US20060138388A1 - Phosphor for light sources and associated light source - Google Patents

Phosphor for light sources and associated light source Download PDF

Info

Publication number
US20060138388A1
US20060138388A1 US11/359,267 US35926706A US2006138388A1 US 20060138388 A1 US20060138388 A1 US 20060138388A1 US 35926706 A US35926706 A US 35926706A US 2006138388 A1 US2006138388 A1 US 2006138388A1
Authority
US
United States
Prior art keywords
phosphor
oxide
garnet
emission
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/359,267
Inventor
Franz Kummer
Franz Zwaschka
Andries Ellens
Alexandra Debray
Guenther Waitl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27219234&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060138388(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19934126A external-priority patent/DE19934126A1/en
Priority claimed from DE19951790A external-priority patent/DE19951790A1/en
Priority claimed from DE19963791A external-priority patent/DE19963791A1/en
Application filed by Individual filed Critical Individual
Priority to US11/359,267 priority Critical patent/US20060138388A1/en
Publication of US20060138388A1 publication Critical patent/US20060138388A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the invention relates in particular to a yellow-emitting garnet phosphor for excitation by a light source with short wavelengths in the visible blue spectral region, with the result that white light is generated.
  • a lamp primarily a fluorescent lamp
  • an LED light-emitting diode
  • WO 98/05078 has already disclosed a phosphor for light sources and an associated light source.
  • the phosphor used is a garnet of the structure A 3 B 5 O 12 , the host lattice of which, as first component A, comprises at least one of the rare earths Y, Lu, Sc, La, Gd or Sm. Furthermore, one of the elements Al, Ga or In is used for the second component B. The only dopant used is Ce.
  • a very similar phosphor is known from WO 97/50132.
  • the dopant used in that document is either Ce or Tb. While Ce emits in the yellow spectral region, the emission from Tb is in the green spectral region. In both cases, the complementary color principle (blue-emitting light source and yellow-emitting phosphor) is used to achieve a white luminous color.
  • EP-A 124 175 describes a fluorescent lamp which, in addition to a mercury fill, contains a plurality of phosphors. These are excited by UV radiation (254 nm) or also by short-wave radiation at 460 nm. Three phosphors are selected in such a way that they add up to form white (color mixture).
  • a phosphor which has a garnet structure A 3 B 5 O 12 and which is doped with Ce is used, the second component B representing at least one of the elements Al and Ga and the first component A containing terbium.
  • the process for producing the phosphor is characterized by the following process steps: (a) comminution of the oxides and addition of a flux; (b) first firing in forming gas; (c) milling and screening; and (d) second firing.
  • terbium is suitable as a constituent of the host lattice (first component of the garnet) for a yellow-emitting phosphor, the activator of which is cerium.
  • Tb has only been considered as an activator or coactivator, together with cerium, for emission in the green region, if excitation is produced by cathode rays (electrons) or short-wave UV photons (GB-A 1 600 492 and EP-A 208 713).
  • terbium as the principal constituent of the first component A of the garnet, can be used on its own or together with at least one of the rare earths Y, Gd, La and/or Lu.
  • At least one of the elements Al or Ga is used as the second component.
  • the second component B may additionally contain In.
  • the activator is cerium.
  • a garnet of the structure (Tb 1-x-y RE x Ce y ) 3 (Al, Ga) 5 O 12 where
  • the phosphor absorbs in the range from 420 to 490 nm and can thus be excited by the radiation from a blue light source, which is in particular the radiation source for a lamp or LED. Good results have been achieved with a blue LED whose emission peak was at 430 to 470 nm.
  • the emission peak of the Tb-garnet: Ce phosphor is at approximately 550 nm.
  • This phosphor is particularly useful for use in a white LED based on the combination of a blue LED with the Tb-garnet-containing phosphor, which is excited by absorption of part of the emission from the blue LED and the emission from which supplements a remaining radiation from the LED, to form white light.
  • a Ga(In)N-LED is particularly suitable as the blue LED, but any other route for producing a blue LED which emits in the range from 420 to 490 nm is also suitable. 430 to 470 nm is particularly recommended as the principal emission region, since this is where efficiency is highest.
  • the particularly preferred range for y is 0.02 ⁇ y ⁇ 0.06.
  • the phosphor according to the invention is also suitable for combination with other phosphors.
  • 0 ⁇ y ⁇ 0.1 has proven particularly suitable as the phosphor.
  • Y frequently lies in the range from 0.01 to 0.05.
  • Tb in the host lattice serve primarily to improve the properties of known cerium-activated phosphors, while the addition of relatively large amounts of Tb can be used in a controlled way in particular to shift the wavelength of the emission from known cerium-activated phosphors. Therefore, a high proportion of Tb is particularly suitable for white LEDs with a low color temperature of below 5000 K.
  • FIG. 1 shows an emission spectrum of a first Tb-garnet phosphor
  • FIG. 2 shows the reflectance spectrum of this Tb-garnet phosphor
  • FIG. 3 shows emission spectra of further Tb-garnet phosphors
  • FIG. 4 shows reflectance spectra of the Tb-garnet phosphors from FIG. 3 ;
  • FIG. 5 shows emission spectra for further Tb-garnet phosphors
  • FIG. 6 shows reflectance spectra for the Tb-garnet phosphors from FIG. 5 ;
  • FIG. 7 shows an emission spectrum for a white LED with Tb-garnet phosphor.
  • the phosphor obtained corresponds to the composition (Y 0.29 Tb 0.67 Ce 0.04 ) 3 Al 5 O 12 . It has a strong yellow body color. An emission spectrum for this phosphor when excited at 430 nm and a reflectance spectrum for the phosphor between 300 and 800 nm are shown in FIGS. 1 and 2 .
  • the components 43.07 g Terbium oxide Tb 4 O 7 1.65 g Cerium oxide CeO 2 21.13 g Aluminum oxide Al 2 O 3 0.12 g Barium fluoride BaF 2 0.062 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example 1.
  • the phosphor obtained corresponds to the overall composition (Tb0.96Ce 0.04 ) 3 Al 5 O 12 or, in the representation which illustrates the host lattice, Tb 3 Al 5 O 12 :Ce. It has a strong yellow body color.
  • the X-ray diffraction diagram shows that there is a cubic garnet phase.
  • the emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4 , respectively.
  • the components 32.18 g Yttrium oxide Y 2 O 3 0.56 g Terbium oxide Tb 4 O 7 2.07 g Cerium oxide CeO 2 26.41 g Aluminum oxide Al 2 O 3 0.077 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example No. 1.
  • the phosphor obtained corresponds to the composition (Y 0.95 Tb 0.01 Ce 0.04 ) 3 Al 5 O 12 . It has a strong yellow body color.
  • the emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4 , respectively.
  • the components 26.76 g Yttrium oxide Y 2 O 3 9.53 g Terbium oxide Tb 4 O 7 2.07 g Cerium oxide CeO 2 26.41 g Aluminum oxide Al 2 O 3 0.149 g Barium fluoride BaF 2 0.077 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example No. 1.
  • the phosphor obtained corresponds to the composition (Y 0.79 Tb 0.17 Ce 0.04 ) 3 Al 5 O 12 . It has a strong yellow body color.
  • the emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4 , respectively.
  • the components 30.82 g Yttrium oxide Y 2 O 3 0.56 g Terbium oxide Tb 4 O 7 4.13 g Cerium oxide CeO 2 26.41 g Aluminum oxide Al 2 O 3 0.149 g Barium fluoride BaF 2 0.077 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example No. 1.
  • the phosphor obtained corresponds to the composition (Y 0.91 Tb 0.01 Ce 0.08 ) 3 Al 5 O 12 . It has a strong yellow body color.
  • the components 43.07 g Terbium oxide Tb 4 O 7 1.65 g Cerium oxide CeO 2 21.13 g Aluminum oxide Al 2 O 3 0.062 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example 1, except that the temperature during the two firings is lower by 50° C. in each case.
  • the phosphor obtained corresponds to the composition (Tb0.96Ce 0.04 ) 3 Al 5 O 12 . It has a strong yellow body color.
  • the emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 5 and 6 , respectively.
  • the components 43.07 g Terbium oxide Tb 4 O 7 1.65 g Cerium oxide CeO 2 17.05 g Aluminum oxide Al 2 O 3 7.50 g Gallium oxide Ga 2 O 3 0.062 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example 1, except that the temperature for the two firings is lower by 50° C. in each case.
  • the phosphor obtained corresponds to the composition (Tb 0.96 Ce 0.04 )Al 4 GaO 12 . It has a strong yellow body color.
  • the emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 5 and 6 , respectively.
  • the components 43.07 g Terbium oxide Tb 4 O 7 1.65 g Cerium oxide CeO 2 12.97 g Aluminum oxide Al 2 O 3 15.00 g Gallium oxide Ga 2 O 3 0.062 g Boric acid H 3 BO 3 are intimately mixed and processed as described under Example 1, except that the temperature for the two firings is lower by 50° C. in each case.
  • the phosphor obtained corresponds to the composition (Tb 0.96 Ce 0.04 ) 3 Al 3 Ga 2 O 12 . It has a yellow body color.
  • the emission spectrum and reflectance spectrum of this phosphor are shown in FIGS. 5 and 6 , respectively.
  • the components 4.88 kg Yttrium oxide Y 2 O 3 7.05 kg Gadolinium oxide Gd 2 O 3 161.6 g Terbium oxide Tb 4 O 7 595 g Cerium oxide CeO 2 7.34 kg Aluminum oxide Al 2 O 3 5.50 g Boric acid H 3 BO 3 are mixed for 24 hours in a 60 l polyethylene vessel. The mixture is introduced into crucibles made from aluminum oxide with a capacity of approx. 1 l and is fired in a pushed-bat kiln for 6 hours at 1550° C. under forming gas. The fired material is milled in an automatic mortar mill and then finely screened. The phosphor obtained has the composition (Y 0.50 Gd 0.45 Tb 0.01 Ce 0.04 ) 3 Al 5 O 12 . It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4 , respectively.
  • the phosphors described above generally have a yellow body color. They emit in the yellow spectral region. When Ga is added or used on its own instead of Al, the emission shifts more toward green, so that it is also possible in particular to achieve higher color temperatures.
  • Ga-containing (or Ga,Al-containing) Tb-garnets and purely Al-containing Tb-garnets can be used in mixed form in order to be able to adapt to desired color loci.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A phosphor for light sources, the emission from which lies in the short-wave optical spectral region, as a garnet structure A3B5O12. It is activated with Ce, the second component B representing at least one of the elements Al and Ga, and the first component A is terbium or terbium together with at least one of the elements Y, Gd, La and/or Lu.
In a preferred embodiment, a phosphor having a garnet of structure (Tb1-x-yRExCey)3(Al,Ga)5O12, where
RE=Y, Gd, La and/or Lu;
0≦x≦0.5−y;
0<y<0.1 is used.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of copending application Ser. No. 10/687,436, filed Oct. 16, 2003, which is a continuation of Ser. No. 09/787,208, filed Mar. 15, 2001, now U.S. Pat. No. 6,669,866.
  • TECHNICAL FIELD
  • The invention relates in particular to a yellow-emitting garnet phosphor for excitation by a light source with short wavelengths in the visible blue spectral region, with the result that white light is generated. A lamp (primarily a fluorescent lamp) or an LED (light-emitting diode) is particularly suitable as the light source.
  • PRIOR ART
  • WO 98/05078 has already disclosed a phosphor for light sources and an associated light source. In that document, the phosphor used is a garnet of the structure A3B5O12, the host lattice of which, as first component A, comprises at least one of the rare earths Y, Lu, Sc, La, Gd or Sm. Furthermore, one of the elements Al, Ga or In is used for the second component B. The only dopant used is Ce.
  • A very similar phosphor is known from WO 97/50132. The dopant used in that document is either Ce or Tb. While Ce emits in the yellow spectral region, the emission from Tb is in the green spectral region. In both cases, the complementary color principle (blue-emitting light source and yellow-emitting phosphor) is used to achieve a white luminous color.
  • Finally, EP-A 124 175 describes a fluorescent lamp which, in addition to a mercury fill, contains a plurality of phosphors. These are excited by UV radiation (254 nm) or also by short-wave radiation at 460 nm. Three phosphors are selected in such a way that they add up to form white (color mixture).
  • SUMMARY OF THE INVENTION
  • According to the invention, for light sources from which the emission lies in the short-wave optical spectral region, a phosphor which has a garnet structure A3B5O12 and which is doped with Ce is used, the second component B representing at least one of the elements Al and Ga and the first component A containing terbium. The process for producing the phosphor is characterized by the following process steps: (a) comminution of the oxides and addition of a flux; (b) first firing in forming gas; (c) milling and screening; and (d) second firing. Surprisingly, it has been found that under particular circumstances, namely under blue excitation in the range from 420 to 490 nm, terbium (Tb) is suitable as a constituent of the host lattice (first component of the garnet) for a yellow-emitting phosphor, the activator of which is cerium. Previously, in this context Tb has only been considered as an activator or coactivator, together with cerium, for emission in the green region, if excitation is produced by cathode rays (electrons) or short-wave UV photons (GB-A 1 600 492 and EP-A 208 713).
  • In this case, terbium, as the principal constituent of the first component A of the garnet, can be used on its own or together with at least one of the rare earths Y, Gd, La and/or Lu.
  • At least one of the elements Al or Ga is used as the second component. The second component B may additionally contain In. The activator is cerium. In a particularly preferred embodiment, a garnet of the structure
    (Tb1-x-yRExCey)3(Al, Ga)5O12, where
  • RE=Y, Gd, La and/or Lu;
  • 0≦x≦0.5-y;
  • 0<y<0.1 is used.
  • The phosphor absorbs in the range from 420 to 490 nm and can thus be excited by the radiation from a blue light source, which is in particular the radiation source for a lamp or LED. Good results have been achieved with a blue LED whose emission peak was at 430 to 470 nm. The emission peak of the Tb-garnet: Ce phosphor is at approximately 550 nm.
  • This phosphor is particularly useful for use in a white LED based on the combination of a blue LED with the Tb-garnet-containing phosphor, which is excited by absorption of part of the emission from the blue LED and the emission from which supplements a remaining radiation from the LED, to form white light.
  • A Ga(In)N-LED is particularly suitable as the blue LED, but any other route for producing a blue LED which emits in the range from 420 to 490 nm is also suitable. 430 to 470 nm is particularly recommended as the principal emission region, since this is where efficiency is highest.
  • By selecting the type and quantity of rare earths, it is possible to fine-tune the location of the absorption and emission bands, in a similar way to that which is known from the literature for other phosphors of type YAG:Ce. In conjunction with light-emitting diodes, it is particularly suitable for x to be 0.25≦x≦0.5-y.
  • The particularly preferred range for y is 0.02<y<0.06.
  • The phosphor according to the invention is also suitable for combination with other phosphors.
  • A garnet of structure
    (TbxRE1-x-yCey)3(Al, Ga)5O12,
  • where RE=Y, Gd, La and/or Lu;
  • 0≦x≦0.02, in particular x=0.01;
  • 0<y<0.1 has proven particularly suitable as the phosphor. Y frequently lies in the range from 0.01 to 0.05.
  • Generally, relatively small amounts of Tb in the host lattice serve primarily to improve the properties of known cerium-activated phosphors, while the addition of relatively large amounts of Tb can be used in a controlled way in particular to shift the wavelength of the emission from known cerium-activated phosphors. Therefore, a high proportion of Tb is particularly suitable for white LEDs with a low color temperature of below 5000 K.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is to be explained in more detail below with reference to a number of exemplary embodiments. In the drawing:
  • FIG. 1 shows an emission spectrum of a first Tb-garnet phosphor;
  • FIG. 2 shows the reflectance spectrum of this Tb-garnet phosphor;
  • FIG. 3 shows emission spectra of further Tb-garnet phosphors;
  • FIG. 4 shows reflectance spectra of the Tb-garnet phosphors from FIG. 3;
  • FIG. 5 shows emission spectra for further Tb-garnet phosphors;
  • FIG. 6 shows reflectance spectra for the Tb-garnet phosphors from FIG. 5;
  • FIG. 7 shows an emission spectrum for a white LED with Tb-garnet phosphor.
  • DETAILED DESCRIPTION OF THE INVENTION Exemplary Embodiment No. 1
  • The components
    9.82 g Yttrium oxide Y2O3
    2.07 g Cerium oxide CeO2
    37.57 g Terbium oxide Tb4O7
    26.41 g Aluminum oxide Al2O3
    0.15 g Barium fluoride BaF2
    0.077 g Boric acid H3BO3

    are mixed and comminuted together for two hours in a 250 ml polyethylene wide-necked bottle using 150 g of aluminum oxide balls with a diameter of 10 mm. Barium fluoride and boric acid serve as fluxes. The mixture is fired for three hours in a covered corundum crucible at 1550° C. in forming gas (nitrogen containing 2.3% by volume hydrogen) and then milled in an automatic mortar mill and screened through a screen with a mesh width of 53 μm. This is followed by a second firing for three hours at 1500° C. under forming gas (nitrogen containing 0.5% by volume hydrogen). Then, milling and screening is carried out as after the first firing. The phosphor obtained corresponds to the composition (Y0.29Tb0.67Ce0.04)3Al5O12. It has a strong yellow body color. An emission spectrum for this phosphor when excited at 430 nm and a reflectance spectrum for the phosphor between 300 and 800 nm are shown in FIGS. 1 and 2.
  • Exemplary Embodiment No. 2
  • The components
    43.07 g Terbium oxide Tb4O7
    1.65 g Cerium oxide CeO2
    21.13 g Aluminum oxide Al2O3
    0.12 g Barium fluoride BaF2
    0.062 g Boric acid H3BO3

    are intimately mixed and processed as described under Example 1. The phosphor obtained corresponds to the overall composition (Tb0.96Ce0.04)3Al5O12 or, in the representation which illustrates the host lattice, Tb3Al5O12:Ce. It has a strong yellow body color. The X-ray diffraction diagram shows that there is a cubic garnet phase. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4, respectively.
  • Exemplary Embodiment No. 3
  • The components
    32.18 g Yttrium oxide Y2O3
    0.56 g Terbium oxide Tb4O7
    2.07 g Cerium oxide CeO2
    26.41 g Aluminum oxide Al2O3
    0.077 g Boric acid H3BO3

    are intimately mixed and processed as described under Example No. 1. The phosphor obtained corresponds to the composition (Y0.95Tb0.01Ce0.04)3Al5O12. It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4, respectively.
  • Exemplary Embodiment No. 4
  • The components
    26.76 g Yttrium oxide Y2O3
    9.53 g Terbium oxide Tb4O7
    2.07 g Cerium oxide CeO2
    26.41 g Aluminum oxide Al2O3
    0.149 g Barium fluoride BaF2
    0.077 g Boric acid H3BO3

    are intimately mixed and processed as described under Example No. 1. The phosphor obtained corresponds to the composition (Y0.79Tb0.17Ce0.04)3Al5O12. It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4, respectively.
  • Exemplary Embodiment No. 5
  • The components
    30.82 g Yttrium oxide Y2O3
    0.56 g Terbium oxide Tb4O7
    4.13 g Cerium oxide CeO2
    26.41 g Aluminum oxide Al2O3
    0.149 g Barium fluoride BaF2
    0.077 g Boric acid H3BO3

    are intimately mixed and processed as described under Example No. 1. The phosphor obtained corresponds to the composition (Y0.91Tb0.01Ce0.08)3Al5O12. It has a strong yellow body color.
  • Exemplary Embodiment No. 6
  • The components
    43.07 g Terbium oxide Tb4O7
    1.65 g Cerium oxide CeO2
    21.13 g Aluminum oxide Al2O3
    0.062 g Boric acid H3BO3

    are intimately mixed and processed as described under Example 1, except that the temperature during the two firings is lower by 50° C. in each case. The phosphor obtained corresponds to the composition (Tb0.96Ce0.04)3Al5O12. It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 5 and 6, respectively.
  • Exemplary Embodiment No. 7
  • The components
    43.07 g Terbium oxide Tb4O7
    1.65 g Cerium oxide CeO2
    17.05 g Aluminum oxide Al2O3
    7.50 g Gallium oxide Ga2O3
    0.062 g Boric acid H3BO3

    are intimately mixed and processed as described under Example 1, except that the temperature for the two firings is lower by 50° C. in each case. The phosphor obtained corresponds to the composition (Tb0.96Ce0.04)Al4GaO12. It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 5 and 6, respectively.
  • Exemplary Embodiment No. 8
  • The components
    43.07 g Terbium oxide Tb4O7
    1.65 g Cerium oxide CeO2
    12.97 g Aluminum oxide Al2O3
    15.00 g Gallium oxide Ga2O3
    0.062 g Boric acid H3BO3

    are intimately mixed and processed as described under Example 1, except that the temperature for the two firings is lower by 50° C. in each case. The phosphor obtained corresponds to the composition (Tb0.96Ce0.04)3Al3Ga2O12. It has a yellow body color. The emission spectrum and reflectance spectrum of this phosphor are shown in FIGS. 5 and 6, respectively.
  • Exemplary Embodiment No. 9
  • The components
    4.88 kg Yttrium oxide Y2O3
    7.05 kg Gadolinium oxide Gd2O3
    161.6 g Terbium oxide Tb4O7
    595 g Cerium oxide CeO2
    7.34 kg Aluminum oxide Al2O3
    5.50 g Boric acid H3BO3

    are mixed for 24 hours in a 60 l polyethylene vessel. The mixture is introduced into crucibles made from aluminum oxide with a capacity of approx. 1 l and is fired in a pushed-bat kiln for 6 hours at 1550° C. under forming gas. The fired material is milled in an automatic mortar mill and then finely screened. The phosphor obtained has the composition (Y0.50Gd0.45Tb0.01Ce0.04)3Al5O12. It has a strong yellow body color. The emission spectrum and reflectance spectrum for this phosphor are shown in FIGS. 3 and 4, respectively.
  • Exemplary Embodiment 10 (LED)
  • When these phosphors are used in a white LED together with GaInN, a structure similar to that described in WO 97/50132 is employed. By way of example, identical fractions of phosphor in accordance with Example 1 and of phosphor in accordance with Example 4 are dispersed in epoxy resin and a LED with an emission peak of approximately 450 nm (blue) is encapsulated by this resin mixture. The emission spectrum of a white LED obtained in this way is shown in FIG. 7. In this case, the mixture of the blue LED radiation with the yellow phosphor emission results in a color locus of x=0.359/y=0.350, corresponding to white light of color temperature 4500 K.
  • The phosphors described above generally have a yellow body color. They emit in the yellow spectral region. When Ga is added or used on its own instead of Al, the emission shifts more toward green, so that it is also possible in particular to achieve higher color temperatures. In particular, Ga-containing (or Ga,Al-containing) Tb-garnets and purely Al-containing Tb-garnets can be used in mixed form in order to be able to adapt to desired color loci.

Claims (9)

1-11. (canceled)
12. A process for producing an Al-containing Tb-garnet phosphor, a Ga-containing Tb-garnet phosphor, or a Ga,Al-containing Tb-garnet phosphor, the process comprising:
(a) intimately mixing an oxide of cerium, an oxide of terbium or terbium and at least one of Y, Gd, La, and/or Lu, at least one oxide of Al and Ga, and at least one flux to form a mixture; and
(b) firing the mixture in forming gas to form the phosphor.
13. The process of claim 12 wherein the flux is BaF2, HBO3, or both.
14. The process of claim 12 wherein the forming gas is a mixture of nitrogen and hydrogen gases wherein the hydrogen is 2.3% by volume.
15. The process of claim 12 wherein a stoichiometric excess of aluminum oxide is used to form the mixture.
16. The process of claim 12 wherein the mixture is fired at a temperature from 1450° C. to 1550° C.
17. The process of claim 12 wherein the mixture is milled after firing and then fired for a second time in forming gas.
18. The process of claim 17 wherein the firings are performed at a temperature from 1450° C. to 1550° C.
19. The process of claim 18 wherein the firings are each for three hours.
US11/359,267 1999-07-23 2006-02-22 Phosphor for light sources and associated light source Abandoned US20060138388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/359,267 US20060138388A1 (en) 1999-07-23 2006-02-22 Phosphor for light sources and associated light source

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE19934126A DE19934126A1 (en) 1999-07-23 1999-07-23 Fluorescent oxide for forming white LEDs, includes cerium-activated garnet-based oxide with terbium addition
DE19934126.5 1999-07-23
DE19951790.8 1999-10-27
DE19951790A DE19951790A1 (en) 1999-10-27 1999-10-27 Fluorescent for light sources and associated light source
DE19963791A DE19963791A1 (en) 1999-12-30 1999-12-30 Fluorescent oxide for forming white LEDs, includes cerium-activated garnet-based oxide with terbium addition
DE19963791.1 1999-12-30
US09/787,208 US6669866B1 (en) 1999-07-23 2000-07-08 Luminous substance for a light source and light source associates therewith
PCT/DE2000/002241 WO2001008452A1 (en) 1999-07-23 2000-07-08 Luminous substance for a light source and light source associated therewith
US10/687,436 US7115217B2 (en) 1999-07-23 2003-10-16 Phosphor for light sources and associated light source
US11/359,267 US20060138388A1 (en) 1999-07-23 2006-02-22 Phosphor for light sources and associated light source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/687,436 Continuation US7115217B2 (en) 1999-07-23 2003-10-16 Phosphor for light sources and associated light source

Publications (1)

Publication Number Publication Date
US20060138388A1 true US20060138388A1 (en) 2006-06-29

Family

ID=27219234

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/787,208 Expired - Lifetime US6669866B1 (en) 1999-07-23 2000-07-08 Luminous substance for a light source and light source associates therewith
US10/687,436 Expired - Lifetime US7115217B2 (en) 1999-07-23 2003-10-16 Phosphor for light sources and associated light source
US11/066,671 Expired - Lifetime US7063807B2 (en) 1999-07-23 2005-02-25 Phosphor for light sources and associated light source
US11/359,267 Abandoned US20060138388A1 (en) 1999-07-23 2006-02-22 Phosphor for light sources and associated light source

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/787,208 Expired - Lifetime US6669866B1 (en) 1999-07-23 2000-07-08 Luminous substance for a light source and light source associates therewith
US10/687,436 Expired - Lifetime US7115217B2 (en) 1999-07-23 2003-10-16 Phosphor for light sources and associated light source
US11/066,671 Expired - Lifetime US7063807B2 (en) 1999-07-23 2005-02-25 Phosphor for light sources and associated light source

Country Status (10)

Country Link
US (4) US6669866B1 (en)
EP (2) EP1116418B2 (en)
JP (1) JP2003505582A (en)
KR (1) KR100431398B1 (en)
CN (2) CN100344728C (en)
AT (1) ATE252814T1 (en)
CA (1) CA2345114C (en)
DE (2) DE20023590U1 (en)
HU (1) HU228953B1 (en)
WO (1) WO2001008452A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070085466A1 (en) * 2001-08-28 2007-04-19 Mitsubishi Chemical Corporation Phosphor, light emitting device using phosphor, and display and lighting system using light emitting device
US9732271B2 (en) 2012-12-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US9976080B2 (en) 2013-03-08 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116418B2 (en) * 1999-07-23 2011-07-06 OSRAM Gesellschaft mit beschränkter Haftung Luminous substance for a light source and light source associated therewith
CA2343909C (en) * 1999-07-23 2013-04-02 Osram Opto Semiconductors Gmbh & Co. Ohg Arrangement of luminescent materials, wavelength-converting casting compound and light source
MY131962A (en) * 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
US6616862B2 (en) 2001-05-21 2003-09-09 General Electric Company Yellow light-emitting halophosphate phosphors and light sources incorporating the same
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US6630077B2 (en) * 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
US7008558B2 (en) * 2001-10-11 2006-03-07 General Electric Company Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
JPWO2003034508A1 (en) 2001-10-12 2005-02-03 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
TWI226357B (en) 2002-05-06 2005-01-11 Osram Opto Semiconductors Gmbh Wavelength-converting reaction-resin, its production method, light-radiating optical component and light-radiating semiconductor-body
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
KR101030068B1 (en) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 Method of Manufacturing Nitride Semiconductor Device and Nitride Semiconductor Device
CN1318540C (en) * 2002-09-13 2007-05-30 北京有色金属研究总院 Blue light-excitated white phosphor powder for LED and production method thereof
JP3812525B2 (en) * 2002-09-20 2006-08-23 株式会社村田製作所 Optical magnetic field sensor
CN100362146C (en) * 2002-09-27 2008-01-16 株式会社村田制作所 Terbium paramagnetic garnet single crystal and magneto-optical device
US6765237B1 (en) * 2003-01-15 2004-07-20 Gelcore, Llc White light emitting device based on UV LED and phosphor blend
TWI237546B (en) * 2003-01-30 2005-08-01 Osram Opto Semiconductors Gmbh Semiconductor-component sending and/or receiving electromagnetic radiation and housing-basebody for such a component
TWI229125B (en) * 2003-03-28 2005-03-11 Nantex Industry Co Ltd Fluorescent material of terbium aluminum garnet and manufacturing method therefor
DE10316769A1 (en) * 2003-04-10 2004-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescence conversion LED used in optical semiconductor components has LED chip emitting primary radiation in specified region which is partially or completely converted into longer wavelength radiation
AU2003284756A1 (en) * 2003-05-12 2004-11-26 Luxpia Co., Ltd. Tb,b-based yellow phosphor, its preparation method, and white semiconductor light emitting device incorporating the same
JP4138586B2 (en) * 2003-06-13 2008-08-27 スタンレー電気株式会社 LED lamp for light source and vehicle headlamp using the same
US7088038B2 (en) 2003-07-02 2006-08-08 Gelcore Llc Green phosphor for general illumination applications
JP2005064233A (en) * 2003-08-12 2005-03-10 Stanley Electric Co Ltd Wavelength conversion type led
JP4916651B2 (en) * 2003-08-28 2012-04-18 三菱化学株式会社 Light emitting device and phosphor
WO2005022032A1 (en) * 2003-08-28 2005-03-10 Mitsubishi Chemical Corporation Light emitting device and phosphor
JP4140042B2 (en) * 2003-09-17 2008-08-27 スタンレー電気株式会社 LED light source device using phosphor and vehicle headlamp using LED light source device
JP4402425B2 (en) * 2003-10-24 2010-01-20 スタンレー電気株式会社 Vehicle headlamp
US7094362B2 (en) * 2003-10-29 2006-08-22 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7252787B2 (en) * 2003-10-29 2007-08-07 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7442326B2 (en) 2003-10-29 2008-10-28 Lumination Llc Red garnet phosphors for use in LEDs
US20050093422A1 (en) * 2003-10-31 2005-05-05 Chien-Yuan Wang White light-emitting device
JP2005191420A (en) * 2003-12-26 2005-07-14 Stanley Electric Co Ltd Semiconductor light emitting device having wavelength converting layer and its manufacturing method
JP2005197329A (en) * 2004-01-05 2005-07-21 Stanley Electric Co Ltd Surface-mounting semiconductor device and its lead-frame structure
JP4504056B2 (en) * 2004-03-22 2010-07-14 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device
DE102005014144A1 (en) * 2004-03-29 2005-11-24 Stanley Electric Co. Ltd. led
JP4229447B2 (en) * 2004-03-31 2009-02-25 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method
JP4471356B2 (en) * 2004-04-23 2010-06-02 スタンレー電気株式会社 Semiconductor light emitting device
JP4632690B2 (en) * 2004-05-11 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
EP1751806B1 (en) 2004-05-31 2019-09-11 OSRAM Opto Semiconductors GmbH Optoelectronic semiconductor component and housing base for such a component
DE102004040468B4 (en) 2004-05-31 2022-02-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component and housing base body for such a component
JP4583076B2 (en) * 2004-06-11 2010-11-17 スタンレー電気株式会社 Light emitting element
JP4632697B2 (en) * 2004-06-18 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
US20060006366A1 (en) * 2004-07-06 2006-01-12 Vladimir Abramov Wave length shifting compositions for white emitting diode systems
JP4599111B2 (en) * 2004-07-30 2010-12-15 スタンレー電気株式会社 LED lamp for lamp light source
JP4858867B2 (en) * 2004-08-09 2012-01-18 スタンレー電気株式会社 LED and manufacturing method thereof
JP4547569B2 (en) * 2004-08-31 2010-09-22 スタンレー電気株式会社 Surface mount type LED
KR101217659B1 (en) * 2004-09-03 2013-01-02 스탠리 일렉트릭 컴퍼니, 리미티드 Electroluminescence element
JP4922555B2 (en) * 2004-09-24 2012-04-25 スタンレー電気株式会社 LED device
JP4756841B2 (en) * 2004-09-29 2011-08-24 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device
DE102004047640A1 (en) 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Optoelectronic component and housing for an optoelectronic component
DE102005046420B4 (en) * 2004-10-04 2019-07-11 Stanley Electric Co. Ltd. A method of manufacturing a semiconductor light-emitting device
KR100485673B1 (en) * 2004-10-11 2005-04-27 씨엠에스테크놀로지(주) White photoluminescence device
JP4627177B2 (en) * 2004-11-10 2011-02-09 スタンレー電気株式会社 LED manufacturing method
JP2006140281A (en) * 2004-11-11 2006-06-01 Stanley Electric Co Ltd Power led and its manufacturing method
JP2006190888A (en) * 2005-01-07 2006-07-20 Stanley Electric Co Ltd Surface mounting led
US7648649B2 (en) * 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
US7497973B2 (en) 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
US7358542B2 (en) * 2005-02-02 2008-04-15 Lumination Llc Red emitting phosphor materials for use in LED and LCD applications
JP4779384B2 (en) * 2005-02-28 2011-09-28 三菱化学株式会社 Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
CN101128563B (en) * 2005-02-28 2012-05-23 三菱化学株式会社 Phosphor, its manufacturing method and application
US7274045B2 (en) 2005-03-17 2007-09-25 Lumination Llc Borate phosphor materials for use in lighting applications
JP2006261540A (en) * 2005-03-18 2006-09-28 Stanley Electric Co Ltd Light emitting device
TWI249867B (en) * 2005-03-24 2006-02-21 Lighthouse Technology Co Ltd Light-emitting diode package, cold cathode fluorescence lamp and photoluminescence material thereof
US7252789B2 (en) * 2005-03-31 2007-08-07 General Electric Company High-density scintillators for imaging system and method of making same
US7329371B2 (en) 2005-04-19 2008-02-12 Lumination Llc Red phosphor for LED based lighting
DE102005046450A1 (en) * 2005-09-28 2007-04-05 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, method for its production and optoelectronic component
JP2007096079A (en) * 2005-09-29 2007-04-12 Stanley Electric Co Ltd Semiconductor light emitting device
DE102005049685A1 (en) 2005-10-14 2007-04-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Multifunction vehicle headlamp module, in particular for the front area of a vehicle
KR20080106402A (en) 2006-01-05 2008-12-05 일루미텍스, 인크. Separate optical device for directing light from an led
CN100590172C (en) 2006-07-26 2010-02-17 北京有色金属研究总院 Siliceous LED fluorescent powder and manufacturing method and produced luminescent device
CN101553928B (en) 2006-10-02 2011-06-01 伊鲁米特克有限公司 Led system and method
JP5399252B2 (en) * 2006-10-18 2014-01-29 コーニンクレッカ フィリップス エヌ ヴェ Lighting system and display device
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
CN101182416B (en) 2006-11-13 2010-09-22 北京有色金属研究总院 Aluminate phosphor containing divalent metal element as well as manufacturing method and luminescent device
CN102255018B (en) * 2006-12-22 2013-06-19 昆南诺股份有限公司 Nanostructured LED array with collimating reflectors and manufacture method thereof
DE102007010719A1 (en) * 2007-03-06 2008-09-11 Merck Patent Gmbh Phosphors consisting of doped garnets for pcLEDs
TWI378138B (en) * 2007-04-02 2012-12-01 Univ Nat Chiao Tung Green-emitting phosphors and process for producing the same
WO2009012301A2 (en) 2007-07-16 2009-01-22 Lumination Llc Red line emitting complex fluoride phosphors activated with mn4+
TWI384052B (en) * 2007-07-25 2013-02-01 Univ Nat Chiao Tung A novel phosphor and fabrication of the same
DE102007049005A1 (en) 2007-09-11 2009-03-12 Osram Opto Semiconductors Gmbh Radiating device, especially a light-emitting diode, has a layer emitting primary radiation and a conversion layer comprising two materials which convert this radiation into first and second secondary radiation
US8018139B2 (en) * 2007-11-05 2011-09-13 Enertron, Inc. Light source and method of controlling light spectrum of an LED light engine
US8167674B2 (en) 2007-12-14 2012-05-01 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
EP2240968A1 (en) 2008-02-08 2010-10-20 Illumitex, Inc. System and method for emitter layer shaping
US7868340B2 (en) 2008-05-30 2011-01-11 Bridgelux, Inc. Method and apparatus for generating white light from solid state light emitting devices
JP5152502B2 (en) * 2008-06-09 2013-02-27 スタンレー電気株式会社 Lamp
US7990040B2 (en) * 2008-06-11 2011-08-02 General Electric Company Phosphor for high CRI lamps
DE102008033394B4 (en) 2008-07-16 2018-01-25 Osram Oled Gmbh Component with a first and a second substrate
JP5521412B2 (en) * 2008-07-31 2014-06-11 日立金属株式会社 Fluorescent material, scintillator and radiation detector using the same
CN101649486B (en) * 2008-08-11 2013-03-20 元亮科技有限公司 Device and method for growing terbium gallium garnet (TGG) crystal by pulling method
TW201034256A (en) 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices
US20120069544A1 (en) * 2009-03-23 2012-03-22 Koninklijke Philips Electronics N.V. Light-emitting device with a luminescent medium, corresponding lighting system comprising the light-emitting device and corresponding luminescent medium
DE102009020569B4 (en) * 2009-05-08 2019-02-21 Schott Ag Phosphors based on Eu2 + (co) doped yttrium aluminum garnet crystals and their use
US8449128B2 (en) 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
EP2553049B1 (en) 2010-03-31 2017-03-22 Osram Sylvania Inc. Phosphor and leds containing same
CN102277172B (en) * 2010-06-13 2013-11-27 海洋王照明科技股份有限公司 Rare earth luminescent material and its preparation method
US9133392B2 (en) 2010-07-22 2015-09-15 Osram Opto Semiconductors Gmbh Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material
RU2595711C2 (en) 2010-12-21 2016-08-27 Конинклейке Филипс Электроникс Н.В. Lighting device with polymer containing matrices
CN102140690B (en) * 2010-12-31 2013-05-01 陈哲艮 Photoluminescent wafer as well as preparation method and application thereof
TWI448536B (en) * 2011-03-08 2014-08-11 Intematix Corp Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
KR20140043123A (en) 2011-07-05 2014-04-08 파나소닉 주식회사 Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same
TWI515922B (en) * 2011-10-25 2016-01-01 奇美實業股份有限公司 Fluorescent material and light-emitting device using the same
TWI538980B (en) * 2011-11-29 2016-06-21 奇美實業股份有限公司 Fluorescent material and light-emitting device using the same
EP2859065B1 (en) 2012-06-08 2018-03-14 Philips Lighting Holding B.V. Lighting device with polymer containing luminescent moieties
CN103045259B (en) * 2012-12-20 2014-10-15 华东师范大学 Oxynitride fluorescent powder, preparation method thereof and LED light source including same
EP2938699A4 (en) * 2012-12-28 2016-08-24 Intematix Corp Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
WO2014168202A1 (en) * 2013-04-12 2014-10-16 日立金属株式会社 Fluorescent material, scintillator and radiation conversion panel
KR101496718B1 (en) * 2013-04-15 2015-03-02 주식회사 포스포 Phosphor and light emitting device
JPWO2015099145A1 (en) * 2013-12-27 2017-03-23 国立大学法人京都大学 Phosphor and method for producing phosphor
JP6949033B2 (en) 2016-01-14 2021-10-13 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Perylene bisimide with rigid 2,2'-biphenoxy crosslinks
JP6928424B2 (en) * 2016-02-24 2021-09-01 日亜化学工業株式会社 Fluorescent material and light emitting device
DE102016116016A1 (en) 2016-08-29 2018-03-01 Osram Gmbh Phosphor, use of a phosphor, and method of making a phosphor
EP3523303B1 (en) 2016-10-06 2020-09-23 Basf Se 2-phenylphenoxy-substituted perylene bisimide compounds and their use
JP6863071B2 (en) * 2017-05-19 2021-04-21 日亜化学工業株式会社 Fluorescent material and light emitting device having a composition of rare earth aluminum gallium salt
JP2017222868A (en) * 2017-07-06 2017-12-21 インテマティックス・コーポレーションIntematix Corporation Terbium-containing aluminate-based yellowish green to yellow light-emitting fluophor
WO2019121602A1 (en) 2017-12-19 2019-06-27 Basf Se Cyanoaryl substituted benz(othi)oxanthene compounds
TWI821256B (en) 2018-03-20 2023-11-11 德商巴地斯顏料化工廠 Yellow light emitting device, use thereof, and method for providing yellow light
JP7325885B2 (en) 2018-06-22 2023-08-15 ベーアーエスエフ・エスエー Photostable Cyano-Substituted Boron-Dipyrromethene Dyes as Green Emitters for Display and Lighting Applications
CN109592978B (en) * 2018-12-03 2021-07-23 江苏师范大学 Warm white light high-color rendering index fluorescent ceramic for high-power LED/LD illumination and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US6630077B2 (en) * 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493629B1 (en) * 1969-10-13 1974-01-28
JPS493631B1 (en) * 1969-10-16 1974-01-28
JPS5720623B2 (en) 1972-04-20 1982-04-30
JPS5443380B2 (en) 1972-04-20 1979-12-19
GB1600492A (en) 1977-01-19 1981-10-14 Johnson Matthey Co Ltd Luminescent materials
NL7707008A (en) 1977-06-24 1978-12-28 Philips Nv LUMINESCENCE SCREEN.
CA1223030A (en) 1983-04-25 1987-06-16 Johannes T.C. Van Kemenade Low-pressure mercury vapour discharge lamp
US4550256A (en) * 1983-10-17 1985-10-29 At&T Bell Laboratories Visual display system utilizing high luminosity single crystal garnet material
US4757232A (en) 1985-01-16 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Visual display system comprising epitaxial terbium-activated garnet material
KR950009041B1 (en) 1985-12-16 1995-08-14 가세이옾토닉스 가부시끼가이샤 Luminous compositions and process for their preparation and fluorescent lamp
JPH01108295A (en) * 1987-10-19 1989-04-25 Nichia Chem Ind Ltd Green fluorescent phosphor for projection tube
DE19638667C2 (en) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
CN1534803B (en) 1996-06-26 2010-05-26 奥斯兰姆奥普托半导体股份有限两合公司 Luminous semiconductor device possessing luminous alteration element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3246386B2 (en) * 1997-03-05 2002-01-15 日亜化学工業株式会社 Light emitting diode and color conversion mold member for light emitting diode
CN1101442C (en) 1998-11-23 2003-02-12 中国科学院长春物理研究所 Green fluorescent body of rare-earth and garnet and its preparing process
EP1116418B2 (en) * 1999-07-23 2011-07-06 OSRAM Gesellschaft mit beschränkter Haftung Luminous substance for a light source and light source associated therewith
US6504179B1 (en) * 2000-05-29 2003-01-07 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Led-based white-emitting illumination unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US6630077B2 (en) * 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070085466A1 (en) * 2001-08-28 2007-04-19 Mitsubishi Chemical Corporation Phosphor, light emitting device using phosphor, and display and lighting system using light emitting device
US20080218060A1 (en) * 2001-08-28 2008-09-11 Mitsubishi Chemical Corporation Phosphor, light emitting device using phosphor, and display and lighting system using light emitting device
US7790058B2 (en) 2001-08-28 2010-09-07 Mitsubishi Chemical Corporation Phosphor, light emitting device using phosphor, and display and lighting system using light emitting device
US9732271B2 (en) 2012-12-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US9976080B2 (en) 2013-03-08 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same

Also Published As

Publication number Publication date
EP1116418B2 (en) 2011-07-06
ATE252814T1 (en) 2003-11-15
CA2345114C (en) 2011-08-30
EP1116418B1 (en) 2003-10-22
CN100344728C (en) 2007-10-24
HUP0103863A3 (en) 2004-08-30
CA2345114A1 (en) 2001-02-01
CN1654594A (en) 2005-08-17
JP2003505582A (en) 2003-02-12
US7063807B2 (en) 2006-06-20
US20040079956A1 (en) 2004-04-29
US6669866B1 (en) 2003-12-30
WO2001008452A1 (en) 2001-02-01
HU228953B1 (en) 2013-07-29
HUP0103863A2 (en) 2002-03-28
CN1190997C (en) 2005-02-23
KR20010079912A (en) 2001-08-22
EP1378556A3 (en) 2004-01-28
DE50004145D1 (en) 2003-11-27
EP1116418A1 (en) 2001-07-18
DE20023590U1 (en) 2005-02-24
KR100431398B1 (en) 2004-05-14
US7115217B2 (en) 2006-10-03
CN1318271A (en) 2001-10-17
EP1378556A2 (en) 2004-01-07
US20050145868A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7115217B2 (en) Phosphor for light sources and associated light source
US10190047B2 (en) Green-emitting, garnet-based phosphors in general and backlighting applications
US6552487B1 (en) Phosphor for light sources, and associated light source
US7029602B2 (en) Inorganic oxide and phosphor
US6596195B2 (en) Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US7390437B2 (en) Aluminate-based blue phosphors
US7229571B2 (en) Phosphor for white LED and a white LED
US7038370B2 (en) Phosphor converted light emitting device
US7755276B2 (en) Aluminate-based green phosphors
EP1566426B1 (en) Phosphor converted light emitting device
US6469322B1 (en) Green emitting phosphor for use in UV light emitting diodes
KR100358575B1 (en) Phosphor for light sources, and associated light source
US20060231851A1 (en) Red phosphor for LED based lighting
JP7311866B1 (en) Phosphor
JPH1036835A (en) Photoluminescence phosphor
JP4503321B2 (en) Phosphor
KR100571882B1 (en) Yellow phospher and white light emitting device comprising it
JP2023057392A (en) Light emitting device, lighting device, image display device and indicator lamp for vehicles
JP2023057391A (en) Phosphor
KR101081579B1 (en) A green fluorescent substance
KR20170096742A (en) Oxy-nitride phosphor emitting red light and light emitting device package using same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION