US20060162933A1 - System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber - Google Patents

System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber Download PDF

Info

Publication number
US20060162933A1
US20060162933A1 US11/387,378 US38737806A US2006162933A1 US 20060162933 A1 US20060162933 A1 US 20060162933A1 US 38737806 A US38737806 A US 38737806A US 2006162933 A1 US2006162933 A1 US 2006162933A1
Authority
US
United States
Prior art keywords
fluid flow
wellhead
well
transferring
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/387,378
Other languages
English (en)
Inventor
Keith Millheim
Eric Maidla
Charles King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anadarko Petroleum Corp
Original Assignee
Anadarko Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/994,799 external-priority patent/US7458425B2/en
Application filed by Anadarko Petroleum Corp filed Critical Anadarko Petroleum Corp
Priority to US11/387,378 priority Critical patent/US20060162933A1/en
Priority to CA002544362A priority patent/CA2544362A1/en
Assigned to ANADARKO PETROLEUM CORPORATION reassignment ANADARKO PETROLEUM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KING, CHARLES H., MAIDLA, ERIC E., MILLHEIM, KEITH K.
Priority to AP2006003682A priority patent/AP2006003682A0/xx
Priority to AU2006202945A priority patent/AU2006202945A1/en
Priority to ARP060103227A priority patent/AR056001A1/es
Publication of US20060162933A1 publication Critical patent/US20060162933A1/en
Priority to PCT/US2006/033708 priority patent/WO2007108823A1/en
Priority to EP06019039A priority patent/EP1837482A1/en
Priority to BRPI0603800-0A priority patent/BRPI0603800A/pt
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/07Telescoping joints for varying drill string lengths; Shock absorbers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • E21B33/064Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers specially adapted for underwater well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0007Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations

Definitions

  • the present invention relates generally to oil and gas exploration and production, and in a specific, non-limiting embodiment, to a system and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber.
  • ABS artificial buoyant seabed
  • buoyancy and tension are imparted by the ABS to a lower connecting member and all internal casings.
  • the BOP and riser (during drilling) and production tree (during production) are supported by the lifting force of the buoyancy chamber. Offset of the wellhead is reasonably controlled by means of vertical tension resulting from the buoyancy of the ABS.
  • Atlantis ABS system is deficient, however, in several practical respects.
  • the '322 Magnussen patent specifically limits deployment of the buoyancy chamber to environments where the influence of surface waves is effectively negligible, i.e., at a depth of more than about 500 feet beneath the surface.
  • deployment at such depths is an expensive and relatively risk-laden solution, given that installation and maintenance can only be carried out by deep sea divers or remotely operated vehicles, and the fact that a relatively extensive transport system must still be installed between the top of the buoyancy chamber and the bottom of an associated recovery vessel in order to initiate production from the well.
  • the Magnussen system also fails to contemplate multiple anchoring systems, even in instances where problematic drilling environments are likely to be encountered. Moreover, the system lacks any control means for controlling adjustment of either vertical tension or wellhead depth during production and workover operations, and expressly teaches away from the use of lateral stabilizers that could enable the wellhead to be deployed in shallower waters subject to stronger tidal and wave forces.
  • FIG. 1 is a side view of an offshore exploration and production system in which an adjustable buoyancy chamber is employed to adjust the height or depth of an associated well terminal member.
  • FIGS. 2A and 2B are side views of an offshore exploration and production system, in which lateral and vertical forces on an adjustable buoyancy chamber are held approximately constant while the height of an associated well terminal member is adjusted by releasing additional lengths of tension line.
  • a system and method of establishing an offshore exploration and production system in which a well casing is disposed in communication with an adjustable buoyancy chamber and a well hole bored into the floor of a body of water.
  • a lower connecting member joins the well casing and the chamber, and an upper connecting member joins the adjustable buoyancy chamber and a well terminal member.
  • the chamber's adjustable buoyancy enables an operator to vary the height or depth of the well terminal member, and to vary the vertical tension imparted to drilling and production strings throughout exploration and production operations.
  • Also provided is a system and method of adjusting the height or depth of a wellhead while associated vertical and lateral forces remain approximately constant.
  • a variety of well isolation members, lateral stabilizers and anchoring means, as well as several methods of practicing the invention, are also disclosed.
  • an offshore exploration and production system comprising a well casing 2 installed in communication with a submerged well 1 and an adjustable buoyancy chamber 9 , wherein a lower connecting member 5 is disposed between the well casing and the adjustable buoyancy chamber.
  • the well 1 is accessed from above by means of a well hole 3 that has been bored into an associated sea floor surface.
  • a well casing 2 is set into the hole in a firm and secure manner, and then cemented into place using known downhole technology.
  • a well casing is securely set into the well hole 3 , and a fluid transport member, such as a smaller-diameter pipe or pipe casing, is inserted into well casing 2 .
  • a fluid transport member such as a smaller-diameter pipe or pipe casing
  • the outer surface of the fluid transport member is cemented or set with a packer to the inner surface of the well casing.
  • a well isolation member 4 is disposed between well casing 2 and a lower connecting member 5 .
  • well isolation member 4 comprises one or more ball valves, which, if lower connecting member 5 is removed, can be closed so that the well is effectively shut in.
  • well isolation member 4 comprises a blowout preventer or a shear ram that can be maintained in either an open or closed position in order to provide access to, or to instead shut in, the contents of well 1 .
  • lower connecting member 5 further comprises one or more receiving members disposed to receive an attachment member disposed on well isolation member 4 .
  • lower connecting member 5 comprises an attachment member for attaching said lower connecting member 5 to a receiving member disposed on well isolation member 4 .
  • Methods and means of securely fastening lower connecting member 5 to well isolation member 4 are known to those of ordinary skill in the art, and may comprise one or more of a wide variety of fastening techniques, e.g., hydraulic couplers, various nut and bolt assemblies, welded joints, pressure fittings (either with or without gaskets), swaging, etc., without departing from the scope or spirit of the present invention.
  • lower connecting member 5 may comprise any known connecting means appropriate for the specific application contemplated by operators.
  • lower connecting member 5 comprises one or more of segments of riser, riser pipe, and/or pipe casing.
  • lower connecting member 5 comprises a concentric arrangement, for example, a fluid transport member having a smaller outer diameter than the inner diameter of a pipe casing in which the fluid transport member is housed.
  • lower connecting member 5 is disposed in communication with one or more lateral stabilizers 6 , which, when deployed in conjunction a plurality of tension lines 7 , effectively controls horizontal offset of the system.
  • lower connecting member 5 is drawn taut and held in a stable position.
  • one or more stabilizers 6 control horizontal offset of lower connecting member 5 , and the height or depth of an associated well terminal member 14 is adjusted by varying the length of upper connecting member 12 .
  • the vertical tension of lower connecting member 5 is held approximately constant while the height or depth of well terminal member 14 is adjusted.
  • the height or depth of well terminal member 14 is held approximately constant, while the vertical tension imparted by adjustable buoyancy chamber 9 on lower connecting member 5 is adjusted.
  • the height or depth of well terminal member 14 and the vertical tension applied to lower connecting member 5 are held approximately constant, while lateral adjustments are performed using lateral stabilizer 6 and one or more of tension lines 7 .
  • one or more lateral tension lines 7 are individually adjustable, whereas in other embodiments, the tension lines 7 are collectively adjustable. In further embodiments, one or more tension lines 7 are both individually and collectively adjustable. In still further embodiments, the one or more lateral stabilizers 6 are disposed in communication with a tension measuring means, so that a fixed or predetermined amount of lateral tension can be applied to lower connecting member 5 in order to better control system offset. In some embodiments, the tension lines 7 are anchored to the sea floor by means of an anchoring member 8 , for example, a suction type anchor, or alternatively, a mechanical or conventional deadweight type anchor.
  • an anchoring member 8 for example, a suction type anchor, or alternatively, a mechanical or conventional deadweight type anchor.
  • adjustable buoyancy chamber 9 is approximately annular in shape, so that lower connecting member 5 can be passed through a void longitudinally disposed in a central portion of the device.
  • adjustable buoyancy chamber 9 further comprises a plurality of inner chambers.
  • each of the chambers is independently operable, and different amounts of air or gas (or another fluid) are disposed in the chambers to provide greater adjustable buoyancy control.
  • adjustable buoyancy chamber 9 further comprises a fluid ballast that can be ejected from the chamber, thereby achieving greater chamber buoyancy and lending additional vertical tension to lower connecting member 5 .
  • fluid ballast can be used to increase or retard buoyancy; for example, compressed air is an appropriate fluid that is both inexpensive and readily available.
  • adjustable buoyancy chamber 9 further comprises a ballast input valve, so that a fluid ballast can be injected into the chamber from an external source, for example, through an umbilical line run to the surface or a remote operated vehicle, so that an operator can deliver a supply of compressed gas to the chamber via the umbilical, thereby adjusting buoyancy characteristics as desired.
  • the fluid input valve is disposed in communication with one or more pumps or compressors, so that the fluid ballast is delivered to the chamber under greater pressure, thereby effecting the desired change in buoyancy more quickly and reliably.
  • adjustable buoyancy chamber 9 further comprises a ballast output valve, so that ballast can be discharged from the chamber.
  • ballast output valve so that ballast can be discharged from the chamber.
  • the ballast output valve is disposed in communication with one or more pumps or compressors, so that ballast is ejected from the chamber in a more reliable and controlled manner.
  • the ballast output valve is disposed in communication with an umbilical, so that ballast ejected from the chamber can be recovered or recycled at the surface.
  • a principle advantage of the present invention is that adjustments to the chamber's buoyancy and tensioning properties, and the ability to control the height of the well terminal member 14 , can be performed at any time during either exploration or production, due to the various ballast input and output control means disposed about the body of the chamber.
  • adjustable buoyancy chamber 9 is further disposed in communication with one or more tension lines 10 provided to anchor the adjustable buoyancy chamber to the sea floor.
  • tension lines 10 are anchored to the sea floor using known anchoring technology, for example, suction anchors or dead weight type anchors, etc.
  • the one or more tension lines 10 can also provide additional lateral stability for the system, especially during operations in which more than one well is being worked.
  • the one or more tension lines 10 are run from the adjustable buoyancy chamber 9 to the surface, and then moored to other buoys or a surface vessel, etc., so that even greater lateral tension and system stability are achieved.
  • the tension lines 10 are individually adjustable, whereas in other embodiments, the tension lines 10 are collectively controlled.
  • the one or more tension lines 10 are both individually and collectively adjustable.
  • adjustable buoyancy chamber 9 is disposed in communication with a vertical tension receiving member 11 .
  • the vertical tension receiving member 11 is equipped with a tension measuring means (e.g., a load cell, strain gauge, etc.), so that vertical tension applied to lower connecting member 5 is imparted in a more controlled and efficient manner.
  • the buoyant force applied to tension receiving member 11 is adjusted by varying the lengths of tension lines 10 , while the buoyancy of adjustable buoyancy chamber 9 is held approximately constant.
  • the buoyancy of adjustable buoyancy chamber 9 is controlled by means of one or more individually selectable ballast exhaust ports disposed about the body of the chamber, which vent excess ballast fluid to the surrounding sea.
  • the open or closed state of the ballast exhaust ports are individually controlled using port controllers known to those of ordinary skill in the art (e.g., plugs, seacocks, etc.)
  • the system is disposed so that a well terminal member 14 installed above buoyancy chamber 9 is submerged to a depth at which maintenance and testing can be carried out by SCUBA divers using lightweight, flexible diving equipment, for example, at a depth of about 100 to 300 feet beneath the surface.
  • the well terminal member 14 is submerged only to the minimum depth necessary to provide topside access to the hulls of various surface vessels servicing the well, meaning that well terminal member 14 could also be disposed at a much shallower depth, for example, a depth of about 50 to 100 feet.
  • well terminal member 14 is disposed at depths of less than 50 feet, or greater than 300 feet, depending upon the actual conditions surrounding operations.
  • well terminal member 14 is disposed either at the surface or above the surface of the water, and a blowout preventer or a production tree is installed by workers operating aboard a service platform or surface vessel.
  • This “damp tree” model avoids the need to assemble long subsurface riser stacks, as would generally be required during deepwater operations.
  • disposing the well terminal member at or near the surface also permits testing and maintenance to be carried out by SCUBA divers or surface crews, without the need for expensive and time-consuming remote operated vehicle operations.
  • well terminal member 14 further comprises either a blowout preventer or a production tree. In a presently preferred embodiment, however, well terminal member 14 further comprises a combined blowout preventer and production tree assembly configured so as to facilitate simplified well intervention operations.
  • lower connecting member 5 terminates within the void formed in a center portion of the annular chamber 9 , at which point an upper connecting member 12 becomes the means by which fluids are transported up to the wellhead.
  • lower connecting member 5 does not terminate within the void formed in a center portion of the annular chamber, but instead runs through the void and is subsequently employed as an upper connecting member 12 disposed between the chamber and the wellhead.
  • a vertical tension receiving member 11 is disposed between the buoyancy chamber 9 and upper connecting member 12 , so that the chamber's buoyant forces are transferred to the vertical tension receiving means 11 , thereby applying vertical tension to the drilling or production string extended below the chamber.
  • upper connecting member 12 further comprises a well isolation member 13 , e.g., one or more ball valves or blowout preventers, used to halt fluid flow in the event that well terminal member 14 is either removed or disabled, for example, during testing and maintenance operations.
  • a well isolation member 13 e.g., one or more ball valves or blowout preventers, used to halt fluid flow in the event that well terminal member 14 is either removed or disabled, for example, during testing and maintenance operations.
  • well terminal member 14 can be equipped with a production tree so that a production hose disposed on a surface vessel can be attached to the system and production can commence.
  • well terminal member 14 can terminate in a blowout preventer, so that the well will not blow out during drilling operations.
  • well terminal member 14 terminates in a combined production tree and blowout preventer assembly to facilitate simplified well intervention operations.
  • a system and method of establishing a height-variable well terminal member comprising a lower fluid transport pipe 21 , an inner well casing 22 , an outer well casing 23 , and a wellhead 24 .
  • a well isolation member 25 is disposed above the wellhead 24 , so that the well can be closed off or shut in if desired.
  • well isolation member 25 further comprises one or more ball valves that can be adjustably opened or closed as desired by an operator.
  • a lower connecting member 26 having one or more interior seals 27 and an interior polished bore 28 houses a fluid transport member 29 such that the height of fluid transport member 29 is variably adjustable within a body portion of lower connecting member 26 in response to vertical lifting forces imparted by adjustable buoyancy chamber 30 .
  • Various lengths of pipe define the height of an upper connecting member disposed between the buoyancy chamber 30 and a well terminal member 36 .
  • an upper well isolation member 35 such as a ball valve or a blowout preventer, is disposed in communication with the upper connecting member between buoyancy chamber 30 and well terminal member 36 .
  • the system is moored to the sea floor using one or more mooring lines 31 connected to a first vertical tension receiving means 32 a , while buoyancy chamber 30 is raised or lowered by either spooling-out or reeling-in lengths of one or more tension lines 37 disposed between a second vertical tension receiving means 32 b and a chamber height adjustment means 33 .
  • adjustable buoyancy chamber 30 rises, vertical tension is applied to vertical tension receiving member 34 , which in turn lifts well terminal member 36 up toward the surface.
  • the height of both the well terminal member 36 and fluid transport member 29 are vertically adjusted by increasing the length of tension lines 37 using chamber height adjustment means 33 , even as vertical and lateral tension on mooring lines 31 and tension lines 37 remains approximately constant.
  • vertical tension on lower connecting member 26 is also kept approximately constant during this process, since fluid transport member 29 is moved vertically within a body portion of lower connecting member 26 .
  • a second, lower adjustable buoyancy chamber is added to the system to maintain tension on lower connecting member 26 , while the height of the well terminal member is adjusted as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Revetment (AREA)
  • Geophysics And Detection Of Objects (AREA)
US11/387,378 2004-09-01 2006-03-23 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber Abandoned US20060162933A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/387,378 US20060162933A1 (en) 2004-09-01 2006-03-23 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
CA002544362A CA2544362A1 (en) 2006-03-23 2006-04-20 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
AP2006003682A AP2006003682A0 (en) 2006-03-23 2006-07-10 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
AU2006202945A AU2006202945A1 (en) 2006-03-23 2006-07-10 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
ARP060103227A AR056001A1 (es) 2006-03-23 2006-07-26 Sistema y metodo para instalar y mantener un sistema de exploracion y produccion costa afuera que tiene una camara de flotacion ajustable
PCT/US2006/033708 WO2007108823A1 (en) 2006-03-23 2006-08-28 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
EP06019039A EP1837482A1 (en) 2006-03-23 2006-09-12 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
BRPI0603800-0A BRPI0603800A (pt) 2006-03-23 2006-09-14 sistema e método de instalação e manutenção de um sistema de exploração e produção em alto-mar que tem uma cámara de flutuação ajustável

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60633504P 2004-09-01 2004-09-01
US10/994,799 US7458425B2 (en) 2004-09-01 2004-11-22 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US11/387,378 US20060162933A1 (en) 2004-09-01 2006-03-23 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/994,799 Division US7458425B2 (en) 2004-09-01 2004-11-22 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Publications (1)

Publication Number Publication Date
US20060162933A1 true US20060162933A1 (en) 2006-07-27

Family

ID=37193951

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/387,378 Abandoned US20060162933A1 (en) 2004-09-01 2006-03-23 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Country Status (8)

Country Link
US (1) US20060162933A1 (xx)
EP (1) EP1837482A1 (xx)
AP (1) AP2006003682A0 (xx)
AR (1) AR056001A1 (xx)
AU (1) AU2006202945A1 (xx)
BR (1) BRPI0603800A (xx)
CA (1) CA2544362A1 (xx)
WO (1) WO2007108823A1 (xx)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150096760A1 (en) * 2013-10-03 2015-04-09 Atlantis Offshore Holding Ltd. Modular Exploration and Production System Including an Extended Well Testing Service Vessel
NO20191188A1 (no) * 2019-10-04 2016-05-30 Neodrill As Anordning ved brønnhode
NO340947B1 (no) * 2014-11-27 2017-07-24 Neodrill As Anordning ved brønnhode
EP2567057A4 (en) * 2010-05-03 2017-08-09 Keith K. Millheim Safety system for deep water drilling units using a dual blow out preventer system
US20190194898A1 (en) * 2013-06-24 2019-06-27 Trendsetter Vulcan Offshore, Inc. Systems And Methods For Tethering Subsea Structure Mounted On A Wellhead
GB2569878A (en) * 2017-11-27 2019-07-03 Underwater Novel Tech Limited Method and apparatus for supporting a wellhead
NO344358B1 (no) * 2017-05-31 2019-11-18 Neodrill As Anordning ved brønnhode
EP3597854A1 (en) 2018-07-20 2020-01-22 Neodrill AS Arrangement for supporting a wellhead
EP3744944A1 (en) * 2013-06-24 2020-12-02 Trendsetter Vulcan Offshore Inc. Systems and methods for tethering subsea blowout preventers
US20220402577A1 (en) * 2019-11-07 2022-12-22 Trendsetter Vulcan Offshore, Inc. Systems and Methods for Tethering a Subsea Structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331978B1 (no) 2010-06-22 2012-05-14 Neodrill As Anordning og framgangsmåte for stabilisering av et brønnhode, samt anvendelse av et sugefundament til understøttelse av et brønnhode
US8657012B2 (en) 2010-11-01 2014-02-25 Vetco Gray Inc. Efficient open water riser deployment

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017934A (en) * 1955-09-30 1962-01-23 Shell Oil Co Casing support
US3470838A (en) * 1967-04-27 1969-10-07 Cammell Laird & Co Shipbuilder Buoyant wellhead structure
US3602174A (en) * 1969-06-27 1971-08-31 North American Rockwell Transfer riser system for deep suboceanic oilfields
US3705623A (en) * 1970-06-17 1972-12-12 Shell Oil Co Offshore well equipment with pedestal conductor
US3722584A (en) * 1970-08-13 1973-03-27 A Nelson Apparatus and method for drilling underwater
US3778854A (en) * 1971-03-16 1973-12-18 Santa Fe Int Corp Mooring and oil transfer apparatus
US4098333A (en) * 1977-02-24 1978-07-04 Compagnie Francaise Des Petroles Marine production riser system
US4099560A (en) * 1974-10-02 1978-07-11 Chevron Research Company Open bottom float tension riser
US4216834A (en) * 1976-10-28 1980-08-12 Brown Oil Tools, Inc. Connecting assembly and method
US4386659A (en) * 1980-02-14 1983-06-07 Constructors John Brown Limited Guides for forming connections
US4448266A (en) * 1980-11-14 1984-05-15 Potts Harold L Deep water riser system for offshore drilling
US4567843A (en) * 1980-09-12 1986-02-04 Single Buoy Moorings, Inc. Mooring system
US4617998A (en) * 1985-04-08 1986-10-21 Shell Oil Company Drilling riser braking apparatus and method
US4637335A (en) * 1982-11-01 1987-01-20 Amtel, Inc. Offshore hydrocarbon production system
US4646840A (en) * 1985-05-02 1987-03-03 Cameron Iron Works, Inc. Flotation riser
US4702321A (en) * 1985-09-20 1987-10-27 Horton Edward E Drilling, production and oil storage caisson for deep water
US4702320A (en) * 1986-07-31 1987-10-27 Otis Engineering Corporation Method and system for attaching and removing equipment from a wellhead
US4735267A (en) * 1985-03-11 1988-04-05 Shell Oil Company Flexible production riser assembly and installation method
US4832126A (en) * 1984-01-10 1989-05-23 Hydril Company Diverter system and blowout preventer
US5379844A (en) * 1993-02-04 1995-01-10 Exxon Production Research Company Offshore platform well system
US5524710A (en) * 1994-12-21 1996-06-11 Cooper Cameron Corporation Hanger assembly
US5727640A (en) * 1994-10-31 1998-03-17 Mercur Subsea Products As Deep water slim hole drilling system
US5794700A (en) * 1997-01-27 1998-08-18 Imodco, Inc. CAM fluid transfer system
US5860840A (en) * 1996-08-02 1999-01-19 Fmc Corporation Disconnectable turret mooring system utilizing a spider buoy
US6082391A (en) * 1997-09-12 2000-07-04 Stolt Comex Seaway Device for hybrid riser for the sub-sea transportation of petroleum products
US6155748A (en) * 1999-03-11 2000-12-05 Riser Systems Technologies Deep water riser flotation apparatus
US6196322B1 (en) * 1996-03-12 2001-03-06 Terje Magnussen Underwater installation and method for building of an underwater installation
US6210075B1 (en) * 1998-02-12 2001-04-03 Imodco, Inc. Spar system
US6244785B1 (en) * 1996-11-12 2001-06-12 H. B. Zachry Company Precast, modular spar system
US20010047869A1 (en) * 1998-03-27 2001-12-06 Hans Paul Hopper Method and apparatus for drilling an offshore underwater well
US6422324B1 (en) * 1996-12-10 2002-07-23 Wirth Maschinen-Und Bohrgeratefabrik Gmbh Method and device for driving bore-holes, in the sea bed using a counterflush method
US6497286B1 (en) * 1998-03-27 2002-12-24 Cooper Cameron Corporation Method and apparatus for drilling a plurality of offshore underwater wells
US6672390B2 (en) * 2001-06-15 2004-01-06 Shell Oil Company Systems and methods for constructing subsea production wells
US20060042800A1 (en) * 2004-09-01 2006-03-02 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US7063158B2 (en) * 2003-06-16 2006-06-20 Deepwater Technologies, Inc. Bottom tensioned offshore oil well production riser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762180A (en) * 1987-02-05 1988-08-09 Conoco Inc. Modular near-surface completion system

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017934A (en) * 1955-09-30 1962-01-23 Shell Oil Co Casing support
US3470838A (en) * 1967-04-27 1969-10-07 Cammell Laird & Co Shipbuilder Buoyant wellhead structure
US3602174A (en) * 1969-06-27 1971-08-31 North American Rockwell Transfer riser system for deep suboceanic oilfields
US3705623A (en) * 1970-06-17 1972-12-12 Shell Oil Co Offshore well equipment with pedestal conductor
US3722584A (en) * 1970-08-13 1973-03-27 A Nelson Apparatus and method for drilling underwater
US3778854A (en) * 1971-03-16 1973-12-18 Santa Fe Int Corp Mooring and oil transfer apparatus
US4099560A (en) * 1974-10-02 1978-07-11 Chevron Research Company Open bottom float tension riser
US4216834A (en) * 1976-10-28 1980-08-12 Brown Oil Tools, Inc. Connecting assembly and method
US4098333A (en) * 1977-02-24 1978-07-04 Compagnie Francaise Des Petroles Marine production riser system
US4386659A (en) * 1980-02-14 1983-06-07 Constructors John Brown Limited Guides for forming connections
US4567843A (en) * 1980-09-12 1986-02-04 Single Buoy Moorings, Inc. Mooring system
US4448266A (en) * 1980-11-14 1984-05-15 Potts Harold L Deep water riser system for offshore drilling
US4637335A (en) * 1982-11-01 1987-01-20 Amtel, Inc. Offshore hydrocarbon production system
US4832126A (en) * 1984-01-10 1989-05-23 Hydril Company Diverter system and blowout preventer
US4735267A (en) * 1985-03-11 1988-04-05 Shell Oil Company Flexible production riser assembly and installation method
US4617998A (en) * 1985-04-08 1986-10-21 Shell Oil Company Drilling riser braking apparatus and method
US4646840A (en) * 1985-05-02 1987-03-03 Cameron Iron Works, Inc. Flotation riser
US4702321A (en) * 1985-09-20 1987-10-27 Horton Edward E Drilling, production and oil storage caisson for deep water
US4702320A (en) * 1986-07-31 1987-10-27 Otis Engineering Corporation Method and system for attaching and removing equipment from a wellhead
US5379844A (en) * 1993-02-04 1995-01-10 Exxon Production Research Company Offshore platform well system
US5727640A (en) * 1994-10-31 1998-03-17 Mercur Subsea Products As Deep water slim hole drilling system
US5524710A (en) * 1994-12-21 1996-06-11 Cooper Cameron Corporation Hanger assembly
US6196322B1 (en) * 1996-03-12 2001-03-06 Terje Magnussen Underwater installation and method for building of an underwater installation
US5860840A (en) * 1996-08-02 1999-01-19 Fmc Corporation Disconnectable turret mooring system utilizing a spider buoy
US6244785B1 (en) * 1996-11-12 2001-06-12 H. B. Zachry Company Precast, modular spar system
US6422324B1 (en) * 1996-12-10 2002-07-23 Wirth Maschinen-Und Bohrgeratefabrik Gmbh Method and device for driving bore-holes, in the sea bed using a counterflush method
US5794700A (en) * 1997-01-27 1998-08-18 Imodco, Inc. CAM fluid transfer system
US6082391A (en) * 1997-09-12 2000-07-04 Stolt Comex Seaway Device for hybrid riser for the sub-sea transportation of petroleum products
US6210075B1 (en) * 1998-02-12 2001-04-03 Imodco, Inc. Spar system
US20010047869A1 (en) * 1998-03-27 2001-12-06 Hans Paul Hopper Method and apparatus for drilling an offshore underwater well
US6431285B2 (en) * 1998-03-27 2002-08-13 Cooper Cameron Corporation Apparatus for drilling an offshore underwater well
US6497286B1 (en) * 1998-03-27 2002-12-24 Cooper Cameron Corporation Method and apparatus for drilling a plurality of offshore underwater wells
US6601656B2 (en) * 1998-03-27 2003-08-05 Cooper Cameron Corporation Method and apparatus for drilling an offshore underwater well
US6725936B2 (en) * 1998-03-27 2004-04-27 Cooper Cameron Corporation Method for drilling a plurality of offshore underwater wells
US6155748A (en) * 1999-03-11 2000-12-05 Riser Systems Technologies Deep water riser flotation apparatus
US6672390B2 (en) * 2001-06-15 2004-01-06 Shell Oil Company Systems and methods for constructing subsea production wells
US7063158B2 (en) * 2003-06-16 2006-06-20 Deepwater Technologies, Inc. Bottom tensioned offshore oil well production riser
US20060042800A1 (en) * 2004-09-01 2006-03-02 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2567057A4 (en) * 2010-05-03 2017-08-09 Keith K. Millheim Safety system for deep water drilling units using a dual blow out preventer system
US10577768B2 (en) 2013-06-24 2020-03-03 Trendsetter Vulcan Offshore, Inc. Systems and methods for tethering subsea structure mounted on a wellhead
EP3744944A1 (en) * 2013-06-24 2020-12-02 Trendsetter Vulcan Offshore Inc. Systems and methods for tethering subsea blowout preventers
US20190194898A1 (en) * 2013-06-24 2019-06-27 Trendsetter Vulcan Offshore, Inc. Systems And Methods For Tethering Subsea Structure Mounted On A Wellhead
US20150096760A1 (en) * 2013-10-03 2015-04-09 Atlantis Offshore Holding Ltd. Modular Exploration and Production System Including an Extended Well Testing Service Vessel
NO340947B1 (no) * 2014-11-27 2017-07-24 Neodrill As Anordning ved brønnhode
US10287840B2 (en) 2014-11-27 2019-05-14 Neodrill As Arrangement for supporting a wellhead
NO344358B1 (no) * 2017-05-31 2019-11-18 Neodrill As Anordning ved brønnhode
GB2569878A (en) * 2017-11-27 2019-07-03 Underwater Novel Tech Limited Method and apparatus for supporting a wellhead
GB2569878B (en) * 2017-11-27 2020-02-26 Underwater Novel Tech Limited Method and apparatus for supporting a wellhead
EP3597854A1 (en) 2018-07-20 2020-01-22 Neodrill AS Arrangement for supporting a wellhead
NO344892B1 (no) * 2019-10-04 2020-06-15 Neodrill As Anordning ved brønnhode
NO20191188A1 (no) * 2019-10-04 2016-05-30 Neodrill As Anordning ved brønnhode
US20220402577A1 (en) * 2019-11-07 2022-12-22 Trendsetter Vulcan Offshore, Inc. Systems and Methods for Tethering a Subsea Structure

Also Published As

Publication number Publication date
BRPI0603800A (pt) 2007-01-23
AP2006003682A0 (en) 2006-08-31
WO2007108823A1 (en) 2007-09-27
CA2544362A1 (en) 2006-10-27
AR056001A1 (es) 2007-09-12
EP1837482A1 (en) 2007-09-26
AU2006202945A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7458425B2 (en) System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US20060162933A1 (en) System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US6692194B2 (en) Method for installing a conductor casing through a suction substructure
US8047297B2 (en) System for and method of restraining a subsurface exploration and production system
US4934871A (en) Offshore well support system
EA007215B1 (ru) Система установки якоря
US8573891B2 (en) Tension buoyant tower
US20140338918A1 (en) Self-Standing Riser with Artificial Lift System
US4626136A (en) Pressure balanced buoyant tether for subsea use
US8657012B2 (en) Efficient open water riser deployment
GB2194979A (en) Multi-well hydrocarbon development system
WO2002088516A1 (en) Subsea drilling riser disconnect system and method
OA13023A (en) System and method of installing and maintaining anoffshore exploration and production system having an adjustable buoyancy chamber.
US6715962B2 (en) Assembly and floatation method for drilling drivepipe
US20010027878A1 (en) Assembly and floatation method for drilling drivepipe and jarring system
US20130248198A1 (en) Safety System for Deep Water Drilling Units Using a Dual Blow Out Preventer System
WO2023219516A1 (en) Subsea well interventions
Burkhardt A progress report test of submerged production system
KR20150108549A (ko) 시추 장비 테스트 장치 및 방법
KR20150108548A (ko) Bop 테스트 장치 설치 지원선

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANADARKO PETROLEUM CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLHEIM, KEITH K.;MAIDLA, ERIC E.;KING, CHARLES H.;REEL/FRAME:017531/0263

Effective date: 20050119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION