US20060197456A1 - Lighting apparatus with flexible oled area illumination light source and fixture - Google Patents
Lighting apparatus with flexible oled area illumination light source and fixture Download PDFInfo
- Publication number
- US20060197456A1 US20060197456A1 US11/383,504 US38350406A US2006197456A1 US 20060197456 A1 US20060197456 A1 US 20060197456A1 US 38350406 A US38350406 A US 38350406A US 2006197456 A1 US2006197456 A1 US 2006197456A1
- Authority
- US
- United States
- Prior art keywords
- light source
- lighting fixture
- layer
- holding
- pat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005286 illumination Methods 0.000 title abstract description 12
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 abstract description 30
- 239000010410 layer Substances 0.000 description 67
- 239000000463 material Substances 0.000 description 30
- -1 gallium nitride Chemical class 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 7
- 239000010406 cathode material Substances 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229960003540 oxyquinoline Drugs 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000005259 triarylamine group Chemical group 0.000 description 3
- LQRAULANJCQXAM-UHFFFAOYSA-N 1-n,5-n-dinaphthalen-1-yl-1-n,5-n-diphenylnaphthalene-1,5-diamine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC(=C2C=CC=1)N(C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=CC2=CC=CC=C12 LQRAULANJCQXAM-UHFFFAOYSA-N 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical class C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- UHVLDCDWBKWDDN-UHFFFAOYSA-N n-phenyl-n-[4-[4-(n-pyren-2-ylanilino)phenyl]phenyl]pyren-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=CC3=CC=CC4=CC=C(C2=C43)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC4=CC=CC5=CC=C(C3=C54)C=2)C=C1 UHVLDCDWBKWDDN-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- XNCMQRWVMWLODV-UHFFFAOYSA-N 1-phenylbenzimidazole Chemical compound C1=NC2=CC=CC=C2N1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-N 0.000 description 1
- MVLOINQUZSPUJS-UHFFFAOYSA-N 2-n,2-n,6-n,6-n-tetrakis(4-methylphenyl)naphthalene-2,6-diamine Chemical compound C1=CC(C)=CC=C1N(C=1C=C2C=CC(=CC2=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVLOINQUZSPUJS-UHFFFAOYSA-N 0.000 description 1
- MATLFWDVOBGZFG-UHFFFAOYSA-N 2-n,2-n,6-n,6-n-tetranaphthalen-1-ylnaphthalene-2,6-diamine Chemical compound C1=CC=C2C(N(C=3C=C4C=CC(=CC4=CC=3)N(C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MATLFWDVOBGZFG-UHFFFAOYSA-N 0.000 description 1
- VXJRNCUNIBHMKV-UHFFFAOYSA-N 2-n,6-n-dinaphthalen-1-yl-2-n,6-n-dinaphthalen-2-ylnaphthalene-2,6-diamine Chemical compound C1=CC=C2C(N(C=3C=C4C=CC(=CC4=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C4=CC=CC=C4C=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=CC2=C1 VXJRNCUNIBHMKV-UHFFFAOYSA-N 0.000 description 1
- KYGSXEYUWRFVNY-UHFFFAOYSA-N 2-pyran-2-ylidenepropanedinitrile Chemical class N#CC(C#N)=C1OC=CC=C1 KYGSXEYUWRFVNY-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- YXYUIABODWXVIK-UHFFFAOYSA-N 4-methyl-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 YXYUIABODWXVIK-UHFFFAOYSA-N 0.000 description 1
- MEIBOBDKQKIBJH-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-4-phenylcyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCC(CC1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MEIBOBDKQKIBJH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- LQYYDWJDEVKDGB-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]ethenyl]phenyl]ethenyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C=CC=2C=CC(C=CC=3C=CC(=CC=3)N(C=3C=CC(C)=CC=3)C=3C=CC(C)=CC=3)=CC=2)=CC=1)C1=CC=C(C)C=C1 LQYYDWJDEVKDGB-UHFFFAOYSA-N 0.000 description 1
- QCRMNYVCABKJCM-UHFFFAOYSA-N 5-methyl-2h-pyran Chemical compound CC1=COCC=C1 QCRMNYVCABKJCM-UHFFFAOYSA-N 0.000 description 1
- VIZUPBYFLORCRA-UHFFFAOYSA-N 9,10-dinaphthalen-2-ylanthracene Chemical compound C12=CC=CC=C2C(C2=CC3=CC=CC=C3C=C2)=C(C=CC=C2)C2=C1C1=CC=C(C=CC=C2)C2=C1 VIZUPBYFLORCRA-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- DWHUCVHMSFNQFI-UHFFFAOYSA-N N-[4-[4-(N-coronen-1-ylanilino)phenyl]phenyl]-N-phenylcoronen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=C3C=CC4=CC=C5C=CC6=CC=C(C7=C6C5=C4C3=C72)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=C4C=CC5=CC=C6C=CC7=CC=C(C8=C7C6=C5C4=C83)C=2)C=C1 DWHUCVHMSFNQFI-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- GENZLHCFIPDZNJ-UHFFFAOYSA-N [In+3].[O-2].[Mg+2] Chemical compound [In+3].[O-2].[Mg+2] GENZLHCFIPDZNJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000005606 carbostyryl group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- BKMIWBZIQAAZBD-UHFFFAOYSA-N diindenoperylene Chemical class C12=C3C4=CC=C2C2=CC=CC=C2C1=CC=C3C1=CC=C2C3=CC=CC=C3C3=CC=C4C1=C32 BKMIWBZIQAAZBD-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FQHFBFXXYOQXMN-UHFFFAOYSA-M lithium;quinolin-8-olate Chemical compound [Li+].C1=CN=C2C([O-])=CC=CC2=C1 FQHFBFXXYOQXMN-UHFFFAOYSA-M 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- PNDZMQXAYSNTMT-UHFFFAOYSA-N n-(4-naphthalen-1-ylphenyl)-4-[4-(n-(4-naphthalen-1-ylphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 PNDZMQXAYSNTMT-UHFFFAOYSA-N 0.000 description 1
- CLTPAQDLCMKBIS-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-1-ylamino)phenyl]phenyl]-n-naphthalen-1-ylnaphthalen-1-amine Chemical group C1=CC=C2C(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 CLTPAQDLCMKBIS-UHFFFAOYSA-N 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical group C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- TXDKXSVLBIJODL-UHFFFAOYSA-N n-[4-[4-(n-anthracen-9-ylanilino)phenyl]phenyl]-n-phenylanthracen-9-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=C2C=CC=CC2=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=C3C=CC=CC3=2)C=C1 TXDKXSVLBIJODL-UHFFFAOYSA-N 0.000 description 1
- OMQCLPPEEURTMR-UHFFFAOYSA-N n-[4-[4-(n-fluoranthen-8-ylanilino)phenyl]phenyl]-n-phenylfluoranthen-8-amine Chemical group C1=CC=CC=C1N(C=1C=C2C(C=3C=CC=C4C=CC=C2C=34)=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C(C=4C=CC=C5C=CC=C3C=45)=CC=2)C=C1 OMQCLPPEEURTMR-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- BLFVVZKSHYCRDR-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-2-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=CC=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC=CC3=CC=2)C=C1 BLFVVZKSHYCRDR-UHFFFAOYSA-N 0.000 description 1
- LUBWJINDFCNHLI-UHFFFAOYSA-N n-[4-[4-(n-perylen-2-ylanilino)phenyl]phenyl]-n-phenylperylen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=3C=CC=C4C=CC=C(C=34)C=3C=CC=C(C2=3)C=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=4C=CC=C5C=CC=C(C=45)C=4C=CC=C(C3=4)C=2)C=C1 LUBWJINDFCNHLI-UHFFFAOYSA-N 0.000 description 1
- TUPXWIUQIGEYST-UHFFFAOYSA-N n-[4-[4-(n-phenanthren-2-ylanilino)phenyl]phenyl]-n-phenylphenanthren-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C(C3=CC=CC=C3C=C2)=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C(C4=CC=CC=C4C=C3)=CC=2)C=C1 TUPXWIUQIGEYST-UHFFFAOYSA-N 0.000 description 1
- GNLSNQQRNOQFBK-UHFFFAOYSA-N n-[4-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical group C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 GNLSNQQRNOQFBK-UHFFFAOYSA-N 0.000 description 1
- QCILFNGBMCSVTF-UHFFFAOYSA-N n-[4-[4-[4-(n-anthracen-1-ylanilino)phenyl]phenyl]phenyl]-n-phenylanthracen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC3=CC=CC=C3C=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC4=CC=CC=C4C=C3C=CC=2)C=C1 QCILFNGBMCSVTF-UHFFFAOYSA-N 0.000 description 1
- NBHXGUASDDSHGV-UHFFFAOYSA-N n-[4-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 NBHXGUASDDSHGV-UHFFFAOYSA-N 0.000 description 1
- RJSTZCQRFUSBJV-UHFFFAOYSA-N n-[4-[4-[n-(1,2-dihydroacenaphthylen-3-yl)anilino]phenyl]phenyl]-n-phenyl-1,2-dihydroacenaphthylen-3-amine Chemical group C1=CC(C2=3)=CC=CC=3CCC2=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=2CCC3=CC=CC(C=23)=CC=1)C1=CC=CC=C1 RJSTZCQRFUSBJV-UHFFFAOYSA-N 0.000 description 1
- RYZPDEZIQWOVPJ-UHFFFAOYSA-N n-naphthalen-1-yl-n-[4-[4-[naphthalen-1-yl(naphthalen-2-yl)amino]phenyl]phenyl]naphthalen-2-amine Chemical group C1=CC=C2C(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C4=CC=CC=C4C=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=CC2=C1 RYZPDEZIQWOVPJ-UHFFFAOYSA-N 0.000 description 1
- SBMXAWJSNIAHFR-UHFFFAOYSA-N n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(NC=3C=C4C=CC=CC4=CC=3)=CC=C21 SBMXAWJSNIAHFR-UHFFFAOYSA-N 0.000 description 1
- FWRJQLUJZULBFM-UHFFFAOYSA-N n-phenyl-n-[4-[4-(n-tetracen-2-ylanilino)phenyl]phenyl]tetracen-2-amine Chemical group C1=CC=CC=C1N(C=1C=C2C=C3C=C4C=CC=CC4=CC3=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=C4C=C5C=CC=CC5=CC4=CC3=CC=2)C=C1 FWRJQLUJZULBFM-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- USPVIMZDBBWXGM-UHFFFAOYSA-N nickel;oxotungsten Chemical compound [Ni].[W]=O USPVIMZDBBWXGM-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000004880 oxines Chemical class 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000004882 thiopyrans Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S6/00—Lighting devices intended to be free-standing
- F21S6/002—Table lamps, e.g. for ambient lighting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
- F21K9/23—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
- F21K9/232—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S6/00—Lighting devices intended to be free-standing
- F21S6/004—Lighting devices intended to be free-standing with a lamp housing in direct contact with the floor or ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S6/00—Lighting devices intended to be free-standing
- F21S6/005—Lighting devices intended to be free-standing with a lamp housing maintained at a distance from the floor or ground via a support, e.g. standing lamp for ambient lighting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V19/00—Fastening of light sources or lamp holders
- F21V19/0005—Fastening of light sources or lamp holders of sources having contact pins, wires or blades, e.g. pinch sealed lamp
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S6/00—Lighting devices intended to be free-standing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S8/00—Lighting devices intended for fixed installation
- F21S8/04—Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
- F21Y2115/15—Organic light-emitting diodes [OLED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/70—Coupling devices
- H01R12/71—Coupling devices for rigid printing circuits or like structures
- H01R12/72—Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
- H01R12/721—Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures cooperating directly with the edge of the rigid printed circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/841—Self-supporting sealing arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
Definitions
- lighting apparatus that includes a solid-state area illumination light source, having: a planar flexible substrate, a flexible organic light emitting diode (OLED) layer deposited on the flexible substrate, the organic light emitting diode layer including first and second electrodes for providing electrical power to the OLED layer, a flexible encapsulating cover covering the OLED layer, and first and second conductors electrically connected to the first and second electrodes, and extending beyond the encapsulating cover for making electrical contact to the first and second electrodes by an external power source, whereby the light source may be stored in a space saving planar configuration; and a lighting fixture for removably receiving and holding the light source in a curved 3 dimensional configuration, the lighting fixture including a support for holding the light source in the curved configuration and contacts for providing electrical contact between said first and second conductors and an external power source.
- OLED organic light emitting diode
- FIG. 4 is a perspective view of a lighting fixture for holding the light source of FIG. 3 in its curved configuration
- FIG. 5 is a top view of the lighting fixture and light source showing clips for holding the light source in the curved configuration
- FIG. 9 is a perspective view of a lighting fixture holding a plurality of flexible light sources according to a further alternative embodiment of the present invention.
- FIG. 12 is a perspective view of a light source and lighting fixture having a standard base.
- FIG. 14 is a perspective view of a stack of flexible light sources according to the present invention.
- a solid-state area illumination light source includes a planar flexible substrate 20 , a flexible organic light emitting diode (OLED) layer 12 deposited on the flexible substrate, the organic light emitting diode layer including first and second electrodes 14 and 16 for providing electrical power to the OLED layer, a flexible encapsulating cover 30 covering the OLED layer, first and second conductors 24 and 26 electrically connected to the first and second electrodes, and extending beyond the encapsulating cover 30 for making electrical contact to the first and second electrodes 14 and 16 by an external power source, whereby the light source may be stored in a space saving planar configuration.
- OLED organic light emitting diode
- the substrate 20 does not define a physical protrusion but includes first and second conductors 24 and 26 located on an edge of the substrate 20 .
- FIG. 8 illustrates an alternative arrangement wherein the first and second conductors 24 and 26 are at opposite edges of the substrate 20 .
- the apertures in the lighting fixture are wide enough to receive the entire edge of the substrate.
- the support can include clamps for holding two or more edges of the light source to bow the light source into a three-dimensional configuration, for example a cylindrical configuration.
- the contacts in the lighting fixture may be located in the clamps.
- a wide variety of other configurations are readily designed, including rings or conical sections.
- FIG. 9 an alternative fixture and support are shown wherein two light sources 10 are held in a common fixture 34 .
- the half cylinder configurations shown in FIGS. 6 and 9 are useful, for example, for under-shelf lighting.
- the lighting fixture 34 can be adapted to connect the OLED light source 10 to an external power source (such as a standard household electrical grid, not shown).
- the fixture 34 may include power-conditioning circuitry 50 to convert the electrical power from the external power source to a form suitable for powering the OLED light source 10 .
- the OLED light source 10 may require a rectified voltage with a particular waveform and magnitude; the power conditioning circuitry can provide the particular waveform using conventional power control circuitry.
- the particular waveform may periodically reverse bias the light emitting organic materials to prolong the life time of the OLED materials.
- the fixture may also include a switch (not shown) for controlling the power to the light source.
- the OLED light source 10 can be provided as a standard element and fixtures 34 customized to markets with differing power systems. OLED light sources 10 may be provided with different shapes or other attributes useful in specific applications and may be employed with a common socket, thereby decreasing costs and improving usefulness of the lighting apparatus.
- a transparent or translucent screen or housing 52 may be provided around the OLED light source 10 to diffuse the light and provide additional physical protection and cosmetic appeal.
- the housing may take a variety of shapes, for example the shape of a standard light bulb.
- HIL Hole-Injecting Layer
- a hole-injecting layer 105 be provided between anode 103 and hole-transporting layer 107 .
- the hole-injecting material can serve to improve the film formation property of subsequent organic layers and to facilitate injection of holes into the hole-transporting layer.
- Suitable materials for use in the hole-injecting layer include, but are not limited to, porphyrinic compounds as described in U.S. Pat. No. 4,720,432, and plasma-deposited fluorocarbon polymers as described in U.S. Pat. No. 6,208,075.
- Alternative hole-injecting materials reportedly useful in organic EL devices are described in EP 0 891 121 A1 and EP 1 029 909 A1.
- the hole-transporting layer 107 contains at least one hole-transporting compound such as an aromatic tertiary amine, where the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring.
- the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine. Exemplary monomeric triarylamines are illustrated by Klupfel et al. U.S. Pat. No. 3,180,730.
- Host and emitting molecules known to be of use include, but are not limited to, those disclosed in U.S. Pat. No. 4,769,292, U.S. Pat. No. 5,141,671, U.S. Pat. No. 5,150,006, U.S. Pat. No. 5,151,629, U.S. Pat. No. 5,405,709, U.S. Pat. No. 5,484,922, U.S. Pat. No. 5,593,788, U.S. Pat. No. 5,645,948, U.S. Pat. No. 5,683,823, U.S. Pat. No. 5,755,999, U.S. Pat. NO. 5,928,802, U.S. Pat. No. 5,935,720, U.S. Pat. No. 5,935,721, and U.S. Pat. No. 6,020,078.
- the organic materials mentioned above are suitably deposited through a vapor-phase method such as sublimation, but can be deposited from a fluid, for example, from a solvent with an optional binder to improve film formation. If the material is a polymer, solvent deposition is useful but other methods can be used, such as sputtering or thermal transfer from a donor sheet.
- the material to be deposited by sublimation can be vaporized from a sublimator “boat” often comprised of a tantalum material, e.g., as described in U.S. Pat. No. 6,237,529, or can be first coated onto a donor sheet and then sublimed in closer proximity to the substrate.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Fastening Of Light Sources Or Lamp Holders (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Lighting apparatus includes a solid-state area illumination light source, having: a planar flexible substrate, a flexible organic light emitting diode (OLED) layer deposited on the flexible substrate, the organic light emitting diode layer including first and second electrodes for providing electrical power to the OLED layer, a flexible encapsulating cover covering the OLED layer, and first and second conductors electrically connected to the first and second electrodes, and extending beyond the encapsulating cover for making electrical contact to the first and second electrodes by an external power source, whereby the light source may be stored in a space saving planar configuration; and a lighting fixture for removably receiving and holding the light source in a curved 3 dimensional configuration, the lighting fixture including a support for holding the light source in the curved configuration and contacts for providing electrical contact between said first and second conductors and an external power source.
Description
- This application is a divisional of application Ser. No. 10/776,749, filed Feb. 11, 2004, which is a divisional of application Ser. No. 10/156,396, filed May 28, 2002.
- The present invention relates to the use of organic light emitting diodes for area illumination.
- Solid-state lighting devices made of light emitting diodes are increasingly useful for applications requiring robustness and long-life. For example, solid-state LEDs are found today in automotive applications. These devices are typically formed by combining multiple, small LED devices providing a point light source into a single module together with glass lenses suitably designed to control the light as is desired for a particular application (see, for example WO99/57945, published Nov. 11, 1999). These multiple devices are expensive and complex to manufacture and integrate into single area illumination devices. Moreover, LED devices provide point sources of light that are not preferred for area illumination.
- Conventional illumination devices such as incandescent or fluorescent light bulbs are bulky, fragile, and problematic to handle and ship. Although the bulbs are filled with gas, the glass tubes are easily broken and occupy substantial space, especially in comparison to the actual light emitting area or material of the device. The bulbs must be carefully packed and require a large volume for shipping.
- Existing solid-state lighting elements may be planar and hence easy and cost-effective to ship but do not address the need for lighting elements that have a variety of conventional three-dimensional shapes as found, for example, in light bulbs for decorative lighting. It is also useful if a lighting device is readily and safely replaced by consumers at minimal cost.
- There is a need therefore for an improved, replaceable OLED area illumination device having a simple construction using a single substrate, is compatible with the existing lighting infrastructure, is efficient to ship, and provides a variety of three-dimensional shapes.
- The need is met by providing lighting apparatus that includes a solid-state area illumination light source, having: a planar flexible substrate, a flexible organic light emitting diode (OLED) layer deposited on the flexible substrate, the organic light emitting diode layer including first and second electrodes for providing electrical power to the OLED layer, a flexible encapsulating cover covering the OLED layer, and first and second conductors electrically connected to the first and second electrodes, and extending beyond the encapsulating cover for making electrical contact to the first and second electrodes by an external power source, whereby the light source may be stored in a space saving planar configuration; and a lighting fixture for removably receiving and holding the light source in a curved 3 dimensional configuration, the lighting fixture including a support for holding the light source in the curved configuration and contacts for providing electrical contact between said first and second conductors and an external power source.
- The present invention has the advantage of providing a lighting apparatus having a light source that can be stored efficiently in a planar configuration, thereby saving considerable storage space. Another advantage is that the planar flexible light sources are not fragile and can be packaged in thin, unpadded packaging.
-
FIG. 1 illustrates a partial cross section of a prior art conventional OLED illumination device; -
FIG. 2 is a perspective view of a flexible area illumination light source, including a detail of the layer structure, according to one embodiment of the present invention; -
FIG. 3 is a perspective view of the flexible light source ofFIG. 2 shown in a curved configuration; -
FIG. 4 is a perspective view of a lighting fixture for holding the light source ofFIG. 3 in its curved configuration; -
FIG. 5 is a top view of the lighting fixture and light source showing clips for holding the light source in the curved configuration; -
FIG. 6 is a perspective view of a light source and lighting fixture according to an alternative embodiment of the present invention; -
FIG. 7 is a perspective view of an alternative embodiment of a light source useable according to the present invention; -
FIG. 8 is a perspective view of a further alternative embodiment of a light source useable according to the present invention; -
FIG. 9 is a perspective view of a lighting fixture holding a plurality of flexible light sources according to a further alternative embodiment of the present invention; -
FIG. 10 is a perspective view of a light source held in a spiral configuration according to the present invention; -
FIG. 11 is a perspective view of a light source held in a conical configuration according to the present invention; -
FIG. 12 is a perspective view of a light source and lighting fixture having a standard base. -
FIG. 13 is a perspective view of lighting apparatus according to the present invention including a light transmissive housing according to one embodiment of the present invention; -
FIG. 14 is a perspective view of a stack of flexible light sources according to the present invention; and -
FIG. 15 is a cross sectional view of an OLED light source as known in the prior art. - It will be understood that the figures are not to scale since the individual layers are too thin and the thickness differences of various layers too great to permit depiction to scale.
-
FIG. 1 is a schematic diagram of a prior artOLED light source 10 including an organiclight emitting layer 12 disposed between two electrodes, e.g. acathode 14 and ananode 16. The organiclight emitting layer 12 emits light upon application of a voltage from apower source 18 across the electrodes. The OLEDlight source 10 typically includes asubstrate 20 such as glass or plastic. It will be understood that the relative locations of theanode 16 andcathode 14 may be reversed with respect to the substrate. The term OLED light source refers to the combination of the organiclight emitting layer 12, thecathode 14, theanode 16, and other layers described below. - Referring to
FIG. 2 , a solid-state area illumination light source, includes a planarflexible substrate 20, a flexible organic light emitting diode (OLED)layer 12 deposited on the flexible substrate, the organic light emitting diode layer including first andsecond electrodes encapsulating cover 30 covering the OLED layer, first andsecond conductors encapsulating cover 30 for making electrical contact to the first andsecond electrodes FIG. 3 , theflexible substrate 20 can be curved into a three dimensional form and, as shown inFIG. 4 , inserted into anaperture 36 in alighting fixture 34 for removably receiving and holding thelight source 10 in a curved three-dimensional configuration. The lighting fixture includes asupport 38 havingclips 39 for holding the light source in the curved configuration, and contacts 40 within theaperture 36 for providing electrical contact between the first and second conductors and an external power source. - The
support 38 may be transparent. In one embodiment of the present invention, theflexible substrate 20 can define atab portion 21 that may include an orientation feature such asstep 28 to insure that the light source is inserted in the fixture in the correct orientation. Thetab portion 21 can be inserted into theaperture 36 of thefixture 34 and thelight source 10 shaped around thesupport 38. Alternatively, additional contacts may be included in the aperture or on either side of the flexible substrate using conductive vias to provide electrical contact with the conductors regardless of the orientation in which the tab is inserted (not shown). - The
flexible substrate 20 may be fastened to thesupport 38 with, for example, an adhesive, hook loop fasteners, or a mechanical restraint such as a clip or detent. In applications where it is not required to emit light from both sides of the substrate, one or more of the substrate, cover, anode, or cathode may be opaque or reflective. Thelight source 10 may be physically inserted into or removed from the fixture by pushing or pulling thesubstrate 20 into or out of theaperture 36. -
FIG. 5 shows a top view of thesupport 38 withclips 39 for holding edges of thelight source 10. To install thelight source 10 infixture 34, thetab portion 21 is first inserted into theaperture 36. Next, thelight source 10 is wrapped around thesupport 38 and the edges of theflexible light source 10 are inserted underclips 39 as shown by arrow A. - Referring to
FIG. 6 , in another embodiment, theflexible substrate 20 may define twotabs second conductors complementary apertures fixture 34. Thefixture 34 includes one ormore fins 41 for supporting theflexible light source 10. - Referring to
FIG. 7 in a further embodiment, thesubstrate 20 does not define a physical protrusion but includes first andsecond conductors substrate 20.FIG. 8 illustrates an alternative arrangement wherein the first andsecond conductors substrate 20. In the embodiments shown inFIGS. 7 and 8 , the apertures in the lighting fixture are wide enough to receive the entire edge of the substrate. Alternatively, the support can include clamps for holding two or more edges of the light source to bow the light source into a three-dimensional configuration, for example a cylindrical configuration. The contacts in the lighting fixture may be located in the clamps. A wide variety of other configurations are readily designed, including rings or conical sections. - Referring to
FIG. 9 , an alternative fixture and support are shown wherein twolight sources 10 are held in acommon fixture 34. The half cylinder configurations shown inFIGS. 6 and 9 are useful, for example, for under-shelf lighting. -
FIG. 10 illustrates another embodiment wherein the body of thelight source 10 has an elongated rectangular shape and is held in a spiral configuration by thefixture 34.Clips 39 are provided at both ends of the spiral for holding the light source.FIG. 11 shows an embodiment wherein thelight source 10 is held in the shape of a cone byfixture 34. - Referring to
FIG. 4 , thelighting fixture 34 can be adapted to connect the OLEDlight source 10 to an external power source (such as a standard household electrical grid, not shown). Thefixture 34 may include power-conditioning circuitry 50 to convert the electrical power from the external power source to a form suitable for powering the OLEDlight source 10. For example, the OLEDlight source 10 may require a rectified voltage with a particular waveform and magnitude; the power conditioning circuitry can provide the particular waveform using conventional power control circuitry. The particular waveform may periodically reverse bias the light emitting organic materials to prolong the life time of the OLED materials. The fixture may also include a switch (not shown) for controlling the power to the light source. - The brightness of the
light source 10 may be controlled by varying the power provided to the OLED. In particular, pulse-width modulation schemes well known in the art may be employed (see for example, EP1094436A2, published Apr. 25, 2001) and implemented by thepower conditioning circuitry 50. Alternatively, the amount of power provided to the light emitting area may be reduced, for example by reducing the voltage or limiting the current supplied to the OLED. A brightness control switch may be integrated into the socket, for example with variable resistance switch formed. The power source may be standard 110 volt AC as found in North America, 220 volt AC as found in Europe, or other standard power configurations such as 24-, 12-, or 6-volt DC. - The OLED
light source 10 can be provided as a standard element andfixtures 34 customized to markets with differing power systems. OLEDlight sources 10 may be provided with different shapes or other attributes useful in specific applications and may be employed with a common socket, thereby decreasing costs and improving usefulness of the lighting apparatus. - Referring to
FIG. 12 , thelighting fixture 34 may include asupport portion 38 and a standardlight bulb base 44 such as a US standard screw type lamp base as shown inFIG. 12 , or a pin-type base (not shown). A wide variety of standard lamp bases are known in the prior art and may be used with the fixture of the present invention. - Referring to
FIG. 13 , a transparent or translucent screen orhousing 52 may be provided around the OLEDlight source 10 to diffuse the light and provide additional physical protection and cosmetic appeal. The housing may take a variety of shapes, for example the shape of a standard light bulb. - Referring to
FIG. 14 , the flexiblelight sources 10 may be stacked and packed in a planar configuration for compact storage and shipment. This compact packing arrangement significantly reduces the packing volume necessary for traditional bulbs and provides a robust, sturdy means for storing, transporting, and stocking thelighting light sources 10. - The present invention may be employed in a wide variety of conventional applications, for example in a table-top lamp, floor-lamp, ceiling lamp, or chandelier. The present invention may also be employed in portable illumination devices using DC power sources.
- In a preferred embodiment, the Organic Light Emitting Diode layers (OLED layers) are composed of small molecule OLEDs as disclosed in but not limited to U.S. Pat. No. 4,769,292, issued Sep. 6, 1988 to Tang et al., and U.S. Pat. No. 5,061,569, issued Oct. 29, 1991 to VanSlyke et al.
- OLED Element Architecture
- There are numerous configurations of OLED elements wherein the present invention can be successfully practiced. A typical, non-limiting structure is shown in
FIG. 15 and is comprised of ananode layer 103, a hole-injectinglayer 105, a hole-transportinglayer 107, a light-emittinglayer 109, an electron-transportinglayer 111, and acathode layer 113. These layers are described in detail below. The total combined thickness of the organic layers is preferably less than 500 nm. A voltage/current source 250 is required to energize the OLED element andconductive wiring 260 is required to make electrical contact to the anode and cathode. The TFT layers and associated wiring serve these functions. - Substrate
-
Substrate 20 is preferably light transmissive but may also be opaque. Substrates for use in this case include, but are not limited to, very thin glass and plastics. - Anode
- The
anode layer 103 is preferably transparent or substantially transparent to the light emitted by the OLED layer(s). Common transparent anode materials used in this invention are indium-tin oxide (ITO), indium-zinc oxide (IZO) and tin oxide, but other metal oxides can work including, but not limited to, aluminum- or indium-doped zinc oxide, magnesium-indium oxide, and nickel-tungsten oxide. In addition to these oxides, metal nitrides, such as gallium nitride, and metal selenides, such as zinc selenide, and metal sulfides, such as zinc sulfide, can be used inlayer 103. When the anode is not transparent, the light transmitting characteristics oflayer 103 are immaterial and any conductive material can be used, transparent, opaque or reflective. Example conductors for this application include, but are not limited to, gold, iridium, molybdenum, palladium, and platinum. Typical anode materials, transmissive or otherwise, have a work function of 4.1 eV or greater. Desired anode materials are commonly deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, or electrochemical means. Anodes can be patterned using well-known photolithographic processes. - Hole-Injecting Layer (HIL)
- It is often useful that a hole-injecting
layer 105 be provided betweenanode 103 and hole-transportinglayer 107. The hole-injecting material can serve to improve the film formation property of subsequent organic layers and to facilitate injection of holes into the hole-transporting layer. Suitable materials for use in the hole-injecting layer include, but are not limited to, porphyrinic compounds as described in U.S. Pat. No. 4,720,432, and plasma-deposited fluorocarbon polymers as described in U.S. Pat. No. 6,208,075. Alternative hole-injecting materials reportedly useful in organic EL devices are described in EP 0 891 121 A1 andEP 1 029 909 A1. - Hole-Transporting Layer (HTL)
- The hole-transporting
layer 107 contains at least one hole-transporting compound such as an aromatic tertiary amine, where the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring. In one form the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine. Exemplary monomeric triarylamines are illustrated by Klupfel et al. U.S. Pat. No. 3,180,730. Other suitable triarylamines substituted with one or more vinyl radicals and/or comprising at least one active hydrogen containing group are disclosed by Brantley et al U.S. Pat. No. 3,567,450 and U.S. Pat. No. 3,658,520. A more preferred class of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in U.S. Pat. No. 4,720,432 and U.S. Pat. No. 5,061,569. Illustrative of useful aromatic tertiary amines include, but are not limited to, the following: - 1,1-Bis(4-di-p-tolylaminophenyl)cyclohexane
- 1,1-Bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane
- 4,4′-Bis(diphenylamino)quadriphenyl
- Bis(4-dimethylamino-2-methylphenyl)-phenylmethane
- N,N,N-Tri(p-tolyl)amine
- 4-(di-p-tolylamino)-4′-[4(di-p-tolylamino)-styryl]stilbene
- N,N,N′,N′-Tetra-p-tolyl-4-4′-diaminobiphenyl
- N,N,N′,N′-Tetraphenyl-4,4′-diaminobiphenyl
- N,N,N′,N′-tetra-1-naphthyl-4,4′-diaminobiphenyl
- N,N,N′,N′-tetra-2-naphthyl-4,4′-diaminobiphenyl
- N-Phenylcarbazole
- 4,4′-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(1-naphthyl)-N-(2-naphthyl)amino]biphenyl
- 4,4″-Bis[N-(1-naphthyl)-N-phenylamino]p-terphenyl
- 4,4′-Bis[N-(2-naphthyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(3-acenaphthenyl)-N-phenylamino]biphenyl
- 1,5-Bis[N-(1-naphthyl)-N-phenylamino]naphthalene
- 4,4′-Bis[N-(9-anthryl)-N-phenylamino]biphenyl
- 4,4″-Bis[N-(1-anthryl)-N-phenylamino]-p-terphenyl
- 4,4′-Bis [N-(2-phenanthryl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(8-fluoranthenyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(2-pyrenyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(2-naphthacenyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(2-perylenyl)-N-phenylamino]biphenyl
- 4,4′-Bis[N-(1-coronenyl)-N-phenylamino]biphenyl
- 2,6-Bis(di-p-tolylamino)naphthalene
- 2,6-Bis[di-(1-naphthyl)amino]naphthalene
- 2,6-Bis[N-(1-naphthyl)-N-(2-naphthyl)amino]naphthalene
- N,N,N′,N′-Tetra(2-naphthyl)-4,4″-diamino-p-terphenyl
- 4,4′-Bis {N-phenyl-N-[4-(1-naphthyl)-phenyl]amino}biphenyl
- 4,4′-Bis[N-phenyl-N-(2-pyrenyl)amino]biphenyl
- 2,6-Bis[N,N-di(2-naphthyl)amine]fluorene
- 1,5-Bis[N-(1-naphthyl)-N-phenylamino]naphthalene
- Another class of useful hole-transporting materials includes polycyclic aromatic compounds as described in
EP 1 009 041. In addition, polymeric hole-transporting materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) also called PEDOT/PSS. - Light-Emitting Layer (LEL)
- As more fully described in U.S. Pat. Nos. 4,769,292 and 5,935,721, the light-emitting layer (LEL) 109 of the organic EL element comprises a luminescent or fluorescent material where electroluminescence is produced as a result of electron-hole pair recombination in this region. The light-emitting layer can be comprised of a single material, but more commonly consists of a host material doped with a guest compound or compounds where light emission comes primarily from the dopant and can be of any color. The host materials in the light-emitting layer can be an electron-transporting material, as defined below, a hole-transporting material, as defined above, or another material or combination of materials that support hole-electron recombination. The dopant is usually chosen from highly fluorescent dyes, but phosphorescent compounds, e.g., transition metal complexes as described in WO 98/55561, WO 00/18851, WO 00/57676, and WO 00/70655 are also useful. Dopants are typically coated as 0.01 to 10% by weight into the host material. Iridium complexes of phenylpyridine and its derivatives are particularly useful luminescent dopants. Polymeric materials such as polyfluorenes and polyvinylarylenes (e.g., poly(p-phenylenevinylene), PPV) can also be used as the host material. In this case, small molecule dopants can be molecularly dispersed into the polymeric host, or the dopant could be added by copolymerizing a minor constituent into the host polymer.
- An important relationship for choosing a dye as a dopant is a comparison of the bandgap potential which is defined as the energy difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the molecule. For efficient energy transfer from the host to the dopant molecule, a necessary condition is that the band gap of the dopant is smaller than that of the host material.
- Host and emitting molecules known to be of use include, but are not limited to, those disclosed in U.S. Pat. No. 4,769,292, U.S. Pat. No. 5,141,671, U.S. Pat. No. 5,150,006, U.S. Pat. No. 5,151,629, U.S. Pat. No. 5,405,709, U.S. Pat. No. 5,484,922, U.S. Pat. No. 5,593,788, U.S. Pat. No. 5,645,948, U.S. Pat. No. 5,683,823, U.S. Pat. No. 5,755,999, U.S. Pat. NO. 5,928,802, U.S. Pat. No. 5,935,720, U.S. Pat. No. 5,935,721, and U.S. Pat. No. 6,020,078.
- Metal complexes of 8-hydroxyquinoline and similar oxine derivatives constitute one class of useful host compounds capable of supporting electroluminescence, and are particularly suitable. Illustrative of useful chelated oxinoid compounds are the following:
-
- CO-1: Aluminum trisoxine [alias, tris(8-quinolinolato)aluminum(III)]
- CO-2: Magnesium bisoxine [alias, bis(8-quinolinolato)magnesium(II)]
- CO-3: Bis[benzo{f}-8-quinolinolato]zinc (II)
- CO-4: Bis(2-methyl-8-quinolinolato)aluminum(III)-μ-oxo-bis(2-methyl-8-quinolinolato)aluminum(III)
- CO-5: Indium trisoxine [alias, tris(8-quinolinolato)indium]
- CO-6: Aluminum tris(5-methyloxine) [alias, tris(5-methyl-8-quinolinolato)aluminum(III)]
- CO-7: Lithium oxine [alias, (8-quinolinolato)lithium(I)]
- CO-8: Gallium oxine [alias, tris(8-quinolinolato)gallium(III)]
- CO-9: Zirconium oxine [alias, tetra(8-quinolinolato)zirconium(IV)]
- Other classes of useful host materials include, but are not limited to: derivatives of anthracene, such as 9,10-di-(2-naphthyl)anthracene and derivatives thereof, distyrylarylene derivatives as described in U.S. Pat. No. 5,121,029, and benzazole derivatives, for example, 2,2′,2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole].
- Useful fluorescent dopants include, but are not limited to, derivatives of anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrilium and thiapyrilium compounds, fluorene derivatives, periflanthene derivatives and carbostyryl compounds.
- Electron-Transporting Layer (ETL)
- Preferred thin film-forming materials for use in forming the electron-transporting
layer 111 of the organic EL elements of this invention are metal chelated oxinoid compounds, including chelates of oxine itself (also commonly referred to as 8-quinolinol or 8-hydroxyquinoline). Such compounds help to inject and transport electrons, exhibit high levels of performance, and are readily fabricated in the form of thin films. Exemplary oxinoid compounds were listed previously. - Other electron-transporting materials include various butadiene derivatives as disclosed in U.S. Pat. No. 4,356,429 and various heterocyclic optical brighteners as described in U.S. Pat. No. 4,539,507. Benzazoles and triazines are also useful electron-transporting materials.
- In some instances,
layers - Cathode
- Preferably, the
cathode 113 is transparent and can comprise nearly any conductive transparent material. Alternatively, thecathode 113 may be opaque or reflective. Suitable cathode materials have good film-forming properties to ensure good contact with the underlying organic layer, promote electron injection at low voltage, and have good stability. Useful cathode materials often contain a low work function metal (<4.0 eV) or metal alloy. One preferred cathode material is comprised of a Mg:Ag alloy wherein the percentage of silver is in the range of 1 to 20%, as described in U.S. Pat. No. 4,885,221. Another suitable class of cathode materials includes bilayers comprising a thin electron-injection layer (EIL) and a thicker layer of conductive metal. The EIL is situated between the cathode and the organic layer (e.g., ETL). Here, the EIL preferably includes a low work function metal or metal salt, and if so, the thicker conductor layer does not need to have a low work function. One such cathode is comprised of a thin layer of LiF followed by a thicker layer of Al as described in U.S. Pat. No. 5,677,572. Other useful cathode material sets include, but are not limited to, those disclosed in U.S. Pat. Nos. 5,059,861; 5,059,862, and 6,140,763. - When
cathode layer 113 is transparent or nearly transparent, metals must be thin or transparent conductive oxides, or a combination of these materials. Optically transparent cathodes have been described in more detail in U.S. Pat. No. 4,885,211, U.S. Pat. No. 5,247,190, JP 3,234,963, U.S. Pat. NO. 5,703,436, U.S. Pat. No. 5,608,287, U.S. Pat. No. 5,837,391, U.S. Pat. No. 5,677,572, U.S. Pat. No. 5,776,622, U.S. Pat. No. 5,776,623, U.S. Pat. No. 5,714,838, U.S. Pat. No. 5,969,474, U.S. Pat. No. 5,739,545, U.S. Pat. No. 5,981,306, U.S. Pat. No. 6,137,223, U.S. Pat. No. 6,140,763, U.S. Pat. No. 6,172,459,EP 1 076 368, and U.S. Pat. No. 6,278,236. Cathode materials are typically deposited by evaporation, sputtering, or chemical vapor deposition. When needed, patterning can be achieved through many well known methods including, but not limited to, through-mask deposition, integral shadow masking as described in U.S. Pat. No. 5,276,380 and EP 0 732 868, laser ablation, and selective chemical vapor deposition. - Deposition of Organic Layers
- The organic materials mentioned above are suitably deposited through a vapor-phase method such as sublimation, but can be deposited from a fluid, for example, from a solvent with an optional binder to improve film formation. If the material is a polymer, solvent deposition is useful but other methods can be used, such as sputtering or thermal transfer from a donor sheet. The material to be deposited by sublimation can be vaporized from a sublimator “boat” often comprised of a tantalum material, e.g., as described in U.S. Pat. No. 6,237,529, or can be first coated onto a donor sheet and then sublimed in closer proximity to the substrate. Layers with a mixture of materials can utilize separate sublimator boats or the materials can be pre-mixed and coated from a single boat or donor sheet. Patterned deposition can be achieved using shadow masks, integral shadow masks (U.S. Pat. No. 5,294,870), spatially-defined thermal dye transfer from a donor sheet (U.S. Pat. Nos. 5,851,709 and 6,066,357) and inkjet method (U.S. Pat. No. 6,066,357). While all organic layers may be patterned, it is most common that only the layer emitting light is patterned, and the other layers may be uniformly deposited over the entire device.
- Optical Optimization
- OLED layers used with this invention can employ various well-known optical effects in order to enhance its properties if desired. This includes optimizing layer thicknesses to yield maximum light transmission, providing dielectric mirror structures, replacing reflective electrodes with light-absorbing electrodes, providing anti-glare or anti-reflection coatings over the device, providing a polarizing medium over the device, or providing colored, neutral density, or color conversion filters over the device. Filters, polarizers, and anti-glare or anti-reflection coatings may be specifically provided over the cover or as part of the cover.
- The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
-
- 10 OLED light source
- 12 organic light emitting layer
- 14 cathode
- 16 anode
- 18 power source
- 20 substrate
- 21 tab portion of substrate
- 22 tab portion of substrate
- 30 encapsulating cover
- 24 first conductor
- 26 second conductor
- 28 step
- 34 lighting fixture
- 36 aperture
- 36′ aperture
- 38 support
- 39 clip
- 40 contact
- 41 light source support fin
- 44 standard lamp base
- 50 power conditioning circuitry
- 52 light transmissive housing
- 103 anode
- 105 hole-injecting layer
- 107 hole-transporting layer
- 109 light-emitting layer
- 111 electron-transporting layer
- 113 cathode layer
- 250 voltage/current source
- 260 conductive wiring
Claims (18)
1. A lighting fixture for removably receiving and holding a flexible planar light source in a curved three-dimensional configuration, the light source including first and second electrical conductors, comprising:
a) a support for holding the flexible planar light source in the curved configuration; and
b) contacts for providing electrical contact between said first and second conductors and an external power source.
2. The lighting fixture claimed in claim 1 , wherein the curved configuration is cylindrical, spiral, or pyramidal.
3. The lighting fixture claimed in claim 1 , wherein the external power source is a standard power source.
4. The lighting fixture claimed in claim 2 , wherein the standard power is selected from the group consisting of 110 volt AC, 220 volt AC, 24 volt DC, 12 volt DC, and 6 volt DC.
5. The lighting fixture claimed claim 1 , further comprising a transparent or translucent housing surrounding the light source.
6. The lighting fixture claimed in claim 1 , further comprising a base adapted to be received by and make electrical contact with a standard electrical outlet.
7. The lighting fixture claimed in claim 1 , further comprising a converter connected to the first and second conductors for converting power from the external power source to a form useable by the planar light source.
8. The lighting fixture claimed in claim 7 , wherein the converter converts AC line voltage to a voltage useable by the planar light source.
9. The lighting fixture claimed in claim 1 , further comprising a reflector for directing light from the light source.
10. The lighting fixture claimed in claim 1 , wherein the lighting fixture is a ceiling lamp.
11. The lighting fixture claimed in claim 1 , wherein the lighting fixture is a table lamp.
12. The lighting fixture claimed in claim 1 , wherein the lighting fixture is a floor lamp.
13. The lighting fixture claimed in claim 1 , wherein the planar light source has a rectangular shape and the support includes clamps for holding two edges of the light source to bow the light source into a cylindrical configuration.
14. The lighting fixture claimed in claim 13 , wherein the contacts are located in the clamps.
15. The lighting fixture claimed in claim 1 wherein the planar light source has an elongated rectangular shape and the support includes a frame and clamps for holding the planar light source in a spiral configuration about the frame.
16. The lighting fixture claimed in claim 15 , wherein the contacts are located in the clamps.
17. The lighting fixture claimed in claim 1 , wherein the planar light source has the shape of a ring segment, and the support includes clamps for holding the light source in a conical configuration.
18. The lighting fixture claimed in claim 17 , wherein the contacts are located in the clamps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/383,504 US20060197456A1 (en) | 2002-05-28 | 2006-05-16 | Lighting apparatus with flexible oled area illumination light source and fixture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/156,396 US6771021B2 (en) | 2002-05-28 | 2002-05-28 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US10/776,749 US7075226B2 (en) | 2002-05-28 | 2004-02-11 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US11/383,504 US20060197456A1 (en) | 2002-05-28 | 2006-05-16 | Lighting apparatus with flexible oled area illumination light source and fixture |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/776,749 Division US7075226B2 (en) | 2002-05-28 | 2004-02-11 | Lighting apparatus with flexible OLED area illumination light source and fixture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060197456A1 true US20060197456A1 (en) | 2006-09-07 |
Family
ID=29419622
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/156,396 Expired - Lifetime US6771021B2 (en) | 2002-05-28 | 2002-05-28 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US10/776,749 Expired - Lifetime US7075226B2 (en) | 2002-05-28 | 2004-02-11 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US10/776,742 Abandoned US20040160768A1 (en) | 2002-05-28 | 2004-02-11 | Method for providing replaceable light source |
US11/383,504 Abandoned US20060197456A1 (en) | 2002-05-28 | 2006-05-16 | Lighting apparatus with flexible oled area illumination light source and fixture |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/156,396 Expired - Lifetime US6771021B2 (en) | 2002-05-28 | 2002-05-28 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US10/776,749 Expired - Lifetime US7075226B2 (en) | 2002-05-28 | 2004-02-11 | Lighting apparatus with flexible OLED area illumination light source and fixture |
US10/776,742 Abandoned US20040160768A1 (en) | 2002-05-28 | 2004-02-11 | Method for providing replaceable light source |
Country Status (6)
Country | Link |
---|---|
US (4) | US6771021B2 (en) |
EP (1) | EP1367677A3 (en) |
JP (1) | JP2004055535A (en) |
KR (1) | KR20030091815A (en) |
CN (1) | CN1462161A (en) |
TW (1) | TWI277360B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114200A1 (en) * | 2007-03-22 | 2008-09-25 | Koninklijke Philips Electronics N.V. | Flexible light source |
US20100046210A1 (en) * | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode products |
US20100045189A1 (en) * | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode lighting systems |
US20100045175A1 (en) * | 2008-08-19 | 2010-02-25 | Plexotronics, Inc. | Organic light emitting diode lighting devices |
US20100076527A1 (en) * | 2008-08-19 | 2010-03-25 | Plextronics, Inc. | User configurable mosaic light emitting apparatus |
WO2011148313A1 (en) * | 2010-05-28 | 2011-12-01 | Koninklijke Philips Electronics N.V. | A beamshaping optical stack, a light source and a luminaire |
US20120019128A1 (en) * | 2007-12-13 | 2012-01-26 | Emde Projects Gmbh | Illumination Means |
US8442600B1 (en) | 2009-12-02 | 2013-05-14 | Google Inc. | Mobile electronic device wrapped in electronic display |
WO2014200846A1 (en) * | 2013-06-12 | 2014-12-18 | Cooledge Lighting Inc. | Portable lighting systems incorporating deformable light sheets |
US9506633B2 (en) | 2012-09-06 | 2016-11-29 | Cooledge Lighting Inc. | Sealed and sealable lighting systems incorporating flexible light sheets and related methods |
WO2016112001A3 (en) * | 2015-01-06 | 2016-12-22 | Cooledge Lighting, Inc. | Systems and methods for uniform led lighting |
Families Citing this family (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3838964B2 (en) | 2002-03-13 | 2006-10-25 | 株式会社リコー | Functional element substrate manufacturing equipment |
SE521269C3 (en) * | 2002-05-17 | 2003-11-19 | Elteknik H Bodinger Ab | Sign illumination device and method |
US6771021B2 (en) * | 2002-05-28 | 2004-08-03 | Eastman Kodak Company | Lighting apparatus with flexible OLED area illumination light source and fixture |
TWM240513U (en) * | 2002-05-29 | 2004-08-11 | Ritdisplay Corp | Lighting device |
US7677745B2 (en) * | 2002-06-14 | 2010-03-16 | Tseng-Lu Chien | Light device with EL elements |
PL1629231T3 (en) * | 2003-05-23 | 2008-09-30 | Volkswagen Ag | Headlight or light for a motor vehicle |
KR20050104065A (en) * | 2004-04-28 | 2005-11-02 | (주)케이디티 | Flexible plane organic light emitting source |
US7348738B2 (en) * | 2004-09-02 | 2008-03-25 | General Electric Company | OLED area illumination source |
TWI253558B (en) * | 2004-09-22 | 2006-04-21 | Asustek Comp Inc | Lighting device for case |
US20060083004A1 (en) * | 2004-10-15 | 2006-04-20 | Eastman Kodak Company | Flat-panel area illumination system |
WO2006098799A2 (en) * | 2005-03-12 | 2006-09-21 | 3M Innovative Properties Company | Illumination devices and methods for making the same |
US7175296B2 (en) * | 2005-06-21 | 2007-02-13 | Eastman Kodak Company | Removable flat-panel lamp and fixture |
US7575332B2 (en) * | 2005-06-21 | 2009-08-18 | Eastman Kodak Company | Removable flat-panel lamp and fixture |
JP4305425B2 (en) * | 2005-07-20 | 2009-07-29 | セイコーエプソン株式会社 | Electronic devices and electronic equipment |
US7367145B2 (en) * | 2005-10-21 | 2008-05-06 | Mou Oliver C | Novelty item |
JP4797595B2 (en) * | 2005-11-24 | 2011-10-19 | パナソニック電工株式会社 | Organic EL panel |
JP4765612B2 (en) * | 2005-12-22 | 2011-09-07 | パナソニック電工株式会社 | Lighting device |
US8152718B2 (en) * | 2006-02-07 | 2012-04-10 | Boston Scientific Scimed, Inc. | Medical device light source |
CN101422078B (en) * | 2006-04-12 | 2011-01-26 | Lg化学株式会社 | Organic light emitting diode unit and method for manufacturing the same |
US20080007936A1 (en) * | 2006-07-05 | 2008-01-10 | Jie Liu | Organic illumination source and method for controlled illumination |
KR101423467B1 (en) | 2006-07-21 | 2014-07-28 | 코닌클리케 필립스 엔.브이. | Lighting system |
US8525402B2 (en) | 2006-09-11 | 2013-09-03 | 3M Innovative Properties Company | Illumination devices and methods for making the same |
US8581393B2 (en) | 2006-09-21 | 2013-11-12 | 3M Innovative Properties Company | Thermally conductive LED assembly |
KR101691274B1 (en) | 2006-09-29 | 2016-12-29 | 오스람 오엘이디 게엠베하 | Organic lighting device and lighting equipment |
WO2008081376A2 (en) * | 2007-01-03 | 2008-07-10 | Philips Intellectual Property & Standards Gmbh | Lighting device with a plurality of oled units |
TWI410164B (en) * | 2007-02-12 | 2013-09-21 | Nat Univ Chung Hsing | Method for producing light bar of solid-state light-emitting device |
WO2008120134A1 (en) * | 2007-03-29 | 2008-10-09 | Koninklijke Philips Electronics N.V. | Light-emitting device comprising an elastomeric layer |
WO2008135898A1 (en) * | 2007-05-02 | 2008-11-13 | Philips Intellectual Property & Standards Gmbh | Light emitting device using oled panels in folded or deployed configuration |
US8075172B2 (en) * | 2007-06-08 | 2011-12-13 | A66, Incorporated | Durable super-cooled intelligent light bulb |
DE102007043181A1 (en) * | 2007-09-11 | 2009-03-12 | Osram Opto Semiconductors Gmbh | Optoelectronic component of receiver and transmitter for motor vehicle headlight, has semiconductor body with active zone, which is suitable for production or detection of electromagnetic radiation |
JP2009070995A (en) * | 2007-09-12 | 2009-04-02 | Panasonic Electric Works Co Ltd | Light source apparatus |
JP5102570B2 (en) * | 2007-09-19 | 2012-12-19 | パナソニック株式会社 | Light source device |
US8258454B2 (en) | 2007-11-07 | 2012-09-04 | Koninklijke Philips Electronics N.V. | Luminaire and a method for controlling a luminaire |
JP2009140987A (en) * | 2007-12-04 | 2009-06-25 | Konica Minolta Holdings Inc | Lighting device, lighting tool kit and lighting system |
WO2009073670A1 (en) | 2007-12-04 | 2009-06-11 | E. I. Du Pont De Nemours And Company | Bendable circuit structure for led mounting and interconnection |
TW200950178A (en) * | 2008-01-30 | 2009-12-01 | Koninkl Philips Electronics Nv | OLED lighting device |
US8115399B2 (en) * | 2008-02-19 | 2012-02-14 | General Electric Company | OLED light source |
JP2009206009A (en) * | 2008-02-29 | 2009-09-10 | Fujitec International Inc | Light-emitting device, server device for managing lending status of light emitting device, and method for reproducing light-emitting device |
WO2009118678A1 (en) * | 2008-03-26 | 2009-10-01 | Philips Intellectual Property & Standards Gmbh | Light emitting diode device |
US8979290B2 (en) | 2008-04-15 | 2015-03-17 | Paul E. Lohneis | Three-dimensional lighting structure utilizing light active technology |
EP2274554B1 (en) * | 2008-04-15 | 2017-08-02 | Paul E. Lohneis | Three-dimensional lighting structure utilizing light active technology |
US8845117B2 (en) | 2008-04-15 | 2014-09-30 | Paul E. Lohneis | Three-dimensional lighting structure utilizing light active technology |
NL1035558C2 (en) * | 2008-06-10 | 2009-12-11 | Shared Emotions B V | Lighting device, has light source including illumination surface, where light source produces light pattern on illumination surface based on touch locations touched by user on touch-sensitive interface |
JP4570668B2 (en) * | 2008-06-27 | 2010-10-27 | 財団法人山形県産業技術振興機構 | Lighting device |
DE102008048829A1 (en) * | 2008-09-25 | 2010-04-01 | Osram Opto Semiconductors Gmbh | Organic opto-electronic component |
KR20110053224A (en) * | 2008-11-18 | 2011-05-19 | 토피 고교 가부시키가이샤 | Method of manufacturing tubular member |
US7972037B2 (en) * | 2008-11-26 | 2011-07-05 | Deloren E. Anderson | High intensity replaceable light emitting diode module and array |
US8847480B2 (en) * | 2009-03-18 | 2014-09-30 | Semiconductor Energy Laboratory Co., Ltd. | Lighting device |
KR101849786B1 (en) * | 2009-03-18 | 2018-04-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Lighting device |
US8405116B2 (en) * | 2009-03-18 | 2013-03-26 | Semiconductor Energy Laboratory Co., Ltd. | Lighting device |
US20100247747A1 (en) * | 2009-03-27 | 2010-09-30 | Semiconductor Energy Laboratory Co., Ltd. | Film Deposition Apparatus, Method for Depositing Film, and Method for Manufacturing Lighting Device |
DE102009024225A1 (en) * | 2009-06-08 | 2010-12-16 | Siemens Aktiengesellschaft | X-ray detector |
TWI374990B (en) * | 2009-06-16 | 2012-10-21 | Wellypower Optronics Corp | Lamp device and frame |
US8314487B2 (en) * | 2009-12-18 | 2012-11-20 | Infineon Technologies Ag | Flange for semiconductor die |
US20110148746A1 (en) * | 2009-12-18 | 2011-06-23 | Philip Eric Devorris | Sealed flexible light emitting diode display system with remote waterproof control |
JP5354386B2 (en) * | 2010-03-19 | 2013-11-27 | 東芝ライテック株式会社 | Light emitting device and lighting device |
US8596821B2 (en) | 2010-06-08 | 2013-12-03 | Cree, Inc. | LED light bulbs |
US20110310625A1 (en) * | 2010-06-16 | 2011-12-22 | Abl Ip Holding Llc | Light Fixtures Comprising Organic Light Emitting Diodes |
US8474146B2 (en) | 2010-06-22 | 2013-07-02 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
US9301569B2 (en) | 2010-06-22 | 2016-04-05 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
US8769836B2 (en) | 2010-06-22 | 2014-07-08 | Nike, Inc. | Article of footwear with color change portion and method of changing color |
TWI540939B (en) | 2010-09-14 | 2016-07-01 | 半導體能源研究所股份有限公司 | Solid-state light-emitting element, light-emitting device, and lighting device |
US20120062151A1 (en) * | 2010-09-15 | 2012-03-15 | Li-Yu Lin | Ball shape led lamp |
JP5827104B2 (en) | 2010-11-19 | 2015-12-02 | 株式会社半導体エネルギー研究所 | Lighting device |
JP6118020B2 (en) * | 2010-12-16 | 2017-04-19 | 株式会社半導体エネルギー研究所 | Light emitting device |
US8629464B2 (en) | 2010-12-22 | 2014-01-14 | E. I. Du Pont De Nemours And Company | Three dimensional light emitting diode systems, and compositions and methods relating thereto |
US8637880B2 (en) | 2010-12-22 | 2014-01-28 | E.I. Du Pont De Nemours And Company | Three dimensional light emitting diode systems, and compositions and methods relating thereto |
DE102011002480A1 (en) * | 2011-01-05 | 2012-07-05 | Trilux Gmbh & Co. Kg | Luminaire with flexible OLED and frame |
US8735874B2 (en) | 2011-02-14 | 2014-05-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, display device, and method for manufacturing the same |
JP5630558B2 (en) | 2011-02-22 | 2014-11-26 | コニカミノルタ株式会社 | Lighting device |
WO2012117934A1 (en) * | 2011-03-02 | 2012-09-07 | コニカミノルタホールディングス株式会社 | Illumination device |
KR101922603B1 (en) | 2011-03-04 | 2018-11-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device, lighting device, substrate, and manufacturing method of substrate |
US8624483B2 (en) * | 2011-04-13 | 2014-01-07 | General Electric Company | Fixture and socket assembly for replaceable and flexible panel lighting device |
WO2012148382A1 (en) * | 2011-04-26 | 2012-11-01 | The Procter & Gamble Company | Light bulb with loop illumination element |
US8773013B2 (en) | 2011-05-12 | 2014-07-08 | Universal Display Corporation | Three dimensional OLED lamps |
US8907560B2 (en) | 2011-05-12 | 2014-12-09 | Universal Display Corporation | Dynamic OLED lighting |
WO2012155099A1 (en) | 2011-05-12 | 2012-11-15 | Universal Display Corporation | Flexible lighting devices |
US8884502B2 (en) | 2011-07-25 | 2014-11-11 | General Electric Company | OLED assembly and luminaire with removable diffuser |
US8358066B1 (en) | 2011-08-10 | 2013-01-22 | General Electric Company | Organic light emitting diode package with energy blocking layer |
US8764239B2 (en) | 2011-08-16 | 2014-07-01 | Universal Display Corporation | Dynamic stretchable OLED lamp |
US9559314B2 (en) | 2011-09-29 | 2017-01-31 | Universal Display Corporation | Lamp with multiple flexible OLEDs |
US9166116B2 (en) * | 2012-05-29 | 2015-10-20 | Formosa Epitaxy Incorporation | Light emitting device |
CN102913786A (en) * | 2012-09-24 | 2013-02-06 | 苏州晶品光电科技有限公司 | LED plate-type light source capable of nearly-omni-directionally lighting |
TWI644463B (en) * | 2012-10-26 | 2018-12-11 | 黑拉耶烏斯貴金屬公司 | Transparent layers of high conductivity and high efficiency in oleds and process for their rpoduction |
CN103807614A (en) * | 2012-11-06 | 2014-05-21 | 隆达电子股份有限公司 | Organic light-emitting diode lamp |
US20140146531A1 (en) * | 2012-11-27 | 2014-05-29 | Avago Technologies General IP (Singapore ) Pte. Ltd. | Illumination device with combination of discrete light emitting diode and organic light emitting diode components |
JP2014150005A (en) * | 2013-02-01 | 2014-08-21 | Toshiba Lighting & Technology Corp | Lighting device |
EP2951484A1 (en) * | 2013-02-04 | 2015-12-09 | Koninklijke Philips N.V. | Lighting device and a method for assembling thereof |
CN105026822A (en) * | 2013-02-25 | 2015-11-04 | 皇家飞利浦有限公司 | Lighting device comprising a roll |
EP2986901B1 (en) | 2013-03-06 | 2018-06-13 | Cooper Technologies Company | Flexible substrate lighting fixtures |
US9093658B2 (en) * | 2013-06-07 | 2015-07-28 | Universal Display Corporation | Pre-stressed flexible OLED |
KR102021030B1 (en) | 2013-06-07 | 2019-09-16 | 삼성디스플레이 주식회사 | Flexible display apparatus and controlling method thereof |
US9482393B2 (en) * | 2013-06-07 | 2016-11-01 | John E. Shirilla | Flexible light panel for professional use |
US20140362575A1 (en) * | 2013-06-07 | 2014-12-11 | John E. Shirilla | Flexible light panel |
DE102013106688B4 (en) | 2013-06-26 | 2017-08-24 | Osram Oled Gmbh | Optoelectronic component and method for producing an optoelectronic component |
JP6100644B2 (en) * | 2013-07-31 | 2017-03-22 | 京セラドキュメントソリューションズ株式会社 | Light source unit, image reading apparatus, and image forming apparatus |
FR3010576B1 (en) * | 2013-09-09 | 2016-12-23 | Valeo Vision | LIGHT-EMITTING MODULE COMPRISING AN ORGANIC ELECTROLUMINESCENT DIODE |
JP2015144183A (en) * | 2014-01-31 | 2015-08-06 | パイオニアOledライティングデバイス株式会社 | light-emitting device |
US9651230B1 (en) | 2014-02-07 | 2017-05-16 | Sourcemaker, Inc. | Flexible lighting apparatus |
CA2843101A1 (en) * | 2014-02-20 | 2015-08-20 | Matthew Kennedy | Flexible oled panel fashioned to resemble a lamp shade |
CN106465494B (en) * | 2014-04-11 | 2019-01-22 | 株式会社半导体能源研究所 | Light emitting device |
JP1525467S (en) * | 2014-05-30 | 2015-06-08 | ||
USD735928S1 (en) * | 2014-06-12 | 2015-08-04 | James Bradford Hawkins | Curved LED lighting fixture |
KR101955905B1 (en) * | 2014-07-18 | 2019-03-08 | 엘지디스플레이 주식회사 | Lighting apparatus |
US20160061422A1 (en) * | 2014-09-02 | 2016-03-03 | Abl Ip Holding, Llc | Installation Liner for Flexible OLED Panels |
WO2016035906A1 (en) * | 2014-09-03 | 2016-03-10 | 주식회사 엘지화학 | Multi-use auxiliary light |
JP2016110858A (en) * | 2014-12-08 | 2016-06-20 | コニカミノルタ株式会社 | Planar light emission module |
KR102051643B1 (en) | 2014-12-18 | 2020-01-08 | 엘지디스플레이 주식회사 | Lighting apparatus comprising organic light emitting device |
US10306726B2 (en) | 2015-06-19 | 2019-05-28 | Nike, Inc. | Method of illuminating an article |
US20160366972A1 (en) | 2015-06-19 | 2016-12-22 | Nike, Inc. | Article Incorporating an Illumination Device |
DE102015220793A1 (en) * | 2015-10-23 | 2017-04-27 | Siemens Healthcare Gmbh | X-ray detector and / or gamma detector with light bias |
CN105333315A (en) * | 2015-11-20 | 2016-02-17 | 苏州铭冠软件科技有限公司 | Sound-light double-controlled concave surface OLED (Organic Light Emitting Diode) spotlight |
DE102015121133A1 (en) * | 2015-12-04 | 2017-06-08 | Osram Oled Gmbh | Optoelectronic component device and method for producing an optoelectronic component device |
JP6632738B2 (en) * | 2016-02-26 | 2020-01-22 | オーレッドワークス エルエルシー | Detachable electrical connections for flat lighting modules |
US10135033B2 (en) | 2016-10-20 | 2018-11-20 | Corning Incorporated | Directional light extraction for organic light emitting diode (OLED) illumination devices |
TWI603030B (en) | 2016-12-26 | 2017-10-21 | 機光科技股份有限公司 | Planar oled lamp module |
US10303211B2 (en) * | 2017-02-01 | 2019-05-28 | Facebook Technologies, Llc | Two part cone display using flexible substrates |
DE102017104281A1 (en) | 2017-03-01 | 2018-09-06 | Automotive Lighting Reutlingen Gmbh | Holding arrangement for panel radiators |
EP3699970A4 (en) * | 2017-10-20 | 2021-07-14 | Pioneer Corporation | Light-emitting device and light-emitting module |
CN108022521A (en) * | 2018-01-03 | 2018-05-11 | 上海小糸车灯有限公司 | Flexible light part encapsulating structure, method for packing and automobile |
WO2019137941A1 (en) * | 2018-01-09 | 2019-07-18 | Oledworks Gmbh | Ultrathin oled lighting panel |
JP2018174160A (en) * | 2018-08-03 | 2018-11-08 | 株式会社小糸製作所 | Lamp fitting |
US11588137B2 (en) | 2019-06-05 | 2023-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Functional panel, display device, input/output device, and data processing device |
US11659758B2 (en) | 2019-07-05 | 2023-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Display unit, display module, and electronic device |
WO2021009587A1 (en) | 2019-07-12 | 2021-01-21 | 株式会社半導体エネルギー研究所 | Functional panel, display device, input and output device, and information processing device |
US11997766B2 (en) | 2019-10-11 | 2024-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Functional panel, display device, input/output device, and data processing device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US4999936A (en) * | 1988-04-24 | 1991-03-19 | Calamia Thomas J | Illuminated sign |
US5013967A (en) * | 1987-08-07 | 1991-05-07 | Mitsubishi Cable Industries Ltd. | Electroluminescence lamp and method of use thereof |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5162696A (en) * | 1990-11-07 | 1992-11-10 | Goodrich Frederick S | Flexible incasements for LED display panels |
US6075322A (en) * | 1997-11-03 | 2000-06-13 | Pauly; Kristin C. | Self-contained electroluminescent marker and light |
US6280053B1 (en) * | 1998-09-23 | 2001-08-28 | Tseng-Lu Chien | Multiple function electro-luminescent night light devices |
US6283604B1 (en) * | 1999-09-20 | 2001-09-04 | Ching-Shin Liao | Electro luminescent illuminator |
US20030143423A1 (en) * | 2002-01-31 | 2003-07-31 | 3M Innovative Properties Company | Encapsulation of organic electronic devices using adsorbent loaded adhesives |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733367A (en) * | 1956-01-31 | Electroluminescent lamp structures | ||
NL124075C (en) | 1959-04-09 | |||
GB994680A (en) * | 1963-02-25 | 1965-06-10 | Thorn Electrical Ind Ltd | Improved electroluminescent device |
US3393337A (en) * | 1963-04-06 | 1968-07-16 | Panerai Maria | Electroluminescent devices |
US3317722A (en) * | 1965-04-26 | 1967-05-02 | Frances L Whitney | Electroluminescent lamp |
US3315111A (en) * | 1966-06-09 | 1967-04-18 | Gen Electric | Flexible electroluminescent device and light transmissive electrically conductive electrode material therefor |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3748455A (en) * | 1971-01-06 | 1973-07-24 | Morton Metalcraft Co | Display apparatus |
US3894225A (en) * | 1974-07-11 | 1975-07-08 | Albert L Chao | Tape-lamps |
US4146012A (en) * | 1976-07-19 | 1979-03-27 | Acurex Corporation | Solar heat exchange panel |
US4173035A (en) * | 1977-12-01 | 1979-10-30 | Media Masters, Inc. | Tape strip for effecting moving light display |
US4427479A (en) * | 1980-08-29 | 1984-01-24 | David Glaser | Flat-panel display and method of manufacture |
US4492295A (en) * | 1982-03-05 | 1985-01-08 | Environmental Products Corporation | Automated redemption center for metal containers |
US4439818A (en) * | 1983-02-25 | 1984-03-27 | Scheib Joseph J | Flexible light display with evenly distributed illumination |
US4672554A (en) * | 1983-05-19 | 1987-06-09 | Brother Kogyo Kabushiki Kaisha | Software vending instrument |
US4626742A (en) * | 1984-03-26 | 1986-12-02 | Microlite, Inc. | Plug-compatible electroluminescent lamp |
US4721883A (en) * | 1986-06-02 | 1988-01-26 | Sidney Jacobs | Electroluminescent display and method of making same |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
US4834495A (en) * | 1987-05-08 | 1989-05-30 | Minnesota Mining And Manufacturing Company | Collapsible light pipe |
US5045755A (en) * | 1987-05-27 | 1991-09-03 | E-Lite Technologies, Inc. | Electroluminescent panel lamp with integral electrical connector |
US5055076A (en) * | 1989-03-09 | 1991-10-08 | Stanley Electric Co., Ltd. | Electroluminescent panel and method of manufacturing the same |
US5559681A (en) * | 1994-05-13 | 1996-09-24 | Cnc Automation, Inc. | Flexible, self-adhesive, modular lighting system |
JP3428152B2 (en) * | 1994-07-13 | 2003-07-22 | 松下電器産業株式会社 | Manufacturing method of organic EL element |
US5652930A (en) * | 1994-12-16 | 1997-07-29 | Eastman Kodak Company | Camera information display |
GB9507862D0 (en) * | 1995-04-18 | 1995-05-31 | Cambridge Display Tech Ltd | Fabrication of organic light-emitting devices |
US5753381A (en) * | 1995-12-22 | 1998-05-19 | Add Vision Inc | Electroluminescent filament |
FR2752987B1 (en) * | 1996-09-04 | 1998-11-13 | Asulab Sa | ELECTRO-OPTICAL DISPLAY DEVICE AND FLEXIBLE SUPPORT FOR SUCH DEVICES FOR SUPPLYING SUCH DEVICES |
JP3654909B2 (en) | 1996-12-28 | 2005-06-02 | Tdk株式会社 | Organic EL device |
EP0917409B1 (en) * | 1997-11-17 | 2005-03-16 | Molex Incorporated | Electroluminescent lamp and method of fabrication |
JPH11265785A (en) * | 1998-03-17 | 1999-09-28 | Matsushita Electric Ind Co Ltd | Electroluminescence element and illumination unit using same |
WO1999057945A1 (en) | 1998-05-04 | 1999-11-11 | Fiber Optic Designs, Inc. | A lamp employing a monolithic led device |
EP1029909A4 (en) | 1998-09-09 | 2007-01-10 | Idemitsu Kosan Co | Organic electroluminescence device and phenylenediamine derivative |
JP2000105557A (en) * | 1998-09-30 | 2000-04-11 | Mitsubishi Materials Corp | Thin type curved surface light emitting panel using el light emitting sheet and manufacture thereof |
US6208075B1 (en) | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Conductive fluorocarbon polymer and method of making same |
US6371637B1 (en) * | 1999-02-26 | 2002-04-16 | Radiantz, Inc. | Compact, flexible, LED array |
US6295818B1 (en) * | 1999-06-29 | 2001-10-02 | Powerlight Corporation | PV-thermal solar power assembly |
TW591584B (en) | 1999-10-21 | 2004-06-11 | Semiconductor Energy Lab | Active matrix type display device |
US6777871B2 (en) * | 2000-03-31 | 2004-08-17 | General Electric Company | Organic electroluminescent devices with enhanced light extraction |
US6382433B1 (en) * | 2000-09-25 | 2002-05-07 | Vengra Design Group, Inc. | Foldable display assembly |
US6527400B2 (en) * | 2001-05-01 | 2003-03-04 | Kirkwood Tierney | Electroluminescent supplementary-lighting device having three-dimensional configuration |
US6771021B2 (en) * | 2002-05-28 | 2004-08-03 | Eastman Kodak Company | Lighting apparatus with flexible OLED area illumination light source and fixture |
US6786357B2 (en) * | 2002-09-19 | 2004-09-07 | Oxalight L.L.C. | Vending machine for chemiluminescent novelty items |
-
2002
- 2002-05-28 US US10/156,396 patent/US6771021B2/en not_active Expired - Lifetime
-
2003
- 2003-04-08 TW TW092107997A patent/TWI277360B/en not_active IP Right Cessation
- 2003-05-16 EP EP03076495A patent/EP1367677A3/en not_active Withdrawn
- 2003-05-27 JP JP2003149020A patent/JP2004055535A/en active Pending
- 2003-05-27 KR KR10-2003-0033654A patent/KR20030091815A/en not_active Application Discontinuation
- 2003-05-28 CN CN03137900A patent/CN1462161A/en active Pending
-
2004
- 2004-02-11 US US10/776,749 patent/US7075226B2/en not_active Expired - Lifetime
- 2004-02-11 US US10/776,742 patent/US20040160768A1/en not_active Abandoned
-
2006
- 2006-05-16 US US11/383,504 patent/US20060197456A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5013967A (en) * | 1987-08-07 | 1991-05-07 | Mitsubishi Cable Industries Ltd. | Electroluminescence lamp and method of use thereof |
US4999936A (en) * | 1988-04-24 | 1991-03-19 | Calamia Thomas J | Illuminated sign |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5162696A (en) * | 1990-11-07 | 1992-11-10 | Goodrich Frederick S | Flexible incasements for LED display panels |
US6075322A (en) * | 1997-11-03 | 2000-06-13 | Pauly; Kristin C. | Self-contained electroluminescent marker and light |
US6280053B1 (en) * | 1998-09-23 | 2001-08-28 | Tseng-Lu Chien | Multiple function electro-luminescent night light devices |
US6283604B1 (en) * | 1999-09-20 | 2001-09-04 | Ching-Shin Liao | Electro luminescent illuminator |
US20030143423A1 (en) * | 2002-01-31 | 2003-07-31 | 3M Innovative Properties Company | Encapsulation of organic electronic devices using adsorbent loaded adhesives |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114200A1 (en) * | 2007-03-22 | 2008-09-25 | Koninklijke Philips Electronics N.V. | Flexible light source |
US8330355B2 (en) * | 2007-12-13 | 2012-12-11 | Emdeoled Gmbh | Illumination means |
US20120019128A1 (en) * | 2007-12-13 | 2012-01-26 | Emde Projects Gmbh | Illumination Means |
US20100045175A1 (en) * | 2008-08-19 | 2010-02-25 | Plexotronics, Inc. | Organic light emitting diode lighting devices |
US8288951B2 (en) | 2008-08-19 | 2012-10-16 | Plextronics, Inc. | Organic light emitting diode lighting systems |
US20100076527A1 (en) * | 2008-08-19 | 2010-03-25 | Plextronics, Inc. | User configurable mosaic light emitting apparatus |
WO2010022105A3 (en) * | 2008-08-19 | 2010-07-01 | Plextronics, Inc. | Organic light emitting diode products |
WO2010022105A2 (en) * | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode products |
US20100045189A1 (en) * | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode lighting systems |
US8215787B2 (en) | 2008-08-19 | 2012-07-10 | Plextronics, Inc. | Organic light emitting diode products |
US8836221B2 (en) | 2008-08-19 | 2014-09-16 | Solvay Usa, Inc. | Organic light emitting diode lighting systems |
US20100046210A1 (en) * | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode products |
US8519424B2 (en) | 2008-08-19 | 2013-08-27 | Plextronics, Inc. | User configurable mosaic light emitting apparatus |
US8414304B2 (en) | 2008-08-19 | 2013-04-09 | Plextronics, Inc. | Organic light emitting diode lighting devices |
US8442600B1 (en) | 2009-12-02 | 2013-05-14 | Google Inc. | Mobile electronic device wrapped in electronic display |
US8463328B1 (en) | 2009-12-02 | 2013-06-11 | Google Inc. | Mobile electronic device wrapped in electronic display |
US9785308B1 (en) | 2009-12-02 | 2017-10-10 | Google Inc. | Mobile electronic device wrapped in electronic display |
US8644885B1 (en) | 2009-12-02 | 2014-02-04 | Google Inc. | Mobile electronic device wrapped in electronic display |
WO2011148313A1 (en) * | 2010-05-28 | 2011-12-01 | Koninklijke Philips Electronics N.V. | A beamshaping optical stack, a light source and a luminaire |
US8890395B2 (en) | 2010-05-28 | 2014-11-18 | Koninklijke Philips N.V. | Beamshaping optical stack, a light source and a luminaire |
CN102906488A (en) * | 2010-05-28 | 2013-01-30 | 皇家飞利浦电子股份有限公司 | Beam shaping optical stack, light source and lamp |
US9506633B2 (en) | 2012-09-06 | 2016-11-29 | Cooledge Lighting Inc. | Sealed and sealable lighting systems incorporating flexible light sheets and related methods |
US9927102B2 (en) | 2012-09-06 | 2018-03-27 | Cooledge Lighting, Inc. | Sealed and sealable lighting systems incorporating flexible light sheets and related methods |
US10234113B2 (en) | 2012-09-06 | 2019-03-19 | Cooledge Lighting, Inc. | Sealed and sealable lighting systems incorporating flexible light sheets and related methods |
WO2014200846A1 (en) * | 2013-06-12 | 2014-12-18 | Cooledge Lighting Inc. | Portable lighting systems incorporating deformable light sheets |
WO2014201250A1 (en) * | 2013-06-12 | 2014-12-18 | Cooledge Lighting Inc. | Lighting systems incorporating flexible light sheets deformable to produce desired light distributions |
US9494305B2 (en) | 2013-06-12 | 2016-11-15 | Cooledge Lighting, Inc. | Lighting systems incorporating flexible light sheets deformable to produce desired light distributions |
WO2016112001A3 (en) * | 2015-01-06 | 2016-12-22 | Cooledge Lighting, Inc. | Systems and methods for uniform led lighting |
US10001259B2 (en) | 2015-01-06 | 2018-06-19 | Cooledge Lighting Inc. | Methods for uniform LED lighting |
Also Published As
Publication number | Publication date |
---|---|
US20040160166A1 (en) | 2004-08-19 |
KR20030091815A (en) | 2003-12-03 |
TW200402243A (en) | 2004-02-01 |
US6771021B2 (en) | 2004-08-03 |
EP1367677A3 (en) | 2009-01-07 |
US20030222559A1 (en) | 2003-12-04 |
US7075226B2 (en) | 2006-07-11 |
JP2004055535A (en) | 2004-02-19 |
TWI277360B (en) | 2007-03-21 |
US20040160768A1 (en) | 2004-08-19 |
CN1462161A (en) | 2003-12-17 |
EP1367677A2 (en) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6771021B2 (en) | Lighting apparatus with flexible OLED area illumination light source and fixture | |
US6819036B2 (en) | OLED lighting apparatus | |
US6787990B2 (en) | OLED area illumination light source having flexible substrate on a support | |
US6565231B1 (en) | OLED area illumination lighting apparatus | |
US7034470B2 (en) | Serially connecting OLED devices for area illumination | |
US6936964B2 (en) | OLED lamp | |
US6870196B2 (en) | Series/parallel OLED light source | |
JP2007536708A (en) | Tile flat panel lighting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |