture of methyl cellulose, cross-linked agar and carboxymethylcellulose; a mixture of hydroxypropylmethylcellulose and sodium carboxymethylcellulose; polymers of N-vinyllactams; polyoxyethylene-polyoxypropylene gels; polyoxybutylene-polyethylene block copolymer gels; carob gum; polyacrylic gels; polyester gels; polyurea gels; polyether gels; polyamide gels; polypeptide gels; polyamino acid gels; polycellulo
- the osmotic agent 26 may be manufactured by a variety of techniques, many of which are known in the art.
- an osmotically active agent is prepared as solid or semi-solid formulations and pressed into pellets or tablets whose dimensions correspond to slightly less than the internal dimensions of the respective chambers that they will occupy in the capsule interior.
- the agent and other solid ingredients that may be included can be processed prior to the formation of the pellets by such procedures as ballmilling, calendaring, stirring or rollmilling to achieve a fine particle size and hence fairly uniform mixtures of each.
- the beneficial agent 24 may optionally include pharmaceutically acceptable carriers and/or additional ingredients such as antioxidants, stabilizing agents, permeation enhancers, etc.
- the beneficial agent 24 contained in the capsule 22 may include flowable compositions such as liquids, suspension, or slurries, which are typically poured into the capsule after the osmotic agent 26 and the piston 32 have been inserted in the capsule.
- Patients to whom beneficial agents 24 may be administered using systems of this invention include humans and animals.
- the invention is of particular interest for application to humans and household, sport, and farm animals, particularly mammals.
- the devices of the present invention may be implanted subcutaneously or intraperitoneally, wherein aqueous body fluids or liquids are available to activate the osmotic agent 26 .
- Devices of the invention may also be administered to the rumen of ruminant animals, in which embodiment the devices may further comprise a conventional density element for maintaining the device in the rumen for extended periods of time of up to 120 days or longer.
- the present invention applies to the administration of beneficial agents in general, which include any physiologically or pharmacologically active substance.
- the beneficial agent 24 may be any of the agents that are known to be delivered to the body of a human or an animal such as medicaments, vitamins, nutrients, or the like.
- Drug agents that may be delivered by the present invention include drugs which act on the peripheral nerves, adrenergic receptors, cholinergic receptors, the skeletal muscles, the cardiovascular system, smooth muscles, the blood circulatory system, synoptic sites, neuroeffector junctional sites, endocrine and hormone systems, the immunological system, the reproductive system, the skeletal system, autacoid systems, the alimentary and excretory systems, the histamine system and the central nervous system.
- Suitable agents may be selected from, for example, proteins, enzymes, hormones, polynucleotides, nucleoproteins, polysaccharides, glycoproteins, lipoproteins, polypeptides, steroids, analgesics, local anesthetics, antibiotic agents, anti-inflammatory corticosteroids, ocular drugs and synthetic analogs of these species.
- proteins and peptides which include, but are not limited to, insulin, colchicine, glucagon, thyroid-stimulating hormone, parathyroid and pituitary hormones, calcitonin, rennin, prolactin, corticotrophin, thyrotropic hormone, follicle-stimulating hormone, chorionic gonadotropin, gonadotropin-releasing hormone, bovine somatotropin, porcine somatotropin, oxytocin, vasopressin, GRF, somatostatin, lypressin, pancreozymin, luteinizing hormone, LHRH, LHRH agonists and antagonists, leuprolide, interferons (including alpha, beta, delta, and gamma), interleukins, growth hormones such as human growth hormone, bovine growth hormone and porcine growth hormone, fertility inhibitors such as the prostaglandins, fertility promoters, growth factors, coagulation factors, human pancreas hormone-releasing factor,
- the beneficial agent 24 can be present in this invention in a wide variety of chemical and physical forms, such as solids, liquids and slurries.
- the various forms may include uncharged molecules, molecular complexes, and pharmaceutically acceptable acid addition and base addition salts such as hydrochlorides, hydrobromides, acetate, sulfate, laurylate, oleate, and salicylate.
- acidic compounds salts of metals, amines or organic cations may be used.
- Derivatives such as esters, ethers and amides can also be used.
- a beneficial agent can be used alone or mixed with other agents.
- Osmotic pumps according to the present invention are also useful in environments outside of physiological or aqueous environments.
- the osmotic pump may be used in intravenous systems (attached to an IV pump or bag or to an IV bottle, for example) for delivering beneficial agents to an animal or human.
- Osmotic pumps, according to the present invention may also be utilized in blood oxygenators, kidney dialysis and electrophoresis, for example.
- the osmotic pump 20 also includes the aforementioned semipermeable body 28 , such as the semipermeable plug illustrated in FIG. 1 .
- the semipermeable body 28 is formed of a semipermeable material that allows liquid to pass from an exterior environment of use into the capsule 22 to cause the osmotic agent 26 to swell. However, the material forming the semipermeable body 28 is largely impermeable to the materials within the capsule and other ingredients within the environment of use. As illustrated in FIG. 1 , the semipermeable body 28 is in the shape of a plug that is inserted into the first opening 51 of the capsule 22 at the first end 50 , closing off the first opening 51 of the capsule 22 .
- the semipermeable body 28 may also be a membrane coating on the exterior surface of the capsule 22 or a sleeve or cap that slides over a portion of the capsule 22 to enclose the osmotic agent 26 .
- the osmotic pump 20 includes the semipermeable body 28 , such as the semipermeable plug illustrated.
- the semipermeable body 28 is typically cylindrically shaped and has means for sealing or ribs 46 extending outwardly from the outer surface of the semipermeable body 28 .
- the ribs 46 are the means by which the semipermeable body 28 operates like a cork or stopper, obstructing and plugging first opening 51 in the capsule 22 of the osmotic pump 20 as illustrated in FIG. 1 .
- the means for sealing may be the exemplary ribs 46 , or may be other configurations such as threads, a tight interference fit between an outer sealing surface of the plug and the capsule 22 , glue, adhesives, ridges, lips, or other devices which join the semipermeable body 28 with the capsule 22 to prevent leakage.
- the semipermeable body 28 is, therefore, intended for at least partial insertion into an opening of the capsule 22 , and the means for sealing keeps the environment of use from the inside of the capsule 22 and prevents liquid and other substances in the environment of use, besides the permeation liquid, from entering the osmotic pump 20 , while also preventing materials from the inside of the delivery system from leaking or escaping to the environment of use.
- the semipermeable body 28 is made from a semipermeable material.
- the semipermeable material of the body 28 allows liquids, especially water, to pass from an exterior environment of use into the capsule 22 to cause the osmotic agent 26 to swell.
- the semipermeable material forming the semipermeable body 28 is largely impermeable to the materials within the capsule 22 and other ingredients within the fluid environment.
- Semipermeable compositions suitable for the semipermeable body 28 are well known in the art, examples of which are disclosed in U.S. Pat. No. 4,874,388, the entire disclosure of which is incorporated herein by reference.
- Such possible semipermeable materials from which the body 28 can be made include, but are not limited to, for example, Hytrel® polyester elastomers (DuPont), cellulose esters, cellulose ethers and cellulose ester-ethers, water flux-enhanced ethylene-vinyl acetate copolymers, semipermeable membranes made by blending a rigid polymer with water-soluble low molecular weight compounds, and other semipermeable materials well known in the art.
- the above cellulosic polymers have a degree of substitution (“D.S.”) on the anhydroglucose unit, from greater than 0 up to 3 inclusive.
- degree of substitution or “D.S.” is meant the average number of hydroxyl groups originally present on the anhydroglucose unit comprising the cellulose polymer that are replaced by a substituting group.
- Representative materials include, but are not limited to, one selected from the group consisting of cellulose acylate, cellulose diacetate, cellulose triacetate, mono-, di-, and tricellulose alkanylates, mono-, di-, and tricellulose aroylates, and the like.
- Exemplary cellulosic polymers include cellulose acetate having a D.S.
- More specific cellulosic polymers include cellulose propionate having a D.S. of 1.8 and a propionyl content of 39.2% to 45% and a hydroxyl content of 2.8% to 5.4%; cellulose acetate butyrate having a D.S.
- cellulose acetate butyrate having an acetyl content of 2% to 29%, a butyryl content of 17% to 53% and a hydroxyl content of 0.5% to 4.7%; cellulose acetate butyrate having a D.S. of 1.8, and an acetate content of 4% average weight percent and a butyryl content of 51%; cellulose triacylates having a D.S.
- cellulose trivalerate such as cellulose trivalerate, cellulose trilaurate, cellulose tripalmitate, cellulose trisuccinate, and cellulose trioctanoate
- cellulose diacylates having a D.S. of 2.2 to 2.6 such as cellulose disuccinate, cellulose dipalmitate, cellulose dioctanoate, cellulose dipentate
- coesters of cellulose such as cellulose acetate butyrate and cellulose, cellulose acetate propionate, and the like.
- the semipermeable body 28 is polyurethane, polyetherblockamide (PEBAX, commercially available from ELF ATOCHEM, Inc.), injection-moldable thermoplastic polymers with some hydrophilicity such as ethylene vinyl alcohol (EVA).
- PEBAX polyetherblockamide
- EVA injection-moldable thermoplastic polymers with some hydrophilicity
- the composition of the semipermeable body 28 is permeable to the passage of external liquids such as water and biological liquids, and it is substantially impermeable to the passage of beneficial agents, osmopolymers, osmagents, and the like.
- the osmotic pump 20 also includes the movable piston 30 (shown in FIGS. 2 and 3 ).
- the piston 30 is a member that is matingly received by the hollow interior of the capsule 22 and moves when subjected to pressure from the osmotic agent 26 to displace or move the beneficial agent 24 .
- the piston 30 forms a movable seal with the interior surface of the capsule 22 .
- the movable seal formed by the piston 30 separates the osmotic agent 26 and the beneficial agent 24 such that the osmotic agent does not substantially leak or seep past the piston seal and adversely affect the function of the beneficial agent.
- the osmotic agent 26 is separated from the beneficial agent 24 by the movable piston 30 .
- the body 32 of the piston 30 is a substantially cylindrical member that is configured to fit in the capsule 22 in a sealing manner that allows the piston to slide within the capsule in the longitudinal direction of the capsule. That is, the exterior surface of the piston body 32 abuts against and slides relative to the interior cylindrical surface of the capsule 22 . Because the semipermeable body 28 is lodged within the first opening 51 , the piston also moves relative to the semipermeable body 28 .
- the piston body 32 includes annular ring-shaped protrusions or ribs 38 that define the movable or sliding seal with the inner surface of the capsule 22 .
- the ribs 38 are the most outwardly radial surface of the piston body 32 .
- the ribs 38 are the means by which the piston 30 forms a seal with the interior surface of the capsule 22 .
- the outermost radial diameter 39 of the piston body 32 illustrated in FIGS. 2 and 3 includes four ribs; other pistons, according to the present invention, may include one, two, three, or more ribs. Additionally, the piston body 32 need not include ribs.
- the exterior surface of the piston body can be entirely cylindrical such that the entire cylindrical exterior surface of the piston body affects a seal with the interior surface of the capsule 22 .
- ribs 38 are preferred as they effect a better movable seal with the interior surface of the capsule 22 , as compared to a piston body having an exterior surface that is entirely cylindrical.
- the number and size of ribs 38 on the piston body 32 are determined by the amount of friction and the redundancy of seals desired in the piston 30 .
- a cylindrical piston without ribs would increase the amount of friction between the piston 30 and the interior surface of the capsule 22 .
- a large amount of friction between the piston 30 and the interior surface of the capsule 22 could lead to increases in start-up delay in order for the piston to overcome the friction with the interior surface of the capsule.
- the friction between the piston 30 and the interior surface of the capsule 22 could also lead to pulsatile delivery of beneficial agent 24 from the device or to a slip-stick type of movement of the piston 30 . If zero-order release of beneficial agent 24 is desired, then pulsatile or slip-stick movement of the piston is unacceptable.
- the number of ribs 38 included on the piston body 32 is selected to provide a suitable seal between the osmotic agent 26 and the beneficial agent 24 during storage and operation of the osmotic pump 20 , while maintaining the magnitude of friction generated between the piston 32 and the interior surface of the capsule 22 at a level that allows delivery of the beneficial agent 24 at a desired rate or rate profile.
- the size and shape of the ribs 38 on the piston body 32 also play a role in the way the piston 30 moves in the capsule 22 , and the amount of sealing provided by the piston 30 .
- the diameter 39 of the piston core 60 is increased, the depth of valleys 40 or areas between the ribs 38 decrease.
- the valleys 40 are truncated, the space available for air to be entrapped during the process of inserting the piston 30 into the capsule 22 is reduced. Because air is compressible, air in the capsule 22 must be compressed before the beneficial agent 24 can begin to be delivered from the capsule 22 . Therefore, the less air that is entrapped between the ribs 38 of the piston body 32 , the shorter the start-up time.
- Truncation of the valleys 40 between the ribs 38 of a piston 30 of the present invention also works to reduce the springiness and the linear compressibility of the piston 30 .
- a reduction in the compressibility reduces the start-up time for delivery of beneficial agent 24 .
- truncation of the valleys 40 between the ribs 38 of the piston body 32 also makes the piston 30 easier to coat.
- Coating of the piston 30 may include, but is not limited to, coating done by known liquid-immersion and spray-coating processes. As the depth of the valleys 40 formed between ribs 38 included on a piston 30 increases, the likelihood of an incomplete or non-uniform coating also increases. In particular, as the depth of the valleys 40 formed between ribs 38 increases, the likelihood that the sides and bottom of the valley 40 will not be coated due to shadowing or obstruction by adjacent ribs 38 also increases.
- valleys 40 formed between the ribs 38 increase, the likelihood that a bubble of air will become entrapped therein during a coating process also increases. Therefore, truncation of the valleys 40 formed between ribs 38 included on a piston 30 of the present invention eases the task of providing the piston 30 with a uniform coating, where desired.
- the piston 30 in the present invention is designed to maximize the beneficial agent 24 and/or osmotic agent 26 payload. This means that the piston 30 of the present invention was reduced in size to allow for more beneficial agent 24 and/or osmotic agent 26 capacity without increasing the size of the capsule 22 .
- the piston 30 of the present invention is reduced in size, exhibiting a length-to-total-width ratio of about 1.1:1 without any increases in leakage past the piston 30 or change in zero-order delivery of the beneficial agent 24 .
- the ribs 38 of the piston body 32 of the present invention are also reduced in size.
- the piston 30 of the present invention has a core-diameter-to-total-diameter ratio of about 0.9:1.
- the piston 30 has a length of 6.00 millimeters (0.237 inches) and a total diameter of 5.50 millimeters (0.217 inches), giving a length-to-total-diameter ratio of 1.1:1.
- the piston 30 in this embodiment also has a core diameter 39 of 4.90 millimeters (0.193 inches), giving a core-diameter-to-total-diameter ratio of 0.89:1.
- the piston body 32 is preferably formed of an impermeable resilient and inert material.
- materials suitable for the piston body 32 are elastomeric materials including the non-reactive polymers listed above in reference to the materials for capsule 22 , as well as elastomers in general, such as polyurethanes and polyamides, chlorinated rubbers, fluorinated rubbers (such as Viton®), styrene-butadiene rubbers, and chloroprene rubbers.
- the piston body 32 is preferably injection molded. However, the piston body 32 may be fashioned by a different process. For example, the piston body 32 may also be made from extrusion, reaction injection molding, rotational molding, thermoforming, compression molding, and other known processes.
- the piston body 32 be substantially impervious to liquids, such that the osmotic agent 26 and the liquid that permeates through the semipermeable body 28 does not diffuse through the piston body 32 and affect the beneficial agent 24 located on the side of the piston 30 opposite from that of the osmotic agent 26 , and such that the beneficial agent 24 does not diffuse through the piston body 32 and affect the performance of the osmotic agent 26 .
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Medicinal Preparation (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
An osmotic pump having a minimally compliant, volume-efficient piston positioned within a capsule is provided. The capsule has an interior surface, a beneficial agent, and an osmotic agent. The piston is movable with respect to an interior surface of the capsule, and defines a movable seal with the interior surface of the capsule. The movable seal separates the osmotic agent from the beneficial agent. The piston has a length-to-total-diameter ratio of about 1.1:1 and a core-diameter-to-total-diameter ratio of about 0.9:1. The piston enables greater beneficial agent and/or osmotic agent payload without increasing the size of the capsule. The osmotic agent imbibes liquid from a surrounding environment through a semipermeable body to cause the piston to move and, in turn, cause delivery of the beneficial agent from the capsule.
Description
- This application is a continuation of application Ser. No. 11/219,960, filed Sep. 6, 2005, which will issue as U.S. Pat. No. 7,112,335, on Sep. 26, 2006, which is a continuation of U.S. patent application Ser. No. 10/606,407, filed Jun. 25, 2003, now U.S. Pat. No. 6,939,556, issued Sep. 6, 2005, which claims the priority of provisional application Ser. No. 60/392,004, filed Jun. 26, 2002, which is incorporated herein by reference.
- The present invention relates to osmotic systems for delivering beneficial agents. More particularly, the present invention relates to an osmotic pump having a minimally compliant, volume-efficient piston.
- Controlled delivery of beneficial agents, such as drugs, in the medical and veterinary fields, has been accomplished by a variety of methods. One method for controlled prolonged delivery of beneficial agents involves the use of osmotic delivery systems. These devices can be implanted to release beneficial agents in a controlled manner over a preselected time or administration period. In general, osmotic delivery systems operate by imbibing liquid from the outside environment and releasing corresponding amounts of the beneficial agent.
- A known osmotic delivery system, commonly referred to as an “osmotic pump,” generally includes some type of capsule or enclosure having a semipermeable portion that may selectively pass water into an interior of the capsule that contains a water-attracting osmotic agent. Often, the walls of the capsule included in known osmotic pumps are substantially impermeable to items within and outside the capsule and the semipermeable portion is formed as a plug of semipermeable material. The difference in osmolarity between the water-attracting agent and the exterior of the capsule causes water to pass through the semipermeable portion of the capsule, which, in turn, causes the beneficial agent to be delivered from the capsule through the delivery port. The water-attracting agent may be the beneficial agent delivered to the patient. However, in most cases, a separate osmotic agent is used specifically for its ability to draw water into the capsule.
- In some instances, a piston is required to separate the beneficial agent from the osmotic agent to prevent the osmotic agent from mixing with or contaminating the beneficial agent. Examples of systems that use a piston to separate the beneficial agent from the osmotic agent include U.S. Pat. Nos. 4,753,651; 4,874,388; 4,969,884; 5,030,216; 5,034,229; 5,137,727; 5,180,591; 5,209,746; 5,221,278; 5,234,424; 5,234,692; 5,308,348; 5,318,558; 5,456,679; 5,540,665; 5,690,952; 5,728,088; 5,728,396; 5,795,591; 5,861,166; 5,871,770; 5,985,305; 5,997,527; 6,132,420; 6,156,331; 6,217,906; 6,261,584; 6,287,295; and 6,395,292; and PCT publication WO 99/33446, the entire disclosures of each are herein incorporated by reference. Where the dimensions of the pistons included in the osmotic pumps claimed in the cited references are described, the ratio of length-to-total-width of the piston is typically lengthened 1:0:1. However, the cited references do not provide details regarding the ratio of the core of the pistons to the total diameter of the pistons used in these systems described therein. The structure of the capsules described in the cited references is such that the capsule does not expand significantly when the osmotic agent takes in water and expands. As the osmotic agent included in the systems described in the cited references expands, pressure causes the piston to move and the beneficial agent to be discharged through the delivery orifice at the same rate as the liquid, which is typically water, enters the osmotic agent by osmosis. The osmotic pumps described in the cited references may be designed to deliver a beneficial agent at a controlled constant rate, a varying rate, or in a pulsatile manner.
- A piston included in an osmotic pump necessarily occupies space within the device. Hence, if a piston is needed to separate the beneficial agent and the osmotic agent, and the size of the capsule included in an osmotic pump is not changed, the amount of beneficial agent or osmotic agent that can be held within the capsule decreases relative to an osmotic pump that has the same size capsule but lacks a piston. Such a decrease in capacity may work to reduce the net amount of beneficial agent that can be delivered from the osmotic pump over a sustained period of time. Alternatively, the decrease in loading capacity caused by the inclusion of a piston may result in a reduction of the amount of osmotic agent included in the osmotic pump, which, in turn, can work to reduce the period of time over which the osmotic pump can achieve a desired release rate or release rate profile of beneficial agent. Therefore, the need to include a piston in an osmotic pump may result in the simultaneous need to increase the size or volume of the capsule included in the osmotic pump in order to achieve delivery of beneficial agent at a desired release rate or release rate profile over a chosen period of time.
- Though simply increasing the size or volume of the capsule included in an osmotic pump to accommodate the extra volume occupied by the piston may appear to be a simple solution, such an approach is not without drawbacks. For instance, many osmotic pumps are destined for implantation in humans or animals, and it is highly desirable to decrease the size of such pumps as much as possible, while providing a device capable of delivering the chosen beneficial agent at a desired rate over a prolonged period of time. Additionally, it would be desirable to use one capsule size for multiple osmotic pump applications. With such a goal in mind, increasing the size of the capsule for those applications requiring a piston may be inexpedient, as it could require differently sized capsules to achieve delivery of the same amount of beneficial agent depending on whether or not the osmotic pump utilized a piston.
- It would be an improvement in the art, therefore, to provide an osmotic pump that includes a piston, wherein the piston provides increased space efficiency. Ideally, the piston design of such a device would allow the fabrication of an osmotic pump that includes a piston but can accommodate relatively more osmotic agent or more beneficial agent when compared to an osmotic pump of the same size and volume that incorporates a piston according to previous designs. By allowing an osmotic pump of given dimensions that includes a piston to accommodate relatively more beneficial agent or relatively more osmotic agent, such a device would work to increase the amount of beneficial agent that can be delivered from the device, the period of time over which the beneficial agent is released, or both.
- Generally speaking, the present invention provides an osmotic pump that includes a piston separating the osmotic agent and beneficial agent included in the pump. The piston included in an osmotic pump of the present invention works to provide improved space efficiency relative to previous designs.
- In one aspect, the present invention includes an osmotic pump that includes a capsule. The capsule is impermeable to liquids and has an interior for holding a beneficial agent. The interior of the capsule has an interior surface. An osmotic agent is located in the interior of the capsule. A semipermeable body is in liquid communication with the capsule and permits liquid to permeate through the semipermeable body to the osmotic agent. A piston is located within the interior of the liquid impermeable capsule. The piston is movable with respect to the interior surface of the capsule and defines a movable seal with the interior surface of the capsule. The movable seal defined by the piston separates the osmotic agent from the beneficial agent. The piston has at least one annular ring or rib that forms a seal between the piston and the interior surface of the capsule. The osmotic agent is located between the piston and the semipermeable body. The osmotic agent imbibes liquid from a surrounding environment through the semipermeable body to cause the piston to move and in turn cause delivery of the beneficial agent from the capsule.
- In another aspect, the present invention provides an osmotic pump that includes a piston, wherein the piston has a length to total width or diameter of about 1.1:1. This ratio allows for an increase in beneficial agent and/or osmotic agent payload without increasing the size of the capsule.
- In yet another aspect, the present invention includes a capsule and a piston having one or more annular rings or ribs (“ring,” “rings,” “rib,” and “ribs” are used interchangeably unless otherwise noted), wherein the one or more annular rings provided on the piston have a shallow profile that works to reduce the space for air entrapment during insertion of the piston into the capsule. Such a ring profile is obtained by the piston having a ratio of core-diameter-to-total-width-or-diameter of about 0.9:1. Where the osmotic pump of the present invention includes a piston having rings or ribs characterized by a shallow profile, the rings or ribs may be designed to reduce the springiness and linear compressibility of the piston.
- Other objects, advantages and features associated with the present invention will become readily apparent to those skilled in the art from the following detailed description. As will be realized, the invention is capable of modification in various obvious aspects, all without departing from the invention. Accordingly, the drawings and the description are to be regarded as illustrative in nature and not limitative.
- The invention will be described in greater detail with reference to the accompanying drawings in which like elements bear like reference numerals, and wherein:
-
FIG. 1 is a cross-sectional view of an osmotic pump according to the present invention; -
FIG. 2 is a cross-sectional view of a piston according to one embodiment of the present invention; and -
FIG. 3 is an end view of a piston according to one embodiment of the present invention. - The present invention provides a device for the delivery of a beneficial agent to a fluid environment of use that includes a volume-efficient piston that minimizes leakage between the beneficial agent and the osmotic agent and enables larger beneficial agent and/or Osmotic agent payloads.
- The term “beneficial agent” is intended to include beneficial agent(s), Optionally, in combination with pharmaceutically acceptable carriers and, optionally, additional ingredients such as antioxidants, stabilizing agents, etc.
- Use of the terms “time to start-up of delivery” is intended to mean the time from insertion into the fluid environment of use until the beneficial agent is actually delivered at a rate not less than approximately 70% of the intended steady-state rate.
- The term “impermeable” means that the material is sufficiently impermeable to environmental fluids, as well as ingredients contained within the dispensing device, such that the migration of such materials into or out of the device through the impermeable device is so low as to have substantially no adverse impact on the function of the device during the delivery period.
- The term “semipermeable” means that the material is permeable to external fluids but substantially impermeable to other ingredients contained within the dispensing device and the environment of use.
- The beneficial agent delivery devices of the present invention find use where the prolonged and controlled delivery of a beneficial agent is desired. In many cases, the beneficial agent is susceptible to degradation if exposed to the environment of use prior to delivery. The delivery devices protect the agent from such exposure.
- As shown in
FIG. 1 , the present invention relates to anosmotic pump 20 for delivering abeneficial agent 24. Theosmotic pump 20 includes a minimally compliant, volume-efficient piston 30. Theosmotic pump 20 also includes acapsule 22 that encloses thepiston 30 and anosmotic agent 26. Thepiston 30 is movable within thecapsule 22 and defines a movable seal that substantially prevents theosmotic agent 26 and thebeneficial agent 24 from adversely affecting one another. Thepiston 30 includes at least one annular ring or rib, such that when the piston is inserted into thecapsule 22, the ring or rib forms, along with the core of the pistons a fluid seal with the interior surface of thecapsule 22. Asemipermeable body 28 is in liquid communication with theosmotic agent 26 and permits liquid to permeate through thesemipermeable body 28 to theosmotic agent 26. Theosmotic agent 26 imbibes the liquid from a surrounding environment and causes thepiston 30 to move, which, in turn, causes thebeneficial agent 24 to be released from theosmotic pump 20. - The configuration of the
osmotic pump 20, according to the present invention illustrated inFIG. 1 , is one example of an osmotic delivery device and is not to be construed as limiting the present invention. The present invention is generally applicable to all osmotic delivery devices having any number of shapes, and to all such devices administered in any variety of methods, such as oral, ruminal, and implantable osmotic delivery techniques. - The
capsule 22 of theosmotic pump 20 encloses or contains theosmotic agent 26 and thepiston body 32. Thecapsule 22 includes a tubular or elongated and substantiallycylindrical capsule 22 illustrated inFIG. 1 . Thecapsule 22 has afirst opening 51 at afirst end 50 and asecond opening 53 at asecond end 52 opposite thefirst end 50. Thecapsule 22 also includes thesemipermeable body 28 that obstructs, blocks, closes off, or plugs thefirst opening 51 in thecapsule 22 to enclose theosmotic agent 26 andpiston body 32. Thus, thefirst opening 51 receives thesemipermeable body 28. - The
capsule 22 also includes adelivery port 44 located at thesecond end 52 of thecapsule 22. Asbeneficial agent 24 is delivered from theosmotic pump 20, the beneficial agent is expelled through thedelivery port 44. Thedelivery port 44 may be an orifice formed by conventional techniques. Included among these methods are mechanical drilling, laser drilling, and molding. Thecapsule 22 will contain at least onesuch delivery port 44 and, in most configurations, onedelivery port 44 will suffice. However, two ormore delivery ports 44 may be present without departing from the present invention. Thedelivery port 44 may be formed in thecapsule 22 itself, or may be formed in a separate and distinct plug-like member for insertion into thesecond opening 53 of thecapsule 22. Thedelivery port 44 can be a slit orifice, such as that disclosed in U.S. Pat. No. 5,997,527, the entire disclosure of which is hereby incorporated by reference, or a spiral orifice, such as that disclosed in U.S. Pat. No. 5,728,396, the entire disclosure of which is hereby incorporated by reference. - The
delivery port 44 is made of an inert and biocompatible material selected from, but not limited to, metals including, but not limited to, titanium, stainless steel, platinum and their alloys and cobalt-chromium alloys and the like, and polymers including, but not limited to, polyethylene, polypropylene, polycarbonate and polymethylmethacrylate and the like. - The dimensions of the
delivery port 44 in terms of both diameter and length will vary with the type ofbeneficial agent 24, the rate at which the beneficial agent is to be delivered, and the environment into which it is to be delivered. The considerations involved in determining the optimum dimensions of thedelivery port 44 for any particular capsule orbeneficial agent 24 are the same as those for delivery ports or orifices of capsules in the prior art, and selection of the appropriate dimensions will be readily apparent to those skilled in the art. - The
capsule 22 is formed of a material that is sufficiently rigid to withstand expansion of anosmotic agent 26 without significant changes in size or shape. Thecapsule 22 is preferably substantially impermeable to fluids in the environment as well as to ingredients contained within theosmotic pump 20 such that the migration of such materials into or out of the capsule through the impermeable material of the capsule is so low as to have substantially no adverse impact on the function of theosmotic pump 20. Materials that can be used for thecapsule 22 are preferably sufficiently strong to ensure that the capsule will not leak, crack, break, or distort under stresses to which it would be subjected during implantation or under stresses due to the pressures generated during operation of theosmotic pump 20. - The
capsule 22 can be formed of chemically inert and biocompatible, natural or synthetic materials that are known in the art. The capsule material is preferably a non-bioerodible material that can remain in a patient after use, such as titanium or a titanium alloy, and is largely impermeable to materials within and outside thecapsule 22. However, the material of thecapsule 22 can alternatively be a bioerodible material that bioerodes in the environment after dispensing the beneficial agent. Generally, preferred materials for thecapsule 22 are those acceptable for human implants. - Materials suitable for construction of the
capsule 22 include, but are not limited to, non-reactive polymers or biocompatible metals, alloys, or elastomers. The polymers include acrylonitrile polymers such as acrylonitrile-butadiene-styrene terpolymer, and the like; halogenated polymers such as polytetrafluoroethylene, polychlorotrifluoroethylene, copolymer tetrafluoroethylene and hexafluoropropylene; polyimide; polysulfone; polycarbonate; polyethylene; polypropylene; polyvinylchloride-acrylic copolymer; polycarbonate-acrylonitrile-butadiene-styrene; polystyrene, and the like. Metallic materials useful for thecapsule 22 include stainless steel, titanium, platinum, tantalum, gold, and their alloys, as well as gold-plated ferrous alloys, platinum-plated ferrous alloys, cobalt-chromium alloys and titanium nitride-coated stainless steel. Elastomers useful for thecapsule 22 include fluorinated or perfluorinated rubbers (e.g., Viton®). Thecapsule 22 can be formed from any of the above-mentioned wall-forming materials by use of a mold, with the materials applied either Over the mold or inside the mold, depending on the mold configuration. Additionally, thecapsule 22 can be formed by machining. Any of the wide variety of techniques known in the pharmaceutical industry can be used to form thecapsule 22. - The interior of the
capsule 22 receives theosmotic agent 26, which in the embodiment of the present invention depicted inFIG. 1 is an osmotic tablet. Theosmotic agent 26, specifically the osmotic tablet of the embodiment of the present invention illustrated inFIG. 1 , drives the osmotic flow of theosmotic pump 20. Theosmotic agent 26 need not be a tablet; it may be other conceivable shapes, textures, densities, and consistencies and still be within the confines of the present invention. Additionally, more than one osmotic tablet may be used to drive the osmotic flow of theosmotic pump 20. When theosmotic pump 20 is assembled, thecapsule 22 contains theosmotic agent 26. - The
osmotic agent 26 is a liquid-attracting agent used to drive the flow of thebeneficial agent 24 from theosmotic pump 20. Theosmotic agent 26 may be an osmagent, an osmopolymer, or a mixture of the two. Species that fall within the category of osmagent, i.e., the non-volatile species which are soluble in water and create the osmotic gradient driving the osmotic inflow of water, vary widely. Examples are well known in the art and include magnesium sulfate; magnesium chloride; potassium sulfate; sodium chloride; sodium sulfate; lithium sulfate; sodium phosphate; potassium phosphate; d-mannitol; sorbitol; inositol; urea; magnesium succinate; tartaric acid; raffinose and various monosaccharides; oligosaccharides and polysaccharides, such as sucrose, glucose, lactose, fructose, and dextran; as well as mixtures of any of these various species. - Species that fall within the category of osmopolymer are hydrophilic polymers that swell upon contact with water, and these vary widely as well. Osmopolymers may be of plant or animal origin, or synthetic, and examples of osmopolymers are well known in the art. Examples include: poly(hydroxy-alkyl methacrylates) with molecular weight of 30,000 to 5,000,000; poly(vinylpyrrolidone) with molecular weight of 10,000 to 360,000; anionic and cationic hydrogels; polyelectrolyte complexes; poly(vinyl alcohol) having low acetate residual, optionally cross-linked with glyoxal, formaldehyde or glutaraldehyde and having a degree of polymerization of 200 to 30,000; a mixture of methyl cellulose, cross-linked agar and carboxymethylcellulose; a mixture of hydroxypropylmethylcellulose and sodium carboxymethylcellulose; polymers of N-vinyllactams; polyoxyethylene-polyoxypropylene gels; polyoxybutylene-polyethylene block copolymer gels; carob gum; polyacrylic gels; polyester gels; polyurea gels; polyether gels; polyamide gels; polypeptide gels; polyamino acid gels; polycellulosic gels; carbopol acidic carboxy polymers having molecular weights of 250,000 to 4,000,000; Cyanamer polyacrylamides; cross-linked indene-maleic anhydride polymers; Good-Rite polyacrylic acids having molecular weights of 80,000 to 200,000; Polyox Polyethylene oxide polymers having molecular weights of 100,000 to 5,000,000; starch graft copolymers; and Aqua-Keeps acrylate polymer polysaccharides.
- The
osmotic agent 26 may be manufactured by a variety of techniques, many of which are known in the art. In one such technique, an osmotically active agent is prepared as solid or semi-solid formulations and pressed into pellets or tablets whose dimensions correspond to slightly less than the internal dimensions of the respective chambers that they will occupy in the capsule interior. Depending on the nature of the materials used, the agent and other solid ingredients that may be included can be processed prior to the formation of the pellets by such procedures as ballmilling, calendaring, stirring or rollmilling to achieve a fine particle size and hence fairly uniform mixtures of each. - The
beneficial agent 24 may optionally include pharmaceutically acceptable carriers and/or additional ingredients such as antioxidants, stabilizing agents, permeation enhancers, etc. In other embodiments of this invention, thebeneficial agent 24 contained in thecapsule 22 may include flowable compositions such as liquids, suspension, or slurries, which are typically poured into the capsule after theosmotic agent 26 and thepiston 32 have been inserted in the capsule. - Patients to whom
beneficial agents 24 may be administered using systems of this invention include humans and animals. The invention is of particular interest for application to humans and household, sport, and farm animals, particularly mammals. For the administration of beneficial agents, the devices of the present invention may be implanted subcutaneously or intraperitoneally, wherein aqueous body fluids or liquids are available to activate theosmotic agent 26. Devices of the invention may also be administered to the rumen of ruminant animals, in which embodiment the devices may further comprise a conventional density element for maintaining the device in the rumen for extended periods of time of up to 120 days or longer. - The present invention applies to the administration of beneficial agents in general, which include any physiologically or pharmacologically active substance. The
beneficial agent 24 may be any of the agents that are known to be delivered to the body of a human or an animal such as medicaments, vitamins, nutrients, or the like. - Drug agents that may be delivered by the present invention include drugs which act on the peripheral nerves, adrenergic receptors, cholinergic receptors, the skeletal muscles, the cardiovascular system, smooth muscles, the blood circulatory system, synoptic sites, neuroeffector junctional sites, endocrine and hormone systems, the immunological system, the reproductive system, the skeletal system, autacoid systems, the alimentary and excretory systems, the histamine system and the central nervous system. Suitable agents may be selected from, for example, proteins, enzymes, hormones, polynucleotides, nucleoproteins, polysaccharides, glycoproteins, lipoproteins, polypeptides, steroids, analgesics, local anesthetics, antibiotic agents, anti-inflammatory corticosteroids, ocular drugs and synthetic analogs of these species.
- Examples of drugs that may be delivered by devices according to this invention include, but are not limited to, prochlorperzine edisylate, ferrous sulfate, aminocaproic acid, mecamylamine hydrochloride, procainamide hydrochloride, amphetamine sulfate, methamphetamine hydrochloride, benzamphetamine hydrochloride, isoproterenol sulfate, phenmetrazine hydrochloride, bethanechol chloride, methacholine chloride, pilocarpine hydrochloride, atropine sulfate, scopolamine bromide, isopropamide iodide, tridihexethyl chloride, phenformin hydrochloride, methylphenidate hydrochloride, theophylline cholinate, cephalexin hydrochloride, diphenidol, meclizine hydrochloride, prochlorperazine maleate, phenoxybenzamine, thiethylperzine maleate, anisindone, diphenadione erythrityl tetranitrate, digoxin, isofluorphate, acetazolamide, methazolamide, bendroflumethiazide, chloropromaide, tolazamide, chlormadinone acetate, phenaglycodol, allopurinol, aluminum aspirin, methotrexate, acetyl sulfisoxazole, erythromycin, hydrocortisone, hydrocorticosterone acetate, cortisone acetate, dexamethasone and its derivatives such as betamethasone, triamcinolone, methyltestosterone, 17-β-Estradiol, ethinyl estradiol, ethinyl estradiol 3-methyl ether, prednisolone, 17-α-hydroxyprogesterone acetate, 19-nor-progesterone, norgestrel, norethindrone, norethisterone, norethiederone, progesterone, norgesterone, norethynodrel, aspirin, indomethacin, naproxen, fenoprofen, sulindac, indoprofen, nitroglycerin, isosorbide dinitrate, propranolol, timolol, atenolol, alprenolol, cimetidine, clonidine, imipramine, levodopa, chlorpromazine, methyldopa, dihydroxyphenylalanine, theophylline, calcium gluconate, ketoprofen, ibuprofen, cephalexin, erythromycin, haloperidol, zomepirac, ferrous lactate, vincamine, diazepam, phenoxybenzamine, diltiazem, milrinone, capropril, mandol, quanbenz, hydrochlorothiazide, ranitidine, flubiprofen, fenufen, fluprofen, tolmetin, alcofenac, mefenamic, flufenamic, difiuinal, nimodipine, nitrendipine, nisoldipine, nicardipine, felodipine, lidoflazine, tiapamil, gallopamil, amlodipine, mioflazine, lisinolpril, enalapril, enalaprilat, captopril, ramipril, famotidine, nizatidine, sucralfate, etintidine, tetratolol, minoxidil, chlordiazepoxide, diazepam, amitriptyline, and imipramine. Further examples are proteins and peptides which include, but are not limited to, insulin, colchicine, glucagon, thyroid-stimulating hormone, parathyroid and pituitary hormones, calcitonin, rennin, prolactin, corticotrophin, thyrotropic hormone, follicle-stimulating hormone, chorionic gonadotropin, gonadotropin-releasing hormone, bovine somatotropin, porcine somatotropin, oxytocin, vasopressin, GRF, somatostatin, lypressin, pancreozymin, luteinizing hormone, LHRH, LHRH agonists and antagonists, leuprolide, interferons (including alpha, beta, delta, and gamma), interleukins, growth hormones such as human growth hormone, bovine growth hormone and porcine growth hormone, fertility inhibitors such as the prostaglandins, fertility promoters, growth factors, coagulation factors, human pancreas hormone-releasing factor, analogs and derivatives of these compounds, and pharmaceutically acceptable salts of these compounds, or their analogs or derivatives.
- The
beneficial agent 24 can be present in this invention in a wide variety of chemical and physical forms, such as solids, liquids and slurries. On the molecular level, the various forms may include uncharged molecules, molecular complexes, and pharmaceutically acceptable acid addition and base addition salts such as hydrochlorides, hydrobromides, acetate, sulfate, laurylate, oleate, and salicylate. For acidic compounds, salts of metals, amines or organic cations may be used. Derivatives such as esters, ethers and amides can also be used. A beneficial agent can be used alone or mixed with other agents. - Osmotic pumps according to the present invention are also useful in environments outside of physiological or aqueous environments. For example, the osmotic pump may be used in intravenous systems (attached to an IV pump or bag or to an IV bottle, for example) for delivering beneficial agents to an animal or human. Osmotic pumps, according to the present invention, may also be utilized in blood oxygenators, kidney dialysis and electrophoresis, for example.
- The
osmotic pump 20 also includes the aforementionedsemipermeable body 28, such as the semipermeable plug illustrated inFIG. 1 . Thesemipermeable body 28 is formed of a semipermeable material that allows liquid to pass from an exterior environment of use into thecapsule 22 to cause theosmotic agent 26 to swell. However, the material forming thesemipermeable body 28 is largely impermeable to the materials within the capsule and other ingredients within the environment of use. As illustrated inFIG. 1 , thesemipermeable body 28 is in the shape of a plug that is inserted into thefirst opening 51 of thecapsule 22 at thefirst end 50, closing off thefirst opening 51 of thecapsule 22. Thesemipermeable body 28 may also be a membrane coating on the exterior surface of thecapsule 22 or a sleeve or cap that slides over a portion of thecapsule 22 to enclose theosmotic agent 26. - As shown in
FIG. 1 , theosmotic pump 20 includes thesemipermeable body 28, such as the semipermeable plug illustrated. Thesemipermeable body 28 is typically cylindrically shaped and has means for sealing orribs 46 extending outwardly from the outer surface of thesemipermeable body 28. Theribs 46 are the means by which thesemipermeable body 28 operates like a cork or stopper, obstructing and pluggingfirst opening 51 in thecapsule 22 of theosmotic pump 20 as illustrated inFIG. 1 . The means for sealing may be theexemplary ribs 46, or may be other configurations such as threads, a tight interference fit between an outer sealing surface of the plug and thecapsule 22, glue, adhesives, ridges, lips, or other devices which join thesemipermeable body 28 with thecapsule 22 to prevent leakage. Thesemipermeable body 28 is, therefore, intended for at least partial insertion into an opening of thecapsule 22, and the means for sealing keeps the environment of use from the inside of thecapsule 22 and prevents liquid and other substances in the environment of use, besides the permeation liquid, from entering theosmotic pump 20, while also preventing materials from the inside of the delivery system from leaking or escaping to the environment of use. - The
semipermeable body 28 is made from a semipermeable material. The semipermeable material of thebody 28 allows liquids, especially water, to pass from an exterior environment of use into thecapsule 22 to cause theosmotic agent 26 to swell. However, the semipermeable material forming thesemipermeable body 28 is largely impermeable to the materials within thecapsule 22 and other ingredients within the fluid environment. - Semipermeable compositions suitable for the
semipermeable body 28 are well known in the art, examples of which are disclosed in U.S. Pat. No. 4,874,388, the entire disclosure of which is incorporated herein by reference. Such possible semipermeable materials from which thebody 28 can be made include, but are not limited to, for example, Hytrel® polyester elastomers (DuPont), cellulose esters, cellulose ethers and cellulose ester-ethers, water flux-enhanced ethylene-vinyl acetate copolymers, semipermeable membranes made by blending a rigid polymer with water-soluble low molecular weight compounds, and other semipermeable materials well known in the art. The above cellulosic polymers have a degree of substitution (“D.S.”) on the anhydroglucose unit, from greater than 0 up to 3 inclusive. By, “degree of substitution” or “D.S.” is meant the average number of hydroxyl groups originally present on the anhydroglucose unit comprising the cellulose polymer that are replaced by a substituting group. Representative materials include, but are not limited to, one selected from the group consisting of cellulose acylate, cellulose diacetate, cellulose triacetate, mono-, di-, and tricellulose alkanylates, mono-, di-, and tricellulose aroylates, and the like. Exemplary cellulosic polymers include cellulose acetate having a D.S. up to 1 and an acetyl content up to 21%; cellulose acetate having a D.S. of 1 to 2 and an acetyl content of 21% to 35%; cellulose acetate having a D.S. of 2 to 3 and an acetyl content of 35% to 44.8%, and the like. More specific cellulosic polymers include cellulose propionate having a D.S. of 1.8 and a propionyl content of 39.2% to 45% and a hydroxyl content of 2.8% to 5.4%; cellulose acetate butyrate having a D.S. of 1.8 and an acetyl content of 13% to 15% and a butyryl content of 34% to 39%; cellulose acetate butyrate having an acetyl content of 2% to 29%, a butyryl content of 17% to 53% and a hydroxyl content of 0.5% to 4.7%; cellulose acetate butyrate having a D.S. of 1.8, and an acetate content of 4% average weight percent and a butyryl content of 51%; cellulose triacylates having a D.S. of 2.9 to 3 such as cellulose trivalerate, cellulose trilaurate, cellulose tripalmitate, cellulose trisuccinate, and cellulose trioctanoate; cellulose diacylates having a D.S. of 2.2 to 2.6 such as cellulose disuccinate, cellulose dipalmitate, cellulose dioctanoate, cellulose dipentate; coesters of cellulose such as cellulose acetate butyrate and cellulose, cellulose acetate propionate, and the like. - Other materials for the
semipermeable body 28 are polyurethane, polyetherblockamide (PEBAX, commercially available from ELF ATOCHEM, Inc.), injection-moldable thermoplastic polymers with some hydrophilicity such as ethylene vinyl alcohol (EVA). The composition of thesemipermeable body 28 is permeable to the passage of external liquids such as water and biological liquids, and it is substantially impermeable to the passage of beneficial agents, osmopolymers, osmagents, and the like. - The
osmotic pump 20 also includes the movable piston 30 (shown inFIGS. 2 and 3 ). Thepiston 30 is a member that is matingly received by the hollow interior of thecapsule 22 and moves when subjected to pressure from theosmotic agent 26 to displace or move thebeneficial agent 24. Thepiston 30 forms a movable seal with the interior surface of thecapsule 22. The movable seal formed by thepiston 30 separates theosmotic agent 26 and thebeneficial agent 24 such that the osmotic agent does not substantially leak or seep past the piston seal and adversely affect the function of the beneficial agent. Hence, theosmotic agent 26 is separated from thebeneficial agent 24 by themovable piston 30. - As illustrated in
FIGS. 2 and 3 , thebody 32 of thepiston 30 is a substantially cylindrical member that is configured to fit in thecapsule 22 in a sealing manner that allows the piston to slide within the capsule in the longitudinal direction of the capsule. That is, the exterior surface of thepiston body 32 abuts against and slides relative to the interior cylindrical surface of thecapsule 22. Because thesemipermeable body 28 is lodged within thefirst opening 51, the piston also moves relative to thesemipermeable body 28. - The
piston body 32 includes annular ring-shaped protrusions orribs 38 that define the movable or sliding seal with the inner surface of thecapsule 22. Theribs 38 are the most outwardly radial surface of thepiston body 32. Theribs 38 are the means by which thepiston 30 forms a seal with the interior surface of thecapsule 22. Thus, the outermostradial diameter 39 of thepiston body 32 illustrated inFIGS. 2 and 3 includes four ribs; other pistons, according to the present invention, may include one, two, three, or more ribs. Additionally, thepiston body 32 need not include ribs. For example, the exterior surface of the piston body can be entirely cylindrical such that the entire cylindrical exterior surface of the piston body affects a seal with the interior surface of thecapsule 22. However,ribs 38 are preferred as they effect a better movable seal with the interior surface of thecapsule 22, as compared to a piston body having an exterior surface that is entirely cylindrical. - The number and size of
ribs 38 on thepiston body 32 are determined by the amount of friction and the redundancy of seals desired in thepiston 30. A cylindrical piston without ribs would increase the amount of friction between thepiston 30 and the interior surface of thecapsule 22. A large amount of friction between thepiston 30 and the interior surface of thecapsule 22 could lead to increases in start-up delay in order for the piston to overcome the friction with the interior surface of the capsule. The friction between thepiston 30 and the interior surface of thecapsule 22 could also lead to pulsatile delivery ofbeneficial agent 24 from the device or to a slip-stick type of movement of thepiston 30. If zero-order release ofbeneficial agent 24 is desired, then pulsatile or slip-stick movement of the piston is unacceptable. The number ofribs 38 included on thepiston body 32 is selected to provide a suitable seal between theosmotic agent 26 and thebeneficial agent 24 during storage and operation of theosmotic pump 20, while maintaining the magnitude of friction generated between thepiston 32 and the interior surface of thecapsule 22 at a level that allows delivery of thebeneficial agent 24 at a desired rate or rate profile. - The size and shape of the
ribs 38 on thepiston body 32 also play a role in the way thepiston 30 moves in thecapsule 22, and the amount of sealing provided by thepiston 30. As thediameter 39 of thepiston core 60 is increased, the depth ofvalleys 40 or areas between theribs 38 decrease. As thevalleys 40 are truncated, the space available for air to be entrapped during the process of inserting thepiston 30 into thecapsule 22 is reduced. Because air is compressible, air in thecapsule 22 must be compressed before thebeneficial agent 24 can begin to be delivered from thecapsule 22. Therefore, the less air that is entrapped between theribs 38 of thepiston body 32, the shorter the start-up time. - Truncation of the
valleys 40 between theribs 38 of apiston 30 of the present invention also works to reduce the springiness and the linear compressibility of thepiston 30. A reduction in the compressibility reduces the start-up time for delivery ofbeneficial agent 24. - Where it is desired to provide an
osmotic pump 20 with acoated piston 30, truncation of thevalleys 40 between theribs 38 of thepiston body 32 also makes thepiston 30 easier to coat. Coating of thepiston 30 may include, but is not limited to, coating done by known liquid-immersion and spray-coating processes. As the depth of thevalleys 40 formed betweenribs 38 included on apiston 30 increases, the likelihood of an incomplete or non-uniform coating also increases. In particular, as the depth of thevalleys 40 formed betweenribs 38 increases, the likelihood that the sides and bottom of thevalley 40 will not be coated due to shadowing or obstruction byadjacent ribs 38 also increases. In addition, as the depth of thevalleys 40 formed between theribs 38 increases, the likelihood that a bubble of air will become entrapped therein during a coating process also increases. Therefore, truncation of thevalleys 40 formed betweenribs 38 included on apiston 30 of the present invention eases the task of providing thepiston 30 with a uniform coating, where desired. - The
piston 30 in the present invention is designed to maximize thebeneficial agent 24 and/orosmotic agent 26 payload. This means that thepiston 30 of the present invention was reduced in size to allow for morebeneficial agent 24 and/orosmotic agent 26 capacity without increasing the size of thecapsule 22. Thepiston 30 of the present invention is reduced in size, exhibiting a length-to-total-width ratio of about 1.1:1 without any increases in leakage past thepiston 30 or change in zero-order delivery of thebeneficial agent 24. Moreover, to reduce the possibility of air entrapment around theribs 38 of thepiston body 32, theribs 38 of thepiston body 32 of the present invention are also reduced in size. In particular, thepiston 30 of the present invention has a core-diameter-to-total-diameter ratio of about 0.9:1. - In one embodiment of the present invention, the
piston 30 has a length of 6.00 millimeters (0.237 inches) and a total diameter of 5.50 millimeters (0.217 inches), giving a length-to-total-diameter ratio of 1.1:1. Thepiston 30 in this embodiment also has acore diameter 39 of 4.90 millimeters (0.193 inches), giving a core-diameter-to-total-diameter ratio of 0.89:1. - The
piston body 32 is preferably formed of an impermeable resilient and inert material. In general, materials suitable for thepiston body 32 are elastomeric materials including the non-reactive polymers listed above in reference to the materials forcapsule 22, as well as elastomers in general, such as polyurethanes and polyamides, chlorinated rubbers, fluorinated rubbers (such as Viton®), styrene-butadiene rubbers, and chloroprene rubbers. - The
piston body 32 is preferably injection molded. However, thepiston body 32 may be fashioned by a different process. For example, thepiston body 32 may also be made from extrusion, reaction injection molding, rotational molding, thermoforming, compression molding, and other known processes. - It is preferable that the
piston body 32 be substantially impervious to liquids, such that theosmotic agent 26 and the liquid that permeates through thesemipermeable body 28 does not diffuse through thepiston body 32 and affect thebeneficial agent 24 located on the side of thepiston 30 opposite from that of theosmotic agent 26, and such that thebeneficial agent 24 does not diffuse through thepiston body 32 and affect the performance of theosmotic agent 26. - While the invention has been described in detail with reference to a preferred embodiment thereof, it will be apparent to one skilled in the art that various changes can be made and equivalents employed without departing from the spirit and scope of the invention.
Claims (28)
1. An osmotic delivery system comprising:
a piston having a length to overall diameter ratio not greater than about 1.1:1;
an osmotic agent; and
an enclosure having an interior holding the piston and the osmotic agent, the piston being movable with respect to the enclosure.
2. The osmotic delivery system according to claim 1 , wherein the interior of the enclosure includes an interior surface, the piston abutting against the interior surface.
3. The osmotic delivery system according to claim 1 , further comprising a semipermeable body in liquid communication with the osmotic agent and within the enclosure.
4. The osmotic delivery system according to claim 1 , wherein the enclosure is fluid impermeable.
5. The osmotic delivery system according to claim 3 , wherein the osmotic agent is located between the semipermeable body and the piston.
6. The osmotic delivery system according to claim 1 , further comprising a beneficial agent located in the interior of the enclosure, the beneficial agent being delivered from the enclosure when the piston moves.
7. The osmotic delivery system according to claim 1 , wherein the piston is fluid impermeable.
8. The osmotic delivery system according to claim 1 , wherein the piston includes at least one rib for effecting a movable seal with the enclosure.
9. The osmotic delivery system according to claim 1 , further comprising a beneficial agent located in the interior of the enclosure, the piston defining a movable seal that separates the osmotic agent from the beneficial agent.
10. The osmotic delivery system according to claim 9 , wherein the enclosure includes a cylindrical tube.
11. The osmotic delivery system according to claim 10 , wherein the cylindrical tube includes an opening and further includes a semipermeable body within the opening.
12. The osmotic delivery system according to claim 9 , wherein the osmotic agent includes a tablet.
13. An osmotic delivery system comprising:
a piston having a core diameter to overall diameter ratio not greater than about 0.9:1;
an osmotic agent; and
an enclosure having an interior holding the piston and the osmotic agent, the piston being movable with respect to the enclosure.
14. The osmotic delivery system according to claim 13 , wherein the interior of the enclosure includes an interior surface, the piston abutting against the interior surface.
15. The osmotic delivery system according to claim 13 , further comprising a semipermeable body in liquid communication with the osmotic agent and within the enclosure.
16. The osmotic delivery system according to claim 13 , wherein the enclosure is fluid impermeable.
17. The osmotic delivery system according to claim 15 , wherein the osmotic agent is located between the semipermeable body and the piston.
18. The osmotic delivery system according to claim 13 , further comprising a beneficial agent located in the interior of the enclosure, the beneficial agent being delivered from the enclosure when the piston moves.
19. The osmotic delivery system according to claim 13 , wherein the piston is fluid impermeable.
20. The osmotic delivery system according to claim 13 , wherein the piston includes at least one rib for effecting a movable seal with the enclosure.
21. The osmotic delivery system according to claim 13 , further comprising a beneficial agent located in the interior of the enclosure, the piston defining a movable seal that separates the osmotic agent from the beneficial agent.
22. The osmotic delivery system according to claim 21 , wherein the enclosure includes a cylindrical tube.
23. The osmotic delivery system according to claim 22 , wherein the cylindrical tube includes an opening and further includes a semipermeable body within the opening.
24. The osmotic delivery system according to claim 21 , wherein the osmotic agent includes a tablet.
25. An osmotic delivery system comprising:
a capsule having a tubular interior, the tubular interior having an interior surface;
a semipermeable body located at least partially within the tubular interior;
an osmotic agent located between the semipermeable body and the piston;
a beneficial agent located within the tubular interior; and
a piston located within the tubular interior, the piston having a length to overall diameter ratio less than about 1.1:1, the piston separating the beneficial agent from the osmotic agent, and being movable with respect to the interior surface of the tubular interior and with respect to the semipermeable body.
26. The osmotic delivery system according to claim 25 , wherein the piston includes at least one rib.
27. An osmotic delivery system comprising:
a capsule having a tubular interior, the tubular interior having an interior surface;
a semipermeable body located at least partially within the tubular interior;
an osmotic agent located between the semipermeable body and the piston;
a beneficial agent located within the tubular interior; and
a piston located within the tubular interior, the piston having a core diameter to overall diameter ratio less than about 0.9:1, the piston separating the beneficial agent from the osmotic agent, and being movable with respect to the interior surface of the tubular interior and with respect to the semipermeable body.
28. The osmotic delivery system according to claim 27 , wherein the piston includes at least one rib.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/526,983 US20070088337A1 (en) | 2002-06-26 | 2006-09-26 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39200402P | 2002-06-26 | 2002-06-26 | |
US10/606,407 US6939556B2 (en) | 2002-06-26 | 2003-06-25 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
US11/219,960 US7112335B2 (en) | 2002-06-26 | 2005-09-06 | Minimally compliant, volume-efficient piston for osmotic drug delivery systems |
US11/526,983 US20070088337A1 (en) | 2002-06-26 | 2006-09-26 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/219,960 Continuation US7112335B2 (en) | 2002-06-26 | 2005-09-06 | Minimally compliant, volume-efficient piston for osmotic drug delivery systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070088337A1 true US20070088337A1 (en) | 2007-04-19 |
Family
ID=30000792
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/606,407 Expired - Lifetime US6939556B2 (en) | 2002-06-26 | 2003-06-25 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
US11/219,960 Expired - Lifetime US7112335B2 (en) | 2002-06-26 | 2005-09-06 | Minimally compliant, volume-efficient piston for osmotic drug delivery systems |
US11/526,983 Abandoned US20070088337A1 (en) | 2002-06-26 | 2006-09-26 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/606,407 Expired - Lifetime US6939556B2 (en) | 2002-06-26 | 2003-06-25 | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
US11/219,960 Expired - Lifetime US7112335B2 (en) | 2002-06-26 | 2005-09-06 | Minimally compliant, volume-efficient piston for osmotic drug delivery systems |
Country Status (20)
Country | Link |
---|---|
US (3) | US6939556B2 (en) |
EP (1) | EP1551493B1 (en) |
JP (1) | JP4485945B2 (en) |
KR (1) | KR101046903B1 (en) |
CN (1) | CN100453130C (en) |
AT (1) | ATE376854T1 (en) |
AU (1) | AU2003256308B2 (en) |
BR (1) | BR0312429A (en) |
CA (1) | CA2490544C (en) |
DE (1) | DE60317225T2 (en) |
EC (1) | ECSP055578A (en) |
ES (1) | ES2295642T3 (en) |
HK (1) | HK1080402A1 (en) |
IL (1) | IL165975A (en) |
MX (1) | MXPA05000224A (en) |
NO (1) | NO20050368L (en) |
NZ (1) | NZ537628A (en) |
TW (1) | TW200531709A (en) |
WO (1) | WO2004002565A1 (en) |
ZA (1) | ZA200500744B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150314070A1 (en) * | 2012-10-12 | 2015-11-05 | Eli Lilly And Company | Chemical Engines and Methods for Their Use, Especially in the Injection of Highly Viscous Fluids |
US11925790B2 (en) | 2017-02-17 | 2024-03-12 | Eli Lilly And Company | Processes and devices for delivery of fluid by chemical reaction |
US12023470B2 (en) | 2017-09-08 | 2024-07-02 | Eli Lilly And Company | System for controlling gas generation within a drug delivery device |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY125870A (en) * | 1997-07-25 | 2006-08-30 | Alza Corp | Osmotic delivery system flow modulator apparatus and method |
US7258869B1 (en) | 1999-02-08 | 2007-08-21 | Alza Corporation | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicle |
US7919109B2 (en) | 1999-02-08 | 2011-04-05 | Intarcia Therapeutics, Inc. | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles |
JP2006512370A (en) * | 2002-12-19 | 2006-04-13 | アルザ・コーポレーション | A stable non-aqueous single phase gel and its formulation for delivery from an implantable device |
US7731947B2 (en) * | 2003-11-17 | 2010-06-08 | Intarcia Therapeutics, Inc. | Composition and dosage form comprising an interferon particle formulation and suspending vehicle |
JP2006521897A (en) * | 2003-03-31 | 2006-09-28 | アルザ・コーポレーション | Osmotic pump with means for dissipating internal pressure |
MXPA05010604A (en) * | 2003-03-31 | 2005-11-23 | Alza Corp | Osmotic delivery system and method for decreasing start-up times for osmotic delivery systems. |
RU2006119632A (en) * | 2003-11-06 | 2007-12-20 | Алза Корпорейшн (Us) | MODULAR ABSORBING SPEED LIMITER FOR USE WITH AN IMPLANTED OSMOSIS PUMP |
US20050266087A1 (en) * | 2004-05-25 | 2005-12-01 | Gunjan Junnarkar | Formulations having increased stability during transition from hydrophobic vehicle to hydrophilic medium |
US7619007B2 (en) | 2004-11-23 | 2009-11-17 | Adamas Pharmaceuticals, Inc. | Method and composition for administering an NMDA receptor antagonist to a subject |
WO2006058059A2 (en) | 2004-11-23 | 2006-06-01 | Neuromolecular Pharmaceuticals, Inc. | Composition comprising a sustained release coating or matrix and an nmda receptor antagonist, method for administration such nmda antagonist to a subject |
EP1845968A2 (en) | 2004-11-24 | 2007-10-24 | Neuromolecular Pharmaceuticals, Inc | Composition comprising an nmda receptor antagonist and levodopa and use thereof for treating neurological disease |
US11246913B2 (en) | 2005-02-03 | 2022-02-15 | Intarcia Therapeutics, Inc. | Suspension formulation comprising an insulinotropic peptide |
WO2006083761A2 (en) | 2005-02-03 | 2006-08-10 | Alza Corporation | Solvent/polymer solutions as suspension vehicles |
EP2361630A1 (en) * | 2005-02-03 | 2011-08-31 | Intarcia Therapeutics, Inc | Implantable drug delivery device comprising particles and an osmotic pump |
US7959938B2 (en) * | 2005-03-15 | 2011-06-14 | Intarcia Therapeutics, Inc. | Polyoxaester suspending vehicles for use with implantable delivery systems |
MX2007012374A (en) | 2005-04-06 | 2008-02-22 | Adamas Pharmaceuticals Inc | Methods and compositions for treatment of cns disorders. |
WO2007044910A1 (en) * | 2005-10-13 | 2007-04-19 | Duke University | Compositions for the treatment and prevention of heart disease and methods of using same |
KR101106510B1 (en) | 2006-05-30 | 2012-01-20 | 인타르시아 세라퓨틱스 인코포레이티드 | Two-piece, internal-channel osmotic delivery system flow modulator |
AU2007284759B2 (en) | 2006-08-09 | 2010-10-28 | Intarcia Therapeutics, Inc. | Osmotic delivery systems and piston assemblies |
RU2440097C2 (en) | 2007-04-23 | 2012-01-20 | Интарсия Терапьютикс, Инк. | Method of treating insulin-independent diabetes and obesity, osmotic delivery system and method for making it |
US8105261B2 (en) * | 2007-07-02 | 2012-01-31 | Cardiac Pacemakers, Inc. | Osmotic devices and methods for diuretic therapy |
US8394644B2 (en) | 2007-11-08 | 2013-03-12 | Honeywell International Inc. | Microfluidic osmotic pump |
DK2240155T3 (en) | 2008-02-13 | 2012-09-17 | Intarcia Therapeutics Inc | Devices, formulations and methods for the delivery of several beneficial agents |
NZ592113A (en) * | 2008-10-15 | 2012-04-27 | Intarcia Therapeutics Inc | Highly concentrated drug particles, formulations, suspensions and uses thereof |
US10543166B2 (en) * | 2009-06-26 | 2020-01-28 | Taris Biomedical Llc | Implantable drug delivery devices and methods of making the same |
EP3735944A1 (en) | 2009-09-28 | 2020-11-11 | Intarcia Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
CN102781259A (en) | 2009-09-30 | 2012-11-14 | 加利福尼亚大学董事会 | Cofactors and methods for use for individuals |
CA2782556C (en) | 2009-12-02 | 2018-03-27 | Adamas Pharmaceuticals, Inc. | Amantadine compositions and methods of use |
US20120208755A1 (en) | 2011-02-16 | 2012-08-16 | Intarcia Therapeutics, Inc. | Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers |
CN108261547A (en) | 2011-07-15 | 2018-07-10 | 纽斯尔特科学公司 | For adjusting the composition of metabolic pathway and method |
US9198454B2 (en) | 2012-03-08 | 2015-12-01 | Nusirt Sciences, Inc. | Compositions, methods, and kits for regulating energy metabolism |
US9943517B2 (en) | 2012-11-13 | 2018-04-17 | Nusirt Sciences, Inc. | Compositions and methods for increasing energy metabolism |
WO2014113404A1 (en) | 2013-01-15 | 2014-07-24 | Nusirt Sciences, Inc. | Treating pulmonary conditions |
EP2964310A1 (en) * | 2013-03-05 | 2016-01-13 | TARIS Biomedical LLC | Drug delivery devices and methods for controlled drug release through device orifice |
JP6550370B2 (en) | 2013-03-15 | 2019-07-24 | ニューサート サイエンシーズ, インコーポレイテッド | Leucine and Nicotinic Acid to Reduce Lipid Levels |
US10154971B2 (en) | 2013-06-17 | 2018-12-18 | Adamas Pharma, Llc | Methods of administering amantadine |
EP3110507B1 (en) | 2014-02-27 | 2020-11-18 | NuSirt Sciences, Inc. | Compositions and methods for the reduction or prevention of hepatic steatosis |
US9889085B1 (en) | 2014-09-30 | 2018-02-13 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
MA44390A (en) | 2015-06-03 | 2019-01-23 | Intarcia Therapeutics Inc | IMPLANT PLACEMENT AND REMOVAL SYSTEMS |
PL3370705T3 (en) | 2015-11-05 | 2022-08-01 | The General Hospital Corporation | Intrathecal delivery of nucleic acid sequences encoding abcd1 for treatment of adrenomyeloneuropathy |
EP3397253A1 (en) | 2015-12-30 | 2018-11-07 | Adamas Pharmaceuticals, Inc. | Methods and compositions for the treatment of seizure-related disorders |
WO2017200943A1 (en) | 2016-05-16 | 2017-11-23 | Intarcia Therapeutics, Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
USD840030S1 (en) | 2016-06-02 | 2019-02-05 | Intarcia Therapeutics, Inc. | Implant placement guide |
USD860451S1 (en) | 2016-06-02 | 2019-09-17 | Intarcia Therapeutics, Inc. | Implant removal tool |
US10406336B2 (en) | 2016-08-03 | 2019-09-10 | Neil S. Davey | Adjustable rate drug delivery implantable device |
MX2019004476A (en) | 2016-10-20 | 2019-09-23 | Peptron Inc | Methods of delivering a neuroprotective polypeptide to the central nervous system. |
IL267736B2 (en) | 2017-01-03 | 2024-03-01 | Intarcia Therapeutics Inc | Methods comprising continuous administration of a glp-1 receptor agonist and co-adminstration of a drug |
KR20190126335A (en) | 2017-03-08 | 2019-11-11 | 인타르시아 세라퓨틱스 인코포레이티드 | Apparatus and Methods for Administering Nausea-Inducing Compounds from Drug Delivery Devices |
WO2018200885A1 (en) | 2017-04-26 | 2018-11-01 | Neurocentria, Inc. | Magnesium compositions and methods of use |
USD933219S1 (en) | 2018-07-13 | 2021-10-12 | Intarcia Therapeutics, Inc. | Implant removal tool and assembly |
US20210213263A1 (en) * | 2018-08-23 | 2021-07-15 | Baywind Bioventures | Capsule device for delivery of active agent to gastrointestinal tract |
WO2020077129A1 (en) | 2018-10-11 | 2020-04-16 | Intarcia Therapeutics, Inc. | Human amylin analog polypeptides and methods of use |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4558888A (en) * | 1983-09-19 | 1985-12-17 | Minnesota Mining And Manufacturing Company | Strip of binding tape |
US4753651A (en) * | 1982-08-30 | 1988-06-28 | Alza Corporation | Self-driven pump |
US4765989A (en) * | 1983-05-11 | 1988-08-23 | Alza Corporation | Osmotic device for administering certain drugs |
US4874388A (en) * | 1987-06-25 | 1989-10-17 | Alza Corporation | Multi-layer delivery system |
US4969884A (en) * | 1988-12-28 | 1990-11-13 | Alza Corporation | Osmotically driven syringe |
US5030216A (en) * | 1989-12-15 | 1991-07-09 | Alza Corporation | Osmotically driven syringe |
US5034229A (en) * | 1988-12-13 | 1991-07-23 | Alza Corporation | Dispenser for increasing feed conversion of hog |
US5137727A (en) * | 1991-06-12 | 1992-08-11 | Alza Corporation | Delivery device providing beneficial agent stability |
US5180591A (en) * | 1990-07-11 | 1993-01-19 | Alza Corporation | Delivery device with a protective sleeve |
US5209746A (en) * | 1992-02-18 | 1993-05-11 | Alza Corporation | Osmotically driven delivery devices with pulsatile effect |
US5221278A (en) * | 1992-03-12 | 1993-06-22 | Alza Corporation | Osmotically driven delivery device with expandable orifice for pulsatile delivery effect |
US5234424A (en) * | 1988-12-28 | 1993-08-10 | Alza Corporation | Osmotically driven syringe |
US5234692A (en) * | 1990-07-11 | 1993-08-10 | Alza Corporation | Delivery device with a protective sleeve |
US5260069A (en) * | 1992-11-27 | 1993-11-09 | Anda Sr Pharmaceuticals Inc. | Pulsatile particles drug delivery system |
US5308348A (en) * | 1992-02-18 | 1994-05-03 | Alza Corporation | Delivery devices with pulsatile effect |
US5324280A (en) * | 1990-04-02 | 1994-06-28 | Alza Corporation | Osmotic dosage system for delivering a formulation comprising liquid carrier and drug |
US5445829A (en) * | 1989-05-05 | 1995-08-29 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US5456679A (en) * | 1992-02-18 | 1995-10-10 | Alza Corporation | Delivery devices with pulsatile effect |
US5531736A (en) * | 1991-01-30 | 1996-07-02 | Alza Corporation | Osmotic device for delayed delivery of agent |
US5540665A (en) * | 1994-01-31 | 1996-07-30 | Alza Corporation | Gas driven dispensing device and gas generating engine therefor |
US5580578A (en) * | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5690952A (en) * | 1995-06-07 | 1997-11-25 | Judy A. Magruder et al. | Implantable system for delivery of fluid-sensitive agents to animals |
US5728088A (en) * | 1988-12-13 | 1998-03-17 | Alza Corporation | Osmotic system for delivery of fluid-sensitive somatotropins to bovine animals |
US5728396A (en) * | 1996-02-02 | 1998-03-17 | Alza Corporation | Sustained delivery of leuprolide using an implantable system |
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
US5861166A (en) * | 1991-03-12 | 1999-01-19 | Alza Corporation | Delivery device providing beneficial agent stability |
US5997527A (en) * | 1997-03-24 | 1999-12-07 | Alza Corporation | Self adjustable exit port |
US6132420A (en) * | 1996-02-02 | 2000-10-17 | Alza Corporation | Osmotic delivery system and method for enhancing start-up and performance of osmotic delivery systems |
US6156331A (en) * | 1996-02-02 | 2000-12-05 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6261584B1 (en) * | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6287295B1 (en) * | 1997-07-25 | 2001-09-11 | Alza Corporation | Osmotic delivery system, osmotic delivery system semimpermeable body assembly, and method for controlling delivery rate of beneficial agents from osmotic delivery systems |
US6395292B2 (en) * | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6419952B2 (en) * | 1998-12-17 | 2002-07-16 | Alza Corporation | Conversion of liquid filled gelatin capsules into controlled release systems by multiple coatings |
US20020197235A1 (en) * | 2000-11-03 | 2002-12-26 | Moran Stanford Mark | Method for short-term and long-term drug dosimetry |
US6840931B2 (en) * | 1997-07-25 | 2005-01-11 | Alza Corporation | Osmotic delivery system flow modulator apparatus and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2085662U (en) * | 1991-03-29 | 1991-10-02 | 毕勇 | Productive device for "osmotic pump" of medicines |
EP0664118B1 (en) | 1991-10-04 | 1999-08-25 | Yoshitomi Pharmaceutical Industries, Ltd. | Sustained-release tablet |
US5458888A (en) * | 1994-03-02 | 1995-10-17 | Andrx Pharmaceuticals, Inc. | Controlled release tablet formulation |
AU1828599A (en) | 1997-12-29 | 1999-07-19 | Alza Corporation | Osmotic delivery system with membrane plug retention mechanism |
-
2003
- 2003-06-25 KR KR1020047021083A patent/KR101046903B1/en active IP Right Grant
- 2003-06-25 ES ES03762060T patent/ES2295642T3/en not_active Expired - Lifetime
- 2003-06-25 JP JP2004517856A patent/JP4485945B2/en not_active Expired - Lifetime
- 2003-06-25 AU AU2003256308A patent/AU2003256308B2/en not_active Ceased
- 2003-06-25 NZ NZ537628A patent/NZ537628A/en not_active IP Right Cessation
- 2003-06-25 DE DE60317225T patent/DE60317225T2/en not_active Expired - Lifetime
- 2003-06-25 CN CNB038185156A patent/CN100453130C/en not_active Expired - Fee Related
- 2003-06-25 WO PCT/US2003/020130 patent/WO2004002565A1/en active IP Right Grant
- 2003-06-25 CA CA2490544A patent/CA2490544C/en not_active Expired - Fee Related
- 2003-06-25 BR BR0312429-0A patent/BR0312429A/en not_active IP Right Cessation
- 2003-06-25 AT AT03762060T patent/ATE376854T1/en not_active IP Right Cessation
- 2003-06-25 EP EP03762060A patent/EP1551493B1/en not_active Expired - Lifetime
- 2003-06-25 US US10/606,407 patent/US6939556B2/en not_active Expired - Lifetime
- 2003-06-25 MX MXPA05000224A patent/MXPA05000224A/en active IP Right Grant
-
2004
- 2004-03-17 TW TW093107021A patent/TW200531709A/en unknown
- 2004-12-23 IL IL165975A patent/IL165975A/en unknown
-
2005
- 2005-01-24 NO NO20050368A patent/NO20050368L/en not_active Application Discontinuation
- 2005-01-26 EC EC2005005578A patent/ECSP055578A/en unknown
- 2005-09-06 US US11/219,960 patent/US7112335B2/en not_active Expired - Lifetime
-
2006
- 2006-01-11 HK HK06100435A patent/HK1080402A1/en not_active IP Right Cessation
- 2006-01-25 ZA ZA200500744A patent/ZA200500744B/en unknown
- 2006-09-26 US US11/526,983 patent/US20070088337A1/en not_active Abandoned
Patent Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753651A (en) * | 1982-08-30 | 1988-06-28 | Alza Corporation | Self-driven pump |
US4765989A (en) * | 1983-05-11 | 1988-08-23 | Alza Corporation | Osmotic device for administering certain drugs |
US4558888A (en) * | 1983-09-19 | 1985-12-17 | Minnesota Mining And Manufacturing Company | Strip of binding tape |
US4874388A (en) * | 1987-06-25 | 1989-10-17 | Alza Corporation | Multi-layer delivery system |
US5728088A (en) * | 1988-12-13 | 1998-03-17 | Alza Corporation | Osmotic system for delivery of fluid-sensitive somatotropins to bovine animals |
US5034229A (en) * | 1988-12-13 | 1991-07-23 | Alza Corporation | Dispenser for increasing feed conversion of hog |
US4969884A (en) * | 1988-12-28 | 1990-11-13 | Alza Corporation | Osmotically driven syringe |
US5234424A (en) * | 1988-12-28 | 1993-08-10 | Alza Corporation | Osmotically driven syringe |
US5445829A (en) * | 1989-05-05 | 1995-08-29 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US5030216A (en) * | 1989-12-15 | 1991-07-09 | Alza Corporation | Osmotically driven syringe |
US5324280A (en) * | 1990-04-02 | 1994-06-28 | Alza Corporation | Osmotic dosage system for delivering a formulation comprising liquid carrier and drug |
US5180591A (en) * | 1990-07-11 | 1993-01-19 | Alza Corporation | Delivery device with a protective sleeve |
US5234692A (en) * | 1990-07-11 | 1993-08-10 | Alza Corporation | Delivery device with a protective sleeve |
US5531736A (en) * | 1991-01-30 | 1996-07-02 | Alza Corporation | Osmotic device for delayed delivery of agent |
US5861166A (en) * | 1991-03-12 | 1999-01-19 | Alza Corporation | Delivery device providing beneficial agent stability |
US5137727A (en) * | 1991-06-12 | 1992-08-11 | Alza Corporation | Delivery device providing beneficial agent stability |
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
US5580578A (en) * | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5209746A (en) * | 1992-02-18 | 1993-05-11 | Alza Corporation | Osmotically driven delivery devices with pulsatile effect |
US5308348A (en) * | 1992-02-18 | 1994-05-03 | Alza Corporation | Delivery devices with pulsatile effect |
US5456679A (en) * | 1992-02-18 | 1995-10-10 | Alza Corporation | Delivery devices with pulsatile effect |
US5221278A (en) * | 1992-03-12 | 1993-06-22 | Alza Corporation | Osmotically driven delivery device with expandable orifice for pulsatile delivery effect |
US5318558A (en) * | 1992-03-12 | 1994-06-07 | Alza Corporation | Osmotically driven delivery device with expandable orifice for pulsatile delivery effect |
US5472708A (en) * | 1992-11-27 | 1995-12-05 | Andrx Pharmaceuticals Inc. | Pulsatile particles drug delivery system |
US5260069A (en) * | 1992-11-27 | 1993-11-09 | Anda Sr Pharmaceuticals Inc. | Pulsatile particles drug delivery system |
US5540665A (en) * | 1994-01-31 | 1996-07-30 | Alza Corporation | Gas driven dispensing device and gas generating engine therefor |
US5871770A (en) * | 1995-06-07 | 1999-02-16 | Alza Corporation | Implantable system for delivery of fluid-sensitive agents to animals |
US5690952A (en) * | 1995-06-07 | 1997-11-25 | Judy A. Magruder et al. | Implantable system for delivery of fluid-sensitive agents to animals |
US6261584B1 (en) * | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US5985305A (en) * | 1996-02-02 | 1999-11-16 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6132420A (en) * | 1996-02-02 | 2000-10-17 | Alza Corporation | Osmotic delivery system and method for enhancing start-up and performance of osmotic delivery systems |
US6156331A (en) * | 1996-02-02 | 2000-12-05 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US5728396A (en) * | 1996-02-02 | 1998-03-17 | Alza Corporation | Sustained delivery of leuprolide using an implantable system |
US6395292B2 (en) * | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US5997527A (en) * | 1997-03-24 | 1999-12-07 | Alza Corporation | Self adjustable exit port |
US6217906B1 (en) * | 1997-03-24 | 2001-04-17 | Alza Corporation | Self adjustable exit port |
US6287295B1 (en) * | 1997-07-25 | 2001-09-11 | Alza Corporation | Osmotic delivery system, osmotic delivery system semimpermeable body assembly, and method for controlling delivery rate of beneficial agents from osmotic delivery systems |
US6840931B2 (en) * | 1997-07-25 | 2005-01-11 | Alza Corporation | Osmotic delivery system flow modulator apparatus and method |
US6419952B2 (en) * | 1998-12-17 | 2002-07-16 | Alza Corporation | Conversion of liquid filled gelatin capsules into controlled release systems by multiple coatings |
US20020197235A1 (en) * | 2000-11-03 | 2002-12-26 | Moran Stanford Mark | Method for short-term and long-term drug dosimetry |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150314070A1 (en) * | 2012-10-12 | 2015-11-05 | Eli Lilly And Company | Chemical Engines and Methods for Their Use, Especially in the Injection of Highly Viscous Fluids |
US9795740B2 (en) * | 2012-10-12 | 2017-10-24 | Eli Lilly And Company | Chemical engines and methods for their use, especially in the injection of highly viscous fluids |
US11925790B2 (en) | 2017-02-17 | 2024-03-12 | Eli Lilly And Company | Processes and devices for delivery of fluid by chemical reaction |
US12023470B2 (en) | 2017-09-08 | 2024-07-02 | Eli Lilly And Company | System for controlling gas generation within a drug delivery device |
Also Published As
Publication number | Publication date |
---|---|
WO2004002565A1 (en) | 2004-01-08 |
NZ537628A (en) | 2005-12-23 |
US20040019345A1 (en) | 2004-01-29 |
HK1080402A1 (en) | 2006-04-28 |
MXPA05000224A (en) | 2005-06-03 |
DE60317225T2 (en) | 2008-05-29 |
US7112335B2 (en) | 2006-09-26 |
JP4485945B2 (en) | 2010-06-23 |
TW200531709A (en) | 2005-10-01 |
CN100453130C (en) | 2009-01-21 |
JP2005530588A (en) | 2005-10-13 |
US20060111693A1 (en) | 2006-05-25 |
ATE376854T1 (en) | 2007-11-15 |
DE60317225D1 (en) | 2007-12-13 |
BR0312429A (en) | 2005-04-19 |
ECSP055578A (en) | 2005-04-18 |
CN1671439A (en) | 2005-09-21 |
KR101046903B1 (en) | 2011-07-06 |
CA2490544A1 (en) | 2004-01-08 |
CA2490544C (en) | 2011-04-19 |
NO20050368L (en) | 2005-01-24 |
EP1551493B1 (en) | 2007-10-31 |
AU2003256308A1 (en) | 2004-01-19 |
EP1551493A1 (en) | 2005-07-13 |
IL165975A0 (en) | 2006-01-15 |
US6939556B2 (en) | 2005-09-06 |
IL165975A (en) | 2009-07-20 |
ES2295642T3 (en) | 2008-04-16 |
KR20050026416A (en) | 2005-03-15 |
ZA200500744B (en) | 2006-03-29 |
AU2003256308B2 (en) | 2008-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7112335B2 (en) | Minimally compliant, volume-efficient piston for osmotic drug delivery systems | |
AU771132B2 (en) | Osmotic delivery system having space efficient piston | |
US6899887B2 (en) | Osmotic delivery system with membrane plug retention mechanism | |
US6113938A (en) | Beneficial agent delivery system with membrane plug and method for controlling delivery of beneficial agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTARCIA THERAPEUTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALZA CORPORATION;REEL/FRAME:020035/0441 Effective date: 20071022 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |