CA2544362A1 - System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber - Google Patents

System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber Download PDF

Info

Publication number
CA2544362A1
CA2544362A1 CA002544362A CA2544362A CA2544362A1 CA 2544362 A1 CA2544362 A1 CA 2544362A1 CA 002544362 A CA002544362 A CA 002544362A CA 2544362 A CA2544362 A CA 2544362A CA 2544362 A1 CA2544362 A1 CA 2544362A1
Authority
CA
Canada
Prior art keywords
fluid flow
wellhead
well
transferring
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002544362A
Other languages
French (fr)
Inventor
Keith Millheim
Eric E. Maidla
Charles H. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anadarko Petroleum Corp
Original Assignee
Anadarko Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anadarko Petroleum Corp filed Critical Anadarko Petroleum Corp
Publication of CA2544362A1 publication Critical patent/CA2544362A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/07Telescoping joints for varying drill string lengths; Shock absorbers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • E21B33/064Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers specially adapted for underwater well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0007Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Revetment (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A system and method of establishing an offshore exploration and production system is disclosed, in which a well casing is disposed in communication with an adjustable buoyancy chamber and a well hole bored into the floor of a body of water.
A lower connecting member joins the well casing and the chamber, and an upper connecting member joins the adjustable buoyancy chamber and a well terminal member. The chamber's adjustable buoyancy enables an operator to vary the height or depth of the well terminal member, and to vary the vertical tension imparted to drilling and production strings throughout exploration and production operations.
Also disclosed is a system and method of adjusting the height or depth of a wellhead while associated vertical and lateral forces remain approximately constant. A
variety of well isolation members, lateral stabilizers and anchoring means, as well as several methods of practicing the invention, are also disclosed.

Description

SYSTEM AND METHOD OF INSTALLING AND MAINTAINING AN
OFFSHORE EXPLORATION AND PRODUCTION SYSTEM HAVING
AN ADJUSTABLE BUOYANCY CHAMBER
FIELD OF THE INVENTION
The present invention relates generally to oil and gas exploration and production, and in a specific, non-limiting embodiment, to a system and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber.
BACKGROUND OF THE INVENTION
Innumerable systems and methods have been employed in efforts to find and recover hydrocarbon reserves around the world. At first, such efforts were limited to land operations involving simple but effective drilling methods that satisfactorily recovered reserves from large, productive fields. As the number of known producing fields dwindled, however, it became necessary to search in ever more remote locales, and to move offshore, in the search for new resources. Eventually, sophisticated drilling systems and advanced signal processing techniques enabled oiI and gas companies to search virtually anywhere in the world for recoverable hydrocarbons.
Initially, deepwater exploration and production efforts consisted of expensive, large scale drilling operations supported by tanker storage and transportation systems, due primarily to the fact that most offshore drilling sites are associated with difficult and hazardous sea conditions, and thus large scale operations provided the most stable and cost-effective manner in which to search for and recover hydrocarbon reserves. A
major drawback to the large-scale paradigm, however, is that explorers and producers have little financial incentive to work smaller reserves, since potential financial recovery is generally offset by the lengthy delay between exploration and production (approximately 3 to 7 years) and the large capital investment required for conventional platforms and related drilling and production equipment.
Moreover, complex regulatory controls and industry-wide risk aversion have led to standardization, leaving operators with few opportunities to significantly alter the prevailing paradigm. As a result, offshore drilling operations have traditionally been burdened with long delays between investment and profit, excessive cost overruns, and slow, inflexible recovery strategies dictated by the operational environment.
More recently, deepwater sites have been found in which much of the danger and instability present in such operations is avoided. For example, off the coast of West Africa, Indonesia and Brazil, potential drilling sites have been identified where surrounding seas and weather conditions are relatively mild and calm in comparison to other, more volatile sites such as the Gulf of Mexico and the North Sea.
These recently discovered sites tend to have favorable producing characteristics, yield positive exploration success rates, and admit to production using simple drilling techniques similar to those employed in dry land or near-shore operations.
However, since lognormal distributions of recoverable reserves tend to be spread over a large number of small fields, each of which yield less than would normally be required in order to justify the expense of a conventional large-scale operation, these regions have to date been underexplored and underproduced relative to its potential. Consequently, many potentially productive smaller fields have already been discovered, but remain undeveloped due to economic considerations. In response, explorers and producers have adapted their technologies in an attempt to achieve greater profitability by downsizing the scale of operations and otherwise reducing expense, so that recovery from smaller fields makes more financial sense, and the delay between investment and profitability is reduced.
For example, in published Patent Application No. US 2001/0047869 Al and a number of related pending applications and patents issued to Hopper et al., various methods of drilling deepwater wells are provided in which adjustments to the drilling system can be made so as to ensure a better recovery rate than would otherwise be possible with traditional fixed-well technologies. However, the Hopper system cannot be adjusted during completion, testing and production of the well, and is especially ineffective in instances where the well bore starts at a mud line in a vertical position. Tl~e Hopper system also fails to support a variety of different surface loads, and is therefore self limiting with respect to the flexibility drillers desire during actual operations.
In U.S. Letters Patent No. 4,223,737 to O'Reilly, a method is disclosed in which the problems associated with traditional, vertically oriented operations are addressed. The method of O'Reilly involves laying out a number of interconnected, horizontally disposed pipes in a string just above the sea floor (along with a blow out preventer and other necessary equipment), and then using a drive or a remote operated vehicle to force the string horizontally into the drilling medium. The O'Reilly system, however, is inflexible in that it fails to admit to practice while the well is being completed and tested. Moreover, the method utterly fails to contemplate functionality during production and workover operations. In short, the O'Reilly reference is helpful only during the initial stages of drilling a well, and would therefore not be looked to as a systemic solution for establishing and maintaining a deepwater exploration and production operation.
Other offshore operators have attempted to solve the problems associated with deepwater drilling by effectively "raising the floor" of an underwater well by disposing a submerged wellhead above a self contained, rigid framework of pipe casing that is tensioned by means of a gas filled, buoyant chamber. For example, as seen in prior U. S. Letters Patent No. 6,196,322 B 1 to Magnussen, the Atlantis Deepwater Technology Holding Group has developed an artificial buoyant seabed (ABS) system, which is essentially a gas filled buoyancy chamber deployed in conjunction with one or more segments of pipe casing disposed at a depth of between 600 and 900 feet beneath the surface of a body of water. After the ABS
wellhead is fitted with a blowout preventer during drilling, or with a production tree during production, buoyancy and tension are imparted by the ABS to a lower connecting member and all internal casings. The BOP and riser (during drilling) and production tree (during production), are supported by the lifting force of the buoyancy chamber.
Offset of the wellhead is reasonably controlled by means of vertical tension resulting from the buoyancy of the ABS.
The Atlantis ABS system is deficient, however, in several practical respects.
For example, the '322 Magnussen patent specifically limits deployment of the buoyancy chamber to environments where the influence of surface waves is effectively negligible, i.e., at a depth of more than about 500 feet beneath the surface.
Those of ordinary skill in the art will appreciate that deployment at such depths is an expensive and relatively risk-laden solution, given that installation and maintenance can only be carried out by deep sea divers or remotely operated vehicles, and the fact that a relatively extensive transport system must still be installed between the top of the buoyancy chamber and the bottom of an associated recovery vessel in order to initiate production from the well.
The Magnussen system also fails to contemplate multiple anchoring systems, even in instances where problematic drilling environments are likely to be encountered. Moreover, the system lacks any control means for controlling adjustment of either vertical tension or wellhead depth during production and workover operations, and expressly teaches away from the use of lateral stabilizers that could enable the wellhead to be deployed in shallower waters subject to stronger tidal and wave forces.
Thus, there is plainly a widespread need for a system and method of disposing an offshore wellhead in a manner such that drillers can adjust both the depth of a wellhead and the vertical tension applied to associated pipe casing throughout the duration of exploration and production operations. There is also a need for an adjustable buoyancy chamber system capable of maintaining approximately constant vertical tension on an associated drilling or production string, and adjusting either the height of a wellhead at any time during exploration and production by releasing additional lengths of tension line from a buoyancy chamber height adjustment member. There is also a need for an offshore exploration and production system that flexibly admits to use in connection with both deepwater and shallow target horizons, without necessarily being configured to conform to any particular operational depth.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a side view of an offshore exploration and production system in which an adjustable buoyancy chamber is employed to adjust the height or depth of an associated well terminal member.
Figures 2A and 2B are side views of an offshore exploration and production system, in which lateral and vertical forces on an adjustable buoyancy chamber are held approximately constant while the height of an associated well terminal member is adjusted by releasing additional lengths of tension line.
SUMMARY OF THE INVENTION
A system and method of establishing an offshore exploration and production system is provided, in which a well casing is disposed in communication with an adjustable buoyancy chamber and a well hole bored into the floor of a body of water.
A lower connecting member joins the well casing and the chamber, and an upper connecting member joins the adjustable buoyancy chamber and a well terminal member. The chamber's adjustable buoyancy enables an operator to vary the height or depth of the well terminal member, and to vary the vertical tension imparted to drilling and production strings throughout exploration and production operations.
Also provided is a system and method of adjusting the height or depth of a wellhead while associated vertical and lateral forces remain approximately constant. A
variety of well isolation members, lateral stabilizers and anchoring means, as well as several methods of practicing the invention, are also disclosed.
DETAILED DESCRIPTION
Referring now to the specific, non-limiting embodiment of the invention depicted in Figure 1, an offshore exploration and production system is provided, comprising a well casing 2 installed in communication with a submerged well 1 and an adjustable buoyancy chamber 9, wherein a lower connecting member 5 is disposed between the well casing and the adjustable buoyancy chamber. In a presently preferred embodiment, the well 1 is accessed from above by means of a well hole 3 that has been bored into an associated sea floor surface. In a typical embodiment, a well casing 2 is set into the hole in a firm and secure manner, and then cemented into place using known downhole technology. In other embodiments, a well casing is securely set into the well hole 3, and a fluid transport member, such as a smaller-diameter pipe or pipe casing, is inserted into well casing 2. Once a desired fit has been achieved, the outer surface of the fluid transport member is cemented or set with a packer to the inner surface of the well casing. Those of ordinary skill in the art will appreciate that while the embodiment described above refers to but a single well, the offshore exploration and production system disclosed herein can be readily adapted to simultaneously work multiple neighboring wells without departing from the scope or spirit of the invention.
According to a one embodiment, a well isolation member 4 is disposed between well casing 2 and a lower connecting member 5. In some embodiments, well isolation member 4 comprises one or more ball valves, which, if lower connecting member 5 is removed, can be closed so that the well is effectively shut in. In further embodiments, well isolation member 4 comprises a blowout preventer or a shear ram that can be maintained in either an open or closed position in order to provide access to, or to instead shut in, the contents of well 1.
In other embodiments, lower connecting member 5 further comprises one or more receiving members disposed to receive an attachment member disposed on well isolation member 4. In an alternative embodiment, lower connecting member 5 comprises an attachment member for attaching said lower connecting member 5 to a receiving member disposed on well isolation member 4. Methods and means of securely fastening lower connecting member 5 to well isolation member 4 are known to those of ordinary skill in the art, and may comprise one or more of a wide variety of fastening techniques, e.g., hydraulic couplers, various nut and bolt assemblies, welded joints, pressure fittings (either with or without gaskets), swaging, etc., without departing from the scope or spirit of the present invention.
Likewise, lower connecting member 5 may comprise any known connecting means appropriate for the specific application contemplated by operators. For example, in various embodiments, lower connecting member 5 comprises one or more of segments of riser, riser pipe, and/or pipe casing. In some embodiments, lower connecting member 5 comprises a concentric arrangement, for example, a fluid transport member having a smaller outer diameter than the inner diameter of a pipe casing in which the fluid transport member is housed.
In further embodiments, lower connecting member 5 is disposed in communication with one or more lateral stabilizers 6, which, when deployed in conjunction a plurality of tension lines 7, effectively controls horizontal offset of the system. By utilizing the buoyant forces of adjustable buoyancy chamber 9, lower connecting member 5 is drawn taut and held in a stable position.
In an alternative embodiment, one or more stabilizers 6 control horizontal offset of lower connecting member 5, and the height or depth of an associated well terminal member 14 is adjusted by varying the length of upper connecting member 12. In some embodiments, the vertical tension of lower connecting member 5 is held approximately constant while the height or depth of well terminal member 14 is adjusted. In further embodiments, the height or depth of well terminal member 14 is held approximately constant, while the vertical tension imparted by adjustable buoyancy chamber 9 on lower connecting member 5 is adjusted. In still further embodiments, the height or depth of well terminal member 14 and the vertical tension applied to lower connecting member 5 are held approximately constant, while lateral adjustments are performed using lateral stabilizer 6 and one or more of tension lines 7.
In certain embodiments, one or more lateral tension lines 7 are individually adjustable, whereas in other embodiments, the tension lines 7 are collectively adjustable. In further embodiments, one or more tension lines 7 are both individually and collectively adjustable. In still further embodiments, the one or more lateral stabilizers 6 are disposed in communication with a tension measuring means, so that a fixed or predetermined amount of lateral tension can be applied to lower connecting member 5 in order to better control system offset. In some embodiments, the tension lines 7 are anchored to the sea floor by means of an anchoring member 8, for example, a suction type anchor, or alternatively, a mechanical or conventional deadweight type anchor.
In a presently preferred embodiment, adjustable buoyancy chamber 9 is approximately annular in shape, so that lower connecting member 5 can be passed through a void longitudinally disposed in a central portion of the device. In further embodiments, adjustable buoyancy chamber 9 further comprises a plurality of inner chambers. In still further embodiments, each of the chambers is independently operable, and different amounts of air or gas (or another fluid) are disposed in the chambers to provide greater adjustable buoyancy control. In one example embodiment, adjustable buoyancy chamber 9 further comprises a fluid ballast that can be ejected from the chamber, thereby achieving greater chamber buoyancy and lending additional vertical tension to lower connecting member 5. Those of ordinary skill in the art will appreciate that many appropriate fluid ballast can be used to increase or retard buoyancy; for example, compressed air is an appropriate fluid that is both inexpensive and readily available.
In some embodiments, adjustable buoyancy chamber 9 further comprises a ballast input valve, so that a fluid ballast can be injected into the chamber from an external source, for example, through an umbilical line run to the surface or a remote operated vehicle, so that an operator can deliver a supply of compressed gas to the chamber via the umbilical, thereby adjusting buoyancy characteristics as desired. In other embodiments, the fluid input valve is disposed in communication with one or more pumps or compressors, so that the fluid ballast is delivered to the chamber under greater pressure, thereby effecting the desired change in buoyancy more quickly and reliably.
In other embodiments, adjustable buoyancy chamber 9 further comprises a ballast output valve, so that ballast can be discharged from the chamber. In instances where air or another light fluid is injected into the chamber while water or another heavy liquid is discharged, the chamber will become more buoyant and increase vertical tension on lower connecting member 5. Conversely, if water or another heavy liquid is injected into the chamber while air is bled out, the chamber will lose buoyancy, thereby lessening vertical tension on lower connecting member 5.
In alternative embodiments, the ballast output valve is disposed in communication with one or more pumps or compressors, so that ballast is ejected from the chamber in a more reliable and controlled manner. In some embodiments, the ballast output valve is disposed in communication with an umbilical, so that ballast ejected from the chamber can be recovered or recycled at the surface.
In any event, a principle advantage of the present invention is that adjustments to the chamber's buoyancy and tensioning properties, and the ability to control the height of the well terminal member 14, can be performed at any time during either exploration or production, due to the various ballast input and output control means disposed about the body of the chamber.
In further embodiments, adjustable buoyancy chamber 9 is further disposed in communication with one or more tension lines 10 provided to anchor the adjustable buoyancy chamber to the sea floor. As before, tension lines 10 are anchored to the sea floor using known anchoring technology, for example, suction anchors or dead weight type anchors, etc. The one or more tension lines 10 can also provide additional lateral stability for the system, especially during operations in which more than one well is being worked. In one embodiment, the one or more tension lines 10 are run from the adjustable buoyancy chamber 9 to the surface, and then moored to other buoys or a surface vessel, etc., so that even greater lateral tension and system stability are achieved. In further embodiments, the tension lines 10 are individually adjustable, whereas in other embodiments, the tension lines 10 are collectively controlled. In still further embodiments, the one or more tension lines 10 are both individually and collectively adjustable.
In one example embodiment, adjustable buoyancy chamber 9 is disposed in communication with a vertical tension receiving member 11. In another embodiment, the vertical tension receiving member 11 is equipped with a tension measuring means (e.g., a load cell, strain gauge, etc.), so that vertical tension applied to lower connecting member 5 is imparted in a more controlled and efficient manner. In another embodiment, the buoyant force applied to tension receiving member 11 is adjusted by varying the lengths of tension lines 10, while the buoyancy of adjustable buoyancy chamber 9 is held approximately constant. In a further embodiment, the buoyancy of adjustable buoyancy chamber 9 is controlled by means of one or more individually selectable ballast exhaust ports disposed about the body of the chamber, which vent excess ballast fluid to the surrounding sea. In still further embodiments, the open or closed state of the ballast exhaust ports are individually controlled using port controllers known to those of ordinary skill in the art (e.g., plugs, seacocks, etc.) In a presently preferred embodiment, the system is disposed so that a well terminal member 14 installed above buoyancy chamber 9 is submerged to a depth at which maintenance and testing can be carried out by SCUBA divers using lightweight, flexible diving equipment, for example, at a depth of about 100 to 300 feet beneath the surface. In some embodiments, the well terminal member 14 is submerged only to the minimum depth necessary to provide topside access to the hulls of various surface vessels servicing the well, meaning that well terminal member 14 could also be disposed at a much shallower depth, for example, a depth of about 50 to 100 feet. In alternative embodiments, well terminal member 14 is disposed at depths of less than 50 feet, or greater than 300 feet, depending upon the actual conditions surrounding operations. In still further embodiments, well terminal member 14 is disposed either at the surface or above the surface of the water, and a blowout preventer or a production nee is installed by workers operating aboard a service platform or surface vessel. This "damp tree" model avoids the need to assemble long subsurface riser stacks, as would generally be required during deepwater operations. Moreover, disposing the well terminal member at or near the surface also permits testing and maintenance to be carried out by SCUBA divers or surface crews, without the need for expensive and time-consuming remote operated vehicle operations.
In some embodiments, well terminal member 14 further comprises either a blowout preventer or a production tree. In a presently preferred embodiment, however, well terminal member 14 further comprises a combined blowout preventer and production tree assembly configured so as to facilitate simplified well intervention operations.
In some embodiments, lower connecting member 5 terminates within the void formed in a center portion of the annular chamber 9, at which point an upper connecting member 12 becomes the means by which fluids are transported up to the wellhead. In other embodiments, lower connecting member 5 does not terminate within the void formed in a center portion of the annular chamber, but instead runs through the void and is subsequently employed as an upper connecting member 12 disposed between the chamber and the wellhead. In other embodiments, a vertical tension receiving member 11 is disposed between the buoyancy chamber 9 and upper connecting member 12, so that the chamber's buoyant forces are transferred to the vertical tension receiving means 11, thereby applying vertical tension to the drilling or production string extended below the chamber.
In further embodiments, upper connecting member 12 further comprises a well isolation member 13, e.g., one or more ball valves or blowout preventers, used to halt fluid flow in the event that well terminal member 14 is either removed or disabled, for example, during testing and maintenance operations. Those of ordinary skill in the art will appreciate that the precise types and exact locations of isolation valves employed in the system are variable and flexible, the only real requirement being that the valves are capable of allowing or preventing fluid flow from the well 1 during periods in which testing or maintenance, or even an emergency safety condition, are present.
For example, well terminal member 14 can be equipped with a production tree so that a production hose disposed on a surface vessel can be attached to the system and production can commence. Alternatively, well terminal member 14 can terminate in a blowout preventer, so that the well will not blow out during drilling operations.
In other embodiments, well terminal member 14 terminates in a combined production tree and blowout preventer assembly to facilitate simplified well intervention operations.
Turning now to the specific, non-limiting embodiments of the invention depicted in Figures 2A and 2B, a system and method of establishing a height-variable well terminal member is provided, comprising a lower fluid transport pipe 21, an inner well casing 22, an outer well casing 23, and a wellhead 24. In some embodiments, a well isolation member 25 is disposed above the wellhead 24, so that the well can be closed off or shut in if desired.

In the example embodiment depicted in Figure 2A, well isolation member 25 further comprises one or more ball valves that can be adjustably opened or closed as desired by an operator. A lower connecting member 26 having one or more interior seals 27 and an interior polished bore 28 houses a fluid transport member 29 such that the height of fluid transport member 29 is variably adjustable within a body portion of lower connecting member 26 in response to vertical lifting forces imparted by adjustable buoyancy chamber 30. Various lengths of pipe define the height of an upper connecting member disposed between the buoyancy chamber 30 and a well terminal member 36. In some embodiments, an upper well isolation member 35, such as a ball valve or a blowout preventer, is disposed in communication with the upper connecting member between buoyancy chamber 30 and well terminal member 36.
In some embodiments, the system is moored to the sea floor using one or more mooring lines 31 connected to a first vertical tension receiving means 32a, while buoyancy chamber 30 is raised or lowered by either spooling-out or reeling-in lengths of one or more tension lines 37 disposed between a second vertical tension receiving means 32b and a chamber height adjustment means 33. As adjustable buoyancy chamber 30 rises, vertical tension is applied to vertical tension receiving member 34, which in turn lifts well terminal member 36 up toward the surface.
As seen in the example embodiment depicted in Figure 2B, the height of both the well terminal member 36 and fluid transport member 29 are vertically adjusted by increasing the length of tension lines 37 using chamber height adjustment means 33, even as vertical and lateral tension on mooring lines 31 and tension lines 37 remains approximately constant. In one embodiment, vertical tension on lower connecting member 26 is also kept approximately constant during this process, since fluid transport member 29 is moved vertically within a body portion of lower connecting member 26. In another embodiment, a second, lower adjustable buoyancy chamber is added to the system to maintain tension on lower connecting member 26, while the height of the well terminal member is adjusted as described above.
The foregoing specification is provided for illustrative purposes only, and is not intended to describe all possible aspects of the present invention.
Moreover, while the invention has been shown and described in detail with respect to several exemplary embodiments, those of ordinary skill in the pertinent arts will appreciate that minor changes to the description, and various other modifications, omissions and additions may also be made without departing from either the spirit or scope thereof.

Claims (15)

1. A method of transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water to a fluid retention vessel disposed nearer the surface of said body of water, said method comprising:

buoyantly supporting a well control system within said body of water;

positioning said well control system through said subsurface wellhead;

initiating a fluid flow from said subsurface wellhead;

receiving said fluid flow from said subsurface wellhead using a fluid flow receiving means;

transferring said fluid flow from said fluid flow receiving means to said well control system; and transferring said fluid flow from said well control system to said fluid retention vessel.
2. The method of transferring fluid flow initiated from a subsurface wellhead of claim 1, wherein said method further comprises:

buoyantly supporting said well control system within said body of water using a buoyancy chamber.
3. The method of transferring fluid flow initiated from a subsurface wellhead of claim 1, wherein said method further comprises:

positioning said well control system through said subsurface wellhead using a stress joint.
4. The method of transferring fluid flow initiated from a subsurface wellhead of claim 3, wherein said method further comprises:

receiving said fluid flow from said subsurface wellhead using said stress joint.
5. The method of transferring fluid flow initiated from a subsurface wellhead of claim 1, wherein said method further comprises:

transferring said fluid flow from said fluid flow receiving means to said well control system using production casing.
6. The method of transferring fluid flow initiated from a subsurface wellhead of claim 1, wherein said method further comprises:

transferring said fluid flow from said well control system to said fluid retention vessel using at least one of a production tree, a blowout preventer, and a wellhead disposed nearer the surface of said body of water than said subsurface wellhead.
7. A means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water to a fluid retention vessel disposed nearer the surface of said body of water, said means comprising:

means for buoyantly supporting a well control system within said body of water; means for positioning said well control system through said subsurface wellhead;

means for initiating a fluid flow from said subsurface wellhead;

means for receiving said fluid flow from said subsurface wellhead;

means for transferring said fluid flow from said subsurface wellhead to said well control system; and means for transferring said fluid flow from said well control system to said fluid retention vessel.
8. The means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 7, wherein said means further comprises:

a buoyancy chamber for supporting said well control system within said body of water.
9. The means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 7, wherein said means further comprises:

a stress joint for positioning said well control system through said subsurface wellhead.
10. The means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 9, wherein said stress joint is also used for receiving said fluid flow from said subsurface wellhead.
11. The means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 7, wherein said means further comprises:

a length of production casing for transferring said fluid flow from said subsurface wellhead to said well control system.
12. The means for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 7, wherein said means further comprises:

at least one of a production tree, a blowout preventer, and a wellhead disposed nearer the surface than said subsurface wellhead used for transferring said fluid flow from said well control system to said fluid retention vessel.
13. A system for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water to a fluid retention vessel disposed nearer the surface of said body of water, said system comprising:

a buoyancy chamber for buoyantly supporting a well control system within said body of water;

a means for positioning said well control system through said subsurface wellhead;

a means for initiating a fluid flow from said subsurface wellhead;

a fluid flow receiving means for receiving said fluid flow from said subsurface wellhead;

a length of production casing for transferring said fluid flow from said fluid flow receiving means to said well control system; and at least one of a production tree, a blowout preventer and a wellhead disposed nearer the surface of said body of water used for transferring said fluid flow from said well control system to said fluid retention vessel.
14. The system for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 13, wherein said means for positioning said well control system through said subsurface wellhead further comprises a stress joint.
15. The system for transferring fluid flow initiated from a subsurface wellhead disposed beneath the surface of a body of water of claim 14, wherein said stress joint is also used to receive said fluid flow from said subsurface wellhead.
CA002544362A 2006-03-23 2006-04-20 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber Abandoned CA2544362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/387,378 US20060162933A1 (en) 2004-09-01 2006-03-23 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US11/387,378 2006-03-23

Publications (1)

Publication Number Publication Date
CA2544362A1 true CA2544362A1 (en) 2006-10-27

Family

ID=37193951

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002544362A Abandoned CA2544362A1 (en) 2006-03-23 2006-04-20 System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Country Status (8)

Country Link
US (1) US20060162933A1 (en)
EP (1) EP1837482A1 (en)
AP (1) AP2006003682A0 (en)
AR (1) AR056001A1 (en)
AU (1) AU2006202945A1 (en)
BR (1) BRPI0603800A (en)
CA (1) CA2544362A1 (en)
WO (1) WO2007108823A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2801389A1 (en) * 2010-05-03 2011-11-10 Keith K. Millheim Safety system for deep water drilling units using a dual blow out preventer system
NO331978B1 (en) * 2010-06-22 2012-05-14 Neodrill As Apparatus and method for stabilizing a wellhead, and using a suction foundation to support a wellhead
US8657012B2 (en) 2010-11-01 2014-02-25 Vetco Gray Inc. Efficient open water riser deployment
US9879396B2 (en) * 2013-06-24 2018-01-30 Trendsetter Vulcan Offshore, Inc. Systems and methods for tethering subsea structure mounted on a wellhead
WO2014210026A2 (en) * 2013-06-24 2014-12-31 Bp Corporation North America, Inc. Systems and methods for tethering subsea blowout preventers to enhance the strength and fatigue resistance of subsea wellheads and primary conductors
US20150096760A1 (en) * 2013-10-03 2015-04-09 Atlantis Offshore Holding Ltd. Modular Exploration and Production System Including an Extended Well Testing Service Vessel
NO340947B1 (en) 2014-11-27 2017-07-24 Neodrill As Device at wellhead
NO344358B1 (en) * 2017-05-31 2019-11-18 Neodrill As Device at wellhead
GB201719678D0 (en) * 2017-11-27 2018-01-10 Underwater Novel Tech Limited Method and appratus for supporting a wellhead
EP3597854A1 (en) 2018-07-20 2020-01-22 Neodrill AS Arrangement for supporting a wellhead
NO344892B1 (en) * 2019-10-04 2020-06-15 Neodrill As Device at wellhead

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017934A (en) * 1955-09-30 1962-01-23 Shell Oil Co Casing support
GB1172558A (en) * 1967-04-27 1969-12-03 Cammell Laird & Company Shipbu Improvements in or relating to Buoyant Well-Head Structures for Offshores Wells
US3602174A (en) * 1969-06-27 1971-08-31 North American Rockwell Transfer riser system for deep suboceanic oilfields
GB1245740A (en) * 1970-06-17 1971-09-08 Shell Int Research Equipment for a well penetrating a formation located below a body of water
US3722584A (en) * 1970-08-13 1973-03-27 A Nelson Apparatus and method for drilling underwater
US3778854A (en) * 1971-03-16 1973-12-18 Santa Fe Int Corp Mooring and oil transfer apparatus
GB1519203A (en) * 1974-10-02 1978-07-26 Chevron Res Marine risers in offshore drilling
US4216834A (en) * 1976-10-28 1980-08-12 Brown Oil Tools, Inc. Connecting assembly and method
US4098333A (en) * 1977-02-24 1978-07-04 Compagnie Francaise Des Petroles Marine production riser system
GB2069647B (en) * 1980-02-14 1983-10-05 Brown John Constr Guides for forming underwater connections
NL181640C (en) * 1980-09-12 1987-10-01 Single Buoy Moorings MOORING SYSTEM.
US4448266A (en) * 1980-11-14 1984-05-15 Potts Harold L Deep water riser system for offshore drilling
US4637335A (en) * 1982-11-01 1987-01-20 Amtel, Inc. Offshore hydrocarbon production system
US4832126A (en) * 1984-01-10 1989-05-23 Hydril Company Diverter system and blowout preventer
US4735267A (en) * 1985-03-11 1988-04-05 Shell Oil Company Flexible production riser assembly and installation method
US4617998A (en) * 1985-04-08 1986-10-21 Shell Oil Company Drilling riser braking apparatus and method
US4646840A (en) * 1985-05-02 1987-03-03 Cameron Iron Works, Inc. Flotation riser
US4702321A (en) * 1985-09-20 1987-10-27 Horton Edward E Drilling, production and oil storage caisson for deep water
US4702320A (en) * 1986-07-31 1987-10-27 Otis Engineering Corporation Method and system for attaching and removing equipment from a wellhead
US4762180A (en) * 1987-02-05 1988-08-09 Conoco Inc. Modular near-surface completion system
US5379844A (en) * 1993-02-04 1995-01-10 Exxon Production Research Company Offshore platform well system
NO305138B1 (en) * 1994-10-31 1999-04-06 Mercur Slimhole Drilling And I Device for use in drilling oil / gas wells
US5524710A (en) * 1994-12-21 1996-06-11 Cooper Cameron Corporation Hanger assembly
NO303028B1 (en) * 1996-03-12 1998-05-18 Terje Magnussen The subsea installation
US5860840A (en) * 1996-08-02 1999-01-19 Fmc Corporation Disconnectable turret mooring system utilizing a spider buoy
US6244785B1 (en) * 1996-11-12 2001-06-12 H. B. Zachry Company Precast, modular spar system
AU730041B2 (en) * 1996-12-10 2001-02-22 Wirth Maschinen- Und Bohrgerate-Fabrik Gmbh Method of, and apparatus for, sinking bore holes, in particular exploratory and extraction bore holes, in the sea bed
US5794700A (en) * 1997-01-27 1998-08-18 Imodco, Inc. CAM fluid transfer system
FR2768457B1 (en) * 1997-09-12 2000-05-05 Stolt Comex Seaway DEVICE FOR UNDERWATER TRANSPORT OF PETROLEUM PRODUCTS WITH A COLUMN
US6210075B1 (en) * 1998-02-12 2001-04-03 Imodco, Inc. Spar system
DE69836261D1 (en) * 1998-03-27 2006-12-07 Cooper Cameron Corp Method and device for drilling multiple subsea wells
EP0952301B1 (en) * 1998-03-27 2006-05-17 Cooper Cameron Corporation Method and apparatus for drilling an offshore underwater well
US6155748A (en) * 1999-03-11 2000-12-05 Riser Systems Technologies Deep water riser flotation apparatus
US6672390B2 (en) * 2001-06-15 2004-01-06 Shell Oil Company Systems and methods for constructing subsea production wells
US7063158B2 (en) * 2003-06-16 2006-06-20 Deepwater Technologies, Inc. Bottom tensioned offshore oil well production riser
US7458425B2 (en) * 2004-09-01 2008-12-02 Anadarko Petroleum Corporation System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber

Also Published As

Publication number Publication date
EP1837482A1 (en) 2007-09-26
AR056001A1 (en) 2007-09-12
BRPI0603800A (en) 2007-01-23
AP2006003682A0 (en) 2006-08-31
US20060162933A1 (en) 2006-07-27
WO2007108823A1 (en) 2007-09-27
AU2006202945A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7458425B2 (en) System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
EP1837482A1 (en) System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US6692194B2 (en) Method for installing a conductor casing through a suction substructure
US8047297B2 (en) System for and method of restraining a subsurface exploration and production system
US8573891B2 (en) Tension buoyant tower
EA007215B1 (en) Anchor installation system
US20140338918A1 (en) Self-Standing Riser with Artificial Lift System
US8657012B2 (en) Efficient open water riser deployment
WO2002088516A1 (en) Subsea drilling riser disconnect system and method
OA13023A (en) System and method of installing and maintaining anoffshore exploration and production system having an adjustable buoyancy chamber.
US6715962B2 (en) Assembly and floatation method for drilling drivepipe
US20010027878A1 (en) Assembly and floatation method for drilling drivepipe and jarring system
US9593540B2 (en) Safety system for deep water drilling units using a dual blow out preventer system
WO2023219516A1 (en) Subsea well interventions
Burkhardt A progress report test of submerged production system
KR20150108549A (en) Test Apparatus and Method for Drilling Equipment
KR20150108548A (en) Supply Barge for Installing BOP Test Apparatus

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued