US3722584A - Apparatus and method for drilling underwater - Google Patents

Apparatus and method for drilling underwater Download PDF

Info

Publication number
US3722584A
US3722584A US00063507A US3722584DA US3722584A US 3722584 A US3722584 A US 3722584A US 00063507 A US00063507 A US 00063507A US 3722584D A US3722584D A US 3722584DA US 3722584 A US3722584 A US 3722584A
Authority
US
United States
Prior art keywords
station
fluid
drilling
conduit
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00063507A
Inventor
A Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3722584A publication Critical patent/US3722584A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/001Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor specially adapted for underwater drilling

Definitions

  • the diverting assembly accommodates sealed entry of the bared string, has a diverter directing flow from the well annulus to the remote conduit and has terminating means sealing off the annulus to a mitigated well condition at the seal.
  • a system to line the bored hole concurrent with reassemblage of the string is conducive to furtherance of the expeditious penetration system.
  • PATENTEDHARZ'IIHYS SHEET OSUF 10 INVENTOR Arthur JNelson APPARATUS AND METHOD FOR DRILLING UNDERWATER This application is a supplement to U.S. Pat. 3593808 dated 8-20-71.
  • the initial application stressed the basic concept to bare to natural elements an extended drill string retained as an integral assembly to prolong drilling by an automatic and continuous method. Particular mode of operation was suggestive of an assembly together with inclusion by simple recitation of mandatory accessories to present a feasible apparatus.
  • the present application discloses alternate ar rangement embodying the underlying principle, further discloses and importantly, detailed disclosure of apparatus and provisions previously deferred for this patent application.
  • the present invention relates to the art of off-shore drilling especially applicable to deep and rough seas.
  • a prime object is to obtain prolonged effective penetration of the floor by automatic and uninterrupted application of torque to a maximum extended drill string bared to environmental conditions.
  • Another object is to provide a fluid transmission system which is alterable with continuous penetration of the bit.
  • Still another object is to provide sealing means at the diverter assembly in accommodation with descent of the drill string.
  • Another object is to sustain the fluid transmission system by monitoring and control means responsive to variations in the assembly during drilling.
  • Another object is to provide a method and system undertaking intermediate phases between boring operations.
  • An apparatus and system for forming a well in subaqueous strata obviating the conventional conductor pipe.
  • the basic concept is an apparatus devised for uninterrupted and continuous boring of a well sustained in operation by a fluid transmission system having an injector portion for introducing fluid at the well bottom to entrain formation cuttings with return as a slurry up the annulus defined by the injector portion in the well to a diverter assembly sealing off the annulus and directing flow through a remote branched conduit separately supported and extending to a surface vessel.
  • the hollow drill string preassembled as an integral length borne by an immersed support station comprises the lower part of the injector portion.
  • An articulatively assembled conduit with inlet connected to a fluid supply on the surface vessel is separately supported by a buoyant control station as the upper part of the injector portion.
  • a universal fitting connects the two injector parts in accommodation with relative rotative and axial movement of the two rigid member parts.
  • Monitoring and control means are adapted to adjust the member supports corresponding with progress in drilling and opposing disruptive forces to the stability of the apparatus.
  • FIG. 1 is an elevational view diagrammatically illustrating the entire system of the invention in the condition it would assume during a drilling operation, with parts thereof broken away for purposes of compactness.
  • FIG. 2 is a plan view illustrating an example of the base composition of control station 34.
  • FIG. 3 is a partial elevational view diagrammatically illustrating the drilling station with the base 154 and superstructure portions 156 thereof separated as they might be during a servicing operation.
  • FIG. 4 is a sectional elevational view of the drilling station 150 in an assembled condition, with parts thereof broken away.
  • FIG. 5 is a plan view illustrating an example of the base portion 154 of the drilling station 150.
  • FIG. 6 is an elevational view, partially in section, of the support station 52.
  • FIG. 7 is a sectional view taken on the plane designated by lines 99 of FIG. 6 illustrating one of the elements of the tension equalizers 106a shown in FIG. 6.
  • FIG. 8 is an elevational view diagrammatically illustrating the support station 52 in a condition out of vertical alignment with the stations to either side thereof.
  • FIG. 9 is an elevational view illustrating the leveler monitor 301 for the tension equalizers 106.
  • FIG. 10 is a sectional view, in elevation with parts thereof broken away, showing the construction of the joint 50 between the drill string and the drilling fluid supply line 46 and the support arrangement 96 for the drill string on the support station 52.
  • FIG. 11 is a partial elevational view in section of the leveling device 47 monitoring the posture of control station 34.
  • FIG. 12 is an elevational view partially in section, illustrating the regulator 51 monitoring free-board of the control station 34.
  • FIG. 13 is a sectional view taken on the plane designated by lines l414 of FIG. 4 illustrating the shuttle type sealing mechanism 357 employed to establish a fluid-tight connection between the drill string and the casing of a hole being drilled thereby.
  • FIG. 14 is a sectional view taken on the plane designated by lines 15-15 of FIG. 13.
  • FIG. 15 is a schematic elevational view of a multistage adaption of the throttling system 363.
  • FIG. 16 is an elevational sectional view of a typical portion of the composite assembly of clamp 77 in support of the conduit coupling 48 with the coupling releaser 81 disposed above when viewed in the planes 24a and 24b of FIGS. 17 and 18 respectively.
  • FIG. 17 is a plan view of the clamp 77 taken from the plane 25-25 of FIG. 16.
  • FIG. 18 is a plan view of the coupling releaser 81 taken from the plane 2626 of FIG. 16.
  • FIG. 19 is an elevational view diagrammatically illustrating the arrangement of apparatus at the apex 37 of the control station 34.
  • FIG. 20 is an elevational sectional view of a typical portion of the composite assembly of coupling 48 with the coupling releaser 87 disposed above associated with the flexible joint 38.
  • FIG. 21 is an elevational view partially in section showing the diverter assembly 348 connecting the well to the drilling station and diagramatically illustrates some of the remote control associated.
  • FIG. 22 is an elevational sectional view of a typical half portion of the composite assembly of the throttle mechanism 363 incorporated in the diverter assembly 348.
  • FIG. 23 is an elevational sectional view of a typical portion of the automatic fastening and remote means to disengage flange 349 separating the diverter assembly 348.
  • FIG. 24 is a schematic diagram of the pneumatic and wiring system associating the vertical array of stations.
  • FIG. 25 is a sectional elevational view of the first baffle 217 sealing off the well during installation of the well lining.
  • FIG. 26 is a sectional elevational view of the second bafile 221 sealing ofi' the well during installation of the well lining.
  • FIG. 27 is a sectional elevational view of the grip 21 1 sacrificially parted with completion of lining installation.
  • FIG. 28 is a sectional plan view of grip 211 taken in the plane 3737 of FIG. 27.
  • FIG. 29 is an elevational view diagrammatically illustrating a system to line the bored well in sequence with the drilling operation.
  • FIG. 30 is an elevational view with progress to the placement of the lining in the bored hole.
  • FIG. 31 is a sectional elevational view of the borable plug 227 employed as a sacrificial member of the assembly of FIG. 29.
  • the array fixed to a site by an erect drilling station bearing on the floor, extends to include a control station 34 buoyantly supported by immersed pontoons 40 in vicinity of the surface 28 to define the extent of movement of a support station 52 functioning between as a buoyantly manipulated feeder.
  • the array further includes; a drill string 146 preassembled to suspend from support station 52 as bared to the water in reach to the diverter assembly 348 fixed to the floor, and a conduit in fluid communication with the drill string extending therefrom upwardly with a vertical constituent 46 connected by a flexible joint 38 to a pivotal constituent 22 having the inlet end supported by axis 24 on the service station and adapted for connection to a source of fluid supply.
  • a universal fitting 50 effects union of the non-rotating conduit 46 to the drill string 146 with the latter automatically and continuously rotated by the drilling station to effect uninterrupted penetration of the strata below the floor by the terminally connected bit 284.
  • a wire system comprising a lower portion 99a connecting the drilling station 150 to the support station 52 and an upper portion 99b connecting the control station 34 to the support station 52.
  • the wire system also in transmitting a tension load provides taut members serving as an element in the stabilization system 2960 of the array established by a hydraulic thruster system, as developed in Ref.
  • three wires 100a, 102a, 104a comprise the upper portion 990 and three wires 100b, 102b, 104! comprise the upper portion 99b.
  • the control station 34 includes a superstructure 36 transmitting the pontoon buoyant support to an apex assemblage 37 towering above the surface 28 to accommodate mounting of a crane 39 used to manipulate a frame 41 bearing; the flexible joint 38, unsupported end of pivotal constituent 22, all the vertical constituents 46 and other apparatus subsequently to be discussed.
  • the superstructure 36 is constructed upon a base 43 supported by the pontoons 40 connected at the vertices of a polygonal configuration dimensional in excess of the height to the apex 37.
  • One of the lateral sides provides passageway 45 for articulative pivotal constituent 22 and assemblage of the array as to be subsequently discussed.
  • the superstructure is provided with a leveler 47 arranged to retain the structure erect or with a slight list towards the side with the passageway 45; so that the vertical projection of the apex 37 just clears the center connection of base members 43.
  • Freeboard of the control station 34 is established by adjusting the-position of a regulator 51 mounted to the superstructure at the desired mean water line.
  • the regulator monitors the variable gas chambers of the immersed pontoons 40 providing greater or less support capacity to retain the selected freeboard.
  • the freeboard selected is dependent upon particular situations; whether for normal drilling, when drilling during changes to the array or when working on the inoperated assembly.
  • the superstructure is positioned to accommodate allowable movement of axis end 24 attributed to the bearing service station 20.
  • the superstructure freeboard may be altered to better position for the assembly method to be subsequently discussed.
  • Reels 1 18b provides wire length adjustment corresponding with length changes to conduit 46 and the crane 39 sustains movement of the conduit 46 by paying out cable to lower its tail block 55 consistent with penetration of the drill bit 284 in the strata below floor 152.
  • the frame 41 is hung by bails 57 connected to tail block 55 of the crane 39 itself complete with drum, gear reducer, motor, brakes, etc., corresponding in assembly to Ref. B.
  • Three similar reels 118a at the drilling station periodically haul-in the lower wire portion 99a with accommodation means 274a to relate descent of the support station as progress in drilling to prescribe payout by the crane; so that the vertical conduit 46 descends accordingly to preserve a space relationship of its end within the fitting 50.
  • the lower wires 100a, 102a, 104a are provided with a weighted means to establish taut lines essential to the stabilizer system 296a.
  • the weighted means being sheaves 272 guided for vertical movement representing half the descent of the support station 52 to indicate progress in drilling.
  • sheaves provide a takeup means so that reels 118a need not be rotated except at periodic intervals when returning sheaves 272 from a lower limiting position to an upper limiting position with the limit switches touched-off communicating with the solenoid included in mechanism 208a transmitting power from the torque table to reels 1 18a.
  • Ref. A covered this treatment of the lower wire portion.
  • the means 274a relating hole penetration to the crane 39 is herewith interpreted to be a selsyn transmitter 61 clutched to a sprocket 63 engaging a chain 65 connected at one end to the guide bearing of one of the sheaves 272 and the other end weighted 67; so that when the transmitter is rotated with descent of the sheave it electrically activates a selsyn receiver 49 monitoring the motor powering crane 39 to provide movement of conduit 46 corresponding to movement of string 146.
  • the clutch 69 becomes disengaged in opposite rotation of sprocket 63; so that crane 39 doesnt respond when re-establishing the upper position of sheave 272.
  • intermediate buoys 71 are sectionally included in the array to diminish the concentration of load of the aggregate mass that would have resulted from sole support by the control station 34.
  • the drill string and lower wire portion are not sectionally supported; since the string is subject to maximum stress only at the time when fully extended below the drilling station when torque is then transmitted through its entire length and the lower wire portion is only tensioned sufficient to provide the taut lines for the stabilization system.
  • the flexible joint 38 connecting the conduit constituents 22, 46 moves vertically within the superstructure between a contracted position 73 of the tail block 55 and a lowermost clamped position 75 of the conduit 46 to the control station 34, whereupon when so clamped the joint 48 may be disconnected from the conduit 46.
  • the clamp mechanism 77 is integral with the bridge 79 extending between pontoons 40 and in its normal inactivated position as shown in FIG. 16 provides clear passage through all of the pipe segments 46a of the conduit 46 but intercepts couplings 48 connecting adjacent segments 46a. With the coupling engaged to the normal intercepting position of the clamp the conduit can no longer lower except as will occur with lowering of the control station 34. Means are included to remotely activate the clamp to a non-interceptive position as shown by phantom view in FIG. 16 subsequently to be discussed when detailing the construction.
  • Flushing fluid compounded at the service station is circuited through the system of the foregoing presentation and herewith summarized to exclude the concluding phase involving processing of the returned slurry.
  • the fluid compound is pumped through conduits 22, 46 and through fitting 50 where some mix occurswith flushing liquid injected to protect parts of fitting 50.
  • the string then conveys the mix for jetting from the bit 284 at the well bottom; to cool and lubricate the bit, entrain all cuttings with return up the annulus 53 under pressure opposing all liberated fluids seeking escape into the hole bored and to plaster the walls of the well in passage through annulus 53.
  • the exterior of the drill string is abraded only to the extent when defining the annulus 53 with the well.
  • a diverter assembly 348 at the floor 152 in fluid communication with the well directs flow via a remote conduit 362 to the service station 20. The destructive properties of the fluid to the system is further minimized by protective measures employed at the diverter assembly 348 and fitting 50 as will be subsequently discussed.
  • conduit 362 is joined to diverter 347 by branch 358 connected between with flexible unions 360, 364 to accommodate moderate displacement of the joined members.
  • the inclusion of valve 351 and pump 355 is optional to the situation.
  • Base portion 154 left at the hole site has a well 175 communicating both with conical flange 176 and alley 177 extending axially and radially from well 175 with profile conforming to outer wall 158.
  • Well 175 and alley 177 cooperate with outer wall 158 to define the gas compartment 481 established with liquid level 179 and those openings 175, 177 ac commodate passage through of assembly 362 and branch 358 with the base portion 154 positioned to the well site.
  • a coupling releaser 81 used in conjunction with the clamp mechanism 77 provides remote control to automatically release the snap-on type conduit couplings 48.
  • This anticipation principally includes transfer of a pipe segment 46a from the stock pile aboard the service station 20 to an erect posture immediate to its installed position as suspended by a hoist 83 fixed uppermost on the control station.
  • a valve 85 is shut off just prior to disconnecting the joint 38; so that during the seconds time required to effect the lengthening, the inertia effect of the moving fluid column is depended upon to maintain the jet at the hole bottom.
  • Frame 41 bearing freed joint 38 is raised by haulingin on crane 39 and paying-out on reel 118b to provide space above the clamped coupling to add segment 46a.
  • the crane 38 and reel 1 18b have influenced the control station 34 to descend with the support station so as to retain a spaced end relation of the two rigid members 46, 146 not then controlled by crane 38 as previously disclosed.
  • the conduit 46 lengthened crane 38 is powered to raise the assembly an increment sufficient to activate clamp 77 free of interference with the coupling; thereafter the crane is reinstated to respond in lowering the conduit 46 and the clamp deactivated to normal position for interception of the next coupling.
  • another upper releaser 87 assembled to the flexible joint 38 serves to disengage the adjacent upper coupling of the pipe segment 46a while releaser 81 disengages the lower coupling supported by clamp 77.
  • the vertical conduit constituent 46 comprises a series of conduit segments 46a joined by coupling 48.
  • Each segment is a smooth pipe preferrably extending in length in excess of 150 feet, having a collar 93 formed to the upper end and a plug 95 formed to the lower end to provide the matching elements of adjacent segments which are locked in place by a (split) snap ring 97 partially occupying a groove 97a in the collar.
  • the snap ring has a free diameter less than the shoulder of the plug to which it grips with spring action tending to close to the lesser diameter.
  • the groove 97a has excessive depth which permits the ring to be expanded when a force is applied against prongs 101 formed to the ring and extending upward through accommodating slots in the top of the collar.
  • 0 rings 103 provide fluid seal of the coupling.
  • the conduit 46 is temporarily secured to superstructure 34 by arranging the back of the collar 93 shaped to a frustum of a cone 119 to bear upon a clamp mechanism 77 mounted to a bridge 79 spanning the base 43 to permit changes he made as needed.
  • Bridge 79 provides rigid support of a peripheral bracket 105 formed with a series of stops 107 and drilled lugs 109 bearing pins 1 11 about which intercepters 113 pivot from a radial inward position 115 to an erect position 1 17. At least 3 interoepters are uniformly spaced from the peripheral bracket so that when in position 115 they will support the couplings 48 at the cone face 119. From position 115 the intercepters can only turn counter-clockwise because of a dog 121 projection of the intercepter engagement with stop 107. Accordingly, the intercepter does not interfere but is tripped out of place when a coupling 48 is raised past the clamp.
  • the intercepter In order to pass a coupling 48 down past the clamp however, the intercepter is rotated counterclockwise by activating a solenoid 123 which then pulls on a rack 125 in engagement with gear teeth 127 formed concentric with pin 111 in the hub 129 of the intercepter.
  • the solenoid also pulls against a spring 131 inserted between an ear 133 projecting from the rack 125 and the bracket 105 used to assure retention of position 115 against inadvertent displacement.
  • the coupling releaser 81 comprises a guide frame 135 secured to superstructure 34 establishing vertical travel of a bracket 137 formed with a ringed stops 139 and drilled lugs 141 bearing pins 143 about which claws 145 pivot from a normal vertically depending position 147 to a horizontal position 149.
  • Three claws are uniformly spaced around the bracket 137 so that when in position 149 present a full circular cylinder disposed above prongs 101. From position 149 the claws can only turn clockwise because of dogs 151 projection of the claw engage with stops 139. With the claws in position 147 the releaser 81 then provides both vertical passage through it of the coupling 48 and a sideways passage 153 of the conduit segment 46a.
  • a solenoid 155 is activated to push on rack 157 in engagement with gear teeth 159 formed in the hub 161 concentric with pin 143.
  • the solenoid also pushes in opposition to a tension spring 163 employed between an extension of the rack 157 and bracket 135.
  • the bracket 137 is depressed by a power means preferrably a pneumatic jack 165 secured between frame 135-and bracket 137.
  • a pneumatic jack 165 secured between frame 135-and bracket 137.
  • At least 3 prongs 101 formed to split ring 97 are subject to the force of the descending claws and by virtue of their wedge configuration are displaced radially outward expanding the ring 97 in the process to occupy the depth of grooves 970.
  • the conduit segment 46a may be lifted out since hub 95 clears the releaser assembly. It is here noted that at assembly of the conduit segment 46a to the coupling 48 that the taper pointed hub 95 facilitates engagement past the free diameter ring 97 and that the tapered shoulder within collar 93 avoids accumulation of debris to that face.
  • the upper coupling releaser 87 comprises a guide frame 167 fixed to joint 38 establishes vertical travel of a depressor 169 disposed concentric above prongs 101 formed to the split ring 97 of the coupling 48 connecting the joint 38 to the uppermost conduit segment 46a.
  • a tension spring 171 holds the depressor 169 to a normal position clear of the prongs 101.
  • This fitting comprises, as its basic components, the following elements: a tubular housing 68a fixed to the upper chamber forming wall, designated 70, of the station 52; a first tubular conduit element 72 coupled to the lower end of the conduit 46 by a coupling 74 and extending downwardly therefrom slidably into the housing 6% for rectilinear movement relative thereto; and, a second tubular conduit element 76 received within the housing 680 and around the conduit element 72 for rotational movement relative thereto.
  • the housing 68a has roller guide arms 78 fixed to and extending upwardly therefrom for guiding engagement with the conduit element 72.
  • an involute flushing chamber 80 extending around the element 72 and opening into the element 76.
  • This chamber provides for the supply of flushing fluid to the area between the elements 72 and 76 and is closed at its upper end by an annular seal 82 interposed between the housing 68a and the exterior surface of the element 72.
  • Flushing water is supplied to the chamber 80 by conduit 84 leading to a pump 86 (see FIG. 6) and/or any suitable supply of water.
  • the conduit element 76 is supported in concentric alignment with the element 72 for rotation relative thereto and relative to the housing 68a by annular bearings 88 and 90.
  • a seal 92 is supported by the housing 68a in juxtaposition to the bearing 88 to prevent fluid from escaping past the bearing.
  • the lower end of the conduit element 76 has a thrust collar 94 fixed thereto for rotation therewith. This collar is supported on a thrust surface 96 fixed to member 98a formed to chamber wall 70 from which tubular support 138a depends for the mounting of tension equalizer 106a.
  • a pair of magnetic switches 181, 183 mounted to an extension 185 of fitting 50 are spaced so that a vane 189 mounted on conduit 72 becomes engaged with one depending upon position to activate a monitor regulating crane motor speed to correct the end of conduit 72 to neutral position in fitting 50.
  • Any sudden freeing of the bit when retracting the string from the well causing the support station 52 to rise more quickly than the control station 34 is monitored by a magnetic switch 187 which when engaged is done so by the vane 189 at an excessively lowered position.
  • Switch 187 is electrically wired to activate a solenoid opened blow-off valve venting the air chamber of support station 52 to instantly relieve compressive liability to conduit 46 designed only as a tension member. Such relief is also a warning to avoid further supercharging of the buoyant chamber to extract the bit.
  • the diverter assembly 348 is connected between the surface well casing 350 cemented to the floor 152 and the bearing member 174 supported from removable superstructure portion 156 of the drilling station 150. Assembly 348 is separable to permit; removal of the superstructure and drill string for reassemblage as needed, and to divest the well of the string to permit, e.g., lining the bored hole with casing.
  • bottom section 352 remains fixed to the well comprising the diverter portion 347 and a conventional blowout preventer 353 adaptable to seal off the well with the string in place or removed.
  • the top section 354 is remotely securable to the bottom section by jaw assembly 356a locking conically faced flanges 349 as to be disclosed subsequently.
  • the diverter portion 347 is ported to allow fluid communication to the vessel 20.
  • a valve 351 (preferrably a conventional non-lubriacting plug valve equipped with pneumatic actuated remotely controlled) regulates discharge from the port.
  • a conduit 358 flexibly connected by joints 360, 364 provides limited vertical displacement of the remote conduit 362 extending to the vessel dependent from support 366 representing the support system of Ref. C.
  • a pump 355 and valve 351 are optionally included in the remote conduit assembly.
  • the top section 354 comprises; a first cylindrical element 368 extending from flange 349to flange 370 with integral cap 372 bearing the annular stuffingbox seal 380 to define the termination of the well annulus, and a second cylindrical element 376 extending from flange 370 to flange 378 connecting top section 354 as an integral assembly with bearing member 174.
  • Element 376 accommodates the initial position of the shuttle mechanism 357 conveying the coupling 148 from the natural water environment in vicinity of the sea floor to a transition chamber 359 separated in the element 368 from a stagnant well fluid chamber 361 by throttle assembly 363.
  • the purpose of the shuttle mechanism 357 is to establish a fluid tight seal between the cap 372 and the drill string 146 and likewise pass the coupling 148 into the assembly.
  • the purpose of the throttle assembly 363 is to mitigate detrimental characteristics of the well fluid to the extent that an environment is established in the transition chamber 359 most conducive for the shuttle to abandon the coupling and also thereafter prolong the effective seal.
  • the environment of the transition chamber359 is sustained by a pnuematic system 365.
  • the throttle assembly 363 defines the floor of the transition chamber and provides a lengthened sleeve 367 shrouding that same length of the tubing of the drill string with close annulus clearance 369.
  • the tubing is free to pass through the transition chamber floor with restricted leakage fluid flow into the transition chamber.
  • the close fit of the sleeve to the string rejects entrainment of particles dimensionally in excess of the clearance measurement and the extended length of the sleeve effectively diminishes pressure differential between inlet and exit of the leakage fluid to such an extent that pressure in the transition chamber is markedly less than in the well.
  • the mitigated conditions within the transition chamber correspondingly diminishes the pressure differential imposed on the shuttle ends.
  • Well fluid confined in the diverter assembly below throttle assembly 363 is virtually stagnant by reason of the restricted leakage; so that solids in suspension settle out providing a classified slurry in chamber 361 seeking entry to the clearance annulus 369.
  • Throttle assembly 363 is a separable means to provide passage through of the coupling 148 with monitoring and control means automatically attending this need so that approximately 98 percent of the drilling time the seal is effectively protected.
  • Shuttle mechanism within the top section comprises; a tubular cylinder 392 concentrically received within the first and second cylindrical elements 368 and 376 in peripherally sealed engagement with the seal 380 for rectilinear and rotational movement relative thereto; an annular flange 394 fixed to and extending around the upper end of the cylinder 392; an annular disc 396 received around the cylinder 392 beneath the flange 394 and having rods 384 extending therethrough, said disc being slidable around the cylinder to permit the cylinder to rotate thereto; a plurality of compression coil springs 398 each one received around a rod 384 in interposition between the upper surface of the cap 376 and the under surface of the disc 396 to uniformly force the disc, together with the cylinder 392, upwardly; a dashpot type dampener 400 having the piston rod thereof fixedly secured to and extending upwardly from the disc 396 and the cylinder thereof mounted on the bearing member 174; a pair of centrifugal sealing jaws 402 journalled to the
  • the upper end of the cylinder 392 and the lower end of the torque tube are formed with mating 2 jaw coupling surfaces 414 and 416, respectively.
  • these surfaces assume mating engagement and rotational movement of the torque tube 170 is transmitted to the cylinder 392.
  • This movement functions to centrifugally swing the jaws 402 into sealed engagement with the outer periphery of the drill string 146.
  • Torsion springs 418 resiliently urge the jaws 402 to a disengaged position when the cylinder 392 is in at rest nonrotating condition.
  • the cylinder 392 is interiorly dimensioned to slidably receive the couplings 148 to permit their rectilinear movement therethrough during drilling.
  • Each coupling is formed with an annular groove 420 which is proportioned and positioned for releasable engagement by the snap ring 408.
  • the manner in which the groove on one of the couplings 148 cooperates with the snap ring 408 during operation is sequentially noticed with an uppermost position of coupling 148 prior to engagement of the groove 420 by the snap ring 408 and with a key pin 412 slidably engaged in one of the keyslots 280 in the coupling.
  • the coupling 148 does not impart rectilinear movement to the cylinder 392 and the coupling surfaces on the cylinder and the torque tube 170 remain in engagement to transmit rotation of the tube to the cylinder.
  • the latter condition functions to maintain the jaws 402 in sealed engagement with the outer periphery of the drill string 416.
  • the coupling 148 is descended to a position wherein the snap ring 408 first engages the groove 420, the ring functions to lock the cylinder 392 to the coupling for rectilinear movement therewith in a condition wherein the key pin 412 is retained within the keyslot 280.
  • the cylinder 392 is depressed by the coupling 148 so as to move the coupling surfaces 414 and 416 out of engagement.
  • rotary movement of the cylinder 392 is continued through interengagement of the key pin 412 and the keyslot 280.
  • the sealing jaws 402 remain in sealed engagement with the outer periphery of the drill string 146.
  • the primary purpose of the shuttle mechanism is to seal the diverter assembly from the escape of drilling fluid around the drill string 146 while, at the same time, permit the enlarged couplings to pass through the assembly. This sealing function is necessary in order to assure that the discharge of drilling fluid from the annulus will pass into the branch conduit 358, rather than escape into the body of water within which the assembly is positioned.
  • the actuating mechanism of the throttle assembly 363 is mounted between flanged connection 415 making separable the first cylindrical element 368 into the transition chamber 359 and the stagnant chamber 361.
  • a cam follower 423 is displaced while in contact with the coupling to tilt a lever 425 bearing a vane 427 to an engaged position with a magnetic switch 429 to electrically activating a solenoid valve 431 to open for charging pressurized air to the power means 421 thus parting the sleeves.
  • Cam follower 423 remains in displaced position with continued contact over the moving length of coupling and with emergence of the coupling leading face past the sleeve position a second cam follower 433 is displaced to tilt a second lever 435 bearing the second vane 437 to an engaged position with a second magnetic switch 439 connected in parallel with first switch 429, thus the power means is not released until the coupling trailing end is free of the follower 433 and clear of the sleeve.
  • a pair of remotely activated solenoids 441, 443 are linked to levers 425, 435, respectively, to displace cam followers 423, 433 free of interference with retraction of the drill string.
  • the power means 421 includes a compression spring 444 to return the sleeve halves to throttling position upon release of pressure in the cylinder by a solenoid valve 445 normally open in a bypass 446 across the piston and with the solenoid 445 electrically wired to respond with solenoid valve 431 normally closed.
  • the levers 425, 435 are counterweighted to seek an inactive position preparatory for interception of a coupling.
  • the configuration of the cam follower surface conforms to the contact profile through the various angular position taken by the lever to accommodate both the rotating and sliding coupling exterior surface. Conventional details are relied on pertaining to the power unit 421 for bearings, seals, etc.
  • the fix of half sleeve to the ring half is merely indicative of the combination with design determining the bore-length ratio of sleeve, sleeve projection into either chamber and butting edges of the sleeves labyrinth in mesh.
  • the monitoring and control of the split sleeve to be opened may be supplanted by merely nosing the coupling through a flared end of the sleeve relying on the compression spring to return the sleeve to position.
  • FIG. 15 diagrams a multistage adaption of the throttle assembly to be employed in extreme pressure cases to stepwise reduce the pressure from that in stagnant chamber 361 to that of 359a progressing to a lesser pressure in 359b, etc., to final low pressure in 359n containing seal 402.
  • Transition Chamber Sustained A pneumatic system 365 is dependent upon to include provisions: to minimize pressure differential Environment; Establish and across the shuttle having one end exposed to surrounding seas and the other end within confines of the diverter assembly, to limit rise of liquid level within the diverter assembly, to maximize pressure differential across the throttle.
  • FIG. 21 schematically diagrams the principal elements contained. An air supply is available from the drilling station or the more remote support station.
  • An air supply conduit 371 extends down for fluid communication with the top of an external sump 373 disposed at a level with stagnant chamber 361.
  • a bypass externally circumvents the throttle assembly 363 having conduit 375 with inlet adjacent the floor of the transition chamber 359 and outlet into sump 373 thereby providing fluid transmission of leakage to the sump.
  • a check valve 377 directs flow in a conduit from the sump 373 to communicate with stagnant chamber 361.
  • a valve 379 dominates flow through conduit 375.
  • An electrical supply source indicated by line diagram with power lead 381 directed to electrically activated apparatus and return lead 383 is introduced from an extension attending the drilling station superstructure 156.
  • a motor 385 drives a compressor 387 receiving air supply by a branch 389 OK supply conduit 371 and discharges pressurized air by a conduit including a check valve 391 for flow into the receiver 393 having conventional appurtenances associated such as pressure limit switches, etc.
  • a conduit in fluid communication with the top of the transition chamber 359 includes a pressure switch 395 and a check valve 397 directing flow as a branch 399 to supply conduit 71.
  • Pressurized air from receiver 383 is transmitted by a conduit 401 in fluid communication with supply conduit 371 as a branch connection between branch 397 and the sump 373 with flow therefrom dependent upon valve 403.
  • a valve 405 is included in conduit 371 between branch conduit 399 and 401.
  • a liquid level controller 407 of the conventional electrode type is employed in the transition chamber to indicate a low liquid level 409a, and a high level 409b to confine a gas volume 409c in which shuttle 357 abandons the coupling 148.
  • Valve 405 is spring positioned normally open and electrically activate solenoid to close.
  • Valve 403 is spring positioned normally closed and electrically activates a solenoid to open.
  • Operation of the pneumatic system requires air injection into the diverter assembly by closing switch 41 1 to activate solenoid valves 403 open and 405 closed.
  • air is introduced to sump 373 for discharge via check valve 377 to stagnant chamber 361 to escape through clearance 369 as air volume 4096 occupying transition chamber 359.
  • switch 411 is opened to reestablish normal pressure in the sump.
  • With flow of well fluid under pressure to occupy stagnant chamber leakage through clearance 369 will comprise the air with liquid rise to level 409a, whereupon leakage will drain off through checkvalve 379 to the sump 373.
  • liquid level controller 407 responds as before. Disconnect 407a reestablishes drainage to emptied sump 373.
  • the mating faces of flange 349 are conical tapering down to the well to obviate accummulation of debris between those faces that would interfere with the effectiveness of the 0 ring gasket seal 447 provided in a groove formed in the upper face.
  • the jaw mechanism 356a is mounted to the body of the preventer 353.
  • Jaws 448 formed to engage with the back of the upper flange are pivotally mounted by journals 449 extending beyond a pair of lugs 450 formed to the preventer and space to accommodate the jaw between.
  • Each lug 450 is bored to receive an eccentric 451 having an ofiset hole accommodating bearing of the journal 449.
  • a lever integral with the eccentric has a lower pivotal position to establish a minimum measurement of the center of the offset hole below the back of the upper flange and has an upper position that establishes a maximum said measurement.
  • Each jaw 448 has a lower projecting arm 453 adapted to embrace a compression spring 454 to the body of the preventer 353 by a sustaining reaction of the jaw 448 bearing to the circumference of the flange 349.
  • Jaws 448 have beveled projections to provide a reach for a slightly misaligned assembly 348 to serve as a centering guide when flange 348 is to be made up.
  • the jaws 448 are pivotally displaced with lowering of the upper flange against increased spring compression with lever 452 in lower position; so that with abutment of the flanges the jaws freely return to position with clearance 457 above the flange.
  • the power means 455 is remotely activated to force the arm 453 to compress spring 454 thus disengaging the jaws 448 to free flanges for removal of assembly 348.
  • a multiplicity of jaws 448 are equally spaced around the circumference of the flange 349 and are readily engageable because of the clearance provision 457.
  • the jaws are cinched down by the levers 452 all simultaneously by a remotely controlled follower ring 458 guided for concentric travel by bearing 459 sliding on the housing 456.
  • a number of power means 460 are mounted to housing 456 with pivotal connection to follower 458 in staggered relation to the levers 452.
  • a wedge 461 held in a lower position by compression spring 462 was intercepted by the lever end and temporarily displaced permitting the lever to reach its upper position. Whereupen the wedge still being forced down bears with the lever end at an angle intercepting the arc, thus prevents the lever from seeking a lower position upon retraction of the follower ring.
  • Each wedge is provided with grooves 463 accommodating fixed guide rails 464 to establish vertical travel of the wedges and provide backing up of the locking feature of the wedge.
  • a canopy 466 shrouds the mechanism 356 as an added protective means with housing 456. It is considered obvious to so engage levers 452 to follower 458 that power could be employed to return levers 452 for release of the cinch effect by the eccentrics.
  • FIGS. 1 and 6 An alternate arrangement of the upper wire portion 99 inverting the method shown in FIGS. 1 and 7 as submitted in Ref. A, is depicted in FIGS. 1 and 6 with emphasis here on the fastening of the equalizer device 106b to housing 68a of fitting 50.
  • the two beams 108b and llb are pivotally mounted to housing 48a by axis 191a and 193a, respectively, extending substantially normal to and at the longitudinal centerline of housing 68a and oriented to provide the extension of the wires 100, 102 and 104 upward past and clear of conduit 84 and pump 86.
  • Ref. A is cited for a disclosure of the interrelationship of beams to equalize wire stresses.
  • the details of reels 1l8b preferrably like that disclosed in Ref. B complete the inverted arrangement by being mounted to frame 41 likewise used to provide the support of joint 38.
  • the tension equalizers 106a and b are fitted with leveling devices 301 to monitor reels 118a and b for length adjustment of wires 100a, 102a and 100, 102 to retain beams 108a, 110a and 108b, ll0b in level position.
  • One such beam ll0b in FIG. 9 is shown to have a mercoid type switch 303 that completes a circuit through bodily displacement of a liquid mercury 305 to immerse one of two electrodes 307, 309 depending upon directional tilt of the beam with a common electrode 311 permanently immersed.
  • Flexible tubing 313 encasing electric leads to chamber 315 also transmits gaseous pressure to switch 303 equalizing internal pressure in the switch with that of the environment to which it is subjected.
  • FIGS. 7a and 8 An alternate arrangement to alignment mechanism 296 presented in Ref. A per FIG. 11 is herein depicted in FIGS. 7a and 8 and differs in the amplification to the monitoring means of mechanism 296a of the movement of the stations 34 and 52 from a vertical.
  • Three rods 298a fixed to and depending downwardly from support station 52 in oriented alignment with wires 100a, 102a, 104a terminates with an axis 317 serving as the fulcrum of a lever 319 pivoted about axis 317.
  • a ring 310a supported by wires 100a, 102a, 104a at a level with the extension of the lever short arm 321 is connected to arm 321 by radially extended links 323.
  • the lever long arm 325 terminates with a vane 304a that has an erect posture 327 and a displaced position 329 there to activate a magnetic switch 316a fixed to support station 52.
  • a vane 304a that has an erect posture 327 and a displaced position 329 there to activate a magnetic switch 316a fixed to support station 52.
  • the displacement of support station 52 occurring with slant wires 100a, 102a, 104a displaces the lever 319 with corresponding end movement proportional to the lever arm ratio so that the monitoring means is more responsive to movement of the array.
  • the mechanism 296a functions as disclosed in Ref. A and it is understood similar treatment for vessel applies.
  • Support station 52 is dependent upon ad justable buoyant gas chamber 315 formed by elliptical upper wall 70 reinforced by membrane 475 having ports 476 through which water is exchanged with the seas to establish a liquid level 477.
  • the chamber is penetrated by a cylindrical member 138a to provide central passage through of drill string 146 and the volume of the chamber is monitored by structure 500 including a motor 498 remotely controlled to adjust the buoyant capacity with a corresponding residual unsupported load representing the force applied by the bit 284 on the hole bottom.
  • a supply of neutral liquid compound is pumped into the chamber to float on the trapped water as a barrier 478 for corrosion prevention of appurtenance mounted therein.
  • Pontoons 40 control station 34 similarly have elliptical upper walls, membrane with ports for the free exchange of water with the sea as monitored by structure 500 with the motors responding to regulator 51 and leveler 47.
  • a protective barrier separates the water from the gas chamber accommodating mounting of appurtenances best maintained above liquid levels.
  • Pontoons 71 are similarly treated to sectionally support the conduit 46 and upper wire portion 99b, however, it is contemplated for normal conditions to construct them as solid spheres of light material developed in the market for pressure conditions when cased with aluminum armour.
  • the base portion 154 of drilling station is treated similar to the support station having an elliptical shell 158 membrane 479 with ports 480 to establish a liquid level 179.
  • the significance of well and alley 177 has been previously covered.
  • the liquid level is monitored and regulated by structure 500 responsive to leveler 248 as will be covered subsequently.
  • a supply of neutral liquid compound is pumped into the chamber to float on the trapped water as a barrier 482 for corrosion prevention of appurtenances mounted therein.
  • a rotary type limit switch 208 mounted on jack shaft 238 establishes maximum turns of the shaft commensurate with full extension of telescopic leg 182 requiring reversal of motor 200 to retract the leg for disposition of the drilling station to a more accommodating floor contour.
  • the leveler 248 also serves as a constant sentinel to the erect posture of the drilling station to reestablish firm footing if effected so as not to bend the drill string. (In FIG. 11)
  • Leveling device 47 comprises:
  • Regulator 51 comprises:
  • Standing vent pipe 343 part of tank 337 supports magnetic switches 468, 469 that are activated by vane 470 mounted on shaft 333 responsive to movement of a float 471 slidably mounted on shaft 333 between stops 472.
  • An adjustable port 473 selectively determines the rate of flow of liquid to and from the chamber provided by tank 337. Vent pipe 343 terminates well above water surface 28 so that the tank in-

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

A system forming a well through the floor of a body of water obviating the conventional conductor pipe used to; encase the drill string, seal off the well from the water and convey slurry for return to a vessel at the water surface. Instead to have an integral drill string uninterruptedly torqued by an immersed drilling station fixedly positioned adjacent the floor and adapted to provide continuous boring of the well hole corresponding to the full extent available of a lengthened string suspending above from an immersed support station controlling the bit pressure in the hole as that support descents with penetration. An independently supported articulative conduit in fluid communication between a fluid supply aboard the vessel and the hollow string, and an independently supported remote conduit in fluid communication between the vessel and a diverting assembly terminating the well annulus completes a fluid circuit by which hole borings are removed for processing. The diverting assembly accommodates sealed entry of the bared string, has a diverter directing flow from the well annulus to the remote conduit and has terminating means sealing off the annulus to a mitigated well condition at the seal. A system to line the bored hole concurrent with reassemblage of the string is conducive to furtherance of the expeditious penetration system.

Description

United States Patent 1 Nelson 54] APPARATUS AND METHOD FOR DRILLING UNDERWATER [76] Inventor: Arthur John Nelson, 3304 Shasta Drive, San Mateo, Calif.
[22] Filed: Aug. 13, 1970 [21] Appl. No.: 63,507
UNITED STATES PATENTS 2,606,003 8/l952 McNeill ..1 75/7 2,923,531 2/1960 Bauer et al. r ..l75/7 3.353.364 ll/l967 Blanding et al... l75/6 X 3,359,74l l2/l967 Nelson ..6l/46 3,491,842 l/l970 Delacour ..l75/6 Primary Examiner-Marvin A. Champion Assistant ExaminerRichard E. Favreau [57] ABSTRACT A system forming a well through the floor of a body of 1 Mar. 27, 1973 water obviating the conventional conductor pipe used to; encase the drill string, seal off the well from the water and convey slurry for return to a vessel at the water surface. lnstead to have an integral drill string uninterruptedly torqued by an immersed drilling station fixedly positioned adjacent the floor and adapted to provide continuous boring of the well hole corresponding to the full extent available of a lengthened string suspending above from an immersed support station controlling the bit pressure in the hole as that support descents with penetration. An independently supported articulative conduit in fluid communication between a fluid supply aboard the vessel and the hollow string, and an independently supported remote conduit in fluid communication between the vessel and a diverting assembly terminating the well annulus completes a fluid circuit by which hole borings are removed for processing. The diverting assembly accommodates sealed entry of the bared string, has a diverter directing flow from the well annulus to the remote conduit and has terminating means sealing off the annulus to a mitigated well condition at the seal. A system to line the bored hole concurrent with reassemblage of the string is conducive to furtherance of the expeditious penetration system.
13 Claims, 31 Drawing Figures PATENTEUumznm 7 2,5 4
SHEET 01 0F 10 Z) II'VVENTOR. ArthurJNelson PATENTEDNARZTIBYS 3 722 5 4 SHEET 03 HF 10 MWE/VTOE ArthurJNelson.
PATENTEUmzmn sum 05 0F 10 ArthurJ Nelson I N VENTOR.
PATENTEUmznm 3,722,584
SHEET us 0F 10 INVENTOR.
Fig.17 1' K ArthurJNelson PATENTEDHARNIQB I SHEET 07 0F 10 IIIP INVENTOR.
ArthurJ. Nelson PATENTEnuknzmn SHEET 08 0F 10 M a. z
PATENTEDHARZ'IIHYS SHEET OSUF 10 INVENTOR Arthur JNelson APPARATUS AND METHOD FOR DRILLING UNDERWATER This application is a supplement to U.S. Pat. 3593808 dated 8-20-71. The initial application stressed the basic concept to bare to natural elements an extended drill string retained as an integral assembly to prolong drilling by an automatic and continuous method. Particular mode of operation was suggestive of an assembly together with inclusion by simple recitation of mandatory accessories to present a feasible apparatus. The present application discloses alternate ar rangement embodying the underlying principle, further discloses and importantly, detailed disclosure of apparatus and provisions previously deferred for this patent application.
BACKGROUND OF THE INVENTION The present invention relates to the art of off-shore drilling especially applicable to deep and rough seas.
Conventionally used conductor casings secured to the well to reach above water, sealing off the seas, are an anti-fouling means to provide an enclosure through which apparatus is extended and as a conveyance to entrain bore cuttings. Numerous difficulties and limitations are associated with the conductor pipe, though variously applied to avoid failures. A common arrangement provides an extended and enclosed string, hopefully coaxial with the conductor; so is subject to the abrading fluid in flow through the annulus defined. The string is subject to the full tension, torque and internal bursting stresses all localized at the top end of the string. Breakdown expenses and more serious public liabilities make such a conductor impractical in deep water.
The use of a Kelly bar to transmit torque to the string requires repeated retraction of the bit off the bottom to introduce a segmental length while contending with the full weight.
Accordingly it is a primary object to obviate the extended conductor by terminating the well with a diverter assembly immediate to the floor and beneath an immersed drilling station stabilized there to provide clearance for such appurtenances.
A prime object is to obtain prolonged effective penetration of the floor by automatic and uninterrupted application of torque to a maximum extended drill string bared to environmental conditions.
Another object is to provide a fluid transmission system which is alterable with continuous penetration of the bit.
Still another object is to provide sealing means at the diverter assembly in accommodation with descent of the drill string.
Another object is to sustain the fluid transmission system by monitoring and control means responsive to variations in the assembly during drilling.
Another object is to provide a method and system undertaking intermediate phases between boring operations.
The foregoing and other objects of the invention will become more apparent when viewed in light of the following description and accompanying drawings.
SUMMARY OF THE INVENTION An apparatus and system for forming a well in subaqueous strata obviating the conventional conductor pipe. The basic concept is an apparatus devised for uninterrupted and continuous boring of a well sustained in operation by a fluid transmission system having an injector portion for introducing fluid at the well bottom to entrain formation cuttings with return as a slurry up the annulus defined by the injector portion in the well to a diverter assembly sealing off the annulus and directing flow through a remote branched conduit separately supported and extending to a surface vessel. The hollow drill string preassembled as an integral length borne by an immersed support station comprises the lower part of the injector portion. An articulatively assembled conduit with inlet connected to a fluid supply on the surface vessel is separately supported by a buoyant control station as the upper part of the injector portion. A universal fitting connects the two injector parts in accommodation with relative rotative and axial movement of the two rigid member parts. Monitoring and control means are adapted to adjust the member supports corresponding with progress in drilling and opposing disruptive forces to the stability of the apparatus. Upon completion of a well boring operation to the extent possible with the assembly, means are utilized for rapid retraction of the string for reassemblage to obtain greater depths, meanwhile a preassembled casing is introduced to the well and cemented in simultaneous with alterations to the string. Appurtenances are included to effect the intermediate phase conducive to a sustained high rate of well development.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational view diagrammatically illustrating the entire system of the invention in the condition it would assume during a drilling operation, with parts thereof broken away for purposes of compactness.
FIG. 2 is a plan view illustrating an example of the base composition of control station 34.
FIG. 3 is a partial elevational view diagrammatically illustrating the drilling station with the base 154 and superstructure portions 156 thereof separated as they might be during a servicing operation.
FIG. 4 is a sectional elevational view of the drilling station 150 in an assembled condition, with parts thereof broken away.
FIG. 5 is a plan view illustrating an example of the base portion 154 of the drilling station 150.
FIG. 6 is an elevational view, partially in section, of the support station 52.
FIG. 7 is a sectional view taken on the plane designated by lines 99 of FIG. 6 illustrating one of the elements of the tension equalizers 106a shown in FIG. 6.
FIG. 8 is an elevational view diagrammatically illustrating the support station 52 in a condition out of vertical alignment with the stations to either side thereof.
FIG. 9 is an elevational view illustrating the leveler monitor 301 for the tension equalizers 106.
FIG. 10 is a sectional view, in elevation with parts thereof broken away, showing the construction of the joint 50 between the drill string and the drilling fluid supply line 46 and the support arrangement 96 for the drill string on the support station 52.
FIG. 11 is a partial elevational view in section of the leveling device 47 monitoring the posture of control station 34.
FIG. 12 is an elevational view partially in section, illustrating the regulator 51 monitoring free-board of the control station 34.
FIG. 13 is a sectional view taken on the plane designated by lines l414 of FIG. 4 illustrating the shuttle type sealing mechanism 357 employed to establish a fluid-tight connection between the drill string and the casing of a hole being drilled thereby.
FIG. 14 is a sectional view taken on the plane designated by lines 15-15 of FIG. 13.
FIG. 15 is a schematic elevational view of a multistage adaption of the throttling system 363.
FIG. 16 is an elevational sectional view of a typical portion of the composite assembly of clamp 77 in support of the conduit coupling 48 with the coupling releaser 81 disposed above when viewed in the planes 24a and 24b of FIGS. 17 and 18 respectively.
FIG. 17 is a plan view of the clamp 77 taken from the plane 25-25 of FIG. 16.
FIG. 18 is a plan view of the coupling releaser 81 taken from the plane 2626 of FIG. 16.
FIG. 19 is an elevational view diagrammatically illustrating the arrangement of apparatus at the apex 37 of the control station 34.
FIG. 20 is an elevational sectional view of a typical portion of the composite assembly of coupling 48 with the coupling releaser 87 disposed above associated with the flexible joint 38.
FIG. 21 is an elevational view partially in section showing the diverter assembly 348 connecting the well to the drilling station and diagramatically illustrates some of the remote control associated.
FIG. 22 is an elevational sectional view of a typical half portion of the composite assembly of the throttle mechanism 363 incorporated in the diverter assembly 348.
FIG. 23 is an elevational sectional view of a typical portion of the automatic fastening and remote means to disengage flange 349 separating the diverter assembly 348.
FIG. 24 is a schematic diagram of the pneumatic and wiring system associating the vertical array of stations.
FIG. 25 is a sectional elevational view of the first baffle 217 sealing off the well during installation of the well lining.
FIG. 26 is a sectional elevational view of the second bafile 221 sealing ofi' the well during installation of the well lining.
FIG. 27 is a sectional elevational view of the grip 21 1 sacrificially parted with completion of lining installation.
FIG. 28 is a sectional plan view of grip 211 taken in the plane 3737 of FIG. 27.
FIG. 29 is an elevational view diagrammatically illustrating a system to line the bored well in sequence with the drilling operation.
FIG. 30 is an elevational view with progress to the placement of the lining in the bored hole.
FIG. 31 is a sectional elevational view of the borable plug 227 employed as a sacrificial member of the assembly of FIG. 29.
LEGEND Symbol Reference Date Inventor Ref. A Patent application 3,593,808 8-20-71 A. Nelson Ref. B 3,570,815 3-l6-7l Ref.CPatent serial 3,359,74l 12-26-67 (The legend specifically identifies references each bearing a symbol used in the description to concisely and accurately signify the reference.)
CONTENTS OF DESCRIPTION Subject Identity fig. pg. General arrangement for drilling l 8 Intermediate phases l3 Conduit assembly and appurtenances l5 Coupling 48 20 15 Clamp 77 l7 l6 Coupling Releaser 8 l l 8 16 Upper Releaser 8 7 20 l 7 Universal Fitting 50 l0 l8 Diverter Assembly 348 21 20 Shuttle significance 357 13 2I Throttle 353 22 21 Appurtenances detailed Shuttle Detail 357 13 22 Throttle Detail 35 3 22 25 Establishing the Transition Chamber 359 2l 27 Remountable Flange 356a 23 30 Alternate Equalizer Arrangement 10Gb 6 31 Alternate alignment arrangement 296a 8 32 Pontoon details 5 2 7a 3 3 Pontoon detail Base portion 154 4 34 Leveling Device 47 l l 34 Regulator 5 l 1 2 35 Chamber volume controls 500 24 35 Support System 3 l 3 6 Lining bored well .29 40 Seals 2 l 7 25 221 26 42 Latch 21 l 27 44 Barrier 227 3l 47 GENERAL ARRANGEMENT A service station 20 floating on the surface 28 of a body of water provides transfer means, supplies and master control attending an array of objects stabilized and extending as a vertical arrangement for boring through the floor 152 of the body of water. The array, fixed to a site by an erect drilling station bearing on the floor, extends to include a control station 34 buoyantly supported by immersed pontoons 40 in vicinity of the surface 28 to define the extent of movement of a support station 52 functioning between as a buoyantly manipulated feeder. The array further includes; a drill string 146 preassembled to suspend from support station 52 as bared to the water in reach to the diverter assembly 348 fixed to the floor, and a conduit in fluid communication with the drill string extending therefrom upwardly with a vertical constituent 46 connected by a flexible joint 38 to a pivotal constituent 22 having the inlet end supported by axis 24 on the service station and adapted for connection to a source of fluid supply. (In FIG. 10) A universal fitting 50 effects union of the non-rotating conduit 46 to the drill string 146 with the latter automatically and continuously rotated by the drilling station to effect uninterrupted penetration of the strata below the floor by the terminally connected bit 284. (In FIG. 6) As part of the array, too, is a wire system comprising a lower portion 99a connecting the drilling station 150 to the support station 52 and an upper portion 99b connecting the control station 34 to the support station 52. In addition to the preliminary function to tie the array together when in an inoperative position, the wire system also in transmitting a tension load provides taut members serving as an element in the stabilization system 2960 of the array established by a hydraulic thruster system, as developed in Ref. A in which three wires 100a, 102a, 104a comprise the upper portion 990 and three wires 100b, 102b, 104!) comprise the upper portion 99b.
(In FIG. 19) The control station 34 includes a superstructure 36 transmitting the pontoon buoyant support to an apex assemblage 37 towering above the surface 28 to accommodate mounting of a crane 39 used to manipulate a frame 41 bearing; the flexible joint 38, unsupported end of pivotal constituent 22, all the vertical constituents 46 and other apparatus subsequently to be discussed.
(In FIG. 2) The superstructure 36 is constructed upon a base 43 supported by the pontoons 40 connected at the vertices of a polygonal configuration dimensional in excess of the height to the apex 37. One of the lateral sides provides passageway 45 for articulative pivotal constituent 22 and assemblage of the array as to be subsequently discussed. The superstructure is provided with a leveler 47 arranged to retain the structure erect or with a slight list towards the side with the passageway 45; so that the vertical projection of the apex 37 just clears the center connection of base members 43. Freeboard of the control station 34 is established by adjusting the-position of a regulator 51 mounted to the superstructure at the desired mean water line. The regulator monitors the variable gas chambers of the immersed pontoons 40 providing greater or less support capacity to retain the selected freeboard. The freeboard selected is dependent upon particular situations; whether for normal drilling, when drilling during changes to the array or when working on the inoperated assembly. For normal drilling the superstructure is positioned to accommodate allowable movement of axis end 24 attributed to the bearing service station 20. When changes are made to the vertical constituent 46 while drilling, the superstructure freeboard may be altered to better position for the assembly method to be subsequently discussed.
(In FIG. 6) The upper and lower portions of the wire system 99b, 99a are connected by equalizers 1066, 106a respectively to the top and bottom of support station 52 to provide balanced tension in the 3 wires of its portion and the other wire ends are secured to reels. Three similar reels 1 18b supported by frame 41 provide adjustment of each wire associated with equalizer 106k and are locked during normal drilling to transmit a deliberate deficiency in the support of the drill string to the control station by way of the loaded crane 39. Thus the support station is insufficiently buoyed to avoid the contingency of buckling the conduit 46 if excessively supporting. Reels 1 18b provides wire length adjustment corresponding with length changes to conduit 46 and the crane 39 sustains movement of the conduit 46 by paying out cable to lower its tail block 55 consistent with penetration of the drill bit 284 in the strata below floor 152. The frame 41 is hung by bails 57 connected to tail block 55 of the crane 39 itself complete with drum, gear reducer, motor, brakes, etc., corresponding in assembly to Ref. B.
(In FIG. 4) Three similar reels 118a at the drilling station periodically haul-in the lower wire portion 99a with accommodation means 274a to relate descent of the support station as progress in drilling to prescribe payout by the crane; so that the vertical conduit 46 descends accordingly to preserve a space relationship of its end within the fitting 50. The lower wires 100a, 102a, 104a are provided with a weighted means to establish taut lines essential to the stabilizer system 296a. The weighted means being sheaves 272 guided for vertical movement representing half the descent of the support station 52 to indicate progress in drilling. These sheaves provide a takeup means so that reels 118a need not be rotated except at periodic intervals when returning sheaves 272 from a lower limiting position to an upper limiting position with the limit switches touched-off communicating with the solenoid included in mechanism 208a transmitting power from the torque table to reels 1 18a. Ref. A covered this treatment of the lower wire portion.
(In FIG. 4) The means 274a relating hole penetration to the crane 39 is herewith interpreted to be a selsyn transmitter 61 clutched to a sprocket 63 engaging a chain 65 connected at one end to the guide bearing of one of the sheaves 272 and the other end weighted 67; so that when the transmitter is rotated with descent of the sheave it electrically activates a selsyn receiver 49 monitoring the motor powering crane 39 to provide movement of conduit 46 corresponding to movement of string 146. The clutch 69 becomes disengaged in opposite rotation of sprocket 63; so that crane 39 doesnt respond when re-establishing the upper position of sheave 272. A subsequent discussion will account for the effect and correction to maintain space relation of the two rigid members, conduit and string.
(In FIG. 1) In especially deep water drilling requiring an extended conduit 46, intermediate buoys 71 are sectionally included in the array to diminish the concentration of load of the aggregate mass that would have resulted from sole support by the control station 34. The drill string and lower wire portion are not sectionally supported; since the string is subject to maximum stress only at the time when fully extended below the drilling station when torque is then transmitted through its entire length and the lower wire portion is only tensioned sufficient to provide the taut lines for the stabilization system.
The flexible joint 38 connecting the conduit constituents 22, 46 moves vertically within the superstructure between a contracted position 73 of the tail block 55 and a lowermost clamped position 75 of the conduit 46 to the control station 34, whereupon when so clamped the joint 48 may be disconnected from the conduit 46. The clamp mechanism 77 is integral with the bridge 79 extending between pontoons 40 and in its normal inactivated position as shown in FIG. 16 provides clear passage through all of the pipe segments 46a of the conduit 46 but intercepts couplings 48 connecting adjacent segments 46a. With the coupling engaged to the normal intercepting position of the clamp the conduit can no longer lower except as will occur with lowering of the control station 34. Means are included to remotely activate the clamp to a non-interceptive position as shown by phantom view in FIG. 16 subsequently to be discussed when detailing the construction.
Flushing fluid compounded at the service station is circuited through the system of the foregoing presentation and herewith summarized to exclude the concluding phase involving processing of the returned slurry.
The fluid compound is pumped through conduits 22, 46 and through fitting 50 where some mix occurswith flushing liquid injected to protect parts of fitting 50. The string then conveys the mix for jetting from the bit 284 at the well bottom; to cool and lubricate the bit, entrain all cuttings with return up the annulus 53 under pressure opposing all liberated fluids seeking escape into the hole bored and to plaster the walls of the well in passage through annulus 53. The exterior of the drill string is abraded only to the extent when defining the annulus 53 with the well. Thereafter a diverter assembly 348 at the floor 152 in fluid communication with the well directs flow via a remote conduit 362 to the service station 20. The destructive properties of the fluid to the system is further minimized by protective measures employed at the diverter assembly 348 and fitting 50 as will be subsequently discussed.
INTERMEDIATE PHASES Retracting the rotating bit from the well is performed by both the control and support stations depending primarily on excess buoyant support to load the upper wire portion to full allowable stress if necessary and as a last resort further stressing the drill string through the thrust surfaces 96 by increasing the buoyancy of the support station. The lower wire portion supports the freed structure position 156 of the drilling station as a mass suspended from the support station 52.
(In FIG. 29) During the drilling operation another preassembly is undertaken in anticipation of its completion prior to divesting the well of the string positioned then at its ultimate reach into the strata. Such another preassembly would ordinarily first be comprised of the surface casing 350, diverter 347, preventer 353 suspended from a suspension tube 213 transmitting the assembled load to a buoy 215. The remote conduit 362 independently supported as by Ref. C is an integral extension of the diverter 347 when lowering the first casing 350 for grouting into the hole bored by the drilling station then without the diverter assembly 348; since drilling then will be accompanied by flushing borings to waste with water pumped into fitting 50 without benefit of conduits 22, 46. conduit 362 is joined to diverter 347 by branch 358 connected between with flexible unions 360, 364 to accommodate moderate displacement of the joined members. The inclusion of valve 351 and pump 355 is optional to the situation. (In FIG. 4) Base portion 154 left at the hole site has a well 175 communicating both with conical flange 176 and alley 177 extending axially and radially from well 175 with profile conforming to outer wall 158. Well 175 and alley 177 cooperate with outer wall 158 to define the gas compartment 481 established with liquid level 179 and those openings 175, 177 ac commodate passage through of assembly 362 and branch 358 with the base portion 154 positioned to the well site.
(In FIG. 18) A coupling releaser 81 used in conjunction with the clamp mechanism 77 provides remote control to automatically release the snap-on type conduit couplings 48. With approach of the joint 38 to the clamp 77 certain advance preparations minimizes the time to add a pipe segment 46a to lengthen constituent 46 while penetrating the strata as a continuing operation. This anticipation principally includes transfer of a pipe segment 46a from the stock pile aboard the service station 20 to an erect posture immediate to its installed position as suspended by a hoist 83 fixed uppermost on the control station. A valve 85 is shut off just prior to disconnecting the joint 38; so that during the seconds time required to effect the lengthening, the inertia effect of the moving fluid column is depended upon to maintain the jet at the hole bottom.
Frame 41 bearing freed joint 38 is raised by haulingin on crane 39 and paying-out on reel 118b to provide space above the clamped coupling to add segment 46a. During this brief interchange, the crane 38 and reel 1 18b have influenced the control station 34 to descend with the support station so as to retain a spaced end relation of the two rigid members 46, 146 not then controlled by crane 38 as previously disclosed. With the conduit 46 lengthened crane 38 is powered to raise the assembly an increment sufficient to activate clamp 77 free of interference with the coupling; thereafter the crane is reinstated to respond in lowering the conduit 46 and the clamp deactivated to normal position for interception of the next coupling. To disassemble the conduit 46, as expeditiously, another upper releaser 87 assembled to the flexible joint 38 serves to disengage the adjacent upper coupling of the pipe segment 46a while releaser 81 disengages the lower coupling supported by clamp 77.
CONDUIT ASSEMBLY AND APPURTENANCES (In FIG. 20) The vertical conduit constituent 46 comprises a series of conduit segments 46a joined by coupling 48. Each segment is a smooth pipe preferrably extending in length in excess of 150 feet, having a collar 93 formed to the upper end and a plug 95 formed to the lower end to provide the matching elements of adjacent segments which are locked in place by a (split) snap ring 97 partially occupying a groove 97a in the collar. The snap ring has a free diameter less than the shoulder of the plug to which it grips with spring action tending to close to the lesser diameter. The groove 97a has excessive depth which permits the ring to be expanded when a force is applied against prongs 101 formed to the ring and extending upward through accommodating slots in the top of the collar. 0 rings 103 provide fluid seal of the coupling. (In FIG. 16) The conduit 46 is temporarily secured to superstructure 34 by arranging the back of the collar 93 shaped to a frustum of a cone 119 to bear upon a clamp mechanism 77 mounted to a bridge 79 spanning the base 43 to permit changes he made as needed.
Bridge 79 provides rigid support of a peripheral bracket 105 formed with a series of stops 107 and drilled lugs 109 bearing pins 1 11 about which intercepters 113 pivot from a radial inward position 115 to an erect position 1 17. At least 3 interoepters are uniformly spaced from the peripheral bracket so that when in position 115 they will support the couplings 48 at the cone face 119. From position 115 the intercepters can only turn counter-clockwise because of a dog 121 projection of the intercepter engagement with stop 107. Accordingly, the intercepter does not interfere but is tripped out of place when a coupling 48 is raised past the clamp. In order to pass a coupling 48 down past the clamp however, the intercepter is rotated counterclockwise by activating a solenoid 123 which then pulls on a rack 125 in engagement with gear teeth 127 formed concentric with pin 111 in the hub 129 of the intercepter. The solenoid also pulls against a spring 131 inserted between an ear 133 projecting from the rack 125 and the bracket 105 used to assure retention of position 115 against inadvertent displacement. (In FIG. 18) The coupling releaser 81 comprises a guide frame 135 secured to superstructure 34 establishing vertical travel of a bracket 137 formed with a ringed stops 139 and drilled lugs 141 bearing pins 143 about which claws 145 pivot from a normal vertically depending position 147 to a horizontal position 149. Three claws are uniformly spaced around the bracket 137 so that when in position 149 present a full circular cylinder disposed above prongs 101. From position 149 the claws can only turn clockwise because of dogs 151 projection of the claw engage with stops 139. With the claws in position 147 the releaser 81 then provides both vertical passage through it of the coupling 48 and a sideways passage 153 of the conduit segment 46a. In order to establish the 3 claws in position 149 a solenoid 155 is activated to push on rack 157 in engagement with gear teeth 159 formed in the hub 161 concentric with pin 143. The solenoid also pushes in opposition to a tension spring 163 employed between an extension of the rack 157 and bracket 135.
Having established the full cylindrical aspect of claws 145 the bracket 137 is depressed by a power means preferrably a pneumatic jack 165 secured between frame 135-and bracket 137. At least 3 prongs 101 formed to split ring 97 are subject to the force of the descending claws and by virtue of their wedge configuration are displaced radially outward expanding the ring 97 in the process to occupy the depth of grooves 970. Thus the conduit segment 46a may be lifted out since hub 95 clears the releaser assembly. It is here noted that at assembly of the conduit segment 46a to the coupling 48 that the taper pointed hub 95 facilitates engagement past the free diameter ring 97 and that the tapered shoulder within collar 93 avoids accumulation of debris to that face.
(In FIG. The upper coupling releaser 87 comprises a guide frame 167 fixed to joint 38 establishes vertical travel of a depressor 169 disposed concentric above prongs 101 formed to the split ring 97 of the coupling 48 connecting the joint 38 to the uppermost conduit segment 46a. A tension spring 171 holds the depressor 169 to a normal position clear of the prongs 101. With the raise of frame 41 to lift uppermost segment 46a from the next lower coupling secured by clamp 77 the depressor 169 abuts a protruding stand 173 fixed to superstructure 34 halting rise of depressor 169 while crane 39 continues to raise frame 41 with a corresponding radial outward displacement upon contact with the prongs 101 then expanding the ring 97 in the process to occupy the depth of groove 97a. With the segment 46a previously secured to hoist 83 and also loosely to derrick 26 the segment then dislodges from joint 38 by gravitational effect whereupon derrick 26 assumes the load and transfers the removed segment to storage aboard vessel 20.
(In FIG. 10) Reference is now made to the detailed construction of the fitting 50. This fitting comprises, as its basic components, the following elements: a tubular housing 68a fixed to the upper chamber forming wall, designated 70, of the station 52; a first tubular conduit element 72 coupled to the lower end of the conduit 46 by a coupling 74 and extending downwardly therefrom slidably into the housing 6% for rectilinear movement relative thereto; and, a second tubular conduit element 76 received within the housing 680 and around the conduit element 72 for rotational movement relative thereto. The housing 68a has roller guide arms 78 fixed to and extending upwardly therefrom for guiding engagement with the conduit element 72. It is also provided with an involute flushing chamber 80 extending around the element 72 and opening into the element 76. This chamber provides for the supply of flushing fluid to the area between the elements 72 and 76 and is closed at its upper end by an annular seal 82 interposed between the housing 68a and the exterior surface of the element 72. Flushing water is supplied to the chamber 80 by conduit 84 leading to a pump 86 (see FIG. 6) and/or any suitable supply of water. The conduit element 76 is supported in concentric alignment with the element 72 for rotation relative thereto and relative to the housing 68a by annular bearings 88 and 90. A seal 92 is supported by the housing 68a in juxtaposition to the bearing 88 to prevent fluid from escaping past the bearing. The lower end of the conduit element 76 has a thrust collar 94 fixed thereto for rotation therewith. This collar is supported on a thrust surface 96 fixed to member 98a formed to chamber wall 70 from which tubular support 138a depends for the mounting of tension equalizer 106a.
Several matters have been deferred for subsequent treatment mostly relating to the fitting 50, its versatility summarized first to recollect these provisions: to provide fluid communication of an abrading slurry between two rigid tension members (conduit and drill string) compensating for relative stability of their independent supports subject to varying surge effect, compensate for inequalities in transfer rate off reels of the crane and wire system, serve as an expansion joint during changes to the conduit length, provide a fluid seal of two members rotating relative the other, contribute in part to the thrust bearing transmitting drill string weight to the support station and contribute to the construction of the equalizer system as a mounting to the support station.
(In FIG. 10) A pair of magnetic switches 181, 183 mounted to an extension 185 of fitting 50 are spaced so that a vane 189 mounted on conduit 72 becomes engaged with one depending upon position to activate a monitor regulating crane motor speed to correct the end of conduit 72 to neutral position in fitting 50. Any sudden freeing of the bit when retracting the string from the well causing the support station 52 to rise more quickly than the control station 34 is monitored by a magnetic switch 187 which when engaged is done so by the vane 189 at an excessively lowered position. Switch 187 is electrically wired to activate a solenoid opened blow-off valve venting the air chamber of support station 52 to instantly relieve compressive liability to conduit 46 designed only as a tension member. Such relief is also a warning to avoid further supercharging of the buoyant chamber to extract the bit.
DIVERTER ASSEMBLY (In FIG. 21) The diverter assembly 348 is connected between the surface well casing 350 cemented to the floor 152 and the bearing member 174 supported from removable superstructure portion 156 of the drilling station 150. Assembly 348 is separable to permit; removal of the superstructure and drill string for reassemblage as needed, and to divest the well of the string to permit, e.g., lining the bored hole with casing. Thus bottom section 352 remains fixed to the well comprising the diverter portion 347 and a conventional blowout preventer 353 adaptable to seal off the well with the string in place or removed. The top section 354 is remotely securable to the bottom section by jaw assembly 356a locking conically faced flanges 349 as to be disclosed subsequently.
The diverter portion 347 is ported to allow fluid communication to the vessel 20. A valve 351 (preferrably a conventional non-lubriacting plug valve equipped with pneumatic actuated remotely controlled) regulates discharge from the port. A conduit 358 flexibly connected by joints 360, 364 provides limited vertical displacement of the remote conduit 362 extending to the vessel dependent from support 366 representing the support system of Ref. C. A pump 355 and valve 351 are optionally included in the remote conduit assembly.
The top section 354 comprises; a first cylindrical element 368 extending from flange 349to flange 370 with integral cap 372 bearing the annular stuffingbox seal 380 to define the termination of the well annulus, and a second cylindrical element 376 extending from flange 370 to flange 378 connecting top section 354 as an integral assembly with bearing member 174. Element 376 accommodates the initial position of the shuttle mechanism 357 conveying the coupling 148 from the natural water environment in vicinity of the sea floor to a transition chamber 359 separated in the element 368 from a stagnant well fluid chamber 361 by throttle assembly 363.
(In FIG. 13) The purpose of the shuttle mechanism 357 is to establish a fluid tight seal between the cap 372 and the drill string 146 and likewise pass the coupling 148 into the assembly. The purpose of the throttle assembly 363 is to mitigate detrimental characteristics of the well fluid to the extent that an environment is established in the transition chamber 359 most conducive for the shuttle to abandon the coupling and also thereafter prolong the effective seal. The environment of the transition chamber359 is sustained by a pnuematic system 365. (In FIG. 22) In the operative position the throttle assembly 363 defines the floor of the transition chamber and provides a lengthened sleeve 367 shrouding that same length of the tubing of the drill string with close annulus clearance 369. Thus the tubing is free to pass through the transition chamber floor with restricted leakage fluid flow into the transition chamber. The close fit of the sleeve to the string rejects entrainment of particles dimensionally in excess of the clearance measurement and the extended length of the sleeve effectively diminishes pressure differential between inlet and exit of the leakage fluid to such an extent that pressure in the transition chamber is markedly less than in the well. For the condition when well pressure is greater than surrounding water pressure then the mitigated conditions within the transition chamber correspondingly diminishes the pressure differential imposed on the shuttle ends. Well fluid confined in the diverter assembly below throttle assembly 363 is virtually stagnant by reason of the restricted leakage; so that solids in suspension settle out providing a classified slurry in chamber 361 seeking entry to the clearance annulus 369. Throttle assembly 363 is a separable means to provide passage through of the coupling 148 with monitoring and control means automatically attending this need so that approximately 98 percent of the drilling time the seal is effectively protected.
(in FIG. 13) Shuttle mechanism within the top section comprises; a tubular cylinder 392 concentrically received within the first and second cylindrical elements 368 and 376 in peripherally sealed engagement with the seal 380 for rectilinear and rotational movement relative thereto; an annular flange 394 fixed to and extending around the upper end of the cylinder 392; an annular disc 396 received around the cylinder 392 beneath the flange 394 and having rods 384 extending therethrough, said disc being slidable around the cylinder to permit the cylinder to rotate thereto; a plurality of compression coil springs 398 each one received around a rod 384 in interposition between the upper surface of the cap 376 and the under surface of the disc 396 to uniformly force the disc, together with the cylinder 392, upwardly; a dashpot type dampener 400 having the piston rod thereof fixedly secured to and extending upwardly from the disc 396 and the cylinder thereof mounted on the bearing member 174; a pair of centrifugal sealing jaws 402 journalled to the cylinder 392 by transverse pivot pins 404 for movement between a position sealingly engaged with the drill string 146 (see the solid line representation in FIG. 13) and a position disengaged from the drilling string (see the phantom line representation in FIG. 13; semicircular gaskets 406a, 406k received within each of the sealing jaws 402 for sealing engagement with the drill string 146 and end of cylinder 392 respectively; a snap ring 408 loosely confined within an annular groove 410 formed in the interior of the cylinder 392 for normal projection partially into the interior of the cylinder; and, a key pin 412 fixed to the cylinder 392 and extending to the interior thereof for slidable engagement with either of two key slots 280 formed in the couplings 148.
The upper end of the cylinder 392 and the lower end of the torque tube are formed with mating 2 jaw coupling surfaces 414 and 416, respectively. When the cylinder 392 is in the upper position, as illustrated by the solid line representation in FIG. 13, these surfaces assume mating engagement and rotational movement of the torque tube 170 is transmitted to the cylinder 392. This movement functions to centrifugally swing the jaws 402 into sealed engagement with the outer periphery of the drill string 146. Torsion springs 418 resiliently urge the jaws 402 to a disengaged position when the cylinder 392 is in at rest nonrotating condition.
The cylinder 392 is interiorly dimensioned to slidably receive the couplings 148 to permit their rectilinear movement therethrough during drilling. Each coupling is formed with an annular groove 420 which is proportioned and positioned for releasable engagement by the snap ring 408. The manner in which the groove on one of the couplings 148 cooperates with the snap ring 408 during operation is sequentially noticed with an uppermost position of coupling 148 prior to engagement of the groove 420 by the snap ring 408 and with a key pin 412 slidably engaged in one of the keyslots 280 in the coupling. As thus conditioned, the coupling 148 does not impart rectilinear movement to the cylinder 392 and the coupling surfaces on the cylinder and the torque tube 170 remain in engagement to transmit rotation of the tube to the cylinder. The latter condition, in turn, functions to maintain the jaws 402 in sealed engagement with the outer periphery of the drill string 416. When the coupling 148 is descended to a position wherein the snap ring 408 first engages the groove 420, the ring functions to lock the cylinder 392 to the coupling for rectilinear movement therewith in a condition wherein the key pin 412 is retained within the keyslot 280. As thus conditioned,'the cylinder 392 is depressed by the coupling 148 so as to move the coupling surfaces 414 and 416 out of engagement. At the same time, however, rotary movement of the cylinder 392 is continued through interengagement of the key pin 412 and the keyslot 280. As a result, the sealing jaws 402 remain in sealed engagement with the outer periphery of the drill string 146.
When the coupling 148 and cylinder 392 are in the condition which occurs immediately after the cylinder 392 is depressed to a position wherein the disc 396 abuts against the stop post 382, the ring 412 snaps out of the groove 420 and the key pin 412 disengages from the keyslot 280. Thus, the cylinder 392 is released from its rotary connection with both the coupling 148 and the torque tube 170. As a result, the cylinder no longer rotates and the jaws 402 swing to an open nonsealing position (see the phantom line representation at the bottom of FIG. 13). This permits the jaws and cylinder to slide upwardly around the coupling 148 immediately thereabove under the influence of the coil springs 398.
Return of the cylinder 392 to the upper position illustrated in the solid line representation of FIG. 13 once again engages the coupling surfaces 414 and 416 and, as a result, the cylinder 392 is rotatably driven by the torque tube 170. This, in turn, functions to re-engage the jaws 402 with the drill string. As thus conditioned, the shuttle mechanism is once again readied for operation as the drill string passes therethrough during drilling. The pin 412 is mounted within cylinder 392 to be in longitudinal alignment with either jaw of the coupling 414.
It is again emphasized that the primary purpose of the shuttle mechanism is to seal the diverter assembly from the escape of drilling fluid around the drill string 146 while, at the same time, permit the enlarged couplings to pass through the assembly. This sealing function is necessary in order to assure that the discharge of drilling fluid from the annulus will pass into the branch conduit 358, rather than escape into the body of water within which the assembly is positioned.
(In FIG. 21, 22) The actuating mechanism of the throttle assembly 363 is mounted between flanged connection 415 making separable the first cylindrical element 368 into the transition chamber 359 and the stagnant chamber 361.
Details are revealed of means which monitor approach of the coupling 148 to sleeve 367 and the means to accommodate passage of the coupling between chambers. An internal ring flange 417 integral with the upper cylindrical element sealingly reinforces against well pressure the placement of half rings 419 each half integral with split halves of the sleeve 367. Radially extended ribs support the half rings to bear against flange 417 supplanting fluid pressure. Dual power means 421 preferrably pneumatically operated pistons are activated to part the sleeve halves to accommodate passage therethrough of the coupling. With the coupling 148 immediate to the sleeve 367 a cam follower 423 is displaced while in contact with the coupling to tilt a lever 425 bearing a vane 427 to an engaged position with a magnetic switch 429 to electrically activating a solenoid valve 431 to open for charging pressurized air to the power means 421 thus parting the sleeves.
Cam follower 423 remains in displaced position with continued contact over the moving length of coupling and with emergence of the coupling leading face past the sleeve position a second cam follower 433 is displaced to tilt a second lever 435 bearing the second vane 437 to an engaged position with a second magnetic switch 439 connected in parallel with first switch 429, thus the power means is not released until the coupling trailing end is free of the follower 433 and clear of the sleeve. A pair of remotely activated solenoids 441, 443 are linked to levers 425, 435, respectively, to displace cam followers 423, 433 free of interference with retraction of the drill string.
Brief note is made of several considerations. The power means 421 includes a compression spring 444 to return the sleeve halves to throttling position upon release of pressure in the cylinder by a solenoid valve 445 normally open in a bypass 446 across the piston and with the solenoid 445 electrically wired to respond with solenoid valve 431 normally closed. The levers 425, 435 are counterweighted to seek an inactive position preparatory for interception of a coupling. The configuration of the cam follower surface conforms to the contact profile through the various angular position taken by the lever to accommodate both the rotating and sliding coupling exterior surface. Conventional details are relied on pertaining to the power unit 421 for bearings, seals, etc. The fix of half sleeve to the ring half is merely indicative of the combination with design determining the bore-length ratio of sleeve, sleeve projection into either chamber and butting edges of the sleeves labyrinth in mesh. Likewise the monitoring and control of the split sleeve to be opened may be supplanted by merely nosing the coupling through a flared end of the sleeve relying on the compression spring to return the sleeve to position.
FIG. 15 diagrams a multistage adaption of the throttle assembly to be employed in extreme pressure cases to stepwise reduce the pressure from that in stagnant chamber 361 to that of 359a progressing to a lesser pressure in 359b, etc., to final low pressure in 359n containing seal 402. Transition Chamber Sustained A pneumatic system 365 is dependent upon to include provisions: to minimize pressure differential Environment; Establish and across the shuttle having one end exposed to surrounding seas and the other end within confines of the diverter assembly, to limit rise of liquid level within the diverter assembly, to maximize pressure differential across the throttle. FIG. 21 schematically diagrams the principal elements contained. An air supply is available from the drilling station or the more remote support station. An air supply conduit 371 extends down for fluid communication with the top of an external sump 373 disposed at a level with stagnant chamber 361. A bypass externally circumvents the throttle assembly 363 having conduit 375 with inlet adjacent the floor of the transition chamber 359 and outlet into sump 373 thereby providing fluid transmission of leakage to the sump. A check valve 377 directs flow in a conduit from the sump 373 to communicate with stagnant chamber 361. A valve 379 dominates flow through conduit 375. An electrical supply source indicated by line diagram with power lead 381 directed to electrically activated apparatus and return lead 383 is introduced from an extension attending the drilling station superstructure 156.
A motor 385 drives a compressor 387 receiving air supply by a branch 389 OK supply conduit 371 and discharges pressurized air by a conduit including a check valve 391 for flow into the receiver 393 having conventional appurtenances associated such as pressure limit switches, etc.
A conduit in fluid communication with the top of the transition chamber 359 includes a pressure switch 395 and a check valve 397 directing flow as a branch 399 to supply conduit 71. Pressurized air from receiver 383 is transmitted by a conduit 401 in fluid communication with supply conduit 371 as a branch connection between branch 397 and the sump 373 with flow therefrom dependent upon valve 403. A valve 405 is included in conduit 371 between branch conduit 399 and 401. A liquid level controller 407 of the conventional electrode type is employed in the transition chamber to indicate a low liquid level 409a, and a high level 409b to confine a gas volume 409c in which shuttle 357 abandons the coupling 148. Valve 405 is spring positioned normally open and electrically activate solenoid to close. Valve 403 is spring positioned normally closed and electrically activates a solenoid to open.
Operation of the pneumatic system requires air injection into the diverter assembly by closing switch 41 1 to activate solenoid valves 403 open and 405 closed. Thus air is introduced to sump 373 for discharge via check valve 377 to stagnant chamber 361 to escape through clearance 369 as air volume 4096 occupying transition chamber 359. Thereafter switch 411 is opened to reestablish normal pressure in the sump. With flow of well fluid under pressure to occupy stagnant chamber leakage through clearance 369 will comprise the air with liquid rise to level 409a, whereupon leakage will drain off through checkvalve 379 to the sump 373. With fill of the sump leakage will rise to establish level 409b whereupon switch 407 closes the electric circuit to close valve 405 and open valve 403, thus pressurized air expels fluid from the sump through check valve 377 to the stagnant chamber. In event pressure air volume 407c becomes excessive pressure switch 395 monitors relief valve 413 to bleed otT air to lower pressure system of the drilling station or support station. In
event liquid rises in conduit 371 with possible detrimental efiect to the compressor, the liquid level controller 407 responds as before. Disconnect 407a reestablishes drainage to emptied sump 373.
Remountable Flange Mechanism (In FIG. 23) The mating faces of flange 349 are conical tapering down to the well to obviate accummulation of debris between those faces that would interfere with the effectiveness of the 0 ring gasket seal 447 provided in a groove formed in the upper face. The jaw mechanism 356a is mounted to the body of the preventer 353. Jaws 448 formed to engage with the back of the upper flange are pivotally mounted by journals 449 extending beyond a pair of lugs 450 formed to the preventer and space to accommodate the jaw between. Each lug 450 is bored to receive an eccentric 451 having an ofiset hole accommodating bearing of the journal 449. A lever integral with the eccentric has a lower pivotal position to establish a minimum measurement of the center of the offset hole below the back of the upper flange and has an upper position that establishes a maximum said measurement. Each jaw 448 has a lower projecting arm 453 adapted to embrace a compression spring 454 to the body of the preventer 353 by a sustaining reaction of the jaw 448 bearing to the circumference of the flange 349. A power means 455, preferrably a pneumatic jack, is pivotally connected to the arm 453 and a cylindrical housing 456 surrounding and fixed to the preventer 353.
Jaws 448 have beveled projections to provide a reach for a slightly misaligned assembly 348 to serve as a centering guide when flange 348 is to be made up. The jaws 448 are pivotally displaced with lowering of the upper flange against increased spring compression with lever 452 in lower position; so that with abutment of the flanges the jaws freely return to position with clearance 457 above the flange. The power means 455 is remotely activated to force the arm 453 to compress spring 454 thus disengaging the jaws 448 to free flanges for removal of assembly 348.
A multiplicity of jaws 448 are equally spaced around the circumference of the flange 349 and are readily engageable because of the clearance provision 457. The jaws are cinched down by the levers 452 all simultaneously by a remotely controlled follower ring 458 guided for concentric travel by bearing 459 sliding on the housing 456. A number of power means 460, preferrably pneumatic jacks, are mounted to housing 456 with pivotal connection to follower 458 in staggered relation to the levers 452. In sweep of the levers 452 upward by the powered follower 458 from the lower position schematically illustrated through an arc a-b designating travel of the lever end, a wedge 461 held in a lower position by compression spring 462 was intercepted by the lever end and temporarily displaced permitting the lever to reach its upper position. Whereupen the wedge still being forced down bears with the lever end at an angle intercepting the arc, thus prevents the lever from seeking a lower position upon retraction of the follower ring. Each wedge is provided with grooves 463 accommodating fixed guide rails 464 to establish vertical travel of the wedges and provide backing up of the locking feature of the wedge. To
release the levers from their cinching position the wedges are simultaneously withdrawn by raising them with solenoids 465 remotely activated or by other suitable means. A canopy 466 shrouds the mechanism 356 as an added protective means with housing 456. It is considered obvious to so engage levers 452 to follower 458 that power could be employed to return levers 452 for release of the cinch effect by the eccentrics.
An alternate arrangement of the upper wire portion 99 inverting the method shown in FIGS. 1 and 7 as submitted in Ref. A, is depicted in FIGS. 1 and 6 with emphasis here on the fastening of the equalizer device 106b to housing 68a of fitting 50. The two beams 108b and llb are pivotally mounted to housing 48a by axis 191a and 193a, respectively, extending substantially normal to and at the longitudinal centerline of housing 68a and oriented to provide the extension of the wires 100, 102 and 104 upward past and clear of conduit 84 and pump 86. Ref. A is cited for a disclosure of the interrelationship of beams to equalize wire stresses. The details of reels 1l8b preferrably like that disclosed in Ref. B complete the inverted arrangement by being mounted to frame 41 likewise used to provide the support of joint 38.
As viewed in FIG. 6 the tension equalizers 106a and b are fitted with leveling devices 301 to monitor reels 118a and b for length adjustment of wires 100a, 102a and 100, 102 to retain beams 108a, 110a and 108b, ll0b in level position. One such beam ll0b in FIG. 9 is shown to have a mercoid type switch 303 that completes a circuit through bodily displacement of a liquid mercury 305 to immerse one of two electrodes 307, 309 depending upon directional tilt of the beam with a common electrode 311 permanently immersed. Flexible tubing 313 encasing electric leads to chamber 315 also transmits gaseous pressure to switch 303 equalizing internal pressure in the switch with that of the environment to which it is subjected.
An alternate arrangement to alignment mechanism 296 presented in Ref. A per FIG. 11 is herein depicted in FIGS. 7a and 8 and differs in the amplification to the monitoring means of mechanism 296a of the movement of the stations 34 and 52 from a vertical. Three rods 298a fixed to and depending downwardly from support station 52 in oriented alignment with wires 100a, 102a, 104a terminates with an axis 317 serving as the fulcrum of a lever 319 pivoted about axis 317. A ring 310a supported by wires 100a, 102a, 104a at a level with the extension of the lever short arm 321 is connected to arm 321 by radially extended links 323. The lever long arm 325 terminates with a vane 304a that has an erect posture 327 and a displaced position 329 there to activate a magnetic switch 316a fixed to support station 52. Thus the displacement of support station 52 occurring with slant wires 100a, 102a, 104a displaces the lever 319 with corresponding end movement proportional to the lever arm ratio so that the monitoring means is more responsive to movement of the array. Aside from the observation that lever 319 is counterweighted to be self balancing, the mechanism 296a functions as disclosed in Ref. A and it is understood similar treatment for vessel applies.
(In FIG. 6) Support station 52 is dependent upon ad justable buoyant gas chamber 315 formed by elliptical upper wall 70 reinforced by membrane 475 having ports 476 through which water is exchanged with the seas to establish a liquid level 477. The chamber is penetrated by a cylindrical member 138a to provide central passage through of drill string 146 and the volume of the chamber is monitored by structure 500 including a motor 498 remotely controlled to adjust the buoyant capacity with a corresponding residual unsupported load representing the force applied by the bit 284 on the hole bottom. Upon initial immersion of the pontoon to establish a gas volume 315 a supply of neutral liquid compound is pumped into the chamber to float on the trapped water as a barrier 478 for corrosion prevention of appurtenance mounted therein.
Pontoons 40 control station 34 similarly have elliptical upper walls, membrane with ports for the free exchange of water with the sea as monitored by structure 500 with the motors responding to regulator 51 and leveler 47. A protective barrier separates the water from the gas chamber accommodating mounting of appurtenances best maintained above liquid levels.
Pontoons 71 are similarly treated to sectionally support the conduit 46 and upper wire portion 99b, however, it is contemplated for normal conditions to construct them as solid spheres of light material developed in the market for pressure conditions when cased with aluminum armour. (In FIG. 4) The base portion 154 of drilling station is treated similar to the support station having an elliptical shell 158 membrane 479 with ports 480 to establish a liquid level 179. The significance of well and alley 177 has been previously covered. The liquid level is monitored and regulated by structure 500 responsive to leveler 248 as will be covered subsequently.
Upon initial immersion of the pontoon to establish a gas volume 481 a supply of neutral liquid compound is pumped into the chamber to float on the trapped water as a barrier 482 for corrosion prevention of appurtenances mounted therein.
A rotary type limit switch 208 mounted on jack shaft 238 establishes maximum turns of the shaft commensurate with full extension of telescopic leg 182 requiring reversal of motor 200 to retract the leg for disposition of the drilling station to a more accommodating floor contour. The leveler 248 also serves as a constant sentinel to the erect posture of the drilling station to reestablish firm footing if effected so as not to bend the drill string. (In FIG. 11) Leveling device 47 comprises:
A closed toroidal reservoir 250a tiltably supported to the superstructure 36 by pivoted mount 331; a volume of oil 252a sustaining a toroidal float 254a bearing switch contacts 256a, 258a free from electric terminals when in a level situation. A subsequent discussion relates the level device 47 with the pneumatic controls as per FIG. 24. (In FIG. 12) Regulator 51 comprises:
A shaft 333, 2 journals 335 in support of shaft 333, a tank 337 mounted by brackets 339 to a rod 341 adapted to vertical adjustment to vary the elevated position of regulator 51. Standing vent pipe 343 part of tank 337 supports magnetic switches 468, 469 that are activated by vane 470 mounted on shaft 333 responsive to movement of a float 471 slidably mounted on shaft 333 between stops 472. An adjustable port 473 selectively determines the rate of flow of liquid to and from the chamber provided by tank 337. Vent pipe 343 terminates well above water surface 28 so that the tank in-

Claims (27)

1. A vertical array of offshore well-drilling apparatus having an immersed torque imparting and separable drilling station erectly positioned on the floor of a body of water with spaced relation above a separable diverter equipment fixed between a surface well casing and the drilling station accommodating uninterrupted fluid sealed passage therethrough of a rotated drill string driving bit attached thereto, said string retained as an integral rigid lower assembly suspended from a buoyantly controlled support station providing vertical movement of the string below immersed pontoons upholding a control station that sustains an articulative conduit in fluid communication between an inlet end connected with a fluid supply aboard an attending service station disposed upon the troubled surface of said water and a discharge end fitted within a universal coupling connected to the upper supported end of the drill string adapted to penetrate the floor to bore a well with a selected bit pressure established at said control station, the improvement comprising: a. the control station is adjusted to a neutral position respective the surface of said body of water in accommodation with vertical movements of the articulative conduit and the heaving service station responding to said troubled surface; b. a crane system suspended from the control station transmits vertically adjustable support of said articulative conduit to maintain spaced relationship between the contiguous ends of said conduit and string contained within said universal coupling during descent of the array responding with said penetrating the floor; c. said articulative conduit includes a pivotal constituent and a rigid vertical constituent connected together by a flexible joint contained by a frame manipulated by said crane system having said discharge end oppositely disposed below, restricted to limited spaced differential within said universal coupling fixed to said support station while said universal coupling accommodates sealed transmission of fluid between the rotating string and said vertical constituent employed solely with axial movement free of torsional stress; d. a diverter assembly provides sealed termination of the well annulus defined by the string confined within said surface well casing cemented to the bored hole of the well and directs return of at least some of the fluid injected to the well bottom to entrain cut formation for flow through a port therewith in fluid communication with a remote conduit with discharge to said service station; e. a tension wire system having takeup means to accommodate variable wire extension is partitioned into a lower portion end connected beneath the support station to extend downwardly to reels mounted on the drilling station and an upper portion end connected above the support station to extend upwardly to reels borne by a frame manipulated by said crane system to constant spaced relation above the bottom of the hole in accommodation with progress in said penetration; f. a reassemblage means to alter length of said array, particularly utilized in periodic intervals while continuously drilling to lengthen said vertical constituent; g. protective means avoids buckling of said rigid vertical constituent and lower assembly; and, h. a stabilizing means monitors and controls vertical stability of the array respective the well.
2. evacuating fluid from the suspension tube by pressurized air available from a supply provided by accessory equipment associated with said buoyant support, seats the float controlled foot valve to complete the fluid seal of the said barrier;
2. A vertical array of offshore well-drilling apparatus as in claim 1, the improvement further comprises: a. said vertical constituent at each inception of a continuous drilling operation is formed with a minimum number of conduit segments to suit the integral length of drill string extending in reach from vicinity of said water surface to the formation to be cut with conduit segments joined together by couplings providing automatic engagement; b. an intercepter means integral with the control station is normally disposed to intercept said couplings joining conduit segments to temporarily supplant crane support of the vertical constituent and is remotely activated to selectively avoid said interception; and, c. a release means remotely controlled to disengage said couplings joining conduit segments while the intercepter supports the vertical constituent.
2. the lowermost said partition with throttling sleeve restricting leakage flow above said port establishes said stagnant well fluid, therewith precipitating discharge of larger solids in suspension for entrainment with flow through the port to said remote conduit;
2. forming the primary baffle with a flanged vertically extended nipple to accommodate the fastening thereto and inclusion therewithin of an inverted pliable sealing sleeve to present an interior funnel-shaped surface receiving increased bearing to the lining corresponding with confined fluid increased pressure;
2. mounting a float controlled foot valve to dominate a vertical port formed through said barrier accommodating the upward displacement of fluid with descent of the open bottom array through the body of water and in the well;
2. adjusting the disposition of the lining below an immersible buoyant support by a suspension tube accommodating settlement of the lining to the bottom of the hole with descent of the buoyant support terminating with spaced relation above the top of the wellhead;
3. connecting the tube and lining by a latch assembly having remotely operable release means; and, b. outfitting the array to contend with buoyant effect and fluid displacement preparatory to said settlement of the array, by:
3. surrounding the barrier with a pliable shroud with upper and lower extended skirts expanded under fluid pressure against the inner wall of the lining to effect a fluid seal therebetwEen;
3. A vertical array of offshore well-drilling apparatus as in claim 1, wherein two rigid cylindrical members, one the said rotating drill string and second the said vertical constituent each independently suspended in vertical alignment to provide limited axial movement and continuity of abrading fluid flow between the contiguous ends of the two members contained within the universal coupling, said universal coupling further comprises: a. a cylindrical first body coupled to the upper end of the drill string encases a certain length of the vertical constituent to provide a clearance annulus therebetween; b. a thrust bearing engaged with the first body conveys the load of the drill string to said support station stabilized in opposition to rotative effort transmitted through the thrust bearing; c. a second body fixed to said support station receivably accommodates with slidable bearing fit said certain length and includes a diffusor housing in fluid communication with the said clearance annulus with fluid sealing means limiting flow thereto; d. guide bearings provided near the extremities of the first body are supported by the second body to sustain rotative relationship of the two bodies; e. a second fluid supply introduced to the diffusor opposes the abrading fluid flow into said clearance to preserve the bearings and seal; and, f. monitoring means responsive to said limited axial movement activates said second takeup means to re-establish the neutral of said spaced differential.
3. introducing cement under pressure to the suspension tube establishes a mass sufficient to fracture said stop and force the pistonlike barrier to descend displacing well fluid before it for discharge through said ports and return by way of the annulus defined by the lining in the hole for transmission to the surfaced vessel as diverted to the remote conduit;
3. establishing a second baffle to a lowermost position upon the outer surface of the tube to become engaged to the primary baffle coincident with the complete descent of the lining past the primary baffle;
3. said throttle sleeves split axially and adapted to be opened when actuated by monitoring and control means accommodates passage of torqued couplings through the diverter in sequence with confrontation of a torqued coupling before a sleeve; and, e. a pneumatic system establishes said intermediate environment by evacuating said leakage to the chamber formed in said upper body between the said lowermost partition and blow-out preventer.
4. forming the second baffle with a cylindrical body providing a shoulder protrusion receivable by the inverted pliable sealing sleeve of the primary baffle with said body accommodating the fastening thereto and inclusion therewithin of a smaller inverted pliable sleeve to present an interior funnel-shaped surface receiving increased bearing to the tube corresponding with confined fluid increased pressure as contained by the combination primary-second baffle embraced arrangement; and, d. installing the lining by extending said suspension tube during lowering of the array in a water body depth less than and to the required said disposition of the lining for axial alignment above the blow-out preventer sealing the well, by:
4. forming fractureable stops as temporary supports of the barrier at said uppermost position; and, c. supplanting the ineffective preventer, when opened to accommodate passage of lining and tube portion extending therein, by fluid sealing baffles incorporated in said array and adapted to be releasably locked upon interception by the upper flange of the wellhead to accommodate descent of the lining and tube in fluid sealed sliding contact with the baffles, by:
4. A vertical array of offshore well-drilling apparatus as in Claim 1, wherein said diverter equipment includes a conventional blow-out preventer for the separable assembly comprising: a. a cylindrical lower body, defining the diverter portion fastened to said surface casing first cemented into the hole bored in said floor to remain fixed as the bottom section dominated by a conventional blow-out preventer included to be selectively applied to seal off said well extended above said port providing fluid communication between said lower body and said remote conduit; b. a cylindrical upper body defining the top section of the diverter remountably fastened to the blow-out preventer is secured to a detachable portable portion of said separable drilling station for removal therewith together with the drill string from the fixed portions of the drilling station and diverter, whereupon the well may be sealed off by the conventional blow-out preventer; c. a shuttle mechanism incorporated in said top section conveys a succession of torqued couplings, connecting pipe segments integrated to become the rotated drill string, past a fluid tight seal separating natural environmental conditions from an intermediate environment within a transition chamber established by throttle assemblies accommodating passage of the drill string through partitions in said top section forming the chambers dominating stagnant well fluid remaining undiverted to the remote conduit; d. said throttle assemblies comprises:
4. bottoming of the barrier to the lower extremity of the hole exposes said ports in the wall of the lining through which a continuing supply of cement flows to fill the said annulus to the top of the introduced lining continuing the displacement of well fluid thereto; and,
5. releasing the remotely operable latch assembly, the blow-out preventer and said releasably locked baffles permits retraction of the suspension tube with said latch to re-establish dominance of the well by the blow-out preventer.
5. A method of transmitting drilling fluid for an offshore array of drilling apparatus wherein compounded fluid is conveyed through an injection portion extending from a service station disposed upon the disturbed surface of a body of water to the bottom of a hole being bored into the floor thereof to entrain cut formation as a slurry through a retrieving portion extending therefrom to said service station for recycling values recovered from the slurry as part of said compounded fluid, the method comprising: a. extending a rigid drill string, as the lower part of the injection portion extending from vicinity of the water surface to said bottom formed before inception of a continuous drilling sequence, by mounting a drill bit as the lower end of an integral assembly with a multiplicity of pipe segments joined by string couplings transmitting torque to the drill bit solely through the suspended length portion thereof in reach below a torque transmitting drilling station therewith; b. sectionalizing the drilling station, employed to uninterruptedly transmit torque to the string in passage therethrough, into a portable portion for automatic engagement with a fixed portion established to the floor concentrically above a diverter assembly terminating the annulus formed in said hole surrounding said string sustained in vertical alignment therewith as a rigid tension member suspended from a buoyant support station adapted to descend, therewith establishing the rate of penetration of the hole; c. suspending an articulative conduit, as the upper part of the injection portion, formed with a pivotal constituent having the inlet end thereof in fluid communication with a supply on said service station and a rigid vertical constituent having the discharge end thereof disposed in vertical spaced alignment above said string with contiguous ends of said constituents connected by an angularly flexible joint suspended from an adjustable support means monitored for lowering said joint in phase with rate of said penetration with limited travel therefrom commensurate with allowable vertical angular displacement of the pivotal constituent; d. integrating the lower and upper parts of the injection portion by encasing the said discharge end and upper end of said string within a universal coupling accommodating spaced and rotative relationship of said parts, sustained by guiding and protective means to prolong integrity of the universal coupling adapted to assist the conveyance of abrading well fluid for discharge from the drill bit; e. dominating said annulus, constituted to be the lower part of the retrieving portion, by said diverter assembly accommodating sealed passage of the string therethrough from natural environmental condition to a well mitigated condition established within at least one transition chamber formed within the diverter sustained by a throttling system restricting well fluid leakage thereto and to maintain slurry discharge through a branch outlet therewith; f. employing a remote conduit, as the upper part of the retrIeving portion remotely disposed from the vertically movable string bared in said body of water, suspended to accommodate flexible connection to said branch outlet formed in the diverter beneath said transition chambers directing flow therefrom for conveyance to a sump on said service station; and, g. forming said vertical constituent initially with one or more conduit segments connected together by conduit couplings in accommodation with the string formed before said inception and before lowering said joint, and thereafter, as a lengthening process while drilling, adding sequentially a conduit segment subsequent with each lowering commensurate with said limited travel.
6. A method of transmitting drilling fluid for an offshore array of drilling apparatus, as in claim 5, the method further comprises: a. upholding a control station from immersed pontoons to a neutral stable position respective said surface, a structural portion thereof accommodates establishment of said flexible joint above water surface at said inception to drilling by a crane means, comprising said adjustable support means adapted for said limited travel between a retracted condition with said pivotal constituent inclined from said supply to a lowermost extended condition, whereupon in lowered position the conduit coupling is intercepted by a control station mounted clamp arranged to supplant the crane support of said vertical constituent; b. transporting a conduit segment, prior to said clamp interception, by a hoist system accommodating exchange between the surface affected service station and the stable control station, expedites lengthening the vertical constituent to minimize interruption to fluid flow therethrough by a valve closed while the flexible joint thereafter disconnected and raised with the pivotal constituent accommodates mounting the additional segment to the vertical constituent then supported from said clamp; c. interacting wire systems maintains and controls said integration of the injection portions while indicating progress in penetration, having a lower adjustable portion connected between the drilling station and the descending support station above occasioning the accumulation of wire, therewith activating a selsyn system to establish the crane lowering rate to said extended condition and having an upper adjustable portion connected between the support station and the control station above by way of partially loading the crane with part of the unsupported string weight to sense bit pressure in the hole; and, d. extending said upper adjustable portion simultaneously with each raising of the disconnected flexible joint accommodates continuous drilling during the lengthening process to the vertical constituent followed with minor adjustment to the upper wire portion length as required by monitoring means limiting spaced relationship of said parts within the universal coupling.
7. A method of transmitting drilling fluid for an offshore array of drilling apparatus as in claim 6, the method further comprises: a. utilizing said wire system having three taut wires maintained equal in length, tension and spaced conformance about the array when in said vertical alignment to then provide an upright configuration of the wires; b. relying on a hydraulic thrustor system deployed to oppose forces tending to disrupt the vertical alignment of the array respective the hole bored in said floor; c. employing rods, fixed beneath the two said stations above connected by said wires, to form a permanent upright configuration surrounding said configuration of wires with the distal end of each rod providing the fulcrum of a lever linked therebeneath to one of the wires radially aligned thereto, with the distal end of said levers adapted to actuate a switch in control of a part of the thrustor system; and, d. disrupting said vertical alignment alters the wire system to an oblique configuration contained within the permanent upright rod configuration therewith disposing the lever to activate said switch whereupon thrust forces oppose the disruptive forces to reinstate said vertical alignment.
8. A method of transmitting drilling fluid for an offshore array of drilling apparatus as in claim 6, the method further comprises: a. sectionalizing the diverter assembly into a portable portion for automatic engagement with a fixed portion connected to a casing cemented into the bored hole; b. disengaging the portable portions of the drilling station and diverter assembly for removal together with the drill bit retracted to position within the portable portion of the diverter assembly above a blow-out preventer thereafter remotely closed to seal off the fixed portion of the diverter assembly left to terminate said annulus; and, c. facilitating entry of an assembly to the vacated well, a conical receptacle extension of the fixed drilling station provides a guide to align the introduced assembly for automatic engagement to the fixed diverter portion prior to opening the blow-out preventer remotely operated by control lines extending with the remote conduit to the service station.
9. Interacting wire systems maintains and controls integrity of two lengthened rigid assemblies to be retained in vertical alignment with limited spaced relationship between contiguous ends of assemblies individually suspended from immersed chambers providing buoyant support in a body of water, the improvement comprising: a. said supports each fitted with a structure adapted to adjust a confined gas within said chambers to a volumetric displacement of said water comparable in weight with changes in imposed loads to be sustained throughout elevational change in position of the buoyant supports; b. said wire systems segmentally connected between buoyant supports with each segment having an end connection with an equalizer system, mounted to one buoyant support, adapted to maintain equal tension in three separate wires symmetrically forming the segment to an upright configuration about the rigid assembly with the other wire ends reeled to individually powered winches mounted to the other of the two supports with an equalizer monitoring means included to maintain equal extension of the taut wires thus connected between adjacent supports; c. rigidly fixed rods extending from said buoyant supports provide erect configuration in oriented alignment with a portion of the length of wires connected between supports with the distal end of rods terminating with an axis to provide the fulcrum and pivotal support for a lever adapted for a normal parallel disposition between a said rod and wire with the short arm end of each lever compositely connected to the wires by linkage to a ring mounted thereto being responsive to horizontal displacement consequential with an assumed oblique posture of the wires from said vertical alignment; d. the distal end of the lever extends an integral multiple of said short arm, terminating with a switch actuating means motivated upon displacement of the wire system to an oblique configuration consequential with forces disrupting said vertical alignment; and, e. a hydraulic thrustor system deployed to oppose said forces responds, in compliance with switches affected by said actuating means sensitiveness to the slant of the wires from said upright configurations, to re-establish said vertical alignment.
10. Interacting wire systems maintaining integrity of two or more rigid assemblies in vertical alignment as in claim 9, wherein said equalizer means comprises: a. two pivotal beams mounted to the horizontal axes provided in a cylindrical shell extension of said buoyant supports have a distal end extension equal to two-thirds thirds the beam length oriented to accommodate mounting a third beam end connected therebetween to said distal ends to provide a midpoint of said third beam in radial space from said shell equal and symmetrically arranged with the corresponding radial distance of the short ends of the said two beams to provide the three connects for said 3 wires; and, b. a mercoid type switch mounted to each of the said two beams and internally pressurized in balance with adjusted said chambers indicate unequal lengths between said wires by the tilt of a beam to activate a corresponding said powered winch to re-establish equality in wire lengths.
11. In an elongated array of objects disposed in finite vertical alignment relative a drilling station established to the floor of a body of water to power a drill bit to bore a hole with means accommodating axial disposition and rotational relationship between two rigid members defined as a conduit and a drill string with contiguous ends contained in a universal coupling, the improvement comprising: a. a control station having a superstructure with a base to which fixed pontoons provide buoyant support from beneath the surface of said water for transmission of said support to an apex assemblage including a crane towering above said surface to stably support a depending frame to which the said conduit is remountably secured and arranged free of columnar stress; b. a support station devised to travel between said control and drilling station provides buoyant support from a single compartment for said drill string maintained in length from the support station when at the initial position adjacent said control station with reach to establish said drill bit to the bottom of a hole therewith in said floor; c. monitoring and control means regulate the support capacity of said chamber and pontoons in contention with consequential environmental changes with vertical position and with alteration in position and weight of imposed loads; d. interacting wire systems maintains and controls integrity of said two rigid members retained in vertical alignment with limited spaced relationship between contiguous ends thereof contained within said universal coupling mounted upon said support station; e. said wire systems extend from the control to drilling stations with the support station interposed to provide an upper wire system segment and a lower wire system segment extending respectively above and below the support station with lower and upper ends respectively of the upper and lower wire segmentally connected to an equalizer means provided above and below the support station and with other wire ends connected to reels included in the assemblies comprising the control and drilling stations monitored to control the tension and extended lengths of the wire system segments; f. a stabilization system for said array includes a hydraulic thrustor system deployed to oppose forces disposing the normal upright posture of said wire system to an oblique configuration, whereupon an alignment mechanism associated with said wire system provides magnification of such disposition to activate a corresponding magnetic switch monitoring a portion of the thrustor system to re-establish said vertical alignment; g. said crane contributing as part of the upper wire system segment provides for the variable disposition of said frame incorporating the support of said upper rigid member and upper reels associated therewith in accommodation with said limited spaced relationship within the support station mounted universal coupling during said travel between stations; h. a tower integral with the drilling station accommodates the mounting of associated said lower reels to provide the lower wire system segment with a form between engaged ends having loops accommodating the inclusion of sheaves as a weighted means disposed below said lower reels therewith maintaining taut wires; i. said drilling station, adapted to uninterruptingly transmit torque to the drill bit continuously penetrating formation below said floor to the extent of said travel, accommodates the accumulation of wire stored with the allowable descent of said sheaves between limits monitoring said lower winches associated therewith to periodIcally power said reels, obviating continuous rotation of reels otherwise necessary to reel on wire introduced with support station descent with penetration; and, j. a selsyn system actuated with the descent of said sheave transmits control of said crane to maintain said limited spaced relationship of two rigid members by a corresponding descent of said frame to a limiting frame lower position whereupon crane support is supplanted by a clamp mechanism included with the control station to facilitate servicing said array.
12. In an elongated array of objects in vertical alignment in a body of water according to claim 11, the improvement further comprises: a. a pivotal member supported at the pivoted end by a service station buoyantly supported on said surface provides an articulative extension of said upper rigid member contrived with the inclusion of a flexible joint with the connection fixed to said frame therewith suspending the upper rigid member; b. a hoist system facilitates the transfer of objects between an unstable said service station subjected to the vagaries of said surface and a stable said control station having pontoons immersed with said surface established approximately midway the height of said apex; c. said crane, arranged in support of said flexible joint disconnected from the upper rigid member when supported by said clamp, establishes space accommodating addition of a segmental length to lengthen the array, undertaking transfer of the segmental length by said hoist system prior to disconnection of said joint; and, d. said upper rigid member, when disposed for support by said clamp and devoid of said control of the crane then in support of the upper reels and separated flexible joint accomplished with the extension of the upper wire portion accommodating the said addition, responds with the control station in trailing relation with the descending support station to maintain drilling progress during the time interval to connect the segmental length.
13. A method of lining a subaqueous hole bored in depth beneath a fixed wellhead extending above the floor of a body of water and dominated by a blow-out preventer disposed above a branch outlet providing fluid communication between the wellhead and a remote conduit adapted to extend to a surfaced vessel, obviating the need of the conventional conductor pipe extending the well above water surface, the improvement comprising: a. arranging a vertical array of objects remote from the well and prior to divesting the well of objects interfering with the reception of the array therein, by:
US00063507A 1970-08-13 1970-08-13 Apparatus and method for drilling underwater Expired - Lifetime US3722584A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6350770A 1970-08-13 1970-08-13

Publications (1)

Publication Number Publication Date
US3722584A true US3722584A (en) 1973-03-27

Family

ID=22049659

Family Applications (1)

Application Number Title Priority Date Filing Date
US00063507A Expired - Lifetime US3722584A (en) 1970-08-13 1970-08-13 Apparatus and method for drilling underwater

Country Status (1)

Country Link
US (1) US3722584A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557332A (en) * 1984-04-09 1985-12-10 Shell Offshore Inc. Drilling riser locking apparatus and method
US4698038A (en) * 1984-10-17 1987-10-06 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4701143A (en) * 1984-10-17 1987-10-20 Key Ocean Services, Inc. Vessel mooring system and method for its installation
WO2000019061A1 (en) * 1998-09-25 2000-04-06 Sonnier Errol A System, apparatus, and method for installing control lines in a well
EP1082515A1 (en) * 1998-03-27 2001-03-14 Hydril Company Offshore drilling system
US6360822B1 (en) 2000-07-07 2002-03-26 Abb Vetco Gray, Inc. Casing annulus monitoring apparatus and method
US6889772B2 (en) 2002-10-23 2005-05-10 Frank's International, Inc. Method and apparatus for installing control lines in a well
US20050126790A1 (en) * 2003-12-15 2005-06-16 Beato Christopher L. Method for using a multipurpose unit with multipurpose tower and a surface blow out preventer
US20060042800A1 (en) * 2004-09-01 2006-03-02 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US20060108122A1 (en) * 2002-10-23 2006-05-25 Jean Buytaert Top feed of control lines to a reciprocating spider
US20060162933A1 (en) * 2004-09-01 2006-07-27 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US20070158079A1 (en) * 2006-01-09 2007-07-12 Webre Charles M Top feed of control lines to table-elevated spider
US20070209804A1 (en) * 2002-12-10 2007-09-13 Webre Charles M Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US20120090828A1 (en) * 2002-12-10 2012-04-19 Frank's Casing Crew And Rental Tools, Inc. Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US20150075291A1 (en) * 2012-04-10 2015-03-19 Geoservices Equipements Tension Meter for Measuring a Mechanical Tension Along a Longitudinal Direction in a Well and Related Subassembly and Method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557332A (en) * 1984-04-09 1985-12-10 Shell Offshore Inc. Drilling riser locking apparatus and method
US4698038A (en) * 1984-10-17 1987-10-06 Key Ocean Services, Inc. Vessel mooring system and method for its installation
US4701143A (en) * 1984-10-17 1987-10-20 Key Ocean Services, Inc. Vessel mooring system and method for its installation
EP1082515A1 (en) * 1998-03-27 2001-03-14 Hydril Company Offshore drilling system
EP1082515A4 (en) * 1998-03-27 2001-05-16 Hydril Co Offshore drilling system
WO2000019061A1 (en) * 1998-09-25 2000-04-06 Sonnier Errol A System, apparatus, and method for installing control lines in a well
US6131664A (en) * 1998-09-25 2000-10-17 Sonnier; Errol A. System, apparatus, and method for installing control lines in a well
US6360822B1 (en) 2000-07-07 2002-03-26 Abb Vetco Gray, Inc. Casing annulus monitoring apparatus and method
US20060108122A1 (en) * 2002-10-23 2006-05-25 Jean Buytaert Top feed of control lines to a reciprocating spider
US6889772B2 (en) 2002-10-23 2005-05-10 Frank's International, Inc. Method and apparatus for installing control lines in a well
US20050183862A1 (en) * 2002-10-23 2005-08-25 Jean Buytaert Method and apparatus for installing control lines in a well
US7337853B2 (en) 2002-10-23 2008-03-04 Frank's International, Inc. Top feed of control lines to a reciprocating spider
US7703540B2 (en) 2002-12-10 2010-04-27 Frank's Casing Crew And Rental Tools, Inc. Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US20100038094A9 (en) * 2002-12-10 2010-02-18 Webre Charles Michael Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US9637984B2 (en) 2002-12-10 2017-05-02 Frank's International, Llc Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
USRE45331E1 (en) 2002-12-10 2015-01-13 Frank's International, Llc Top feed of control lines to table-elevated spider
US20070209804A1 (en) * 2002-12-10 2007-09-13 Webre Charles M Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US8347971B2 (en) * 2002-12-10 2013-01-08 Frank's Casing Crew And Rental Tools, Inc. Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US8267182B2 (en) 2002-12-10 2012-09-18 Frank's Casing Crew And Rental Tools, Inc. Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US20120090828A1 (en) * 2002-12-10 2012-04-19 Frank's Casing Crew And Rental Tools, Inc. Manipulatable spider components adapted for cooperation with a vertically reciprocating control line guide
US20050126790A1 (en) * 2003-12-15 2005-06-16 Beato Christopher L. Method for using a multipurpose unit with multipurpose tower and a surface blow out preventer
US7021402B2 (en) * 2003-12-15 2006-04-04 Itrec B.V. Method for using a multipurpose unit with multipurpose tower and a surface blow out preventer
US7458425B2 (en) * 2004-09-01 2008-12-02 Anadarko Petroleum Corporation System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US20060042800A1 (en) * 2004-09-01 2006-03-02 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US20060162933A1 (en) * 2004-09-01 2006-07-27 Millheim Keith K System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US7367403B2 (en) 2006-01-09 2008-05-06 Frank's Casing Crew & Rental Tools, Inc. Top feed of control lines to table-elevated spider
US20070158079A1 (en) * 2006-01-09 2007-07-12 Webre Charles M Top feed of control lines to table-elevated spider
US20150075291A1 (en) * 2012-04-10 2015-03-19 Geoservices Equipements Tension Meter for Measuring a Mechanical Tension Along a Longitudinal Direction in a Well and Related Subassembly and Method
US9322727B2 (en) * 2012-04-10 2016-04-26 Geoservices Equipements Tension meter for measuring a mechanical tension along a longitudinal direction in a well and related subassembly and method

Similar Documents

Publication Publication Date Title
US3722584A (en) Apparatus and method for drilling underwater
US2923531A (en) Drilling
US2929610A (en) Drilling
US4742876A (en) Submarine drilling device
US2808230A (en) Off-shore drilling
US2808229A (en) Off-shore drilling
US3189098A (en) Marine conductor pipe assembly
CN1222682C (en) Method of deploying electrically driven fluid transducer system in well
US6352114B1 (en) Deep ocean riser positioning system and method of running casing
CA2894848C (en) Centralizer
US4537533A (en) Installation and levelling of subsea templates
US2909359A (en) Off-shore drilling
JPS61290193A (en) Choke valve
US3503443A (en) Product handling system for underwater wells
EA003966B1 (en) Intervention system for servicing subsea wells
NO20120094A1 (en) Method and apparatus for extracting rudder from a well
US3129774A (en) Method and apparatus for drilling and working in offshore wells
BRPI0404002B1 (en) Subsea system and subsea separator for use in downhole operations and subsea method of separating material produced from a well
CN114109293A (en) Subsea wellhead assembly
US3488967A (en) Combination deep water storage tank and drilling and production platform
US3233667A (en) Apparatus for making underwater well connections
KR20010108227A (en) Floating offshore construction, and floating element
US3256936A (en) Drilling underwater wells
US3602300A (en) Down-hole installation, recovery, and maintenance tool for wells
NO20111295A1 (en) Deep water inserting tool