US20060135455A1 - Methods and compositions for the inhibition of gene expression - Google Patents
Methods and compositions for the inhibition of gene expression Download PDFInfo
- Publication number
- US20060135455A1 US20060135455A1 US10/858,013 US85801304A US2006135455A1 US 20060135455 A1 US20060135455 A1 US 20060135455A1 US 85801304 A US85801304 A US 85801304A US 2006135455 A1 US2006135455 A1 US 2006135455A1
- Authority
- US
- United States
- Prior art keywords
- oligonucleotide
- gene
- cell
- cancer
- oligonucleotides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 76
- 239000000203 mixture Substances 0.000 title claims abstract description 67
- 230000005764 inhibitory process Effects 0.000 title claims abstract description 33
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 250
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 73
- 108700020796 Oncogene Proteins 0.000 claims abstract description 52
- 108090000623 proteins and genes Proteins 0.000 claims description 163
- 210000004027 cell Anatomy 0.000 claims description 144
- 150000001875 compounds Chemical class 0.000 claims description 70
- 201000011510 cancer Diseases 0.000 claims description 48
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 40
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 39
- 239000002773 nucleotide Substances 0.000 claims description 38
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 claims description 37
- 125000003729 nucleotide group Chemical group 0.000 claims description 37
- 238000009396 hybridization Methods 0.000 claims description 36
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims description 27
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical group CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 claims description 21
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 20
- 206010006187 Breast cancer Diseases 0.000 claims description 20
- 208000026310 Breast neoplasm Diseases 0.000 claims description 20
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 19
- 229940104302 cytosine Drugs 0.000 claims description 19
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 15
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 14
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 13
- 230000035755 proliferation Effects 0.000 claims description 12
- 230000004962 physiological condition Effects 0.000 claims description 11
- 239000002502 liposome Substances 0.000 claims description 10
- 238000004113 cell culture Methods 0.000 claims description 9
- 210000000349 chromosome Anatomy 0.000 claims description 9
- 206010025323 Lymphomas Diseases 0.000 claims description 8
- 238000012377 drug delivery Methods 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 7
- 239000003446 ligand Substances 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 7
- 230000008685 targeting Effects 0.000 claims description 7
- 230000037396 body weight Effects 0.000 claims description 6
- 150000002632 lipids Chemical class 0.000 claims description 6
- 208000029742 colonic neoplasm Diseases 0.000 claims description 5
- 208000032839 leukemia Diseases 0.000 claims description 5
- 208000020816 lung neoplasm Diseases 0.000 claims description 5
- 206010005003 Bladder cancer Diseases 0.000 claims description 4
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 4
- 201000005202 lung cancer Diseases 0.000 claims description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 4
- 210000002307 prostate Anatomy 0.000 claims description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 3
- 230000002611 ovarian Effects 0.000 claims description 3
- 201000002528 pancreatic cancer Diseases 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 108010001857 Cell Surface Receptors Proteins 0.000 claims description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 claims description 2
- 239000012829 chemotherapy agent Substances 0.000 claims description 2
- 201000001441 melanoma Diseases 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 108020004017 nuclear receptors Proteins 0.000 claims description 2
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 claims 1
- 102000006240 membrane receptors Human genes 0.000 claims 1
- 102000006255 nuclear receptors Human genes 0.000 claims 1
- 102000043276 Oncogene Human genes 0.000 abstract description 24
- 239000003814 drug Substances 0.000 abstract description 22
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 103
- 150000007523 nucleic acids Chemical class 0.000 description 65
- -1 c-ki-Ras Proteins 0.000 description 56
- 102000004169 proteins and genes Human genes 0.000 description 52
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 43
- 102000039446 nucleic acids Human genes 0.000 description 43
- 108020004707 nucleic acids Proteins 0.000 description 43
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 38
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 33
- 230000000295 complement effect Effects 0.000 description 32
- 239000000523 sample Substances 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 28
- 108091028043 Nucleic acid sequence Proteins 0.000 description 26
- 108020004999 messenger RNA Proteins 0.000 description 26
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 23
- 230000000692 anti-sense effect Effects 0.000 description 19
- 230000027455 binding Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 18
- 230000010261 cell growth Effects 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 238000009472 formulation Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 238000003556 assay Methods 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 201000010099 disease Diseases 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000008194 pharmaceutical composition Substances 0.000 description 13
- 108091026890 Coding region Proteins 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 102000040430 polynucleotide Human genes 0.000 description 12
- 108091033319 polynucleotide Proteins 0.000 description 12
- 239000002157 polynucleotide Substances 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 102000001301 EGF receptor Human genes 0.000 description 11
- 108060006698 EGF receptor Proteins 0.000 description 11
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 11
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 239000002299 complementary DNA Substances 0.000 description 10
- CTMZLDSMFCVUNX-VMIOUTBZSA-N cytidylyl-(3'->5')-guanosine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)[C@@H](CO)O1 CTMZLDSMFCVUNX-VMIOUTBZSA-N 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 108700042226 ras Genes Proteins 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 210000000481 breast Anatomy 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 108700024542 myc Genes Proteins 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 101800003838 Epidermal growth factor Proteins 0.000 description 8
- 102100029974 GTPase HRas Human genes 0.000 description 8
- 108091092195 Intron Proteins 0.000 description 8
- 206010061535 Ovarian neoplasm Diseases 0.000 description 8
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 229940116977 epidermal growth factor Drugs 0.000 description 8
- 230000011987 methylation Effects 0.000 description 8
- 238000007069 methylation reaction Methods 0.000 description 8
- 230000002018 overexpression Effects 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 229940127089 cytotoxic agent Drugs 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241000699660 Mus musculus Species 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 6
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 6
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 6
- 208000009956 adenocarcinoma Diseases 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 239000000074 antisense oligonucleotide Substances 0.000 description 6
- 238000012230 antisense oligonucleotides Methods 0.000 description 6
- 230000005907 cancer growth Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 6
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 230000014621 translational initiation Effects 0.000 description 6
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 5
- 108091028690 C-myc mRNA Proteins 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 108020004635 Complementary DNA Proteins 0.000 description 5
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 5
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 description 5
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 5
- 239000000020 Nitrocellulose Substances 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 108091093037 Peptide nucleic acid Proteins 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 108700020302 erbB-2 Genes Proteins 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 229960002949 fluorouracil Drugs 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229920001220 nitrocellulos Polymers 0.000 description 5
- 238000007899 nucleic acid hybridization Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 4
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 4
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 102100033269 Cyclin-dependent kinase inhibitor 1C Human genes 0.000 description 4
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102100021242 Dymeclin Human genes 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 241000283073 Equus caballus Species 0.000 description 4
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 102100030708 GTPase KRas Human genes 0.000 description 4
- 102100039788 GTPase NRas Human genes 0.000 description 4
- 101000817629 Homo sapiens Dymeclin Proteins 0.000 description 4
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 150000001408 amides Chemical group 0.000 description 4
- 108700041737 bcl-2 Genes Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000032823 cell division Effects 0.000 description 4
- 229960000684 cytarabine Drugs 0.000 description 4
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 4
- 239000012737 fresh medium Substances 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 4
- 230000001394 metastastic effect Effects 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 238000011580 nude mouse model Methods 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 125000004437 phosphorous atom Chemical group 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 231100000588 tumorigenic Toxicity 0.000 description 4
- 230000000381 tumorigenic effect Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102100026008 Breakpoint cluster region protein Human genes 0.000 description 3
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 3
- 230000007067 DNA methylation Effects 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 3
- 102100030334 Friend leukemia integration 1 transcription factor Human genes 0.000 description 3
- 101710113436 GTPase KRas Proteins 0.000 description 3
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000944365 Homo sapiens Cyclin-dependent kinase inhibitor 1C Proteins 0.000 description 3
- 101001062996 Homo sapiens Friend leukemia integration 1 transcription factor Proteins 0.000 description 3
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 3
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 3
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 3
- 101000893493 Homo sapiens Protein flightless-1 homolog Proteins 0.000 description 3
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- 101150105104 Kras gene Proteins 0.000 description 3
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 3
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 239000006180 TBST buffer Substances 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 3
- 102100037333 Tyrosine-protein kinase Fes/Fps Human genes 0.000 description 3
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000003613 bile acid Substances 0.000 description 3
- 239000003833 bile salt Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 3
- 229960004316 cisplatin Drugs 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 229960004679 doxorubicin Drugs 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000013355 food flavoring agent Nutrition 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000003463 hyperproliferative effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 210000005075 mammary gland Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003226 mitogen Substances 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 229940068917 polyethylene glycols Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 102000016914 ras Proteins Human genes 0.000 description 3
- 108010014186 ras Proteins Proteins 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012340 reverse transcriptase PCR Methods 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 2
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 2
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 2
- 101150096316 5 gene Proteins 0.000 description 2
- 108020005029 5' Flanking Region Proteins 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102100024049 A-kinase anchor protein 13 Human genes 0.000 description 2
- 102100024379 AF4/FMR2 family member 1 Human genes 0.000 description 2
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 101000783817 Agaricus bisporus lectin Proteins 0.000 description 2
- 101100243447 Arabidopsis thaliana PER53 gene Proteins 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 241000218645 Cedrus Species 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 239000004380 Cholic acid Substances 0.000 description 2
- 102000009512 Cyclin-Dependent Kinase Inhibitor p15 Human genes 0.000 description 2
- 108010009356 Cyclin-Dependent Kinase Inhibitor p15 Proteins 0.000 description 2
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 2
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102100031477 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit Human genes 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102100028075 Fibroblast growth factor 6 Human genes 0.000 description 2
- 102100028121 Fos-related antigen 2 Human genes 0.000 description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 2
- 101000833679 Homo sapiens A-kinase anchor protein 13 Proteins 0.000 description 2
- 101000833180 Homo sapiens AF4/FMR2 family member 1 Proteins 0.000 description 2
- 101100381516 Homo sapiens BCL2 gene Proteins 0.000 description 2
- 101000933320 Homo sapiens Breakpoint cluster region protein Proteins 0.000 description 2
- 101000943456 Homo sapiens Calcium and integrin-binding family member 2 Proteins 0.000 description 2
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 description 2
- 101001059934 Homo sapiens Fos-related antigen 2 Proteins 0.000 description 2
- 101000588130 Homo sapiens Microsomal triglyceride transfer protein large subunit Proteins 0.000 description 2
- 101000979338 Homo sapiens Nuclear factor NF-kappa-B p100 subunit Proteins 0.000 description 2
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 2
- 101000610107 Homo sapiens Pre-B-cell leukemia transcription factor 1 Proteins 0.000 description 2
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 2
- 101000925651 Homo sapiens Protein ENL Proteins 0.000 description 2
- 101000615238 Homo sapiens Proto-oncogene DBL Proteins 0.000 description 2
- 101000781955 Homo sapiens Proto-oncogene Wnt-1 Proteins 0.000 description 2
- 101000800488 Homo sapiens T-cell leukemia homeobox protein 1 Proteins 0.000 description 2
- 101000596772 Homo sapiens Transcription factor 7-like 1 Proteins 0.000 description 2
- 101000666382 Homo sapiens Transcription factor E2-alpha Proteins 0.000 description 2
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 2
- 101000850794 Homo sapiens Tropomyosin alpha-3 chain Proteins 0.000 description 2
- 101001026790 Homo sapiens Tyrosine-protein kinase Fes/Fps Proteins 0.000 description 2
- 101000727826 Homo sapiens Tyrosine-protein kinase RYK Proteins 0.000 description 2
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 2
- 241001135569 Human adenovirus 5 Species 0.000 description 2
- 108010073807 IgG Receptors Proteins 0.000 description 2
- 102000009490 IgG Receptors Human genes 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 101710203526 Integrase Proteins 0.000 description 2
- 108050002021 Integrator complex subunit 2 Proteins 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 229930192392 Mitomycin Natural products 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 102100023181 Neurogenic locus notch homolog protein 1 Human genes 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 102100023059 Nuclear factor NF-kappa-B p100 subunit Human genes 0.000 description 2
- 102100022678 Nucleophosmin Human genes 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 108010043958 Peptoids Proteins 0.000 description 2
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 2
- 102100025073 Potassium voltage-gated channel subfamily H member 8 Human genes 0.000 description 2
- 102100040171 Pre-B-cell leukemia transcription factor 1 Human genes 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 2
- 102100033813 Protein ENL Human genes 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 2
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 2
- 102000009092 Proto-Oncogene Proteins c-myc Human genes 0.000 description 2
- 108010087705 Proto-Oncogene Proteins c-myc Proteins 0.000 description 2
- 102100021384 Proto-oncogene DBL Human genes 0.000 description 2
- 108050004181 Proto-oncogene Mas Proteins 0.000 description 2
- 102000015925 Proto-oncogene Mas Human genes 0.000 description 2
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 108010001288 T-Lymphoma Invasion and Metastasis-inducing Protein 1 Proteins 0.000 description 2
- 102000002154 T-Lymphoma Invasion and Metastasis-inducing Protein 1 Human genes 0.000 description 2
- 102100033111 T-cell leukemia homeobox protein 1 Human genes 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 101150080074 TP53 gene Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 102100038313 Transcription factor E2-alpha Human genes 0.000 description 2
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 2
- 102100029759 Tyrosine-protein kinase RYK Human genes 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 101150019524 WNT2 gene Proteins 0.000 description 2
- 102000040856 WT1 Human genes 0.000 description 2
- 108700020467 WT1 Proteins 0.000 description 2
- 101150084041 WT1 gene Proteins 0.000 description 2
- 102000052547 Wnt-1 Human genes 0.000 description 2
- 102000052556 Wnt-2 Human genes 0.000 description 2
- 108700020986 Wnt-2 Proteins 0.000 description 2
- 101100485099 Xenopus laevis wnt2b-b gene Proteins 0.000 description 2
- 108010016200 Zinc Finger Protein GLI1 Proteins 0.000 description 2
- 102100035535 Zinc finger protein GLI1 Human genes 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 2
- 229960001091 chenodeoxycholic acid Drugs 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 235000019416 cholic acid Nutrition 0.000 description 2
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 2
- 229960002471 cholic acid Drugs 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 229960001338 colchicine Drugs 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 229960002086 dextran Drugs 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229960005309 estradiol Drugs 0.000 description 2
- 229930182833 estradiol Natural products 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 229960000961 floxuridine Drugs 0.000 description 2
- 201000003444 follicular lymphoma Diseases 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 102000053563 human MYC Human genes 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229960004452 methionine Drugs 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 229920000771 poly (alkylcyanoacrylate) Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- 229940126585 therapeutic drug Drugs 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- OQQOAWVKVDAJOI-UHFFFAOYSA-N (2-dodecanoyloxy-3-hydroxypropyl) dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCC OQQOAWVKVDAJOI-UHFFFAOYSA-N 0.000 description 1
- YIMATHOGWXZHFX-WCTZXXKLSA-N (2r,3r,4r,5r)-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolane-2,4-diol Chemical compound COCCO[C@H]1[C@H](O)O[C@H](CO)[C@H]1O YIMATHOGWXZHFX-WCTZXXKLSA-N 0.000 description 1
- QGVQZRDQPDLHHV-DPAQBDIFSA-N (3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene-3-thiol Chemical compound C1C=C2C[C@@H](S)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 QGVQZRDQPDLHHV-DPAQBDIFSA-N 0.000 description 1
- NMWKYTGJWUAZPZ-WWHBDHEGSA-N (4S)-4-[[(4R,7S,10S,16S,19S,25S,28S,31R)-31-[[(2S)-2-[[(1R,6R,9S,12S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,53S,56S,59S,62S,65S,68S,71S,76S,79S,85S)-47-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-18-(4-aminobutyl)-27,68-bis(3-amino-3-oxopropyl)-36,71,76-tribenzyl-39-(3-carbamimidamidopropyl)-24-(2-carboxyethyl)-21,56-bis(carboxymethyl)-65,85-bis[(1R)-1-hydroxyethyl]-59-(hydroxymethyl)-62,79-bis(1H-imidazol-4-ylmethyl)-9-methyl-33-(2-methylpropyl)-8,11,17,20,23,26,29,32,35,38,41,48,54,57,60,63,66,69,72,74,77,80,83,86-tetracosaoxo-30-propan-2-yl-3,4,44,45-tetrathia-7,10,16,19,22,25,28,31,34,37,40,49,55,58,61,64,67,70,73,75,78,81,84,87-tetracosazatetracyclo[40.31.14.012,16.049,53]heptaoctacontane-6-carbonyl]amino]-3-methylbutanoyl]amino]-7-(3-carbamimidamidopropyl)-25-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-28-(1H-imidazol-4-ylmethyl)-10-methyl-6,9,12,15,18,21,24,27,30-nonaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29-nonazacyclodotriacontane-4-carbonyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@H](Cc4ccccc4)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CSSC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](Cc4ccccc4)NC3=O)[C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C)C(=O)N2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](Cc2c[nH]cn2)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)C(C)C)C(=O)N[C@@H](Cc2c[nH]cn2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(=O)N[C@@H](C)C(O)=O NMWKYTGJWUAZPZ-WWHBDHEGSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical class C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- CBXRMKZFYQISIV-UHFFFAOYSA-N 1-n,1-n,1-n',1-n',2-n,2-n,2-n',2-n'-octamethylethene-1,1,2,2-tetramine Chemical compound CN(C)C(N(C)C)=C(N(C)C)N(C)C CBXRMKZFYQISIV-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical compound NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- QSHACTSJHMKXTE-UHFFFAOYSA-N 2-(2-aminopropyl)-7h-purin-6-amine Chemical compound CC(N)CC1=NC(N)=C2NC=NC2=N1 QSHACTSJHMKXTE-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- 102100027962 2-5A-dependent ribonuclease Human genes 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XMXLVNVGGJBUPF-UHFFFAOYSA-N 2-amino-n,n-diethyl-1,3-benzothiazole-6-carboxamide Chemical compound CCN(CC)C(=O)C1=CC=C2N=C(N)SC2=C1 XMXLVNVGGJBUPF-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- OHXPGWPVLFPUSM-KLRNGDHRSA-N 3,7,12-trioxo-5beta-cholanic acid Chemical compound C1CC(=O)C[C@H]2CC(=O)[C@H]3[C@@H]4CC[C@H]([C@@H](CCC(O)=O)C)[C@@]4(C)C(=O)C[C@@H]3[C@]21C OHXPGWPVLFPUSM-KLRNGDHRSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LUCHPKXVUGJYGU-XLPZGREQSA-N 5-methyl-2'-deoxycytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 LUCHPKXVUGJYGU-XLPZGREQSA-N 0.000 description 1
- HSPHKCOAUOJLIO-UHFFFAOYSA-N 6-(aziridin-1-ylamino)-1h-pyrimidin-2-one Chemical compound N1C(=O)N=CC=C1NN1CC1 HSPHKCOAUOJLIO-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102100027400 A disintegrin and metalloproteinase with thrombospondin motifs 4 Human genes 0.000 description 1
- 108091005664 ADAMTS4 Proteins 0.000 description 1
- 102000051389 ADAMTS5 Human genes 0.000 description 1
- 108091005663 ADAMTS5 Proteins 0.000 description 1
- 101150014069 AMI1 gene Proteins 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- 102100026141 ATP-dependent RNA helicase DDX25 Human genes 0.000 description 1
- 102100029374 Adapter molecule crk Human genes 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020003566 Antisense Oligodeoxyribonucleotides Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 102100033715 Apolipoprotein A-I Human genes 0.000 description 1
- 108010008150 Apolipoprotein B-100 Proteins 0.000 description 1
- 102000006991 Apolipoprotein B-100 Human genes 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 101100020268 Arabidopsis thaliana KIN4A gene Proteins 0.000 description 1
- 101100484237 Arabidopsis thaliana UVH3 gene Proteins 0.000 description 1
- 108010004586 Ataxia Telangiectasia Mutated Proteins Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108700009171 B-Cell Lymphoma 3 Proteins 0.000 description 1
- 102000052666 B-Cell Lymphoma 3 Human genes 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100021631 B-cell lymphoma 6 protein Human genes 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 102000052609 BRCA2 Human genes 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- 101150072667 Bcl3 gene Proteins 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102100035631 Bloom syndrome protein Human genes 0.000 description 1
- 108091009167 Bloom syndrome protein Proteins 0.000 description 1
- 241000283725 Bos Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101100123850 Caenorhabditis elegans her-1 gene Proteins 0.000 description 1
- 101100454194 Caenorhabditis elegans mei-1 gene Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- VWDXGKUTGQJJHJ-UHFFFAOYSA-N Catenarin Natural products C1=C(O)C=C2C(=O)C3=C(O)C(C)=CC(O)=C3C(=O)C2=C1O VWDXGKUTGQJJHJ-UHFFFAOYSA-N 0.000 description 1
- 101000643834 Cavia porcellus 3-beta-hydroxysteroid sulfotransferase Proteins 0.000 description 1
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 description 1
- 102000038594 Cdh1/Fizzy-related Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 102100032887 Clusterin Human genes 0.000 description 1
- 108090000197 Clusterin Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 102100027995 Collagenase 3 Human genes 0.000 description 1
- 102100025892 Complement C1q tumor necrosis factor-related protein 1 Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 108010060313 Core Binding Factor beta Subunit Proteins 0.000 description 1
- 102000008147 Core Binding Factor beta Subunit Human genes 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- 108091029430 CpG site Proteins 0.000 description 1
- 101100449748 Crithidia fasciculata GSP gene Proteins 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102000009508 Cyclin-Dependent Kinase Inhibitor p16 Human genes 0.000 description 1
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 1
- 108010017222 Cyclin-Dependent Kinase Inhibitor p57 Proteins 0.000 description 1
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 1
- 108010076010 Cystathionine beta-lyase Proteins 0.000 description 1
- 102100031051 Cysteine and glycine-rich protein 1 Human genes 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102100031866 DNA excision repair protein ERCC-5 Human genes 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 102100034484 DNA repair protein RAD51 homolog 3 Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 101100457345 Danio rerio mapk14a gene Proteins 0.000 description 1
- 101100457347 Danio rerio mapk14b gene Proteins 0.000 description 1
- 241000045500 Diseae Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 101100373143 Drosophila melanogaster Wnt5 gene Proteins 0.000 description 1
- 102100035813 E3 ubiquitin-protein ligase CBL Human genes 0.000 description 1
- 101150016325 EPHA3 gene Proteins 0.000 description 1
- 239000010282 Emodin Substances 0.000 description 1
- RBLJKYCRSCQLRP-UHFFFAOYSA-N Emodin-dianthron Natural products O=C1C2=CC(C)=CC(O)=C2C(=O)C2=C1CC(=O)C=C2O RBLJKYCRSCQLRP-UHFFFAOYSA-N 0.000 description 1
- YCAGGFXSFQFVQL-UHFFFAOYSA-N Endothion Chemical compound COC1=COC(CSP(=O)(OC)OC)=CC1=O YCAGGFXSFQFVQL-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 102100030322 Ephrin type-A receptor 1 Human genes 0.000 description 1
- 102100030324 Ephrin type-A receptor 3 Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101000809594 Escherichia coli (strain K12) Shikimate kinase 1 Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 101150032593 FOSL1 gene Proteins 0.000 description 1
- 102000009095 Fanconi Anemia Complementation Group A protein Human genes 0.000 description 1
- 108010087740 Fanconi Anemia Complementation Group A protein Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108090000381 Fibroblast growth factor 4 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 208000000571 Fibrocystic breast disease Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000003817 Fos-related antigen 1 Human genes 0.000 description 1
- 108090000123 Fos-related antigen 1 Proteins 0.000 description 1
- 102100023372 Fos-related antigen 1 Human genes 0.000 description 1
- 108700005088 Fungal Genes Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101710091881 GTPase HRas Proteins 0.000 description 1
- 101001077417 Gallus gallus Potassium voltage-gated channel subfamily H member 6 Proteins 0.000 description 1
- 108010004460 Gastric Inhibitory Polypeptide Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 230000010558 Gene Alterations Effects 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010035713 Glycodeoxycholic Acid Proteins 0.000 description 1
- WVULKSPCQVQLCU-UHFFFAOYSA-N Glycodeoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 WVULKSPCQVQLCU-UHFFFAOYSA-N 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 102100032611 Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Human genes 0.000 description 1
- 102000015779 HDL Lipoproteins Human genes 0.000 description 1
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100031561 Hamartin Human genes 0.000 description 1
- YOOXNSPYGCZLAX-UHFFFAOYSA-N Helminthosporin Natural products C1=CC(O)=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O YOOXNSPYGCZLAX-UHFFFAOYSA-N 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 206010019695 Hepatic neoplasm Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 101001080057 Homo sapiens 2-5A-dependent ribonuclease Proteins 0.000 description 1
- 101000779641 Homo sapiens ALK tyrosine kinase receptor Proteins 0.000 description 1
- 101000912706 Homo sapiens ATP-dependent RNA helicase DDX25 Proteins 0.000 description 1
- 101000919320 Homo sapiens Adapter molecule crk Proteins 0.000 description 1
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 1
- 101000733802 Homo sapiens Apolipoprotein A-I Proteins 0.000 description 1
- 101000971234 Homo sapiens B-cell lymphoma 6 protein Proteins 0.000 description 1
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 description 1
- 101000577887 Homo sapiens Collagenase 3 Proteins 0.000 description 1
- 101000944380 Homo sapiens Cyclin-dependent kinase inhibitor 1 Proteins 0.000 description 1
- 101000980932 Homo sapiens Cyclin-dependent kinase inhibitor 2A Proteins 0.000 description 1
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101001132271 Homo sapiens DNA repair protein RAD51 homolog 3 Proteins 0.000 description 1
- 101000618531 Homo sapiens DNA repair protein complementing XP-A cells Proteins 0.000 description 1
- 101001130785 Homo sapiens Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit Proteins 0.000 description 1
- 101100333721 Homo sapiens ERCC5 gene Proteins 0.000 description 1
- 101000967216 Homo sapiens Eosinophil cationic protein Proteins 0.000 description 1
- 101000938354 Homo sapiens Ephrin type-A receptor 1 Proteins 0.000 description 1
- 101100446512 Homo sapiens FGF4 gene Proteins 0.000 description 1
- 101001060280 Homo sapiens Fibroblast growth factor 3 Proteins 0.000 description 1
- 101001060265 Homo sapiens Fibroblast growth factor 6 Proteins 0.000 description 1
- 101000827688 Homo sapiens Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 101000980756 Homo sapiens G1/S-specific cyclin-D1 Proteins 0.000 description 1
- 101100162404 Homo sapiens GNAS gene Proteins 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101001075287 Homo sapiens Growth hormone receptor Proteins 0.000 description 1
- 101000795643 Homo sapiens Hamartin Proteins 0.000 description 1
- 101000867525 Homo sapiens Heat shock factor protein 1 Proteins 0.000 description 1
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 description 1
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 1
- 101001002634 Homo sapiens Interleukin-1 alpha Proteins 0.000 description 1
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 description 1
- 101001064870 Homo sapiens Lon protease homolog, mitochondrial Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 1
- 101000949825 Homo sapiens Meiotic recombination protein DMC1/LIM15 homolog Proteins 0.000 description 1
- 101000582631 Homo sapiens Menin Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000835893 Homo sapiens Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101001000104 Homo sapiens Myosin-11 Proteins 0.000 description 1
- 101000979216 Homo sapiens Necdin Proteins 0.000 description 1
- 101000978766 Homo sapiens Neurogenic locus notch homolog protein 1 Proteins 0.000 description 1
- 101000602926 Homo sapiens Nuclear receptor coactivator 1 Proteins 0.000 description 1
- 101000978926 Homo sapiens Nuclear receptor subfamily 1 group D member 1 Proteins 0.000 description 1
- 101000601724 Homo sapiens Paired box protein Pax-5 Proteins 0.000 description 1
- 101000878221 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP8 Proteins 0.000 description 1
- 101000611951 Homo sapiens Platelet-derived growth factor subunit B Proteins 0.000 description 1
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 1
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 1
- 101001098833 Homo sapiens Proprotein convertase subtilisin/kexin type 6 Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 101000876829 Homo sapiens Protein C-ets-1 Proteins 0.000 description 1
- 101000898093 Homo sapiens Protein C-ets-2 Proteins 0.000 description 1
- 101000912957 Homo sapiens Protein DEK Proteins 0.000 description 1
- 101001046894 Homo sapiens Protein HID1 Proteins 0.000 description 1
- 101000585703 Homo sapiens Protein L-Myc Proteins 0.000 description 1
- 101001051777 Homo sapiens Protein kinase C alpha type Proteins 0.000 description 1
- 101000958299 Homo sapiens Protein lyl-1 Proteins 0.000 description 1
- 101000695187 Homo sapiens Protein patched homolog 1 Proteins 0.000 description 1
- 101000651467 Homo sapiens Proto-oncogene tyrosine-protein kinase Src Proteins 0.000 description 1
- 101000775749 Homo sapiens Proto-oncogene vav Proteins 0.000 description 1
- 101000798015 Homo sapiens RAC-beta serine/threonine-protein kinase Proteins 0.000 description 1
- 101000712530 Homo sapiens RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 101000712974 Homo sapiens Ras association domain-containing protein 7 Proteins 0.000 description 1
- 101000628562 Homo sapiens Serine/threonine-protein kinase STK11 Proteins 0.000 description 1
- 101000595531 Homo sapiens Serine/threonine-protein kinase pim-1 Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000863692 Homo sapiens Ski oncogene Proteins 0.000 description 1
- 101000891113 Homo sapiens T-cell acute lymphocytic leukemia protein 1 Proteins 0.000 description 1
- 101000625330 Homo sapiens T-cell acute lymphocytic leukemia protein 2 Proteins 0.000 description 1
- 101000802053 Homo sapiens THUMP domain-containing protein 1 Proteins 0.000 description 1
- 101000837626 Homo sapiens Thyroid hormone receptor alpha Proteins 0.000 description 1
- 101000712600 Homo sapiens Thyroid hormone receptor beta Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 101001028730 Homo sapiens Transcription factor JunB Proteins 0.000 description 1
- 101001050297 Homo sapiens Transcription factor JunD Proteins 0.000 description 1
- 101000636213 Homo sapiens Transcriptional activator Myb Proteins 0.000 description 1
- 101001010792 Homo sapiens Transcriptional regulator ERG Proteins 0.000 description 1
- 101000635938 Homo sapiens Transforming growth factor beta-1 proprotein Proteins 0.000 description 1
- 101000795659 Homo sapiens Tuberin Proteins 0.000 description 1
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 1
- 101000912503 Homo sapiens Tyrosine-protein kinase Fgr Proteins 0.000 description 1
- 101001022129 Homo sapiens Tyrosine-protein kinase Fyn Proteins 0.000 description 1
- 101001009087 Homo sapiens Tyrosine-protein kinase HCK Proteins 0.000 description 1
- 101000820294 Homo sapiens Tyrosine-protein kinase Yes Proteins 0.000 description 1
- 101000807561 Homo sapiens Tyrosine-protein kinase receptor UFO Proteins 0.000 description 1
- 101000772888 Homo sapiens Ubiquitin-protein ligase E3A Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 101150085950 IL10 gene Proteins 0.000 description 1
- 108091058560 IL8 Proteins 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 101710092857 Integrator complex subunit 1 Proteins 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 102100020881 Interleukin-1 alpha Human genes 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100039064 Interleukin-3 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 108700012928 MAPK14 Proteins 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 108700012912 MYCN Proteins 0.000 description 1
- 101150022024 MYCN gene Proteins 0.000 description 1
- 101150053046 MYD88 gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101150003941 Mapk14 gene Proteins 0.000 description 1
- 102100035285 Meiotic recombination protein DMC1/LIM15 homolog Human genes 0.000 description 1
- 102100030550 Menin Human genes 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108700005443 Microbial Genes Proteins 0.000 description 1
- 102000008071 Mismatch Repair Endonuclease PMS2 Human genes 0.000 description 1
- 108010074346 Mismatch Repair Endonuclease PMS2 Proteins 0.000 description 1
- 102000054819 Mitogen-activated protein kinase 14 Human genes 0.000 description 1
- 101710143112 Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 101100140186 Mus musculus Lmo2 gene Proteins 0.000 description 1
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 1
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 1
- 102100024134 Myeloid differentiation primary response protein MyD88 Human genes 0.000 description 1
- 102100036639 Myosin-11 Human genes 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 102100023210 Necdin Human genes 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 102000007530 Neurofibromin 1 Human genes 0.000 description 1
- 108010085793 Neurofibromin 1 Proteins 0.000 description 1
- 108010029755 Notch1 Receptor Proteins 0.000 description 1
- 108020003217 Nuclear RNA Proteins 0.000 description 1
- 102000043141 Nuclear RNA Human genes 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 102100023170 Nuclear receptor subfamily 1 group D member 1 Human genes 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 102100034925 P-selectin glycoprotein ligand 1 Human genes 0.000 description 1
- 101710137390 P-selectin glycoprotein ligand 1 Proteins 0.000 description 1
- 108091008121 PML-RARA Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102100037504 Paired box protein Pax-5 Human genes 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 102100036978 Peptidyl-prolyl cis-trans isomerase FKBP8 Human genes 0.000 description 1
- 102100032543 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 229920002730 Poly(butyl cyanoacrylate) Polymers 0.000 description 1
- 229920002724 Poly(ethyl cyanoacrylate) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920002723 Poly(methyl cyanoacrylate) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102100022807 Potassium voltage-gated channel subfamily H member 2 Human genes 0.000 description 1
- 101710163352 Potassium voltage-gated channel subfamily H member 4 Proteins 0.000 description 1
- 101710163348 Potassium voltage-gated channel subfamily H member 8 Proteins 0.000 description 1
- 102100022033 Presenilin-1 Human genes 0.000 description 1
- 102100022036 Presenilin-2 Human genes 0.000 description 1
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100035251 Protein C-ets-1 Human genes 0.000 description 1
- 102100021890 Protein C-ets-2 Human genes 0.000 description 1
- 102100026113 Protein DEK Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 102100030128 Protein L-Myc Human genes 0.000 description 1
- 102100027584 Protein c-Fos Human genes 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 102100038231 Protein lyl-1 Human genes 0.000 description 1
- 102100028680 Protein patched homolog 1 Human genes 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 108010019674 Proto-Oncogene Proteins c-sis Proteins 0.000 description 1
- 102100036585 Proto-oncogene Wnt-1 Human genes 0.000 description 1
- 102100027384 Proto-oncogene tyrosine-protein kinase Src Human genes 0.000 description 1
- 102100032190 Proto-oncogene vav Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 238000012341 Quantitative reverse-transcriptase PCR Methods 0.000 description 1
- 102100032315 RAC-beta serine/threonine-protein kinase Human genes 0.000 description 1
- 102000001195 RAD51 Human genes 0.000 description 1
- 101150040459 RAS gene Proteins 0.000 description 1
- 102000004229 RNA-binding protein EWS Human genes 0.000 description 1
- 108090000740 RNA-binding protein EWS Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108010068097 Rad51 Recombinase Proteins 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- NTGIIKCGBNGQAR-UHFFFAOYSA-N Rheoemodin Natural products C1=C(O)C=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1O NTGIIKCGBNGQAR-UHFFFAOYSA-N 0.000 description 1
- 102100024869 Rhombotin-1 Human genes 0.000 description 1
- 101710096623 Rhombotin-1 Proteins 0.000 description 1
- 102100023876 Rhombotin-2 Human genes 0.000 description 1
- 101710096632 Rhombotin-2 Proteins 0.000 description 1
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 102100027720 SH2 domain-containing protein 1A Human genes 0.000 description 1
- 101150019443 SMAD4 gene Proteins 0.000 description 1
- 101100227696 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FRA1 gene Proteins 0.000 description 1
- 101100017043 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HIR3 gene Proteins 0.000 description 1
- 101000767160 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Intracellular protein transport protein USO1 Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 101000702553 Schistosoma mansoni Antigen Sm21.7 Proteins 0.000 description 1
- 101000714192 Schistosoma mansoni Tegument antigen Proteins 0.000 description 1
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 1
- 102100036077 Serine/threonine-protein kinase pim-1 Human genes 0.000 description 1
- 108010045517 Serum Amyloid P-Component Proteins 0.000 description 1
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 1
- 101100403885 Shewanella oneidensis (strain MR-1) nadD gene Proteins 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 102100029969 Ski oncogene Human genes 0.000 description 1
- 108700031298 Smad4 Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 108020004688 Small Nuclear RNA Proteins 0.000 description 1
- 102100034803 Small nuclear ribonucleoprotein-associated protein N Human genes 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 102100040365 T-cell acute lymphocytic leukemia protein 1 Human genes 0.000 description 1
- 102100025039 T-cell acute lymphocytic leukemia protein 2 Human genes 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- WBWWGRHZICKQGZ-UHFFFAOYSA-N Taurocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCCS(O)(=O)=O)C)C1(C)C(O)C2 WBWWGRHZICKQGZ-UHFFFAOYSA-N 0.000 description 1
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102100037168 Transcription factor JunB Human genes 0.000 description 1
- 102100023118 Transcription factor JunD Human genes 0.000 description 1
- 102100030780 Transcriptional activator Myb Human genes 0.000 description 1
- 108010082684 Transforming Growth Factor-beta Type II Receptor Proteins 0.000 description 1
- 102000004060 Transforming Growth Factor-beta Type II Receptor Human genes 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102100030742 Transforming growth factor beta-1 proprotein Human genes 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 101710188297 Trehalose synthase/amylase TreS Proteins 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102100031638 Tuberin Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102100024537 Tyrosine-protein kinase Fer Human genes 0.000 description 1
- 102100026150 Tyrosine-protein kinase Fgr Human genes 0.000 description 1
- 102100035221 Tyrosine-protein kinase Fyn Human genes 0.000 description 1
- 102100027389 Tyrosine-protein kinase HCK Human genes 0.000 description 1
- 102100021788 Tyrosine-protein kinase Yes Human genes 0.000 description 1
- 102100037236 Tyrosine-protein kinase receptor UFO Human genes 0.000 description 1
- 102100033001 Tyrosine-protein phosphatase non-receptor type 1 Human genes 0.000 description 1
- 101710128896 Tyrosine-protein phosphatase non-receptor type 1 Proteins 0.000 description 1
- 102100030434 Ubiquitin-protein ligase E3A Human genes 0.000 description 1
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 102000052549 Wnt-3 Human genes 0.000 description 1
- 108700020985 Wnt-3 Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- RLXCFCYWFYXTON-JTTSDREOSA-N [(3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-16-yl] N-hexylcarbamate Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(OC(=O)NCCCCCC)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RLXCFCYWFYXTON-JTTSDREOSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- XVIYCJDWYLJQBG-UHFFFAOYSA-N acetic acid;adamantane Chemical compound CC(O)=O.C1C(C2)CC3CC1CC2C3 XVIYCJDWYLJQBG-UHFFFAOYSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 125000005122 aminoalkylamino group Chemical group 0.000 description 1
- PLOPBXQQPZYQFA-AXPWDRQUSA-N amlintide Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)CSSC1)[C@@H](C)O)C(C)C)C1=CC=CC=C1 PLOPBXQQPZYQFA-AXPWDRQUSA-N 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000001139 anti-pruritic effect Effects 0.000 description 1
- 229940037157 anticorticosteroids Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003908 antipruritic agent Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000003293 antisense oligodeoxyribonucleotide Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- OIPMQULDKWSNGX-UHFFFAOYSA-N bis[[ethoxy(oxo)phosphaniumyl]oxy]alumanyloxy-ethoxy-oxophosphanium Chemical compound [Al+3].CCO[P+]([O-])=O.CCO[P+]([O-])=O.CCO[P+]([O-])=O OIPMQULDKWSNGX-UHFFFAOYSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 208000011803 breast fibrocystic disease Diseases 0.000 description 1
- 108091006374 cAMP receptor proteins Proteins 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000000006 cell growth inhibition assay Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229960002997 dehydrocholic acid Drugs 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- MOUNHKKCIGVIDI-UHFFFAOYSA-L disodium;4-hydroxy-7-[(5-hydroxy-7-sulfonatonaphthalen-2-yl)carbamoylamino]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].OC1=CC(S([O-])(=O)=O)=CC2=CC(NC(=O)NC=3C=C4C=C(C=C(C4=CC=3)O)S([O-])(=O)=O)=CC=C21 MOUNHKKCIGVIDI-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- RHMXXJGYXNZAPX-UHFFFAOYSA-N emodin Chemical compound C1=C(O)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O RHMXXJGYXNZAPX-UHFFFAOYSA-N 0.000 description 1
- VASFLQKDXBAWEL-UHFFFAOYSA-N emodin Natural products OC1=C(OC2=C(C=CC(=C2C1=O)O)O)C1=CC=C(C=C1)O VASFLQKDXBAWEL-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 239000005447 environmental material Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000008472 epithelial growth Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 244000078673 foodborn pathogen Species 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- WVULKSPCQVQLCU-BUXLTGKBSA-N glycodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 WVULKSPCQVQLCU-BUXLTGKBSA-N 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000051957 human ERBB2 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 239000000960 hypophysis hormone Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009115 maintenance therapy Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000010311 mammalian development Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000005060 membrane bound organelle Anatomy 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008185 minitablet Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 1
- 229940074096 monoolein Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000017095 negative regulation of cell growth Effects 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 125000001893 nitrooxy group Chemical group [O-][N+](=O)O* 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- ONTNXMBMXUNDBF-UHFFFAOYSA-N pentatriacontane-17,18,19-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)C(O)CCCCCCCCCCCCCCCC ONTNXMBMXUNDBF-UHFFFAOYSA-N 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000008255 pharmaceutical foam Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000004633 phorbol derivatives Chemical class 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 125000005642 phosphothioate group Chemical group 0.000 description 1
- PKUBGLYEOAJPEG-UHFFFAOYSA-N physcion Natural products C1=C(C)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O PKUBGLYEOAJPEG-UHFFFAOYSA-N 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002720 polyhexylacrylate Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 238000013197 protein A assay Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 108010067366 proto-oncogene protein c-fes-fps Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 208000020615 rectal carcinoma Diseases 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 208000004548 serous cystadenocarcinoma Diseases 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 108010039827 snRNP Core Proteins Proteins 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- IWQPOPSAISBUAH-VOVMJQHHSA-M sodium;2-[[(2z)-2-[(3r,4s,5s,8s,9s,10s,11r,13r,14s,16s)-16-acetyl-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1h-cyclopenta[a]phenanthren-17-ylidene]-6-methylheptanoyl]amino]ethanesulfonate Chemical compound [Na+].C1C[C@@H](O)[C@@H](C)[C@@H]2CC[C@]3(C)[C@@]4(C)C[C@H](C(C)=O)/C(=C(C(=O)NCCS([O-])(=O)=O)/CCCC(C)C)[C@@H]4C[C@@H](O)[C@H]3[C@]21C IWQPOPSAISBUAH-VOVMJQHHSA-M 0.000 description 1
- JJICLMJFIKGAAU-UHFFFAOYSA-M sodium;2-amino-9-(1,3-dihydroxypropan-2-yloxymethyl)purin-6-olate Chemical compound [Na+].NC1=NC([O-])=C2N=CN(COC(CO)CO)C2=N1 JJICLMJFIKGAAU-UHFFFAOYSA-M 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical group NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 150000003456 sulfonamides Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- WBWWGRHZICKQGZ-GIHLXUJPSA-N taurocholic acid Chemical compound C([C@@H]1C[C@H]2O)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@H](O)C1 WBWWGRHZICKQGZ-GIHLXUJPSA-N 0.000 description 1
- AWDRATDZQPNJFN-VAYUFCLWSA-N taurodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 AWDRATDZQPNJFN-VAYUFCLWSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/334—Modified C
- C12N2310/3341—5-Methylcytosine
Definitions
- the present invention relates to methods and compositions for the inhibition of gene expression.
- the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in cancers.
- Oncogenes have become the central concept in understanding cancer biology and may provide valuable targets for therapeutic drugs. All oncogenes and their products operate inside the cell. This makes protein-based drugs ineffective since their specificity involves ligand-receptor recognition.
- Antisense oligodeoxyribonucleotides are under investigation of therapeutic compound for specifically targeting oncogenes (Wickstrom, E. (ed). Prospects for antisense nucleic acid therapy of cancer and Aids. New York: Wiley-Liss, Inc. 1991; Murray, J. A. H. (ed). Antisense RNA and DNA New York: Wiley-Liss, Inc. 1992).
- Antisense drugs are modified synthetic oligonucleotides that work by interfering with ribosomal translation of the target mRNA. The antisense drugs developed thus far destroy the targeted mRNA by binding to it and triggering ribonuclease H(RNase H) degradation of mRNA.
- Oligonucleotides have a half-life of about 20 minutes and they are therefore rapidly degraded in most cells (Fisher, T. L. et al., Nucleic Acids Res. 21:3857-3865 (1993)).
- they are often chemically modified, e.g., they are protected by a sulfur replacing one of the phosphate oxygens in the backbone (phosphorothioate) (Milligan, J. F. et al., J. Med. Chem. 36:1923-1937 (1993); Wagner, R. W. et al., Science 260:1510-1513 (1993)).
- this modification can only slow the degradation of antisense and therefore large dosages of antisense drug are required to be effective.
- antisense drugs Despite the optimism surrounding the use of antisense therapies, there are a number of serious problems with the use of antisense drugs such as difficulty in getting a sufficient amount of antisense into the cell, non-sequence-specific effects, toxicity due to the large amount of sulfur containing phosphothioates oligonucleotides and their inability to get into their target cells, and high cost due to continuous delivery of large doses.
- An additional problem with antisense drugs has been their nonspecific activities.
- the present invention relates to methods and compositions for the inhibition of gene expression.
- the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in cancers.
- the present invention provides a composition comprising a first oligonucleotide that hybridizes to the promoter region of a Her-2 gene (e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38).
- a Her-2 gene e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38.
- at least one of the cytosine bases in the first oligonucleotide is 5-methylcytosine.
- all of the cytosine bases in the first oligonucleotide are 5-methylcytosine.
- the hybridization of the first oligonucleotide to the promoter region of the Her-2 gene inhibits expression of the Her-2 gene.
- the Her-2 gene is on a chromosome of a cell, and wherein the hybridization of the first oligonucleotide to the promoter region of the Her-2 gene reduces proliferation of the cell.
- the composition further comprises a second oligonucleotide.
- at least one of the cytosine bases in the second oligonucleotide is 5-methylcytosine.
- all of the cytosine bases in the second oligonucleotide are 5-methylcytosine.
- the second oligonucleotide comprises SEQ ID NOs: 31, 32, 35, 36, 37, or 38, but is different than the first oligonucleotide (e.g., if the second oligonucleotide has the sequence of SEQ ID NO:31, the first oligonucleotide has a sequence other than SEQ ID NO:31).
- the second oligonucleotide hybridizes to a promoter region of a second gene, wherein the second gene is not Her-2.
- the second gene is an oncogene (e.g., c-ki-Ras, c-myc, bcl-2, c-Ha-ras, or TGF- ⁇ ).
- the present invention provides a composition comprising an oligonucleotide that hybridizes to a promoter region of a c-myc gene at a position comprising between nucleotides 205-344 of SEQ ID NO:29 or between nucleotides 382-435 of SEQ ID NO:29.
- the present invention provides a method, comprising: providing an oligonucleotide that hybridizes to the promoter region of a Her-2 gene (e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38) and a cell comprising a Her-2 gene capable of expression, wherein the cell is capable of proliferation; and introducing the oligonucleotide to the cell.
- a Her-2 gene e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38
- the oligonucleotide is between 15 and 30 bases in length.
- the oligonucleotide hybridizes to the promoter region of the c-myc gene at a position comprising between nucleotides 205-344 of SEQ ID NO:29 or between nucleotides 382-435 of SEQ ID NO:29.
- the introducing results in the reduction of proliferation of the cell. In certain embodiments, the introducing results in inhibition of expression of the Her-2 gene.
- the cell is a cancer cell. In some embodiments, the cancer is pancreatic cancer, colon cancer, breast cancer, bladder cancer, lung cancer, leukemia, prostate, lymphoma, ovarian, or melanoma. In other embodiments, the cell is in a host animal (e.g., a non-human mammal or a human). In some embodiments, the oligonucleotide is introduced to the host animal at a dosage of between 0.01 ⁇ g to 100 g, and preferably between 1 mg to 100 mg per kg of body weight.
- the oligonucleotide is introduced to the host animal one or more times per day. In other embodiments, the oligonucleotide is introduced to the host animal continuously (e.g., for a period of between 2 hours and 2 weeks). In other embodiments, the cell is in cell culture. In certain embodiments, the method further comprises the step of introducing a test compound to the cell. In some embodiments, the test compound is a known chemotherapy agent.
- the method further provides a drug delivery system.
- the drug delivery system comprises a liposome (e.g., a liposome comprising a neutral lipid or a lipid like compound).
- the drug delivery system comprises a cell targeting component (e.g., a ligand or ligand like molecule for a cell surface receptor or a nuclear receptor).
- the drug delivery system is for use in vivo, and the oligonucleotide and the liposome are present in the ratio of from 2:1 to 1:3/1 ⁇ g to 100 mg per kg body weight.
- the present invention provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene.
- at least one (e.g., all) of the cytosine bases in the oligonucleotide are 5-methylcytosine.
- the oligonucleotide is completely complementary to the promoter region of the Her-2 gene.
- the oligonucleotide is partially complementary to the promoter region of the Her-2 gene.
- the oligonucleotide contains one mismatch to the promoter region of the Her-2 gene.
- the oligonucleotide is complementary only to the promoter region of the Her-2 gene and is not completely complementary to other regions of the human genome. In some embodiments, the oligonucleotide is between 10 nucleotides and 60, and preferably between 15 and 35 nucleotides in length.
- the present invention further provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene under conditions such that expression of the Her-2 gene is inhibited.
- the present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene located on a chromosome of a cell under conditions such that proliferation of the cell is reduced.
- the present invention also provides a composition
- a composition comprising a first oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and a second oligonucleotide, the second oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine.
- the present invention provides a kit comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and instructions for using the kit for reducing proliferation of a cell comprising a Her-2 gene on a chromosome of the cell or inhibiting gene expression.
- the composition in the kit are used for treating cancer in a subject and the instructions comprise instructions for using the kit to treat cancer in the subject.
- the instructions are instructions required by the U.S. Food and Drug Agency for labeling of pharmaceuticals.
- the present invention also provides a method, comprising: providing a biological sample from a subject diagnosed with a cancer; and reagents for detecting the present or absence of expression of a oncogene in the sample; and detecting the presence or absence of expression of an oncogene in the sample; administering an oligonucleotide that hybridizes under physiological conditions to the promoter region of an oncogene expressed in the biological sample, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine to the subject.
- the present invention additionally provides a method of inhibiting the expression of a gene in a subject (e.g., for the treatment of cancer or other hyperproliferative disorders) comprising providing an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene involved in cancer or a hyperproliferative disorder expressed in the biological sample, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and administering the oligonucleotide to the subject under conditions such that expression of the gene is inhibited.
- the subject is a human.
- the present invention provides a method of screening compounds comprising providing a cell comprising a suspected oncogene; and an oligonucleotide that hybridizes to the promoter region of the gene; and administering the oligonucleotide to the cell; and determining if proliferation of the cell is inhibited in the presence of the oligonucleotide relative to the absence of the oligonucleotide.
- the cell is in culture (e.g., a cancer cell line).
- the cell is in a host animal (e.g., a non-human mammal).
- the method is a high-throughput screening method.
- FIG. 1 shows the nucleic acid sequence of the bcl-2 gene (SEQ ID NO: 1).
- FIG. 2 shows the sequences of antigenes to bcl-2 used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 3 shows the nucleic acid sequence of the c-erbB-2 (Her-2) gene (SEQ ID NO:29).
- FIG. 4 shows the sequences of antigenes to c-erbB-2 used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 5 shows the nucleic acid sequence of the c-ki-Ras gene (SEQ ID NO:46).
- FIG. 6 shows the sequences of antigenes to c-ki-Ras used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 7 shows the nucleic acid sequence of the c-Ha-Ras gene (SEQ ID NO:66).
- FIG. 8 shows the sequences of antigenes to c-Ha-Ras used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 9 shows the nucleic acid sequence of the c-myc gene (SEQ ID NO:108).
- FIG. 10 shows the sequences of antigenes to c-myc used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 11 shows the nucleic acid sequence of the TGF- ⁇ gene (SEQ ID NO:131).
- FIG. 12 shows the sequences of antigenes to TGF- ⁇ used in some embodiments of the present invention.
- X refers to a methylated C nucleotide.
- FIG. 13 shows the inhibition of expression of cell growth by antigenes to c-ki-Ras used in some embodiments of the present invention
- FIG. 14 shows the inhibition of expression of cell growth by antigenes to bcl-2 used in some embodiments of the present invention.
- FIG. 15 shows the inhibition of expression of cell growth by antigenes to c-erb-2 used in some embodiments of the present invention.
- FIG. 16 shows the inhibition of expression of cell growth by antigenes to c-Ha-Ras used in some embodiments of the present invention.
- FIG. 17 shows the inhibition of expression of cell growth by antigenes to c-myc used in some embodiments of the present invention.
- FIG. 18 shows the inhibition of expression of cell growth by antigenes to TGF- ⁇ used in some embodiments of the present invention.
- FIG. 19 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-ki-Ras.
- FIG. 20 shows the dose response curve of inhibition of expression of cell growth of FSCCL cells (A) and MCF-7 cells (B) by antigenes to bcl-2.
- FIG. 21 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-erb-2.
- FIG. 22 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-Ha-Ras used.
- FIG. 23 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-myc.
- FIG. 24 shows the dose response curve of inhibition of expression of cell growth of T47D cells (A) and MDA-MB-231 cells (B) by antigenes to TGF- ⁇ .
- FIG. 25 shows exemplary variants of antigenes to c-ki-Ras.
- FIG. 26 shows exemplary variants of antigenes to bcl-2.
- FIG. 27 shows exemplary variants of antigenes to c-erb-2.
- FIG. 28 shows exemplary variants of antigenes to c-ha-ras.
- FIG. 29 shows exemplary variants of antigenes to c-myc.
- FIG. 30 shows exemplary variants of antigenes to TGF- ⁇ .
- FIG. 31 shows inhibition of lymphoma cells by non-methylated oligonucleotides targeted toward Bcl-2.
- the term “under conditions such that expression of said gene is inhibited” refers to conditions where an oligonucleotide of the present invention hybridizes to a gene (e.g., the promoter region of the gene) and inhibits transcription of the gene by at least 10%, preferably at least 25%, even more preferably at least 50%, and still more preferably at least 90% relative to the level of transcription in the absence of the oligonucleotide.
- the present invention is not limited to the inhibition of expression of a particular gene.
- Exemplary genes include, but are not limited to, c-ki-Ras, c-Ha-ras, c-myc, her-2, TGF- ⁇ , and bcl-2.
- the term “under conditions such that growth of said cell is reduced” refers to conditions where an oligonucleotide of the present invention, when administered to a cell (e.g., a cancer) reduces the rate of growth of the cell by at least 10%, preferably at least 25%, even more preferably at least 50%, and still more preferably at least 90% relative to the rate of growth of the cell in the absence of the oligonucleotide.
- epitopope refers to that portion of an antigen that makes contact with a particular antibody.
- an antigenic determinant may compete with the intact antigen (i.e., the “immunogen” used to elicit the immune response) for binding to an antibody.
- the term “subject” refers to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment.
- the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
- computer memory and “computer memory device” refer to any storage media readable by a computer processor.
- Examples of computer memory include, but are not limited to, RAM, ROM, computer chips, digital video disc (DVDs), compact discs (CDs), hard disk drives (HDD), and magnetic tape.
- computer readable medium refers to any device or system for storing and providing information (e.g., data and instructions) to a computer processor.
- Examples of computer readable media include, but are not limited to, DVDs, CDs, hard disk drives, magnetic tape and servers for streaming media over networks.
- processor and “central processing unit” or “CPU” are used interchangeably and refer to a device that is able to read a program from a computer memory (e.g., ROM or other computer memory) and perform a set of steps according to the program.
- a computer memory e.g., ROM or other computer memory
- non-human animals refers to all non-human animals including, but are not limited to, vertebrates such as rodents, non-human primates, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, aves, etc. and and non-vertebrate animals such as drosophila and nematode.
- non-human animals further refers to prokaryotes and viruses such as bacterial pathogens, viral pathogens.
- nucleic acid molecule refers to any nucleic acid containing molecule, including but not limited to, DNA or RNA.
- the term encompasses sequences that include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N-6-methyladenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyluracil, dihydrouracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine,
- gene refers to a nucleic acid (e.g., DNA) sequence that comprises coding sequences necessary for the production of a polypeptide, precursor, or RNA (e.g., rRNA, tRNA).
- the polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, immunogenicity, etc.) of the full-length or fragment are retained.
- the term also encompasses the coding region of a structural gene and the sequences located adjacent to the coding region on both the 5′ and 3′ ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA. Sequences located 5′ of the coding region and present on the mRNA are referred to as 5′ non-translated sequences. Sequences located 3′ or downstream of the coding region and present on the mRNA are referred to as 3′ non-translated sequences.
- the term “gene” encompasses both cDNA and genomic forms of a gene.
- a genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.”
- Introns are segments of a gene that are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript.
- mRNA messenger RNA
- heterologous gene refers to a gene that is not in its natural environment.
- a heterologous gene includes a gene from one species introduced into another species.
- a heterologous gene also includes a gene native to an organism that has been altered in some way (e.g., mutated, added in multiple copies, linked to non-native regulatory sequences, etc).
- Heterologous genes are distinguished from endogenous genes in that the heterologous gene sequences are typically joined to DNA sequences that are not found naturally associated with the gene sequences in the chromosome or are associated with portions of the chromosome not found in nature (e.g., genes expressed in loci where the gene is not normally expressed).
- RNA expression refers to the process of converting genetic information encoded in a gene into RNA (e.g., mRNA, rRNA, tRNA, or snRNA) through “transcription” of the gene (i.e., via the enzymatic action of an RNA polymerase), and for protein encoding genes, into protein through “translation” of mRNA.
- Gene expression can be regulated at many stages in the process. “Up-regulation” or “activation” refers to regulation that increases the production of gene expression products (i.e., RNA or protein), while “down-regulation” or “repression” refers to regulation that decrease production. Molecules (e.g., transcription factors) that are involved in up-regulation or down-regulation are often called “activators” and “repressors,” respectively.
- genomic forms of a gene may also include sequences located on both the 5′ and 3′ end of the sequences that are present on the RNA transcript. These sequences are referred to as “flanking” sequences or regions (these flanking sequences are located 5′ or 3′ to the non-translated sequences present on the mRNA transcript).
- the 5′ flanking region may contain regulatory sequences such as promoters and enhancers that control or influence the transcription of the gene.
- the 3′ flanking region may contain sequences that direct the termination of transcription, post-transcriptional cleavage and polyadenylation.
- wild-type refers to a gene or gene product isolated from a naturally occurring source.
- a wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designed the “normal” or “wild-type” form of the gene.
- modified or mutant refers to a gene or gene product that displays modifications in sequence and or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally occurring mutants can be isolated; these are identified by the fact that they have altered characteristics (including altered nucleic acid sequences) when compared to the wild-type gene or gene product.
- nucleic acid molecule encoding As used herein, the terms “nucleic acid molecule encoding,” “DNA sequence encoding,” and “DNA encoding” refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.
- an oligonucleotide having a nucleotide sequence encoding a gene and “polynucleotide having a nucleotide sequence encoding a gene,” means a nucleic acid sequence comprising the coding region of a gene or in other words the nucleic acid sequence that encodes a gene product.
- the coding region may be present in a cDNA, genomic DNA or RNA form.
- the oligonucleotide or polynucleotide may be single-stranded (i.e., the sense strand) or double-stranded.
- Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript.
- the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements.
- oligonucleotide refers to a short length of single-stranded polynucleotide chain. Oligonucleotides are typically less than 200 residues long (e.g., between 8 and 100), however, as used herein, the term is also intended to encompass longer polynucleotide chains (e.g., as large as 5000 residues). Oligonucleotides are often referred to by their length. For example a 24 residue oligonucleotide is referred to as a “24-mer”. Oligonucleotides can form secondary and tertiary structures by self-hybridizing or by hybridizing to other polynucleotides. Such structures can include, but are not limited to, duplexes, hairpins, cruciforms, bends, and triplexes.
- oligonucleotides are “antigenes.”
- the term “antigene” refers to an oligonucleotide that hybridizes to the promoter region of a gene. In some embodiments, the hybridization of the antigene to the promoter inhibits expression of the gene.
- complementarity are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence “A-G-T,” is complementary to the sequence “T-C-A.” Complementarity may be “partial,” in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be “complete” or “total” complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.
- the term “completely complementary,” for example when used in reference to an oligonucleotide of the present invention refers to an oligonucleotide where all of the nucleotides are complementary to a target sequence (e.g., a gene).
- partially complementary refers to an oligonucleotide where at least one nucleotide is not complementary to the target sequence.
- Preferred partially complementary oligonucleotides are those that can still hybridize to the target sequence under physiological conditions.
- partially complementary refers to oligonucleotides that have regions of one or more non-complementary nucleotides both internal to the oligonucleotide or at either end. Oligonucleotides with mismatches at the ends may still hybridize to the target sequence.
- a partially complementary sequence is a nucleic acid molecule that at least partially inhibits a completely complementary nucleic acid molecule from hybridizing to a target nucleic acid is “substantially homologous.”
- the inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency.
- a substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous nucleic acid molecule to a target under conditions of low stringency.
- low stringency conditions are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction.
- the absence of non-specific binding may be tested by the use of a second target that is substantially non-complementary (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.
- substantially homologous refers to any probe that can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described above.
- a gene may produce multiple RNA species that are generated by differential splicing of the primary RNA transcript.
- cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon “A” on cDNA 1 wherein cDNA 2 contains exon “B” instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other.
- substantially homologous refers to any probe that can hybridize (i.e., it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described above.
- hybridization is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the T m of the formed hybrid, and the G:C ratio within the nucleic acids. A single molecule that contains pairing of complementary nucleic acids within its structure is said to be “self-hybridized.”
- T m is used in reference to the “melting temperature.”
- the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands.
- stringency is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted.
- low stringency conditions a nucleic acid sequence of interest will hybridize to its exact complement, sequences with single base mismatches, closely related sequences (e.g., sequences with 90% or greater homology), and sequences having only partial homology (e.g., sequences with 50-90% homology).
- intermediate stringency conditions a nucleic acid sequence of interest will hybridize only to its exact complement, sequences with single base mismatches, and closely relation sequences (e.g., 90% or greater homology).
- a nucleic acid sequence of interest will hybridize only to its exact complement, and (depending on conditions such a temperature) sequences with single base mismatches. In other words, under conditions of high stringency the temperature can be raised so as to exclude hybridization to sequences with single base mismatches.
- “High stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5 ⁇ SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5 ⁇ Denhardt's reagent and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1 ⁇ SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.
- 5 ⁇ SSPE 43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH
- SDS 5 ⁇ Denhardt's reagent
- 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1 ⁇ SSPE, 1.0%
- “Medium stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5 ⁇ SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5 ⁇ Denhardt's reagent and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0 ⁇ SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.
- Low stringency conditions comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5 ⁇ SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5 ⁇ Denhardt's reagent [50 ⁇ Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 ⁇ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5 ⁇ SSPE, 0.1% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.
- the present invention is not limited to the hybridization of probes of about 500 nucleotides in length.
- the present invention contemplates the use of probes between approximately 8 nucleotides up to several thousand (e.g., at least 5000) nucleotides in length.
- stringency conditions may be altered for probes of other sizes (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [ 1985] and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY [1989]).
- low stringency conditions factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions.
- conditions that promote hybridization under conditions of high stringency e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.
- physiological conditions refers to specific stringency conditions that approximate or are conditions inside an animal (e.g., a human).
- exemplary physiological conditions for use in vitro include, but are not limited to, 37° C., 95% air, 5% CO 2 , commercial medium for culture of mammalian cells (e.g., DMEM media available from Gibco, Md.), 5-10% serum (e.g., calf serum or horse serum), additional buffers, and optionally hormone (e.g., insulin and epidermal growth factor).
- isolated when used in relation to a nucleic acid, as in “an isolated oligonucleotide” or “isolated polynucleotide” refers to a nucleic acid sequence that is identified and separated from at least one component or contaminant with which it is ordinarily associated in its natural source. Isolated nucleic acid is such present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids as nucleic acids such as DNA and RNA found in the state they exist in nature.
- a given DNA sequence e.g., a gene
- RNA sequences such as a specific mRNA sequence encoding a specific protein
- isolated nucleic acid encoding a given protein includes, by way of example, such nucleic acid in cells ordinarily expressing the given protein where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature.
- the isolated nucleic acid, oligonucleotide, or polynucleotide may be present in single-stranded or double-stranded form.
- the oligonucleotide or polynucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide or polynucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide or polynucleotide may be double-stranded).
- the term “purified” or “to purify” refers to the removal of components (e.g., contaminants) from a sample.
- antibodies are purified by removal of contaminating non-immunoglobulin proteins; they are also purified by the removal of immunoglobulin that does not bind to the target molecule.
- the removal of non-immunoglobulin proteins and/or the removal of immunoglobulins that do not bind to the target molecule results in an increase in the percent of target-reactive immunoglobulins in the sample.
- recombinant polypeptides are expressed in bacterial host cells and the polypeptides are purified by the removal of host cell proteins; the percent of recombinant polypeptides is thereby increased in the sample.
- amino acid sequence and terms such as “polypeptide” or “protein” are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.
- native protein as used herein to indicate that a protein does not contain amino acid residues encoded by vector sequences; that is, the native protein contains only those amino acids found in the protein as it occurs in nature.
- a native protein may be produced by recombinant means or may be isolated from a naturally occurring source.
- portion when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein.
- the fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.
- Southern blot refers to the analysis of DNA on agarose or acrylamide gels to fractionate the DNA according to size followed by transfer of the DNA from the gel to a solid support, such as nitrocellulose or a nylon membrane.
- the immobilized DNA is then probed with a labeled probe to detect DNA species complementary to the probe used.
- the DNA may be cleaved with restriction enzymes prior to electrophoresis. Following electrophoresis, the DNA may be partially depurinated and denatured prior to or during transfer to the solid support.
- Southern blots are a standard tool of molecular biologists (J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY, pp 9.31-9.58 [1989]).
- Northern blot refers to the analysis of RNA by electrophoresis of RNA on agarose gels to fractionate the RNA according to size followed by transfer of the RNA from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized RNA is then probed with a labeled probe to detect RNA species complementary to the probe used.
- Northern blots are a standard tool of molecular biologists (J. Sambrook, et al., supra, pp 7.39-7.52 [1989]).
- the term “Western blot” refers to the analysis of protein(s) (or polypeptides) immobilized onto a support such as nitrocellulose or a membrane.
- the proteins are run on acrylamide gels to separate the proteins, followed by transfer of the protein from the gel to a solid support, such as nitrocellulose or a nylon membrane.
- the immobilized proteins are then exposed to antibodies with reactivity against an antigen of interest.
- the binding of the antibodies may be detected by various methods, including the use of radiolabeled antibodies.
- cell culture refers to any in vitro culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, transformed cell lines, finite cell lines (e.g., non-transformed cells), and any other cell population maintained in vitro.
- eukaryote refers to organisms distinguishable from “prokaryotes.” It is intended that the term encompass all organisms with cells that exhibit the usual characteristics of eukaryotes, such as the presence of a true nucleus bounded by a nuclear membrane, within which lie the chromosomes, the presence of membrane-bound organelles, and other characteristics commonly observed in eukaryotic organisms. Thus, the term includes, but is not limited to such organisms as fungi, protozoa, and animals (e.g., humans).
- in vitro refers to an artificial environment and to processes or reactions that occur within an artificial environment.
- in vitro environments can consist of, but are not limited to, test tubes and cell culture.
- in vivo refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
- test compound and “candidate compound” refer to any chemical entity, pharmaceutical, drug, and the like that is a candidate for use to treat or prevent a disease, illness, sickness, or disorder of bodily function (e.g., cancer).
- Test compounds comprise both known and potential therapeutic compounds.
- a test compound can be determined to be therapeutic by screening using the screening methods of the present invention.
- test compounds include antisense compounds.
- chemotherapeutic agents refers to compounds known to be useful in the treatment of disease (e.g., cancer).
- chemotherapeutic agents affective against cancer include, but are not limited to, daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES).
- daunorubicin dactinomycin
- doxorubicin bleomycin
- mitomycin nitrogen mustard
- chlorambucil melphalan
- cyclophosphamide 6-mercaptopurine
- sample is used in its broadest sense. In one sense, it is meant to include a specimen or culture obtained from any source, as well as biological and environmental samples. Biological samples may be obtained from animals (including humans) and encompass fluids, solids, tissues, and gases. Biological samples include blood products, such as plasma, serum and the like. Environmental samples include environmental material such as surface matter, soil, water, crystals and industrial samples. Such examples are not however to be construed as limiting the sample types applicable to the present invention.
- the present invention relates to methods and compositions for the treatment of cancers.
- the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in a variety of cancers.
- the present invention is not limited to the treatment of a particular cancer. Any cancer can be targeted, including, but not limited to, breast cancers.
- the present invention is also not limited to the targeting of cancers or oncogenes.
- the methods and compositions of the present invention are suitable for use with any gene that it is desirable to inhibit the expression of (e.g., for therapeutic or research uses).
- the present invention provides antigene inhibitors of oncogenes.
- the present invention is not limited to the inhibition of a particular oncogene. Indeed, the present invention encompasses antigene inhibitors to any number of oncogenes including, but not limited to, those disclosed herein.
- c-Ha-ras One gene which has captured the attention of many scientists is the human proto-oncogene, c-Ha-ras.
- the nucleic acid sequence of the promoter region of c-H-ras is shown in FIG. 7 .
- This gene acts as a central dispatcher, relaying chemical signals into cells and controlling cell division. Ras gene alteration may cause the gene to stay in the “on” position.
- the ras oncogene is believed to underlie up to 30% of cancer, including colon cancer, lung cancer, bladder and mammary carcinoma (Bos, Cancer Res. 49:4682-4689 [1989]). The ras oncogene has therefore become a target for therapeutic drugs.
- Oligonucleotides complementary to the 5′ flanking region of the c-Ha-ras RNA transcript have shown to inhibit tumor growth in nude mice for up to 14 days (Gray et al., Cancer Res. 53:577-580 [1993]). It was recently reported that an antisense oligonucleotide directed to a point mutation (G>C) in codon 12 of the c-Ha-ras mRNA inhibited cell proliferation as well as tumor growth in nude mice when it was injected subcutaneously (U.S. Pat. No. 5,576,208; U.S. Pat. No. 5,582,986; Schwab et al., Proc. Natl. Acad. Sci.
- the HER-2 also known as neu oncogene or erbB-2
- oncogene encodes a receptor-like tyrosine kinase (RTK) that has been extensively investigated because of its role in several human carcinomas (Hynes and Stern, Biochim. et Biophy. Acta 1198:165-184 [1994]; Dougall et al., Oncogene 9:2109-2123 [1994]) and in mammalian development (Lee et al., Nature 378:394-398 [1995]).
- RTK receptor-like tyrosine kinase
- the sequence of the HER-2 protein was determined from a cDNA that was cloned by homology to the epidermal growth factor receptor (EGFR) mRNA from placenta (Coussens et al., Science 230:1132-1139 [1985]) and from a gastric carcinoma cell line (Yamamoto et al., Nature 319:230-234 [1986]).
- EGFR epidermal growth factor receptor
- the HER-2 mRNA was shown to be about 4.5 kb (Coussens et al., Science 230:1132-1139 [1985]; Yamamoto et al., Nature 319:230-234 [1986]) and encodes a transmembrane glycoprotein of 185 kDa in normal and malignant human tissues (p185HER-2) (Hynes and Steen, Biochim. et Biophys. Acta 1198:165-184 [1994]; Dougall et al., Oncogene 9:2109-2123 [1994]).
- HER-2 causes phenotypic transformation of cultured cells (DiFiore et al., Science 237:178-182 [1987]; Hudziak et al., Proc. Natl. Acad. Sci. USA 84:7159-7163 [1987]) and has been associated with aggressive clinical progression of breast and ovarian cancer (Slamon et al., Science 235:177-182 [1987]; Slamon et al., Science 244:707-712 [1989]).
- HER-2 is one of the most frequently altered genes in cancer. It encodes a transmembrane receptor (also known as p185) with tyrosine kinase activity and is a member of the epidermal growth factor (EGF) family, and thus is related to the epidermal growth factor receptor (EGFR or HER-1).
- EGF epidermal growth factor
- Aberrant HER-2 gene expression is present in a wide variety of cancers and are most common in breast, ovarian and gastric cancers.
- HER-2 is overexpressed in 25-30% of all human breast and ovarian cancers. Levels of HER-2 overexpression correlate well with clinical stage of breast cancer, prognosis and metastatic potential. Overexpression of HER-2 is associated with lower survival rates, increased relapse rates and increased metastatic potential. Tan et al., (Cancer Res., 57:1199 [1997]) have shown that overexpression of the HER-2 gene increases the metastatic potential of breast cancer cells without increasing their transformation ability.
- Aberrant expression of HER-2 includes both increased expression of normal HER-2 and expression of mutant HER-2.
- Activation of the HER-2 proto-oncogene can occur by any of three mechanisms—point mutation, gene amplification and overexpression. Gene amplification is the most common mechanism. Unlike the other EGF family members for whom ligand activation is necessary for promoting transformation, overexpression of HER-2 alone is sufficient for transformation (Cohen, et al., J. Biol. Chem., 271:30897 [1996]).
- the adenovirus type 5 gene product E1A has been studied as a potential therapeutic using a breast cancer model in nude mice. This gene product can repress HER-2/neu overexpression by repressing HER-2/neu promoter activity, and suppress the tumorigenic potential of HER-2/neu-overexpressing ovarian cancer cells. In mice bearing HER-2/neu-overexpressing breast cancer xenografts, E1A delivered either by adenovirus or liposome significantly inhibited tumor growth and prolonged mouse survival compared with the controls (Chang et al., Oncogene 14:561 [1997])
- HER-2 Overexpression of HER-2 has also been found to be associated with increased resistance to chemotherapy. Thus, patients with elevated levels of HER-2 respond poorly to many drugs. Methods used to inhibit HER-2 expression have been combined with commonly used chemotherapeutic agents (Ueno et al., Oncogone 15:953 [1997]). Combining the adenovirus type 5 gene product, E1A, with taxol showed a synergistic effect in human breast cancer cells.
- Oligonucleotides have also been used to study the function of HER-2.
- a triplex-forming oligonucleotide targeted to the HER-2 promoter, 42 to 69 nucleotides upstream of the mRNA transcription start site was found to inhibit HER-2 expression in vitro (Ebbinghaus et al., J. Clin. Invest., 92:2433 [1993]).
- Porumb et al. (Cancer Res., 56:515 [1996]) also used a triplex-forming oligonucleotide targeted to the same HER-2 promoter region. Decreases in HER-2 mRNA and protein levels were seen in cultured cells. Juhl et al. (J. Biol.
- Chem., 272:29482 [1997]) used anti-HER-2 ribozymes targeted to a central region of the HER-2 RNA just downstream of the transmembrane region of the protein to demonstrate a reduction in HER-2 mRNA and protein levels in human ovarian cancer cells. A reduction in tumor growth in nude mice was also seen.
- Colomer et al. (Br. J. Cancer, 70:819 [1994]) showed that phosphodiester antisense oligonucleotides targeted at or immediately downstream of, the translation initiation codon inhibited proliferation of human breast cancer cells by up to 60%.
- Wiechen et al. (Int. J. Cancer 63:604 [1995]) demonstrated that an 18-nucleotide phosphorothioate oligonucleotide targeted to the coding region, 33 nucleotides downstream of the translation initiation codon, of HER-2 reduced anchorage-independent growth of ovarian cancer cells.
- Bertram et al. Biochem. Biophys. Res.
- the c-myc gene product is encoded by an immediate early response gene, the expression of which can be induced by various mitogens.
- the nucleic acid sequence of the promoter region of the c-myc gene is shown in FIG. 9 .
- C-myc expression is involved in the signal transduction pathways leading to cell division. Studies have demonstrated that proliferating cells have higher levels of c-myc mRNA and c-myc protein than do quiescent cells.
- Antibodies directed against the human c-myc protein are known to inhibit DNA synthesis in nuclei isolated from human cells. Conversely, constitutive expression of c-myc produced by gene transfer inhibits induced differentiation of several cell lines. Constitutive expression of c-myc predisposes transgenic mice to the development of tumors.
- c-myc gene product may play a proliferative role in SMCs.
- Balloon de-endothelialization and injury of rat aortas is known to increase c-myc mRNA expression of vascular SMC prior to their subsequent proliferation and migration.
- SMCs in culture proliferate when exposed to several mitogens, including PDGF, FGF, EGF, IGF-1 and to serum. Each of these mitogens has been found to be capable of increasing the expression in other cell lines of either c-myc protein, c-myc mRNA, or both.
- blood serum has been found to increase c-myc mRNA levels in SMCs.
- the human bcl-2 gene is overexpressed, and may be associated with tumorigenicity (Tsujimoto et al., Science 228:1440-1443 [1985]).
- the nucleic acid sequence of the promoter region of bcl-2 is shown in FIG. 1 .
- High levels of expression of the human bcl-2 gene have been found in all lymphomas with t (14; 18) chromosomal translocations including most follicular B cell lymphomas and many large cell non-Hodgkin's lymphomas.
- TGF- ⁇ Transforming Growth Factor Alpha
- EGFR Epidermal Growth Factor Receptor
- TGF- ⁇ is a 50 amino acid polypeptide having about 40% homology of residues with EGF. Both peptides are characterized by three well defined loops (denoted A, B and C) and have three intramolecular disulphide bonds.
- EGF Receptor Epidermal Growth Factor Receptor
- TGF- ⁇ and EGF are believed to exert their biological effects via interaction with the Epidermal Growth Factor Receptor (EGF Receptor).
- EGF Receptor is a Type 1 receptor tyrosine kinase.
- the EGF Receptor and its ligands are of interest for their roles in normal physiological processes as well as in hyperproliferative and neoplastic diseases.
- TGF- ⁇ The in vivo precursor of TGF- ⁇ is a 160 amino acid residue membrane-bound protein (pro-TGF-.alpha.) that is cleaved to yield a soluble compound (Massague, J. Biol. Chem., 265:21393-21396 [1990]).
- This cleavage removes an extracellular portion comprised of 50 amino acids with a molecular weight of 6 Kd and is considered to be an important regulatory event (Pandiella et al., Proc. Natl. Acad. Sci. USA, 88:1726-1730 [1990]) that can be stimulated by phorbol esters acting via protein kinase C (Pandiella et al., J. Biol. Chem., 266:5769-5773 [1991]).
- TGF- ⁇ shows that TGF- ⁇ mRNA and proliferate in response to TGF- ⁇ (Wilding et al., The Prostate, 15:1-12 [1989]). TGF- ⁇ appears to have both autocrine and paracrine function, stimulating physiologic activities such as cell division and angiogenesis. When induced in transgenic mice, TGF- ⁇ produced epithelial hyperplasia and focal dysplastic changes that resembled carcinoma in situ (Sandgren et al., Cell, 61:1121-1135 [1990]).
- KRAS c-Ki-RAS
- HRAS calmangiose
- KRAS c-Ki-RAS
- NRAS NRAS
- the sequence of the promoter region of c-ki-ras is shown in FIG. 5 .
- the 3 ras genes, HRAS, KRAS, and NRAS have different genetic structures, all code for proteins of 189 amino acid residues, generically designated p21. These genes acquire malignant properties by single point mutations that affect the incorporation of the 12th or 61 st amino acid residue of their respective p21.
- KRAS is involved in malignancy much more often than is HRAS.
- Genomic DNA was examined from 39 tumor specimens obtained at thoracotomy.
- the KRAS gene was found to be activated by point mutations in codon 12 in 5 of 10 adenocarcinomas. Two of these tumors were less than 2 cm in size and had not metastasized. No HRAS, KRAS, or NRAS mutations were observed in 15 squamous cell carcinomas, 10 large cell carcinomas, 1 carcinoid, 2 metastatic adenocarcinomas from primary tumors outside the lung, and 1 small cell carcinoma.
- the present invention is not limited to the oncogenes described above.
- the methods of the present invention are suitable for use with any oncogene with a known promoter region.
- the present invention is not limited to the targeting of oncogenes.
- the methods and compositions of the present invention find use in the targeting of any gene that it is desirable to down regulate the expression of.
- the genes to be targeted include, but are not limited to, an immunoglobulin or antibody gene, a clotting factor gene, a protease, a pituitary hormone, a protease inhibitor, a growth factor, a somatomedian, a gonadotrophin, a chemotactin, a chemokine, a plasma protein, a plasma protease inhibitor, an interleukin, an interferon, a cytokine, a transcription factor, or a pathogen target (e.g., a viral gene, a bacterial gene, a microbial gene, a fungal gene).
- a pathogen target e.g., a viral gene, a bacterial gene, a microbial gene, a fungal gene.
- genes include, but are not limited to, ADAMTS4, ADAMTS5, APOA1, APOE, APP, B2M, COX2, CRP, DDX25, DMC1, FKBP8, GH1, GHR, IAPP, IFNA1, IFNG, IL1, Il10, IL12, IL13, IL2, IL4, IL7, IL8, IPW, MAPK14, Mei1, MMP13, MYD88, NDN, PACE4, PRNP, PSEN1, PSEN2, RAD51, RAD51C, SAP, SNRPN, TLR4, TLR9, TTR, UBE3A, VLA-4, and PTP-1B, c-RAF, m-TOR, LDL, VLDL, ApoB-100, HDL, VEGF, rhPDGF-BB, NADs, ICAM-1, MUC1, 2-dG, CTL, PSGL-1, E2F, NF-kB, HIF, and GCPRs.
- pathogens include, but are not limited to, Human Immunodeficiency virus, Hepatitis B virus, hepatitis C virus, hepatitis A virus, respiratory syncytial virus, pathogens involved in severe acute respiratory syndrome, west nile virus, and food borne pathogens (e.g., E. coli ).
- the present invention provides oligonucleotide therapeutics that are methylated at specific sites.
- the present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that one mechanism for the regulation of gene activity is methylation of cytosine residues in DNA.
- 5-methylcytosine (5-MeC) is the only naturally occurring modified base detected in DNA (Ehrlick et al., Science 212:1350-1357 (1981)).
- 5-methylcytosine 5-MeC
- hypomethylation at specific sites or in specific regions in a number of genes is correlated with active transcription (Doerfler, Annu. Rev. Biochem.
- DNA methylation in vitro can prevent efficient transcription of genes in a cell-free system or transient expression of transfected genes. Methylation of C residues in some specific cis-regulatory regions can also block or enhance binding of transcriptional factors or repressors (Doerfler, supra; Christman, supra; Cedar, Cell 34:5503-5513 (1988); Tate et al., Curr. Opin. Genet. Dev. 3:225-231 [1993]; Christman et al., Virus Strategies, eds. Doerfler, W. & Bohm, P. (VCH, Weinheim, N.Y.) pp. 319-333 [1993]).
- methylation inhibitors such as L-methionine or 5-azacytodine or severe deficiency of 5-adenosine methionine through feeding of a diet depleted of lipotropes has been reported to induce formation of liver tumors in rats (Wainfan et al., Cancer Res. 52:2071s—2077s [1992]).
- extreme lipotrope deficient diets can cause loss of methyl groups at specific sites in genes such as c-myc, ras and c-fos (Dizik et al., Carcinogenesis 12:1307-1312 [1991]).
- the present invention thus takes advantage of this naturally occurring phenomena, to provide compositions and methods for site specific methylation of specific gene promoters, thereby preventing transcription and hence translation of certain genes.
- the present invention provides methods and compositions for upregulating the expression of a gene of interest (e.g., a tumor suppressor gene) by altering the gene's methylation patterns.
- the present invention is not limited to the use of methylated oligonucleotides. Indeed, the use of non-methylated oligonucleotides for the inhibition of gene expression is specifically contemplated by the present invention.
- Experiments conducted during the course of development of the present invention See e.g., Example 8) demonstrated that an unmethylated oligonucleotide targeted toward Bcl-2 inhibited the growth of lymphoma cells to a level that was comparable to that of a methylated oligonucleotide.
- the present invention provides antigene oligonucleotides for inhibiting the expression of oncogenes.
- antigene oligonucleotides for inhibiting the expression of oncogenes.
- Exemplary design and production strategies for antigenes are described below. The below description is not intended to limit the scope of antigene compounds suitable for use in the present invention. One skilled in the relevant recognizes that additional antigenes are within the scope of the present invention.
- oligonucleotides are designed based on preferred design criteria. Such oligonucleotides can then be tested for efficacy using the methods disclosed herein. For example, in some embodiments, the oligonucleotides are methylated at least one, preferably at least two, and even more preferably, all of the CpG islands. In other embodiments, the oligonucleotides contain no methylation.
- the present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that preferred oligonucleotides are those that have at least a 50% GC content and at least 2 GC dinucleotides.
- oligonucleotides do not self hybridize.
- oligonucleotides are designed with at least 1 A or T to minimize self hybridization.
- commercially available computer programs are used to survey oligonucleotides for the ability to self hybridize.
- Preferred oligonucleotides are at least 10, and preferably at least 15 nucleotides and no more than 100 nucleotides in length.
- Particularly preferred oligonucleotides are 18-24 nucleotides in length.
- oligonucleotides comprise the universal protein binding sequences CGCCC and CGCG or the complements thereof.
- oligonucleotide hybridize to a promoter region of a gene upstream from the TATA box of the promoter. It is also preferred that oligonucleotide compounds are not completely homologous to other regions of the human genome.
- the homology of the oligonucleotide compounds of the present invention to other regions of the genome can be determined using available search tools (e.g., BLAST, available at the Internet site of NCBI).
- oligonucleotides are designed to hybridize to regions of the promoter region of an oncogene known to be bound by proteins (e.g., transcription factors).
- proteins e.g., transcription factors
- Exemplary oligonucleotide compounds of the present invention are shown in FIGS. 2, 4 , 6 , 8 , 10 , and 12 .
- the present invention is not limited to the oligonucleotides described herein.
- Other suitable oligonucleotides may be identified (e.g., using the criteria described above).
- Exemplary oligonucleotide variants of the disclosed oligonucleotides are shown in FIGS. 25-30 .
- Candidate oligonucleotides may be tested for efficacy using any suitable method, including, but not limited to, those described in the illustrative examples below. Using the in vitro assay described in Examples 1 and 2 below, candidate oligonucleotides can be evaluated for their ability to prevent cell proliferation as a variety of concentrations. Particularly preferred oligonucleotides are those that inhibit gene expression of cell proliferation as a low concentration (e.g., less that 20 ⁇ M, and preferably, less than 10 ⁇ M in the in vitro assays disclosed herein).
- a low concentration e.g., less that 20 ⁇ M, and preferably, less than 10 ⁇ M in the in vitro assays disclosed herein.
- regions within the promoter region of an oncogene are further defined as preferred regions for hybridization of oligonucleotides. In some embodiments, these preferred regions are referred to as “hot zones.”
- hot zones are defined based on oligonucleotide compounds that are demonstrated to be effective (see above section on oligonucleotides) and those that are contemplated to be effective based on the preferred criteria for oligonucleotides described above.
- Preferred hot zones encompass 10 bp upstream and downstream of each compound included in each hot zone and have at least 1 CG or more within an increment of 40 bp further upstream or downstream of each compound.
- hot zones encompass a maximum of 100 bp upstream and downstream of each oligonucleotide compound included in the hot zone.
- hot zones are defined at beginning regions of each promoter.
- Hot zones are defined either based on effective sequence(s) or contemplated sequences and have a preferred maximum length of 200 bp. Based on the above described criteria, exemplary hot zones were designed. These hot zones are shown in Table 1. Numbering is based on the sequences described in the Figures of the present invention. TABLE 1 Exemplary Hot Zones Gene Hot Zones Bcl-2 1-40 161-350 401-590 1002-1260 c-erbB-2 205-344 382-435 c-K-ras 1-289 432-658 c-Ha-ras 21-220 233-860 1411-1530 1631-1722 c-myc 3-124 165-629 TGF- ⁇ 1-90 175-219 261-367 431-930 964-1237 C. Preparation and Formulation of Oligonucleotides
- modified oligonucleotide synthesis can be used to prepare the modified oligonucleotides of the present invention.
- dC is replaced by 5-methyl-dC where appropriate, as taught by the present invention.
- the modified or unmodified oligonucleotides of the present invention are most conveniently prepared by using any of the commercially available automated nucleic acid synthesizers. They can also be obtained from commercial sources that synthesize custom oligonucleotides pursuant to customer specifications.
- oligonucleotides are a preferred form of compound
- the present invention comprehends other oligomeric oligonucleotide compounds, including but not limited to oligonucleotide mimetics such as are described below.
- the oligonucleotide compounds in accordance with this invention preferably comprise from about 18 to about 30 nucleobases (i.e., from about 18 to about 30 linked bases), although both longer and shorter sequences may find use with the present invention.
- oligonucleotides containing modified backbones or non-natural internucleoside linkages include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone.
- modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
- Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′.
- Various salts, mixed salts and free acid forms are also included.
- Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
- morpholino linkages formed in part from the sugar portion of a nucleoside
- siloxane backbones sulfide, sulfoxide and sulfone backbones
- formacetyl and thioformacetyl backbones methylene formacetyl and thioformacetyl backbones
- alkene containing backbones sulfamate backbones
- sulfonate and sulfonamide backbones amide backbones; and others having mixed N, O, S and CH 2 component parts.
- both the sugar and the internucleoside linkage (i.e., the backbone) of the nucleotide units are replaced with novel groups.
- the base units are maintained for hybridization with an appropriate nucleic acid target compound.
- an oligomeric compound an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA).
- PNA peptide nucleic acid
- the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone.
- nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
- Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science 254:1497 (1991).
- oligonucleotides of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH 2 , —NH—O—CH 2 —, —CH 2 —N(CH 3 )—O—CH 2 — [known as a methylene (methylimino) or MMI backbone], —CH 2 —O—N(CH 3 )—CH 2 —, —CH 2 —N(CH 3 )—N(CH 3 )—CH 2 —, and —O—N(CH 3 )—CH 2 —CH 2 — [wherein the native phosphodiester backbone is represented as—O—P—O—CH 2 —] of the above referenced U.S.
- Modified oligonucleotides may also contain one or more substituted sugar moieties.
- Preferred oligonucleotides comprise one of the following at the 2′ position: OH; F; O, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C 1 to C 10 alkyl or C 2 to C 10 alkenyl and alkynyl.
- oligonucleotides comprise one of the following at the 2′ position: C 1 to C 10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties.
- a preferred modification includes 2′-methoxyethoxy (2′-O—CH 2 CH 2 OCH 3 , also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta 78:486 [1995]) i.e., an alkoxyalkoxy group.
- a further preferred modification includes 2′-dimethylaminooxyethoxy (i.e., a O(CH 2 ) 2 ON(CH 3 ) 2 group), also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH 2 —O—CH 2 —N(CH 2 ) 2 .
- 2′-dimethylaminooxyethoxy i.e., a O(CH 2 ) 2 ON(CH 3 ) 2 group
- 2′-DMAOE 2′-dimethylaminoethoxyethoxy
- 2′-DMAEOE 2′-dimethylaminoethoxyethyl
- Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
- Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions.
- base include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
- Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substitute
- nucleobases include those disclosed in U.S. Pat. No. 3,687,808. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.
- oligonucleotides of the present invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide.
- moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, (e.g., hexyl-5-tritylthiol), a thiocholesterol, an aliphatic chain, (e.g., dodecandiol or undecyl residues), a phospholipid, (e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate), a polyamine or a polyethylene glycol chain or adamantane acetic acid, a palmityl moiety, or
- oligonucleotides containing the above-described modifications are not limited to the antisense oligonucleotides described above. Any suitable modification or substitution may be utilized.
- the present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the present invention as described below.
- the present invention provides cocktails comprising two or more oligonucleotides directed towards promoter regions of genes (e.g., oncogenes).
- the two oligonucleotides hybridize to different regions of the promoter of the same gene.
- the two or more oligonucleotides hybridize to promoters of two different genes.
- the present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that the combination of two or more compounds of the present invention provides an inhibition of cancer cell growth that is greater than the additive inhibition of each of the compounds administered separately.
- the present invention is not limited to therapeutic applications.
- the present invention provides compositions and methods for the use of oligonucleotides as a research tool.
- kits comprising oligonucleotides specific for inhibition of a gene of interest, and optionally cell lines (e.g., cancer cells lines) known to express the gene.
- cell lines e.g., cancer cells lines
- kits find use, for example, in the identification of metabolic pathways or the involvement of genes in disease (e.g., cancer), as well as in diagnostic applications.
- the kits further comprise buffer and other necessary reagents, as well as instructions for using the kits.
- the present invention provides methods and compositions for use in the validation of gene targets (e.g., genes suspected of being involved in disease).
- gene targets e.g., genes suspected of being involved in disease
- the expression of genes identified in broad screening applications e.g., gene expression arrays
- the methods and compositions of the present invention are suitable for use in vitro and in vivo (e.g., in a non-human animal) for the purpose of target validation.
- the compounds of the present invention find use in transplantation research (e.g., HLA inhibition).
- the methods and compositions of the present invention are used in drug screening applications.
- oligonucleotides of the present invention are administered to a cell (e.g., in culture or in a non-human animal) in order to inhibit the expression of a gene of interest.
- the inhibition of the gene of interest mimics a physiological or disease condition.
- an oncogene is inhibited.
- Test compounds e.g., small molecule drugs or oligonucleotide mimetics
- test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone, which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckennann et al., J. Med. Chem. 37: 2678-85 [1994]); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection.
- the biological library and peptoid library approaches are preferred for use with peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
- the present invention further provides pharmaceutical compositions (e.g., comprising the oligonucleotide compounds described above).
- the pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
- compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
- compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
- the pharmaceutical formulations of the present invention may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas.
- the compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.
- Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran.
- the suspension may also contain stabilizers.
- the pharmaceutical compositions may be formulated and used as foams.
- Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.
- cationic lipids such as lipofectin (U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), also enhance the cellular uptake of oligonucleotides.
- compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions.
- the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers.
- additional materials useful in physically formulating various dosage forms of the compositions of the present invention such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers.
- such materials when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention.
- the formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.
- auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.
- compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
- Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators.
- Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof.
- Prefered bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate.
- DCA chenodeoxycholic acid
- UDCA ursodeoxychenodeoxycholic acid
- Prefered fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcamitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium).
- arachidonic acid arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, gly
- penetration enhancers for example, fatty acids/salts in combination with bile acids/salts.
- a particularly prefered combination is the sodium salt of lauric acid, capric acid and UDCA.
- Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether.
- Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles.
- Oligonucleotide complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches.
- Particularly preferred complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylamino-methylethylene P(TDAE), polyaminostyrene (e.g.
- compositions containing (a) one or more oligonucleotide compounds and (b) one or more other chemotherapeutic agents that function by a non-oligonucleotide mechanism.
- chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES).
- anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin
- Anti-inflammatory drugs including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention.
- Other non-oligonucleotide chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.
- oligonucleotide compounds of the present invention may be delivered using any suitable method.
- naked DNA is administered.
- lipofection is utilized for the delivery of nucleic acids to a subject.
- oligonucleotides are modified with phosphothiolates for delivery (See e.g., U.S. Pat. No. 6,169,177, herein incorporated by reference).
- nucleic acids for delivery are compacted to aid in their uptake (See e.g., U.S. Pat. Nos. 6,008,366, 6,383,811 herein incorporated by reference).
- compacted nucleic acids are targeted to a particular cell type (e.g., cancer cell) via a target cell binding moiety (See e.g., U.S. Pat. Nos. 5,844,107, 6,077,835, each of which is herein incorporated by reference).
- oligonucleotides are conjugated to other compounds to aid in their delivery.
- nucleic acids are conjugated to polyethylene glycol to aid in delivery (See e.g., U.S. Pat. Nos. 6,177,274, 6,287,591, 6,447,752, 6,447,753, and 6,440,743, each of which is herein incorporated by reference).
- oligonucleotides are conjugated to protected graft copolymers, which are chargeable” drug nano-carriers (PharmaIn).
- oligonucleotides are conjugated to nanoparticles (e.g., NanoMed Pharmaceuticals; Kalamazoo, Mich.).
- oligonucleotides are enclosed in lipids (e.g., liposomes or micelles) to aid in delivery (See e.g., U.S. Pat. Nos. 6,458,382, 6,429,200; each of which is herein incorporated by reference).
- oligonucleotides are complexed with additional polymers to aid in delivery (See e.g., U.S. Pat. Nos. 6,379,966, 6,339,067, 5,744,335; each of which is herein incorporated by reference and Intradigm Corp., Rockville, Md.).
- the controlled high pressure delivery system developed by Mirus is utilized for delivery of oligonucleotides.
- Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved.
- Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. The administering physician can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and the delivery means, and can generally be estimated based on EC 50 s found to be effective in in vitro and in vivo animal models or based on the examples described herein.
- dosage is from 0.01 ⁇ g to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly.
- dosage is continuous (e.g., intravenously) for a period of from several hours to several days or weeks.
- treatment is given continuously for a defined period followed by a treatment free period.
- the pattern of continuous dosing followed by a treatment free period is repeated several times (e.g., until the disease state is diminished).
- the treating physician can estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues.
- the present invention provides customized patient care.
- the compositions of the present invention are targeted to specific genes unique to a patient's diseae (e.g., cancer).
- a sample of the patient's cancer or other affected tissue e.g., a biopsy
- the biopsy is analyzed for the presence of expression of a particular gene (e.g., oncogene).
- the level of expression of an gene in a patient is analyzed. Expression may be detected by monitoring for the presence of RNA or DNA corresponding to a particular oncogene. Any suitable detection method may be utilized, including, but not limited to, those disclosed below.
- oligonucleotide compounds specific for genes that are aberrantly expressed in the patient are combined in a treatment cocktail.
- the treatment cocktail further includes additional chemotherapeutic agents (e.g., those described above). The cocktail is then administered to the patient as described above.
- the analysis of cancer samples and the selection of oligonucleotides for a treatment compound is automated.
- a software program that analyses the expression levels of a series of oncogenes to arrive at the optimum selection and concentration of oligonucleotides is utilized.
- the analysis is performed by the clinical laboratory analyzing the patient sample and is transmitted to a second provider for formulation of the treatment cocktail.
- the information is transmitted over the Internet, thus allowing for the shortest possible time in between diagnosis and the beginning of treatment.
- detection of oncogenes is detected by measuring the expression of corresponding mRNA in a tissue sample (e.g., cancer tissue).
- expression of mRNA is measured in bodily fluids, including, but not limited to, blood, serum, mucus, and urine.
- the level of mRNA expression in measured quantitatively. RNA expression may be measured by any suitable method, including but not limited to, those disclosed below.
- RNA is detected by Northern blot analysis.
- Northern blot analysis involves the separation of RNA and hybridization of a complementary labeled probe.
- RNA expression is detected by enzymatic cleavage of specific structures (INVADER assay, Third Wave Technologies; See e.g., U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069; each of which is herein incorporated by reference).
- the INVADER assay detects specific nucleic acid (e.g., RNA) sequences by using structure-specific enzymes to cleave a complex formed by the hybridization of overlapping oligonucleotide probes.
- RNA is detected by hybridization to a oligonucleotide probe.
- a variety of hybridization assays using a variety of technologies for hybridization and detection are available.
- TaqMan assay PE Biosystems, Foster City, Calif.; See e.g., U.S. Pat. Nos. 5,962,233 and 5,538,848, each of which is herein incorporated by reference
- the assay is performed during a PCR reaction.
- the TaqMan assay exploits the 5′-3′ exonuclease activity of the AMPLITAQ GOLD DNA polymerase.
- a probe consisting of an oligonucleotide with a 5′-reporter dye (e.g., a fluorescent dye) and a 3′-quencher dye is included in the PCR reaction.
- a 5′-reporter dye e.g., a fluorescent dye
- a 3′-quencher dye is included in the PCR reaction.
- the 5′-3′ nucleolytic activity of the AMPLITAQ GOLD polymerase cleaves the probe between the reporter and the quencher dye.
- the separation of the reporter dye from the quencher dye results in an increase of fluorescence.
- the signal accumulates with each cycle of PCR and can be monitored with a fluorimeter.
- RNA reverse-transcriptase PCR
- RNA is enzymatically converted to complementary DNA or “cDNA” using a reverse transcriptase enzyme.
- the cDNA is then used as a template for a PCR reaction.
- PCR products can be detected by any suitable method, including but not limited to, gel electrophoresis and staining with a DNA specific stain or hybridization to a labeled probe.
- the quantitative reverse transcriptase PCR with standardized mixtures of competitive templates method described in U.S. Pat. Nos. 5,639,606, 5,643,765, and 5,876,978 (each of which is herein incorporated by reference) is utilized.
- gene expression of oncogenes is detected by measuring the expression of the corresponding protein or polypeptide.
- protein expression is detected in a tissue sample.
- protein expression is detected in bodily fluids.
- the level of protein expression is quantitated.
- Protein expression may be detected by any suitable method.
- proteins are detected by their binding to an antibody raised against the protein. The generation of antibodies is well known to those skilled in the art.
- Antibody binding is detected by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
- radioimmunoassay e.g., ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays,
- antibody binding is detected by detecting a label on the primary antibody.
- the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
- the secondary antibody is labeled. Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- an automated detection assay is utilized.
- Methods for the automation of immunoassays include those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750, and 5,358,691, each of which is herein incorporated by reference.
- the analysis and presentation of results is also automated.
- software that generates an expression profile based on the presence or absence of a series of proteins corresponding to oncogenes is utilized.
- N normal
- M molar
- mM millimolar
- ⁇ M micromolar
- mol molecular weight
- mmol millimoles
- ⁇ mol micromol
- nmol nanomoles
- pmol picomoles
- g grams
- mg milligrams
- ⁇ g micrograms
- ng nanograms
- 1 or L L
- ml milliliters
- ⁇ l microliters
- cm centimeters
- mm millimeters
- ⁇ m micrometers
- nm nanometers
- ° C. degrees Centigrade
- Tissue adenocarcinoma; mammary gland; breast; pleural effusion
- Tumorigenic forms adenocarcinoma grade III
- EGF Epidermal Growth Factor
- TGF-alpha Transforming growth factor
- MCF10 cells are derived from benign breast tissue from a woman with fibrocystic disease.
- MCF10 lines consists of several lines, one is MCF10A, an immortalized normal human breast cell line. MCF10A was transformed with T24 Ha-ras to make MCF10AneoT cells.
- MCF10AT with neoplastic progression potential was derived from xenograft passaged MCF1O-AneoT. MCF10AT generates carcinoma in about 25% of xenografts.
- Fully malignant MCF10CA1 lines were derived from several xenograft passages of MCF10AT.
- MCF10CA1a forms tumors 100% of the time and it metastasizes.
- a kariotype of MCF10CA1a shows an extra copy of chromosome 1. It metastasizes into the lung 36 days after IV injection of the cells.
- a female MMTV-C-MYC transgenic mouse developed a mammary tumor.
- the tumor was isolated and a small fresh tissue is put into culture with a medium conditioned by Dr. Jushoa Liao at Karmanos Cancer Institute. This tumor cell line was established after 10 passages.
- Tissue Mouse normal mammary gland, epithelial
- This cell line is also know to overexpress c-erbB-2
- MCF7 Human breast cancer cells, MCF7, MCF10CA1a, MDA-MB 231, MDA-MB 435.eB, and human normal breast cells, MCF10A were all obtained from Karmanos Cancer Institute. All cells were cultured in DMEM/F12 media (Gibco, Md.) supplemented with 10 mM HEPES, 29 mM sodium bicarbonate, penicillin (100 units/ml) and streptomycin (100 ⁇ g/ml). In addition, 10% calf serum, 10 ⁇ g/ml insulin (Sigma Chemical, St Louis, Mo.), and 0.5 nM estradiol was used in MCF7 media.
- MCF10Cala 5% horse serum and insulin (10 ⁇ g/ml) was used for MCF10Cala, and 10% fetal calf serum was used for MDA-MB 231 and 435 lines.
- MCF 1.0A culture was supplemented with 5% horse serum, insulin. (10 ⁇ g/ml), 100 ng/ml cholera enterotoxin (Calbiochem, Calif.), 0.5 ⁇ g/ml hydrocortisone (Sigma Chemical) and 20 ng/ml epidermal growth factor (Sigma Chemical). All flasks and plates were incubated in a humidified atmosphere of 95% air and 5% CO 2 at 37° C.
- MYC-MT-1 cells were also cultured in DMEM/F12 media containing 10 ng/ml EGF (epithelial growth factor), 1 nM estradiol, 10 ⁇ g/ml insulin and 10% FBS (fetal bovine serum).
- EGF epidermal growth factor
- FBS fetal bovine serum
- BxPC-3 pancreatic carcinoma cell line and BT-474, breast tumor cell line were cultured in RPMI 1640 with 10% FBS.
- Breast tumor cell line, T-47D was cultured in the same media as BT-474 with the addition of 2.5 ⁇ g/ml insulin.
- NMuMG (normal mouse mammary gland cells) cell line was grown in DMEM media with 4.5 g/l glucose, 10 ⁇ g/ml insulin and 10% FBS.
- All the above cells were seeded at 2500 to 5,000 cells/well in 96 well plates.
- the cells were treated with oligonucleotide compounds in fresh media (100 ⁇ l total volume) 24 hours after seeding.
- the media was replaced with fresh media without oligonucleotides 24 hours after treatment and every 48 hours for 6 to 7 days or until the control cells were 80 to 100% confluent.
- the inhibitory effect of oligonucleotide was evaluated using an MTT staining technique.
- FSCCL cells grow as a single cell suspension in tissue culture. The culture was maintained in RPMI 1640 supplemented with 10% fetal bovine serum, 1% L-glutamine, 100 units/ml penicillin and 1.00 ⁇ g/ml streptomycin. FSCCL cells were treated in 24 well plates (2 ⁇ 10 5 cells/well/ml) with oligonucleotide compounds and incubated in a humidified atmosphere of 95% air and 5% CO 2 at 37° C. The cells were counted every 24 hours using a hemocytometer.
- oligonucleotides were synthesized, gel purified anal lyophilized by BIOSYNTHESIS (Lewisville, Tex.) or Qiagen (Valencia, Calif.). Methylated oligonucleotides were methylated at all CpG sites. Methylated Oligonucleotides were dissolved in pure sterile water (Gibco, Invitrogen Corporation) and used to treat cells in culture.
- MTT 3-[4,5-Dimethyl-thiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) purchased from Sigma Chemical (St. Louis, Mo.). Cells were resuspended in culture media at 50,000 cells/ml and 100 ⁇ l was distributed into each well of a 96-well, flat bottomed plate (Costar Corning, N.Y., USA) and incubated for 24 hours. Media was changed to 100 ⁇ l fresh media containing the desired concentration of oligonucleotides and incubated for 24 hours. Controls had media with pure sterile water equal to the volume of oligonucleotide solution.
- the media was changed without further addition of oligonucleotides every 24 hours until the control cultures were confluent (6 to 7 days). Thereafter the media was removed and plates were washed two times with phosphate-buffered saline (PBS) and 100 ⁇ l of serum free media containing 0.5 mg/ml MTT dye was added into each well and incubated for 1 hour at 37° C. The media with dye was removed, washed with PBS and 100 ⁇ l of dimethyl sulfoxide (DMSO) was added to solubilize the reactive dye. The absorbance values were read using an automatic multiwell spectrophotometer (Bio-Tek Microplate Autoreader, Winooski, Vt., USA). Each treatment was repeated at least 3 times with 8 independent wells each time.
- PBS phosphate-buffered saline
- DMSO dimethyl sulfoxide
- the cells were seeded and cultured in T25 tissue culture flasks (Costar, Corning, N.Y., USA) at 200,000 cells/flask. The cells were allowed to attach for 24 hours. The media was replaced with fresh media containing 10 to 20 ⁇ M oligonucleotides and incubated for 24 hours. The media was changed every 48 hours without further addition of inhibitors and cell cultures were continued until the control flasks were confluent (6-7 days). Cells were harvested using 1 ⁇ trypsin:EDTA (Invitrogen, Gibco, Md.) and collected by centrifugation at 2000 rpm for 5 min.
- TBSTe Tris buffered saline, Tween 20
- Antibodies to human c-myc, c-ha-ras and erbB-2 were mice IgG (Pharmingen San Diego, Calif.).
- Membranes were washed 3 times, 15 min each in TBST, then incubated with secondary antibodies conjugated with peroxidase for 1 hr.
- the membranes were washed 5 times, 10 min each in TBST and incubated with 2 ml each of Lumino/Enhancer and Stable peroxide solution (PERCE) for 1 min.
- the membranes were exposed to X-ray film for 2 min (exposure time is adjusted from 10 seconds up to 24 hr if necessary).
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-ki-Ras gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 13 and 19 . The sequences of the oligonucleotides targeted against c-ki-Ras as well as the sequence of c-ki-Ras gene are shown in FIGS. 5 and 6 .
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the bcl-2 gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 14 and 20 . The sequences of the oligonucleotides targeted against bcl-2 as well as the sequence of bcl-2 gene are shown in FIGS. 1 and 2 .
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-ha-Ras gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 16 and 22 . The sequences of the oligonucleotides targeted against c-ha-Ras as well as the sequence of c-ha-Ras gene are shown in FIGS. 7 and 8 .
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-erbB-2 gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 15 and 21 . The sequences of the oligonucleotides targeted against c-erbB-2 as well as the sequence of c-erbB-2 gene are shown in FIGS. 3 and 4 .
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-myc gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 17 and 23 . The sequences of the oligonucleotides targeted against c-myc as well as the sequence of c-myc gene are shown in FIGS. 9 and 10 .
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the TGF- ⁇ gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in FIGS. 18 and 24 . The sequences of the oligonucleotides targeted against TGF- ⁇ as well as the sequence of TGF- ⁇ gene are shown in FIGS. 11 and 12 .
- This example describes the inhibition of growth of lymphoma cell lines by non-methylated oligonucleotides targeted towards Bcl-2.
- the MABL2 oligonucleotide is targeted to the promoter region of Bcl-2 [5′-CAX GCA XGX GCA TCC CXG CCX GTG-3′].
- Pho-Mabl-2 is an unmethylated version of MABL-2 [5′-CAC GCA CGC GCA TCC CCG CCC GTG-3′].
- WSU-FSCCL derived from human B cell lymphoma (low-grade follicular small-cleaved cell lymphoma). The experimental protocol is shown in Table 2. TABLE 2 Target Viability Harvest Group Gene Compound Cells Conc.
- the results are shown in FIG. 31 .
- the results demonstrate that the unmethylated oligonucleotide directed against Bcl-2 is as effective as the methylated oligonucleotide in inhibiting cell growth.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- The present invention relates to methods and compositions for the inhibition of gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in cancers.
- Oncogenes have become the central concept in understanding cancer biology and may provide valuable targets for therapeutic drugs. All oncogenes and their products operate inside the cell. This makes protein-based drugs ineffective since their specificity involves ligand-receptor recognition.
- Antisense oligodeoxyribonucleotides (oligonucleotides) are under investigation of therapeutic compound for specifically targeting oncogenes (Wickstrom, E. (ed). Prospects for antisense nucleic acid therapy of cancer and Aids. New York: Wiley-Liss, Inc. 1991; Murray, J. A. H. (ed). Antisense RNA and DNA New York: Wiley-Liss, Inc. 1992). Antisense drugs are modified synthetic oligonucleotides that work by interfering with ribosomal translation of the target mRNA. The antisense drugs developed thus far destroy the targeted mRNA by binding to it and triggering ribonuclease H(RNase H) degradation of mRNA. Oligonucleotides have a half-life of about 20 minutes and they are therefore rapidly degraded in most cells (Fisher, T. L. et al., Nucleic Acids Res. 21:3857-3865 (1993)). To increase the stability of oligonucleotides, they are often chemically modified, e.g., they are protected by a sulfur replacing one of the phosphate oxygens in the backbone (phosphorothioate) (Milligan, J. F. et al., J. Med. Chem. 36:1923-1937 (1993); Wagner, R. W. et al., Science 260:1510-1513 (1993)). However, this modification can only slow the degradation of antisense and therefore large dosages of antisense drug are required to be effective.
- Despite the optimism surrounding the use of antisense therapies, there are a number of serious problems with the use of antisense drugs such as difficulty in getting a sufficient amount of antisense into the cell, non-sequence-specific effects, toxicity due to the large amount of sulfur containing phosphothioates oligonucleotides and their inability to get into their target cells, and high cost due to continuous delivery of large doses. An additional problem with antisense drugs has been their nonspecific activities.
- What is needed are additional non-protein based cancer therapeutics that target oncogenes. Therapeutics that are effective in low doses and that are non-toxic to the subject are particularly needed.
- The present invention relates to methods and compositions for the inhibition of gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in cancers.
- In some embodiments, the present invention provides a composition comprising a first oligonucleotide that hybridizes to the promoter region of a Her-2 gene (e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38). In some embodiments, at least one of the cytosine bases in the first oligonucleotide is 5-methylcytosine. In some embodiments, all of the cytosine bases in the first oligonucleotide are 5-methylcytosine. In some preferred embodiments, the hybridization of the first oligonucleotide to the promoter region of the Her-2 gene inhibits expression of the Her-2 gene. In some embodiments, the Her-2 gene is on a chromosome of a cell, and wherein the hybridization of the first oligonucleotide to the promoter region of the Her-2 gene reduces proliferation of the cell. In some embodiments, the composition further comprises a second oligonucleotide. In some embodiments, at least one of the cytosine bases in the second oligonucleotide is 5-methylcytosine. In some embodiments, all of the cytosine bases in the second oligonucleotide are 5-methylcytosine. In some embodiments, the second oligonucleotide comprises SEQ ID NOs: 31, 32, 35, 36, 37, or 38, but is different than the first oligonucleotide (e.g., if the second oligonucleotide has the sequence of SEQ ID NO:31, the first oligonucleotide has a sequence other than SEQ ID NO:31). In some embodiments, the second oligonucleotide hybridizes to a promoter region of a second gene, wherein the second gene is not Her-2. In some embodiments, the second gene is an oncogene (e.g., c-ki-Ras, c-myc, bcl-2, c-Ha-ras, or TGF-α).
- In other embodiments, the present invention provides a composition comprising an oligonucleotide that hybridizes to a promoter region of a c-myc gene at a position comprising between nucleotides 205-344 of SEQ ID NO:29 or between nucleotides 382-435 of SEQ ID NO:29.
- In yet other embodiments, the present invention provides a method, comprising: providing an oligonucleotide that hybridizes to the promoter region of a Her-2 gene (e.g., SEQ ID NOs: 31, 32, 35, 36, 37, or 38) and a cell comprising a Her-2 gene capable of expression, wherein the cell is capable of proliferation; and introducing the oligonucleotide to the cell. In some embodiments, the oligonucleotide is between 15 and 30 bases in length. In some embodiments, the oligonucleotide hybridizes to the promoter region of the c-myc gene at a position comprising between nucleotides 205-344 of SEQ ID NO:29 or between nucleotides 382-435 of SEQ ID NO:29.
- In some embodiments, the introducing results in the reduction of proliferation of the cell. In certain embodiments, the introducing results in inhibition of expression of the Her-2 gene. In some embodiments, the cell is a cancer cell. In some embodiments, the cancer is pancreatic cancer, colon cancer, breast cancer, bladder cancer, lung cancer, leukemia, prostate, lymphoma, ovarian, or melanoma. In other embodiments, the cell is in a host animal (e.g., a non-human mammal or a human). In some embodiments, the oligonucleotide is introduced to the host animal at a dosage of between 0.01 μg to 100 g, and preferably between 1 mg to 100 mg per kg of body weight. In some embodiments, the oligonucleotide is introduced to the host animal one or more times per day. In other embodiments, the oligonucleotide is introduced to the host animal continuously (e.g., for a period of between 2 hours and 2 weeks). In other embodiments, the cell is in cell culture. In certain embodiments, the method further comprises the step of introducing a test compound to the cell. In some embodiments, the test compound is a known chemotherapy agent.
- In some embodiments, the method further provides a drug delivery system. In some embodiments, the drug delivery system comprises a liposome (e.g., a liposome comprising a neutral lipid or a lipid like compound). In some embodiments, the drug delivery system comprises a cell targeting component (e.g., a ligand or ligand like molecule for a cell surface receptor or a nuclear receptor). In certain embodiments, the drug delivery system is for use in vivo, and the oligonucleotide and the liposome are present in the ratio of from 2:1 to 1:3/1 μg to 100 mg per kg body weight.
- In still further embodiments, the present invention provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene. In some embodiments, at least one (e.g., all) of the cytosine bases in the oligonucleotide are 5-methylcytosine. In some embodiments, the oligonucleotide is completely complementary to the promoter region of the Her-2 gene. In other embodiments, the oligonucleotide is partially complementary to the promoter region of the Her-2 gene. For example, in certain embodiments, the oligonucleotide contains one mismatch to the promoter region of the Her-2 gene. In some preferred embodiments, the oligonucleotide is complementary only to the promoter region of the Her-2 gene and is not completely complementary to other regions of the human genome. In some embodiments, the oligonucleotide is between 10 nucleotides and 60, and preferably between 15 and 35 nucleotides in length.
- The present invention further provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene under conditions such that expression of the Her-2 gene is inhibited.
- The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene located on a chromosome of a cell under conditions such that proliferation of the cell is reduced.
- The present invention also provides a composition comprising a first oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and a second oligonucleotide, the second oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine.
- In certain embodiments, the present invention provides a kit comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a Her-2 gene, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and instructions for using the kit for reducing proliferation of a cell comprising a Her-2 gene on a chromosome of the cell or inhibiting gene expression. In some embodiments, the composition in the kit are used for treating cancer in a subject and the instructions comprise instructions for using the kit to treat cancer in the subject. In some embodiments, the instructions are instructions required by the U.S. Food and Drug Agency for labeling of pharmaceuticals.
- The present invention also provides a method, comprising: providing a biological sample from a subject diagnosed with a cancer; and reagents for detecting the present or absence of expression of a oncogene in the sample; and detecting the presence or absence of expression of an oncogene in the sample; administering an oligonucleotide that hybridizes under physiological conditions to the promoter region of an oncogene expressed in the biological sample, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine to the subject.
- The present invention additionally provides a method of inhibiting the expression of a gene in a subject (e.g., for the treatment of cancer or other hyperproliferative disorders) comprising providing an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene involved in cancer or a hyperproliferative disorder expressed in the biological sample, the oligonucleotide comprising at least on CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and administering the oligonucleotide to the subject under conditions such that expression of the gene is inhibited. In some embodiments, the subject is a human.
- In yet further embodiments, the present invention provides a method of screening compounds comprising providing a cell comprising a suspected oncogene; and an oligonucleotide that hybridizes to the promoter region of the gene; and administering the oligonucleotide to the cell; and determining if proliferation of the cell is inhibited in the presence of the oligonucleotide relative to the absence of the oligonucleotide. In some embodiments, the cell is in culture (e.g., a cancer cell line). In other embodiments, the cell is in a host animal (e.g., a non-human mammal). In some embodiments, the method is a high-throughput screening method.
-
FIG. 1 shows the nucleic acid sequence of the bcl-2 gene (SEQ ID NO: 1). -
FIG. 2 shows the sequences of antigenes to bcl-2 used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 3 shows the nucleic acid sequence of the c-erbB-2 (Her-2) gene (SEQ ID NO:29). -
FIG. 4 shows the sequences of antigenes to c-erbB-2 used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 5 shows the nucleic acid sequence of the c-ki-Ras gene (SEQ ID NO:46). -
FIG. 6 shows the sequences of antigenes to c-ki-Ras used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 7 shows the nucleic acid sequence of the c-Ha-Ras gene (SEQ ID NO:66). -
FIG. 8 shows the sequences of antigenes to c-Ha-Ras used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 9 shows the nucleic acid sequence of the c-myc gene (SEQ ID NO:108). -
FIG. 10 shows the sequences of antigenes to c-myc used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 11 shows the nucleic acid sequence of the TGF-α gene (SEQ ID NO:131). -
FIG. 12 shows the sequences of antigenes to TGF-α used in some embodiments of the present invention. X refers to a methylated C nucleotide. -
FIG. 13 shows the inhibition of expression of cell growth by antigenes to c-ki-Ras used in some embodiments of the present inventionFIG. 14 shows the inhibition of expression of cell growth by antigenes to bcl-2 used in some embodiments of the present invention. -
FIG. 15 shows the inhibition of expression of cell growth by antigenes to c-erb-2 used in some embodiments of the present invention. -
FIG. 16 shows the inhibition of expression of cell growth by antigenes to c-Ha-Ras used in some embodiments of the present invention. -
FIG. 17 shows the inhibition of expression of cell growth by antigenes to c-myc used in some embodiments of the present invention. -
FIG. 18 shows the inhibition of expression of cell growth by antigenes to TGF-α used in some embodiments of the present invention. -
FIG. 19 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-ki-Ras. -
FIG. 20 shows the dose response curve of inhibition of expression of cell growth of FSCCL cells (A) and MCF-7 cells (B) by antigenes to bcl-2. -
FIG. 21 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-erb-2. -
FIG. 22 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-Ha-Ras used. -
FIG. 23 shows the dose response curve of inhibition of expression of cell growth by antigenes to c-myc. -
FIG. 24 shows the dose response curve of inhibition of expression of cell growth of T47D cells (A) and MDA-MB-231 cells (B) by antigenes to TGF-α. -
FIG. 25 shows exemplary variants of antigenes to c-ki-Ras. -
FIG. 26 shows exemplary variants of antigenes to bcl-2. -
FIG. 27 shows exemplary variants of antigenes to c-erb-2. -
FIG. 28 shows exemplary variants of antigenes to c-ha-ras. -
FIG. 29 shows exemplary variants of antigenes to c-myc. -
FIG. 30 shows exemplary variants of antigenes to TGF-α. -
FIG. 31 shows inhibition of lymphoma cells by non-methylated oligonucleotides targeted toward Bcl-2. - To facilitate an understanding of the present invention, a number of terms and phrases are defined below:
- As used herein, the term “under conditions such that expression of said gene is inhibited” refers to conditions where an oligonucleotide of the present invention hybridizes to a gene (e.g., the promoter region of the gene) and inhibits transcription of the gene by at least 10%, preferably at least 25%, even more preferably at least 50%, and still more preferably at least 90% relative to the level of transcription in the absence of the oligonucleotide. The present invention is not limited to the inhibition of expression of a particular gene. Exemplary genes include, but are not limited to, c-ki-Ras, c-Ha-ras, c-myc, her-2, TGF-α, and bcl-2.
- As used herein, the term “under conditions such that growth of said cell is reduced” refers to conditions where an oligonucleotide of the present invention, when administered to a cell (e.g., a cancer) reduces the rate of growth of the cell by at least 10%, preferably at least 25%, even more preferably at least 50%, and still more preferably at least 90% relative to the rate of growth of the cell in the absence of the oligonucleotide.
- The term “epitope” as used herein refers to that portion of an antigen that makes contact with a particular antibody.
- When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as “antigenic determinants”. An antigenic determinant may compete with the intact antigen (i.e., the “immunogen” used to elicit the immune response) for binding to an antibody.
- As used herein, the term “subject” refers to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
- As used herein, the terms “computer memory” and “computer memory device” refer to any storage media readable by a computer processor. Examples of computer memory include, but are not limited to, RAM, ROM, computer chips, digital video disc (DVDs), compact discs (CDs), hard disk drives (HDD), and magnetic tape.
- As used herein, the term “computer readable medium” refers to any device or system for storing and providing information (e.g., data and instructions) to a computer processor. Examples of computer readable media include, but are not limited to, DVDs, CDs, hard disk drives, magnetic tape and servers for streaming media over networks.
- As used herein, the terms “processor” and “central processing unit” or “CPU” are used interchangeably and refer to a device that is able to read a program from a computer memory (e.g., ROM or other computer memory) and perform a set of steps according to the program.
- As used herein, the term “non-human animals” refers to all non-human animals including, but are not limited to, vertebrates such as rodents, non-human primates, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, aves, etc. and and non-vertebrate animals such as drosophila and nematode. In some embodiments, “non-human animals” further refers to prokaryotes and viruses such as bacterial pathogens, viral pathogens.
- As used herein, the term “nucleic acid molecule” refers to any nucleic acid containing molecule, including but not limited to, DNA or RNA. The term encompasses sequences that include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N-6-methyladenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyluracil, dihydrouracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine.
- The term “gene” refers to a nucleic acid (e.g., DNA) sequence that comprises coding sequences necessary for the production of a polypeptide, precursor, or RNA (e.g., rRNA, tRNA). The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, immunogenicity, etc.) of the full-length or fragment are retained. The term also encompasses the coding region of a structural gene and the sequences located adjacent to the coding region on both the 5′ and 3′ ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA. Sequences located 5′ of the coding region and present on the mRNA are referred to as 5′ non-translated sequences. Sequences located 3′ or downstream of the coding region and present on the mRNA are referred to as 3′ non-translated sequences. The term “gene” encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.” Introns are segments of a gene that are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.
- As used herein, the term “heterologous gene” refers to a gene that is not in its natural environment. For example, a heterologous gene includes a gene from one species introduced into another species. A heterologous gene also includes a gene native to an organism that has been altered in some way (e.g., mutated, added in multiple copies, linked to non-native regulatory sequences, etc). Heterologous genes are distinguished from endogenous genes in that the heterologous gene sequences are typically joined to DNA sequences that are not found naturally associated with the gene sequences in the chromosome or are associated with portions of the chromosome not found in nature (e.g., genes expressed in loci where the gene is not normally expressed).
- As used herein, the term “gene expression” refers to the process of converting genetic information encoded in a gene into RNA (e.g., mRNA, rRNA, tRNA, or snRNA) through “transcription” of the gene (i.e., via the enzymatic action of an RNA polymerase), and for protein encoding genes, into protein through “translation” of mRNA. Gene expression can be regulated at many stages in the process. “Up-regulation” or “activation” refers to regulation that increases the production of gene expression products (i.e., RNA or protein), while “down-regulation” or “repression” refers to regulation that decrease production. Molecules (e.g., transcription factors) that are involved in up-regulation or down-regulation are often called “activators” and “repressors,” respectively.
- In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5′ and 3′ end of the sequences that are present on the RNA transcript. These sequences are referred to as “flanking” sequences or regions (these flanking sequences are located 5′ or 3′ to the non-translated sequences present on the mRNA transcript). The 5′ flanking region may contain regulatory sequences such as promoters and enhancers that control or influence the transcription of the gene. The 3′ flanking region may contain sequences that direct the termination of transcription, post-transcriptional cleavage and polyadenylation.
- The term “wild-type” refers to a gene or gene product isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designed the “normal” or “wild-type” form of the gene. In contrast, the term “modified” or “mutant” refers to a gene or gene product that displays modifications in sequence and or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally occurring mutants can be isolated; these are identified by the fact that they have altered characteristics (including altered nucleic acid sequences) when compared to the wild-type gene or gene product.
- As used herein, the terms “nucleic acid molecule encoding,” “DNA sequence encoding,” and “DNA encoding” refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.
- As used herein, the terms “an oligonucleotide having a nucleotide sequence encoding a gene” and “polynucleotide having a nucleotide sequence encoding a gene,” means a nucleic acid sequence comprising the coding region of a gene or in other words the nucleic acid sequence that encodes a gene product. The coding region may be present in a cDNA, genomic DNA or RNA form. When present in a DNA form, the oligonucleotide or polynucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements.
- As used herein, the term “oligonucleotide,” refers to a short length of single-stranded polynucleotide chain. Oligonucleotides are typically less than 200 residues long (e.g., between 8 and 100), however, as used herein, the term is also intended to encompass longer polynucleotide chains (e.g., as large as 5000 residues). Oligonucleotides are often referred to by their length. For example a 24 residue oligonucleotide is referred to as a “24-mer”. Oligonucleotides can form secondary and tertiary structures by self-hybridizing or by hybridizing to other polynucleotides. Such structures can include, but are not limited to, duplexes, hairpins, cruciforms, bends, and triplexes.
- In some embodiments, oligonucleotides are “antigenes.” As used herein, the term “antigene” refers to an oligonucleotide that hybridizes to the promoter region of a gene. In some embodiments, the hybridization of the antigene to the promoter inhibits expression of the gene.
- As used herein, the terms “complementary” or “complementarity” are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence “A-G-T,” is complementary to the sequence “T-C-A.” Complementarity may be “partial,” in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be “complete” or “total” complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.
- As used herein, the term “completely complementary,” for example when used in reference to an oligonucleotide of the present invention refers to an oligonucleotide where all of the nucleotides are complementary to a target sequence (e.g., a gene).
- As used herein, the term “partially complementary,” for example when used in reference to an oligonucleotide of the present invention, refers to an oligonucleotide where at least one nucleotide is not complementary to the target sequence. Preferred partially complementary oligonucleotides are those that can still hybridize to the target sequence under physiological conditions. The term “partially complementary” refers to oligonucleotides that have regions of one or more non-complementary nucleotides both internal to the oligonucleotide or at either end. Oligonucleotides with mismatches at the ends may still hybridize to the target sequence.
- The term “homology” refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is a nucleic acid molecule that at least partially inhibits a completely complementary nucleic acid molecule from hybridizing to a target nucleic acid is “substantially homologous.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous nucleic acid molecule to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target that is substantially non-complementary (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.
- When used in reference to a double-stranded nucleic acid sequence such as a cDNA or genomic clone, the term “substantially homologous” refers to any probe that can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described above.
- A gene may produce multiple RNA species that are generated by differential splicing of the primary RNA transcript. cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon “A” on
cDNA 1 whereincDNA 2 contains exon “B” instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other. - When used in reference to a single-stranded nucleic acid sequence, the term “substantially homologous” refers to any probe that can hybridize (i.e., it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described above.
- As used herein, the term “hybridization” is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids. A single molecule that contains pairing of complementary nucleic acids within its structure is said to be “self-hybridized.”
- As used herein, the term “Tm” is used in reference to the “melting temperature.” The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: Tm=81.5+0.41(% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985]). Other references include more sophisticated computations that take structural as well as sequence characteristics into account for the calculation of Tm.
- As used herein the term “stringency” is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. Under “low stringency conditions” a nucleic acid sequence of interest will hybridize to its exact complement, sequences with single base mismatches, closely related sequences (e.g., sequences with 90% or greater homology), and sequences having only partial homology (e.g., sequences with 50-90% homology). Under “medium stringency conditions,” a nucleic acid sequence of interest will hybridize only to its exact complement, sequences with single base mismatches, and closely relation sequences (e.g., 90% or greater homology). Under “high stringency conditions,” a nucleic acid sequence of interest will hybridize only to its exact complement, and (depending on conditions such a temperature) sequences with single base mismatches. In other words, under conditions of high stringency the temperature can be raised so as to exclude hybridization to sequences with single base mismatches.
- “High stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5× Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.
- “Medium stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4 H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5× Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.
- “Low stringency conditions” comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5× Denhardt's reagent [50× Denhardt's contains per 500 ml: 5 g Ficoll (
Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5×SSPE, 0.1% SDS at 42° C. when a probe of about 500 nucleotides in length is employed. - The present invention is not limited to the hybridization of probes of about 500 nucleotides in length. The present invention contemplates the use of probes between approximately 8 nucleotides up to several thousand (e.g., at least 5000) nucleotides in length. One skilled in the relevant understands that stringency conditions may be altered for probes of other sizes (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985] and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY [1989]).
- The art knows well that numerous equivalent conditions may be employed to comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, the art knows conditions that promote hybridization under conditions of high stringency (e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.) (see definition above for “stringency”).
- As used herein, the term “physiological conditions” refers to specific stringency conditions that approximate or are conditions inside an animal (e.g., a human). Exemplary physiological conditions for use in vitro include, but are not limited to, 37° C., 95% air, 5% CO2, commercial medium for culture of mammalian cells (e.g., DMEM media available from Gibco, Md.), 5-10% serum (e.g., calf serum or horse serum), additional buffers, and optionally hormone (e.g., insulin and epidermal growth factor).
- The term “isolated” when used in relation to a nucleic acid, as in “an isolated oligonucleotide” or “isolated polynucleotide” refers to a nucleic acid sequence that is identified and separated from at least one component or contaminant with which it is ordinarily associated in its natural source. Isolated nucleic acid is such present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids as nucleic acids such as DNA and RNA found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences, such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs that encode a multitude of proteins. However, isolated nucleic acid encoding a given protein includes, by way of example, such nucleic acid in cells ordinarily expressing the given protein where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature. The isolated nucleic acid, oligonucleotide, or polynucleotide may be present in single-stranded or double-stranded form. When an isolated nucleic acid, oligonucleotide or polynucleotide is to be utilized to express a protein, the oligonucleotide or polynucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide or polynucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide or polynucleotide may be double-stranded).
- As used herein, the term “purified” or “to purify” refers to the removal of components (e.g., contaminants) from a sample. For example, antibodies are purified by removal of contaminating non-immunoglobulin proteins; they are also purified by the removal of immunoglobulin that does not bind to the target molecule. The removal of non-immunoglobulin proteins and/or the removal of immunoglobulins that do not bind to the target molecule results in an increase in the percent of target-reactive immunoglobulins in the sample. In another example, recombinant polypeptides are expressed in bacterial host cells and the polypeptides are purified by the removal of host cell proteins; the percent of recombinant polypeptides is thereby increased in the sample.
- “Amino acid sequence” and terms such as “polypeptide” or “protein” are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.
- The term “native protein” as used herein to indicate that a protein does not contain amino acid residues encoded by vector sequences; that is, the native protein contains only those amino acids found in the protein as it occurs in nature. A native protein may be produced by recombinant means or may be isolated from a naturally occurring source.
- As used herein the term “portion” when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.
- The term “Southern blot,” refers to the analysis of DNA on agarose or acrylamide gels to fractionate the DNA according to size followed by transfer of the DNA from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized DNA is then probed with a labeled probe to detect DNA species complementary to the probe used. The DNA may be cleaved with restriction enzymes prior to electrophoresis. Following electrophoresis, the DNA may be partially depurinated and denatured prior to or during transfer to the solid support. Southern blots are a standard tool of molecular biologists (J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY, pp 9.31-9.58 [1989]).
- The term “Northern blot,” as used herein refers to the analysis of RNA by electrophoresis of RNA on agarose gels to fractionate the RNA according to size followed by transfer of the RNA from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized RNA is then probed with a labeled probe to detect RNA species complementary to the probe used. Northern blots are a standard tool of molecular biologists (J. Sambrook, et al., supra, pp 7.39-7.52 [1989]).
- The term “Western blot” refers to the analysis of protein(s) (or polypeptides) immobilized onto a support such as nitrocellulose or a membrane. The proteins are run on acrylamide gels to separate the proteins, followed by transfer of the protein from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized proteins are then exposed to antibodies with reactivity against an antigen of interest. The binding of the antibodies may be detected by various methods, including the use of radiolabeled antibodies.
- As used herein, the term “cell culture” refers to any in vitro culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, transformed cell lines, finite cell lines (e.g., non-transformed cells), and any other cell population maintained in vitro.
- As used, the term “eukaryote” refers to organisms distinguishable from “prokaryotes.” It is intended that the term encompass all organisms with cells that exhibit the usual characteristics of eukaryotes, such as the presence of a true nucleus bounded by a nuclear membrane, within which lie the chromosomes, the presence of membrane-bound organelles, and other characteristics commonly observed in eukaryotic organisms. Thus, the term includes, but is not limited to such organisms as fungi, protozoa, and animals (e.g., humans).
- As used herein, the term “in vitro” refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments can consist of, but are not limited to, test tubes and cell culture. The term “in vivo” refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
- The terms “test compound” and “candidate compound” refer to any chemical entity, pharmaceutical, drug, and the like that is a candidate for use to treat or prevent a disease, illness, sickness, or disorder of bodily function (e.g., cancer). Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. In some embodiments of the present invention, test compounds include antisense compounds.
- As used herein, the term “known chemotherapeutic agents” refers to compounds known to be useful in the treatment of disease (e.g., cancer). Exemplary chemotherapeutic agents affective against cancer include, but are not limited to, daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES).
- As used herein, the term “sample” is used in its broadest sense. In one sense, it is meant to include a specimen or culture obtained from any source, as well as biological and environmental samples. Biological samples may be obtained from animals (including humans) and encompass fluids, solids, tissues, and gases. Biological samples include blood products, such as plasma, serum and the like. Environmental samples include environmental material such as surface matter, soil, water, crystals and industrial samples. Such examples are not however to be construed as limiting the sample types applicable to the present invention.
- The present invention relates to methods and compositions for the treatment of cancers. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in a variety of cancers. The present invention is not limited to the treatment of a particular cancer. Any cancer can be targeted, including, but not limited to, breast cancers. The present invention is also not limited to the targeting of cancers or oncogenes. The methods and compositions of the present invention are suitable for use with any gene that it is desirable to inhibit the expression of (e.g., for therapeutic or research uses).
- I. Oncogene Targets
- In some embodiments, the present invention provides antigene inhibitors of oncogenes. The present invention is not limited to the inhibition of a particular oncogene. Indeed, the present invention encompasses antigene inhibitors to any number of oncogenes including, but not limited to, those disclosed herein.
- A. Ras
- One gene which has captured the attention of many scientists is the human proto-oncogene, c-Ha-ras. The nucleic acid sequence of the promoter region of c-H-ras is shown in
FIG. 7 . This gene acts as a central dispatcher, relaying chemical signals into cells and controlling cell division. Ras gene alteration may cause the gene to stay in the “on” position. The ras oncogene is believed to underlie up to 30% of cancer, including colon cancer, lung cancer, bladder and mammary carcinoma (Bos, Cancer Res. 49:4682-4689 [1989]). The ras oncogene has therefore become a target for therapeutic drugs. - There are several reports showing that oligonucleotides complementary to various sites of ras mRNA can inhibit synthesis of ras protein (p21), which decreases the cell proliferation rate in cell culture (U.S. Pat. No. 5,576,208; U.S. Pat. No. 5,582,986; Daska et al., Oncogene Res. 5:267-275 [1990]; Brown et al., Oncogene Res. 4:243-252 [1989]; Saison-Behmoaras et al., EMBO J. 10:1111-1116 [1991)]. Oligonucleotides complementary to the 5′ flanking region of the c-Ha-ras RNA transcript have shown to inhibit tumor growth in nude mice for up to 14 days (Gray et al., Cancer Res. 53:577-580 [1993]). It was recently reported that an antisense oligonucleotide directed to a point mutation (G>C) in
codon 12 of the c-Ha-ras mRNA inhibited cell proliferation as well as tumor growth in nude mice when it was injected subcutaneously (U.S. Pat. No. 5,576,208; U.S. Pat. No. 5,582,986; Schwab et al., Proc. Natl. Acad. Sci. USA 91:10460-10464 [1994]; each of which is herein incorporated by reference). Researchers have also reported that antisense drugs shrank ovarian tumors in small clinical trials (Roush et al., Science 276:1192-1194 [1997]). - B. Her-2
- The HER-2 (also known as neu oncogene or erbB-2) oncogene encodes a receptor-like tyrosine kinase (RTK) that has been extensively investigated because of its role in several human carcinomas (Hynes and Stern, Biochim. et Biophy. Acta 1198:165-184 [1994]; Dougall et al., Oncogene 9:2109-2123 [1994]) and in mammalian development (Lee et al., Nature 378:394-398 [1995]). The nucleic acid sequence of the promoter region of Her-2 is shown in
FIG. 3 . The sequence of the HER-2 protein was determined from a cDNA that was cloned by homology to the epidermal growth factor receptor (EGFR) mRNA from placenta (Coussens et al., Science 230:1132-1139 [1985]) and from a gastric carcinoma cell line (Yamamoto et al., Nature 319:230-234 [1986]). The HER-2 mRNA was shown to be about 4.5 kb (Coussens et al., Science 230:1132-1139 [1985]; Yamamoto et al., Nature 319:230-234 [1986]) and encodes a transmembrane glycoprotein of 185 kDa in normal and malignant human tissues (p185HER-2) (Hynes and Steen, Biochim. et Biophys. Acta 1198:165-184 [1994]; Dougall et al., Oncogene 9:2109-2123 [1994]). Overexpression of HER-2 causes phenotypic transformation of cultured cells (DiFiore et al., Science 237:178-182 [1987]; Hudziak et al., Proc. Natl. Acad. Sci. USA 84:7159-7163 [1987]) and has been associated with aggressive clinical progression of breast and ovarian cancer (Slamon et al., Science 235:177-182 [1987]; Slamon et al., Science 244:707-712 [1989]). - HER-2 is one of the most frequently altered genes in cancer. It encodes a transmembrane receptor (also known as p185) with tyrosine kinase activity and is a member of the epidermal growth factor (EGF) family, and thus is related to the epidermal growth factor receptor (EGFR or HER-1). Aberrant HER-2 gene expression is present in a wide variety of cancers and are most common in breast, ovarian and gastric cancers. HER-2 is overexpressed in 25-30% of all human breast and ovarian cancers. Levels of HER-2 overexpression correlate well with clinical stage of breast cancer, prognosis and metastatic potential. Overexpression of HER-2 is associated with lower survival rates, increased relapse rates and increased metastatic potential. Tan et al., (Cancer Res., 57:1199 [1997]) have shown that overexpression of the HER-2 gene increases the metastatic potential of breast cancer cells without increasing their transformation ability.
- Aberrant expression of HER-2 includes both increased expression of normal HER-2 and expression of mutant HER-2. Activation of the HER-2 proto-oncogene can occur by any of three mechanisms—point mutation, gene amplification and overexpression. Gene amplification is the most common mechanism. Unlike the other EGF family members for whom ligand activation is necessary for promoting transformation, overexpression of HER-2 alone is sufficient for transformation (Cohen, et al., J. Biol. Chem., 271:30897 [1996]).
- Several therapeutic approaches have been used to reduce levels of the HER-2 gene product. The
adenovirus type 5 gene product E1A has been studied as a potential therapeutic using a breast cancer model in nude mice. This gene product can repress HER-2/neu overexpression by repressing HER-2/neu promoter activity, and suppress the tumorigenic potential of HER-2/neu-overexpressing ovarian cancer cells. In mice bearing HER-2/neu-overexpressing breast cancer xenografts, E1A delivered either by adenovirus or liposome significantly inhibited tumor growth and prolonged mouse survival compared with the controls (Chang et al., Oncogene 14:561 [1997]) - Clinical trials have been conducted to evaluate a bispecific antibody which targets the extracellular domains of both the HER-2/neu protein product and Fc gamma RIII (CD16), the Fc gamma receptor expressed by human natural killer cells, neutrophils, and differentiated mononuclear phagocytes (Weiner et al., J. Hematotherapy, 4:471 [1995]).
- Overexpression of HER-2 has also been found to be associated with increased resistance to chemotherapy. Thus, patients with elevated levels of HER-2 respond poorly to many drugs. Methods used to inhibit HER-2 expression have been combined with commonly used chemotherapeutic agents (Ueno et al., Oncogone 15:953 [1997]). Combining the
adenovirus type 5 gene product, E1A, with taxol showed a synergistic effect in human breast cancer cells. Zhang et al., (Oncogene, 12:571 [1996]) demonstrated that emodin, a tyrosine-specific inhibitor, sensitized non-small cell lung cancer (NSCLC) cells to a variety of chemotherapeutic drugs, including cisplatin, doxorubicin and etoposide. A HER-2 antibody was found to increase the efficacy of tamoxifen in human breast cancer cells (Witters et al., Breast Cancer Res. and Treatment, 42:1 [1997]). - Oligonucleotides have also been used to study the function of HER-2. A triplex-forming oligonucleotide targeted to the HER-2 promoter, 42 to 69 nucleotides upstream of the mRNA transcription start site was found to inhibit HER-2 expression in vitro (Ebbinghaus et al., J. Clin. Invest., 92:2433 [1993]). Porumb et al. (Cancer Res., 56:515 [1996]) also used a triplex-forming oligonucleotide targeted to the same HER-2 promoter region. Decreases in HER-2 mRNA and protein levels were seen in cultured cells. Juhl et al. (J. Biol. Chem., 272:29482 [1997]) used anti-HER-2 ribozymes targeted to a central region of the HER-2 RNA just downstream of the transmembrane region of the protein to demonstrate a reduction in HER-2 mRNA and protein levels in human ovarian cancer cells. A reduction in tumor growth in nude mice was also seen.
- An antisense approach has been used as a potential therapeutic for HER-2 overexpressing cancers. Pegues et al. (Cancer Lett., 117:73 [1997]) cloned a 1.5 kb fragment of HER-2 in an antisense orientation into an expression vector; transfecting of this construct into ovarian cancer cells resulted in a reduction of anchorage-independent growth. Casalini et al. (Int. J. Cancer 72:631 [1997]) used several human HER-2 antisense vector constructs, containing HER-2 fragments from 151 bp to 415 bp in length, to demonstrate reduction in HER-2 protein levels and anchorage-independent growth in lung adenocarcinoma cells. Colomer et al. (Br. J. Cancer, 70:819 [1994]) showed that phosphodiester antisense oligonucleotides targeted at or immediately downstream of, the translation initiation codon inhibited proliferation of human breast cancer cells by up to 60%. Wiechen et al. (Int. J. Cancer 63:604 [1995]) demonstrated that an 18-nucleotide phosphorothioate oligonucleotide targeted to the coding region, 33 nucleotides downstream of the translation initiation codon, of HER-2 reduced anchorage-independent growth of ovarian cancer cells. Bertram et al. (Biochem. Biophys. Res. Commun., 200:661 [1994]) used antisense phosphorothioate oligonucleotides targeted to the translation initiation region and a sequence at the 3′ part of the translated region of the mRNA which has high homology to a tyrosine kinase consensus sequence, and demonstrated a 75% reduction in HER-2 protein levels in human breast cancer cells. Liu et al., (Antisense and Nucleic Acid Drug Develop., 6:9 [1996]) used antisense phosphorothioate oligonucleotides targeted to the 5′ cap site and coding region. The most effective oligonucleotide, targeted to the 5′ cap site, reduced HER-2 protein expression by 90%. Cell proliferation was also reduced by a comparable amount. Vaughn et al. (Nuc. Acids. Res., 24:4558 [1996]) used phosphorothioate, phosphorodithioate and chimeric antisense oligonucleotides targeted at or adjacent to (either side) the translation initiation region of HER-2. An alternating dithioate/diester oligonucleotide targeted to the translation initiation region worked slightly better than an all phosphorothioate oligonucleotide. Brysch et al. (Cancer Gene Ther., 1: 99 [1994]) used chemically modified antisense oligonucleotides targeted to the translation initiation codon of HER-2 to reduce protein levels and cause growth arrest of human breast cancer cell line.
- C. C-Myc
- The c-myc gene product is encoded by an immediate early response gene, the expression of which can be induced by various mitogens. The nucleic acid sequence of the promoter region of the c-myc gene is shown in
FIG. 9 . C-myc expression is involved in the signal transduction pathways leading to cell division. Studies have demonstrated that proliferating cells have higher levels of c-myc mRNA and c-myc protein than do quiescent cells. Antibodies directed against the human c-myc protein are known to inhibit DNA synthesis in nuclei isolated from human cells. Conversely, constitutive expression of c-myc produced by gene transfer inhibits induced differentiation of several cell lines. Constitutive expression of c-myc predisposes transgenic mice to the development of tumors. - Some studies have suggested that the c-myc gene product may play a proliferative role in SMCs. Balloon de-endothelialization and injury of rat aortas is known to increase c-myc mRNA expression of vascular SMC prior to their subsequent proliferation and migration. Also, SMCs in culture proliferate when exposed to several mitogens, including PDGF, FGF, EGF, IGF-1 and to serum. Each of these mitogens has been found to be capable of increasing the expression in other cell lines of either c-myc protein, c-myc mRNA, or both. Additionally, blood serum has been found to increase c-myc mRNA levels in SMCs.
- Harel-Bellan et al. (J. Immun. 140; 2431-2435 (1988)) demonstrated that antisense oligonucleotides complementary to c-myc mRNA effectively inhibited the translation thereof in human T cells. These T cells were prevented from entering the S phase of cell division. c-myc proto-oncogene sequences are described in Marcu et al., Ann. Rev. Biochem., 61:809-860 [1992]; Watt et al., Nature, 303:725-728 [1983)]; Battey et al., Cell, 34:779-787 (1983); and Epstein et al, NTIS publication PB93-100576
- D. Bcl2
- In many types of human tumors, including lymphomas and leukemias, the human bcl-2 gene is overexpressed, and may be associated with tumorigenicity (Tsujimoto et al., Science 228:1440-1443 [1985]). The nucleic acid sequence of the promoter region of bcl-2 is shown in
FIG. 1 . High levels of expression of the human bcl-2 gene have been found in all lymphomas with t (14; 18) chromosomal translocations including most follicular B cell lymphomas and many large cell non-Hodgkin's lymphomas. High levels of expression of the bcl-2 gene have also been found in certain leukemias that do not have a t(14; 18) chromosomal translation, including most cases of chronic lymphocytic leukemia acute, many lymphocytic leukemias of the pre-B cell type, neuroblastomas, nasophryngeal carcinomas, and many adenocarcinomas of the prostate, breast, and colon. (Reed et al., Cancer Res. 51:6529 [1991]; Yunis et al., New England J. Med. 320:1047; Campos et al., Blood 81:3091-3096 [1993]; McDonnell et al., Cancer Res. 52:6940-6944 [1992); Lu et al., Int. J. Cancer 53:29-35 [1993]; Bonner et al., Lab Invest. 68:43A [1993]). - E. TGF-α
- Transforming Growth Factor Alpha (TGF-α) is a polypeptide of 50 amino acids. The nucleic acid sequence of the TGF-α promoter is shown in
FIG. 11 . It was first isolated from a retrovirus-transformed mouse cell line and subsequently was identified in human tumor cells, in early rat embryo cells and in cell cultures from the human pituitary gland. TGF-α is closely related to Epidermal Growth Factor (EGF), both structurally and functionally, and both bind to the same receptor, i.e., Epidermal Growth Factor Receptor (EGFR). - The sequence and three dimensional structure of both EGF and TGF-α have been determined (Campbell et al., Prog. Growth Factor Res. 1:13 [1989]). TGF-α is a 50 amino acid polypeptide having about 40% homology of residues with EGF. Both peptides are characterized by three well defined loops (denoted A, B and C) and have three intramolecular disulphide bonds.
- Several growth factors, including TGF-α and EGF, are believed to exert their biological effects via interaction with the Epidermal Growth Factor Receptor (EGF Receptor). The EGF Receptor is a
Type 1 receptor tyrosine kinase. The EGF Receptor and its ligands are of interest for their roles in normal physiological processes as well as in hyperproliferative and neoplastic diseases. - The in vivo precursor of TGF-α is a 160 amino acid residue membrane-bound protein (pro-TGF-.alpha.) that is cleaved to yield a soluble compound (Massague, J. Biol. Chem., 265:21393-21396 [1990]). This cleavage removes an extracellular portion comprised of 50 amino acids with a molecular weight of 6 Kd and is considered to be an important regulatory event (Pandiella et al., Proc. Natl. Acad. Sci. USA, 88:1726-1730 [1990]) that can be stimulated by phorbol esters acting via protein kinase C (Pandiella et al., J. Biol. Chem., 266:5769-5773 [1991]).
- Cultured human prostatic tumor lines contain elevated levels of TGF-α mRNA and proliferate in response to TGF-α (Wilding et al., The Prostate, 15:1-12 [1989]). TGF-α appears to have both autocrine and paracrine function, stimulating physiologic activities such as cell division and angiogenesis. When induced in transgenic mice, TGF-α produced epithelial hyperplasia and focal dysplastic changes that resembled carcinoma in situ (Sandgren et al., Cell, 61:1121-1135 [1990]).
- F. c-ki-RAS
- The c-Ki-RAS (KRAS) oncogene is expressed ubiquitously. KRAS, with a length of more than 30 kb, is much larger than HRAS or NRAS. The sequence of the promoter region of c-ki-ras is shown in
FIG. 5 . Although the 3 ras genes, HRAS, KRAS, and NRAS, have different genetic structures, all code for proteins of 189 amino acid residues, generically designated p21. These genes acquire malignant properties by single point mutations that affect the incorporation of the 12th or 61 st amino acid residue of their respective p21. KRAS is involved in malignancy much more often than is HRAS. In a study of 96 human tumors or tumor cell lines in the NIH 3T3 transforming system, (Pulciani et al., Nature 300: 539 (1982) found a mutated HRAS locus only in T24 bladder cancer cells, whereas transforming KRAS genes were identified in 8 different carcinomas and sarcomas. - In a serous cystadenocarcinoma of the ovary, Feig et al. (Science 223: 698 (1984)) showed the presence of an activated KRAS oncogene not activated in normal cells of the same patient. The transforming gene product displayed an electrophoretic mobility in SDS-polyacrylamide gels that differed from the mobility of KRAS transforming proteins in other tumors. Thus, a previously undescribed mutation was responsible for activation of KRAS in this ovarian carcinoma. To study the role of oncogenes in lung cancer, Rodenhuis et al. (New Eng. J. Med. 317: 929 (1987)) used an assay based on oligonucleotide hybridization following an in vitro amplification step. Genomic DNA was examined from 39 tumor specimens obtained at thoracotomy. The KRAS gene was found to be activated by point mutations in
codon 12 in 5 of 10 adenocarcinomas. Two of these tumors were less than 2 cm in size and had not metastasized. No HRAS, KRAS, or NRAS mutations were observed in 15 squamous cell carcinomas, 10 large cell carcinomas, 1 carcinoid, 2 metastatic adenocarcinomas from primary tumors outside the lung, and 1 small cell carcinoma. An approximately 20-fold amplification of the unmutated KRAS gene was observed in a tumor that proved to be a solitary lung metastasis of a rectal carcinoma. Yanez et al. (Oncogene 1:315 (1987)) found mutations incodon 12 of the KRAS gene in 4 of 16 colon cancers, 2 of 27 lung cancers, and 1 of 8 breast cancers; no mutations were found atposition 61. Of the 6 possible amino acid replacements incodon 12, all but one were represented in the 7 mutations identified. - G. Other Oncogene Targets
- The present invention is not limited to the oncogenes described above. The methods of the present invention are suitable for use with any oncogene with a known promoter region. Exemplary oncogenes included, but are not limited to, BCR/ABL, ABL1/BCR, ABL, BCL1, CD24, CDK4, EGFR/ERBB-1, HSTF1, INT1/WNT1, INT2, MDM2, MET, MYB, MYC, MYCN, MYCL1, RAF1, NRAS, REL, AKT2, APC, BCL2-ALPHA, BCL2-BETA, BCL3, BCR, BRCA1, BRCA2, CBL, CCND1, CDKN1A, CDKN1C, CDKN2A, CDKN2B, CRK, CRK-II, CSF1R/FMS, DBL, DDOST, DCC, DPC4/SMAD4, E-CAD, E2F1/RBAP, ELK1, ELK3, EPH, EPHAL, E2F1, EPHA3, ERG, ETS1, ETS2, FER, FGR, FLI1/ERGB2, FOS, FPS/FES, FRA1, FRA2, FYN, HCK, HEK, HER3/ERBB-2, ERBB-3, HER4/ERBB-4, HST2, INK4A, INK4B, JUN, JUNB, JUND, KIP2, KIT, KRAS2A, KRAS2B, LCK, LYN, MAS, MAX, MCC, MLH1, MOS, MSH2, MYBA, MYBB, NF1, NF2, P53, PDGFB, PIM1, PTC, RB1, RET, ROSI, SKI, SRC1, TAL1, TGFBR2, THRA1, THRB, TIAM1, TRK, VAV, VHL, WAF1, WNT2, WT1, YES1, ALK/NPM1, AMI1, AXL, FMS, GIP, GLI, GSP, HOX11, HST, IL3, INT2, KS3, K-SAM, LBC, LMO-1, LMO-2, L-MYC, LYL1, LYT-10, MDM-2, MLH1, MLL, MLM, N-MYC, OST, PAX-5, PMS-1, PMS-2, PRAD-1, RAF, RHOM-1, RHOM-2, SIS, TAL2, TAN1, TIAM1, TSC2, TRK, TSC1, STK11, PTCH, MEN1, MEN2, P57/KIP2, PTEN, HPC1, ATM, XPA/XPG, BCL6, DEK, AKAP13, CDH1, BLM, EWSR1/FLI1, FES, FGF3, FGF4, FGF6, FANCA, FLI1/ERGB2, FOSL1, FOSL2, GLI, HRAS1, HRX/MLLT1, HRX/MLLT2, KRAS2, MADH4, MAS1, MCF2, MLLT1/MLL, MLLT2/HRX, MTG8/RUNX1, MYCLK1, MYH11/CBFB, NFKB2, NOTCH1, NPM1/ALK, NRG/REL, NTRK1, PBX1/TCF3, PML/RARA, PRCA1, RUNX1, RUNX1/CBFA2T1, SET, TCF3/PBX1, TGFB1, TLX1, P53, WNT1, WNT2, WT1, αv-β3, PKCα, TNFα, Clusterin, Surviving, TGFβ, c-fos, c-SRC, and INT-1.
- II. Non-Oncogene Targets
- The present invention is not limited to the targeting of oncogenes. The methods and compositions of the present invention find use in the targeting of any gene that it is desirable to down regulate the expression of. For example, in some embodiments, the genes to be targeted include, but are not limited to, an immunoglobulin or antibody gene, a clotting factor gene, a protease, a pituitary hormone, a protease inhibitor, a growth factor, a somatomedian, a gonadotrophin, a chemotactin, a chemokine, a plasma protein, a plasma protease inhibitor, an interleukin, an interferon, a cytokine, a transcription factor, or a pathogen target (e.g., a viral gene, a bacterial gene, a microbial gene, a fungal gene).
- Examples of specific genes include, but are not limited to, ADAMTS4, ADAMTS5, APOA1, APOE, APP, B2M, COX2, CRP, DDX25, DMC1, FKBP8, GH1, GHR, IAPP, IFNA1, IFNG, IL1, Il10, IL12, IL13, IL2, IL4, IL7, IL8, IPW, MAPK14, Mei1, MMP13, MYD88, NDN, PACE4, PRNP, PSEN1, PSEN2, RAD51, RAD51C, SAP, SNRPN, TLR4, TLR9, TTR, UBE3A, VLA-4, and PTP-1B, c-RAF, m-TOR, LDL, VLDL, ApoB-100, HDL, VEGF, rhPDGF-BB, NADs, ICAM-1, MUC1, 2-dG, CTL, PSGL-1, E2F, NF-kB, HIF, and GCPRs.
- In other embodiments and gene from a pathogen is targeted. Exemplary pathogens include, but are not limited to, Human Immunodeficiency virus, Hepatitis B virus, hepatitis C virus, hepatitis A virus, respiratory syncytial virus, pathogens involved in severe acute respiratory syndrome, west nile virus, and food borne pathogens (e.g., E. coli).
- III. DNA Methylation
- In some embodiments, the present invention provides oligonucleotide therapeutics that are methylated at specific sites. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that one mechanism for the regulation of gene activity is methylation of cytosine residues in DNA. 5-methylcytosine (5-MeC) is the only naturally occurring modified base detected in DNA (Ehrlick et al., Science 212:1350-1357 (1981)). Although not all genes are regulated by methylation, hypomethylation at specific sites or in specific regions in a number of genes is correlated with active transcription (Doerfler, Annu. Rev. Biochem. 52:93-124 [1984]; Christman, Curr. Top. Microbiol. Immunol. 108:49-78 [1988]; Cedar, Cell 34:5503-5513 [1988]). DNA methylation in vitro can prevent efficient transcription of genes in a cell-free system or transient expression of transfected genes. Methylation of C residues in some specific cis-regulatory regions can also block or enhance binding of transcriptional factors or repressors (Doerfler, supra; Christman, supra; Cedar, Cell 34:5503-5513 (1988); Tate et al., Curr. Opin. Genet. Dev. 3:225-231 [1993]; Christman et al., Virus Strategies, eds. Doerfler, W. & Bohm, P. (VCH, Weinheim, N.Y.) pp. 319-333 [1993]).
- Disruption of normal patterns of DNA methylation has been linked to the development of cancer (Christman et al., Proc. Natl. Acad. Sci. USA 92:7347-7351 [1995]). The 5-MeC content of DNA from tumors and tumor derived cell lines is generally lower than normal tissues (Jones et al., Adv. Cancer Res 40:1-30 [1983]). Hypomethylation of specific oncogenes such as c-myc, c-Ki-ras and c-Ha-ras has been detected in a variety of human and animal tumors (Nambu et al., Jpn. J. Cancer (Gann) 78:696-704 [1987]; Feinberg et al., Biochem. Biophys. Res. Commun. 111:47-54 [1983]; Cheah et al., JNC173:1057-1063 [1984]; Bhave et al., Carcinogenesis (Lond) 9:343-348 [1988]. In one of the best studied examples of human tumor progression, it has been shown that hypomethylation of DNA is an early event in development of colon cancer (Goetz et al., Science 228:187-290 [1985]). Interference with methylation in vivo can lead to tumor formation. Feeding of methylation inhibitors such as L-methionine or 5-azacytodine or severe deficiency of 5-adenosine methionine through feeding of a diet depleted of lipotropes has been reported to induce formation of liver tumors in rats (Wainfan et al., Cancer Res. 52:2071s—2077s [1992]). Studies show that extreme lipotrope deficient diets can cause loss of methyl groups at specific sites in genes such as c-myc, ras and c-fos (Dizik et al., Carcinogenesis 12:1307-1312 [1991]). Hypomethylation occurs despite the presence of elevated levels of DNA MTase activity (Wainfan et al., Cancer Res. 49:4094-4097 [1989]). Genes required for sustained active proliferation become inactive as methylated during differentiation and tissue specific genes become hypomethylated and are active. Hypomethylation can then shift the balance between the two states. In some embodiment, the present invention thus takes advantage of this naturally occurring phenomena, to provide compositions and methods for site specific methylation of specific gene promoters, thereby preventing transcription and hence translation of certain genes. In other embodiments, the present invention provides methods and compositions for upregulating the expression of a gene of interest (e.g., a tumor suppressor gene) by altering the gene's methylation patterns.
- The present invention is not limited to the use of methylated oligonucleotides. Indeed, the use of non-methylated oligonucleotides for the inhibition of gene expression is specifically contemplated by the present invention. Experiments conducted during the course of development of the present invention (See e.g., Example 8) demonstrated that an unmethylated oligonucleotide targeted toward Bcl-2 inhibited the growth of lymphoma cells to a level that was comparable to that of a methylated oligonucleotide.
- IV. Oligonucleotides
- In some embodiments, the present invention provides antigene oligonucleotides for inhibiting the expression of oncogenes. Exemplary design and production strategies for antigenes are described below. The below description is not intended to limit the scope of antigene compounds suitable for use in the present invention. One skilled in the relevant recognizes that additional antigenes are within the scope of the present invention.
- A. Oligonucleotide Design
- In some embodiments, oligonucleotides are designed based on preferred design criteria. Such oligonucleotides can then be tested for efficacy using the methods disclosed herein. For example, in some embodiments, the oligonucleotides are methylated at least one, preferably at least two, and even more preferably, all of the CpG islands. In other embodiments, the oligonucleotides contain no methylation. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that preferred oligonucleotides are those that have at least a 50% GC content and at least 2 GC dinucleotides. It is preferred that oligonucleotides do not self hybridize. In some embodiments, oligonucleotides are designed with at least 1 A or T to minimize self hybridization. In some embodiments, commercially available computer programs are used to survey oligonucleotides for the ability to self hybridize. Preferred oligonucleotides are at least 10, and preferably at least 15 nucleotides and no more than 100 nucleotides in length. Particularly preferred oligonucleotides are 18-24 nucleotides in length. In some embodiments, oligonucleotides comprise the universal protein binding sequences CGCCC and CGCG or the complements thereof.
- It is also preferred that the oligonucleotide hybridize to a promoter region of a gene upstream from the TATA box of the promoter. It is also preferred that oligonucleotide compounds are not completely homologous to other regions of the human genome. The homology of the oligonucleotide compounds of the present invention to other regions of the genome can be determined using available search tools (e.g., BLAST, available at the Internet site of NCBI).
- In some embodiments, oligonucleotides are designed to hybridize to regions of the promoter region of an oncogene known to be bound by proteins (e.g., transcription factors). Exemplary oligonucleotide compounds of the present invention are shown in
FIGS. 2, 4 , 6, 8, 10, and 12. The present invention is not limited to the oligonucleotides described herein. Other suitable oligonucleotides may be identified (e.g., using the criteria described above). Exemplary oligonucleotide variants of the disclosed oligonucleotides are shown inFIGS. 25-30 . Candidate oligonucleotides may be tested for efficacy using any suitable method, including, but not limited to, those described in the illustrative examples below. Using the in vitro assay described in Examples 1 and 2 below, candidate oligonucleotides can be evaluated for their ability to prevent cell proliferation as a variety of concentrations. Particularly preferred oligonucleotides are those that inhibit gene expression of cell proliferation as a low concentration (e.g., less that 20 μM, and preferably, less than 10 μM in the in vitro assays disclosed herein). - B. Preferred Oligonucleotide Zones
- In some embodiments, regions within the promoter region of an oncogene are further defined as preferred regions for hybridization of oligonucleotides. In some embodiments, these preferred regions are referred to as “hot zones.”
- In some preferred embodiments, hot zones are defined based on oligonucleotide compounds that are demonstrated to be effective (see above section on oligonucleotides) and those that are contemplated to be effective based on the preferred criteria for oligonucleotides described above. Preferred hot zones encompass 10 bp upstream and downstream of each compound included in each hot zone and have at least 1 CG or more within an increment of 40 bp further upstream or downstream of each compound. In preferred embodiments, hot zones encompass a maximum of 100 bp upstream and downstream of each oligonucleotide compound included in the hot zone. In additional embodiments, hot zones are defined at beginning regions of each promoter. These hot zones are defined either based on effective sequence(s) or contemplated sequences and have a preferred maximum length of 200 bp. Based on the above described criteria, exemplary hot zones were designed. These hot zones are shown in Table 1. Numbering is based on the sequences described in the Figures of the present invention.
TABLE 1 Exemplary Hot Zones Gene Hot Zones Bcl-2 1-40 161-350 401-590 1002-1260 c-erbB-2 205-344 382-435 c-K-ras 1-289 432-658 c-Ha-ras 21-220 233-860 1411-1530 1631-1722 c-myc 3-124 165-629 TGF-α 1-90 175-219 261-367 431-930 964-1237
C. Preparation and Formulation of Oligonucleotides - Any of the known methods of oligonucleotide synthesis can be used to prepare the modified oligonucleotides of the present invention. In some embodiments utilizing methylated oligonucleotides the nucleotide, dC is replaced by 5-methyl-dC where appropriate, as taught by the present invention. The modified or unmodified oligonucleotides of the present invention are most conveniently prepared by using any of the commercially available automated nucleic acid synthesizers. They can also be obtained from commercial sources that synthesize custom oligonucleotides pursuant to customer specifications.
- While oligonucleotides are a preferred form of compound, the present invention comprehends other oligomeric oligonucleotide compounds, including but not limited to oligonucleotide mimetics such as are described below. The oligonucleotide compounds in accordance with this invention preferably comprise from about 18 to about 30 nucleobases (i.e., from about 18 to about 30 linked bases), although both longer and shorter sequences may find use with the present invention.
- Specific examples of preferred compounds useful with the present invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
- Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.
- Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.
- In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage (i.e., the backbone) of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science 254:1497 (1991).
- In some embodiments, oligonucleotides of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2, —NH—O—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2—, and —O—N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as—O—P—O—CH2—] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.
- Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2′ position: OH; F; O, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta 78:486 [1995]) i.e., an alkoxyalkoxy group. A further preferred modification includes 2′-dimethylaminooxyethoxy (i.e., a O(CH2)2ON(CH3)2 group), also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2.
- Other preferred modifications include 2′-methoxy(2′-O—CH3), 2′-aminopropoxy(2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
- Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.
- Another modification of the oligonucleotides of the present invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, (e.g., hexyl-5-tritylthiol), a thiocholesterol, an aliphatic chain, (e.g., dodecandiol or undecyl residues), a phospholipid, (e.g., di-hexadecyl-rac-glycerol or
triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate), a polyamine or a polyethylene glycol chain or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. - One skilled in the relevant art knows well how to generate oligonucleotides containing the above-described modifications. The present invention is not limited to the antisense oligonucleotides described above. Any suitable modification or substitution may be utilized.
- It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the present invention as described below.
- D. Cocktails
- In some embodiments, the present invention provides cocktails comprising two or more oligonucleotides directed towards promoter regions of genes (e.g., oncogenes). In some embodiments, the two oligonucleotides hybridize to different regions of the promoter of the same gene. In other embodiments, the two or more oligonucleotides hybridize to promoters of two different genes. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that the combination of two or more compounds of the present invention provides an inhibition of cancer cell growth that is greater than the additive inhibition of each of the compounds administered separately.
- V. Research Uses
- The present invention is not limited to therapeutic applications. For example, in some embodiments, the present invention provides compositions and methods for the use of oligonucleotides as a research tool.
- A. Kits
- For example, in some embodiments, the present invention provides kits comprising oligonucleotides specific for inhibition of a gene of interest, and optionally cell lines (e.g., cancer cells lines) known to express the gene. Such kits find use, for example, in the identification of metabolic pathways or the involvement of genes in disease (e.g., cancer), as well as in diagnostic applications. In some embodiments, the kits further comprise buffer and other necessary reagents, as well as instructions for using the kits.
- B. Target validation
- In some embodiments, the present invention provides methods and compositions for use in the validation of gene targets (e.g., genes suspected of being involved in disease). For example, in some embodiments, the expression of genes identified in broad screening applications (e.g., gene expression arrays) as being involved in disease is downregulated using the methods and compositions of the present invention. The methods and compositions of the present invention are suitable for use in vitro and in vivo (e.g., in a non-human animal) for the purpose of target validation. In other embodiments, the compounds of the present invention find use in transplantation research (e.g., HLA inhibition).
- C. Drug Screening
- In other embodiments, the methods and compositions of the present invention are used in drug screening applications. For example, in some embodiments, oligonucleotides of the present invention are administered to a cell (e.g., in culture or in a non-human animal) in order to inhibit the expression of a gene of interest. In some embodiments, the inhibition of the gene of interest mimics a physiological or disease condition. In other embodiments, an oncogene is inhibited. Test compounds (e.g., small molecule drugs or oligonucleotide mimetics) are then administered to the test cell and the effect of the test compounds is assayed.
- The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone, which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckennann et al., J. Med. Chem. 37: 2678-85 [1994]); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are preferred for use with peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
- Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90:6909 [1993]; Erb et al., Proc. Nad. Acad. Sci. USA 91:11422 [1994]; Zuckermann et al., J. Med. Chem. 37:2678 [1994]; Cho et al., Science 261:1303 [1993]; Carrell et al., Angew. Chem. Int. Ed. Engl. 33.2059 [1994]; Carell et al., Angew. Chem. Int. Ed. Engl. 33:2061 [1994]; and Gallop et al., J. Med. Chem. 37:1233 [1994].
- Libraries of compounds may be presented in solution (e.g., Houghten, Biotechniques 13:412-421 [1992]), or on beads (Lam, Nature 354:82-84 [1991]), chips (Fodor, Nature 364:555-556 [1993]), bacteria or spores (U.S. Pat. No. 5,223,409; herein incorporated by reference), plasmids (Cull et al., Proc. Nad. Acad. Sci. USA 89:18651869 [1992]) or on phage (Scott and Smith, Science 249:386-390 [1990]; Devlin Science 249:404-406 [1990]; Cwirla et al., Proc. Natl. Acad. Sci. 87:6378-6382 [1990]; Felici, J. Mol. Biol. 222:301 [1991]).
- VI. Compositions and Delivery
- In some embodiments, the oligonucleotide compounds of the present invention are formulated as pharmaceutical compositions for delivery to a subject as a pharmaceutical. The novel antigen compounds of the present invention find use in the treatment of a variety of disease states and conditions in which it is desirable to inhibit the expression of a gene or the growth of a cell. In some preferred embodiments, the compounds are used to treat disease states resulting from uncontrolled cell growth, for example including, but not limited to, cancer. The present invention is not limited to the treatment of a particular cancer. The oligonucleotide compounds of the present invention are suitable for the treatment of a variety of cancers including, but not limited to, breast, colon, lung, stomach, pancreatic, bladder, leukemia, and lymphoma. The below discussion provides exemplary, non-limiting examples of formulations and dosages.
- A. Pharmaceutical Compositions
- The present invention further provides pharmaceutical compositions (e.g., comprising the oligonucleotide compounds described above). The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
- Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
- Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
- The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.
- In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.
- Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), also enhance the cellular uptake of oligonucleotides.
- The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.
- Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Prefered bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate. Prefered fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcamitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also prefered are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly prefered combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylamino-methylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG).
- Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more oligonucleotide compounds and (b) one or more other chemotherapeutic agents that function by a non-oligonucleotide mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Other non-oligonucleotide chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.
- B. Delivery
- The oligonucleotide compounds of the present invention may be delivered using any suitable method. In some embodiments, naked DNA is administered. In other embodiments, lipofection is utilized for the delivery of nucleic acids to a subject. In still further embodiments, oligonucleotides are modified with phosphothiolates for delivery (See e.g., U.S. Pat. No. 6,169,177, herein incorporated by reference).
- In some embodiments, nucleic acids for delivery are compacted to aid in their uptake (See e.g., U.S. Pat. Nos. 6,008,366, 6,383,811 herein incorporated by reference). In some embodiment, compacted nucleic acids are targeted to a particular cell type (e.g., cancer cell) via a target cell binding moiety (See e.g., U.S. Pat. Nos. 5,844,107, 6,077,835, each of which is herein incorporated by reference).
- In some embodiments, oligonucleotides are conjugated to other compounds to aid in their delivery. For example, in some embodiments, nucleic acids are conjugated to polyethylene glycol to aid in delivery (See e.g., U.S. Pat. Nos. 6,177,274, 6,287,591, 6,447,752, 6,447,753, and 6,440,743, each of which is herein incorporated by reference). In yet other embodiments, oligonucleotides are conjugated to protected graft copolymers, which are chargeable” drug nano-carriers (PharmaIn). In still further embodiments, the transport of oligonucleotides into cells is facilitated by conjugation to vitamins (Endocyte, Inc, West Lafayette, Ind.; See e.g., U.S. Pat. Nos. 5,108,921, 5,416,016, 5,635,382, 6,291,673 and WO 02/085908; each of which is herein incorporated by reference). In other embodiments, oligonucleotides are conjugated to nanoparticles (e.g., NanoMed Pharmaceuticals; Kalamazoo, Mich.).
- In other embodiments, oligonucleotides are enclosed in lipids (e.g., liposomes or micelles) to aid in delivery (See e.g., U.S. Pat. Nos. 6,458,382, 6,429,200; each of which is herein incorporated by reference). In still further embodiments, oligonucleotides are complexed with additional polymers to aid in delivery (See e.g., U.S. Pat. Nos. 6,379,966, 6,339,067, 5,744,335; each of which is herein incorporated by reference and Intradigm Corp., Rockville, Md.).
- In still further embodiments, the controlled high pressure delivery system developed by Mirus (Madison, Wis.) is utilized for delivery of oligonucleotides.
- C. Dosages
- Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. The administering physician can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and the delivery means, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models or based on the examples described herein. In general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly. In some embodiments, dosage is continuous (e.g., intravenously) for a period of from several hours to several days or weeks. In some embodiments, treatment is given continuously for a defined period followed by a treatment free period. In some embodiments, the pattern of continuous dosing followed by a treatment free period is repeated several times (e.g., until the disease state is diminished).
- The treating physician can estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the subject undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μg to 100 g, preferably from 1 mg to 50 mg, and even more preferably from 6 mg to 30 mg per kg of body weight, once or more daily, to once every 20 years.
- VII. Customized Patient Care
- In some embodiments, the present invention provides customized patient care. The compositions of the present invention are targeted to specific genes unique to a patient's diseae (e.g., cancer). For example, in some embodiments, a sample of the patient's cancer or other affected tissue (e.g., a biopsy) is first obtained. The biopsy is analyzed for the presence of expression of a particular gene (e.g., oncogene). In some preferred embodiments, the level of expression of an gene in a patient is analyzed. Expression may be detected by monitoring for the presence of RNA or DNA corresponding to a particular oncogene. Any suitable detection method may be utilized, including, but not limited to, those disclosed below.
- Following the characterization of the gene expression pattern of a patient's gene of interest, a customized therapy is generated for each patient. In preferred embodiments, oligonucleotide compounds specific for genes that are aberrantly expressed in the patient (e.g., in a tumor) are combined in a treatment cocktail. In some embodiments, the treatment cocktail further includes additional chemotherapeutic agents (e.g., those described above). The cocktail is then administered to the patient as described above.
- In some embodiments, the analysis of cancer samples and the selection of oligonucleotides for a treatment compound is automated. For example, in some embodiments, a software program that analyses the expression levels of a series of oncogenes to arrive at the optimum selection and concentration of oligonucleotides is utilized. In some embodiments, the analysis is performed by the clinical laboratory analyzing the patient sample and is transmitted to a second provider for formulation of the treatment cocktail. In some embodiments, the information is transmitted over the Internet, thus allowing for the shortest possible time in between diagnosis and the beginning of treatment.
- A. Detection of RNA
- In some embodiments, detection of oncogenes (e.g., including but not limited to, those disclosed herein) is detected by measuring the expression of corresponding mRNA in a tissue sample (e.g., cancer tissue). In other embodiments, expression of mRNA is measured in bodily fluids, including, but not limited to, blood, serum, mucus, and urine. In some preferred embodiments, the level of mRNA expression in measured quantitatively. RNA expression may be measured by any suitable method, including but not limited to, those disclosed below.
- In some embodiments, RNA is detected by Northern blot analysis. Northern blot analysis involves the separation of RNA and hybridization of a complementary labeled probe. In other embodiments, RNA expression is detected by enzymatic cleavage of specific structures (INVADER assay, Third Wave Technologies; See e.g., U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069; each of which is herein incorporated by reference). The INVADER assay detects specific nucleic acid (e.g., RNA) sequences by using structure-specific enzymes to cleave a complex formed by the hybridization of overlapping oligonucleotide probes.
- In still further embodiments, RNA (or corresponding cDNA) is detected by hybridization to a oligonucleotide probe). A variety of hybridization assays using a variety of technologies for hybridization and detection are available. For example, in some embodiments, TaqMan assay (PE Biosystems, Foster City, Calif.; See e.g., U.S. Pat. Nos. 5,962,233 and 5,538,848, each of which is herein incorporated by reference) is utilized. The assay is performed during a PCR reaction. The TaqMan assay exploits the 5′-3′ exonuclease activity of the AMPLITAQ GOLD DNA polymerase. A probe consisting of an oligonucleotide with a 5′-reporter dye (e.g., a fluorescent dye) and a 3′-quencher dye is included in the PCR reaction. During PCR, if the probe is bound to its target, the 5′-3′ nucleolytic activity of the AMPLITAQ GOLD polymerase cleaves the probe between the reporter and the quencher dye. The separation of the reporter dye from the quencher dye results in an increase of fluorescence. The signal accumulates with each cycle of PCR and can be monitored with a fluorimeter.
- In yet other embodiments, reverse-transcriptase PCR (RT-PCR) is used to detect the expression of RNA. In RT-PCR, RNA is enzymatically converted to complementary DNA or “cDNA” using a reverse transcriptase enzyme. The cDNA is then used as a template for a PCR reaction. PCR products can be detected by any suitable method, including but not limited to, gel electrophoresis and staining with a DNA specific stain or hybridization to a labeled probe. In some embodiments, the quantitative reverse transcriptase PCR with standardized mixtures of competitive templates method described in U.S. Pat. Nos. 5,639,606, 5,643,765, and 5,876,978 (each of which is herein incorporated by reference) is utilized.
- B. Detection of Protein
- In other embodiments, gene expression of oncogenes is detected by measuring the expression of the corresponding protein or polypeptide. In some embodiments, protein expression is detected in a tissue sample. In other embodiments, protein expression is detected in bodily fluids. In some embodiments, the level of protein expression is quantitated. Protein expression may be detected by any suitable method. In some embodiments, proteins are detected by their binding to an antibody raised against the protein. The generation of antibodies is well known to those skilled in the art.
- Antibody binding is detected by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
- In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- In some embodiments, an automated detection assay is utilized. Methods for the automation of immunoassays include those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750, and 5,358,691, each of which is herein incorporated by reference. In some embodiments, the analysis and presentation of results is also automated. For example, in some embodiments, software that generates an expression profile based on the presence or absence of a series of proteins corresponding to oncogenes is utilized.
- In other embodiments, the immunoassay described in U.S. Pat. Nos. 5,599,677 and 5,672,480; each of which is herein incorporated by reference.
- The following examples are provided in order to demonstrate and further illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.
- In the experimental disclosure which follows, the following abbreviations apply: N (normal); M (molar); mM (millimolar); μM (micromolar); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); pmol (picomoles); g (grams); mg (milligrams); μg (micrograms); ng (nanograms); 1 or L (liters); ml (milliliters); μl (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); and ° C. (degrees Centigrade).
- Materials and Methods
- This Example describes experimental methods utilized in the below examples.
- A. Cell Lines
- Cell lines used in experiments of the present invention are described below.
- MDA-MB-231
- Tissue: adenocarcinoma; mammary gland; breast; pleural effusion
- Tumorigenic: forms adenocarcinoma grade III
- Receptors expressed: Epidermal Growth Factor (EGF) and Transforming growth factor (TGF-alpha)
- Oncogene: wnt3+ and wnt7h+
-
- Siciliano M J, Barker P E, Cailleau R. Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker.
- Cancer Res. 1979 March;39(3):919-22.
- Calleau R, Olive M, Cruciger Q V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.
- In vitro. 1978 November;14(11):911-5.
- Cruciger Q V, Pathak S, Calleau R. Human breast carcinomas: marker chromosomes involving 1q in seven cases.
- Cytogenet Cell Genet. 1976;17(4):231-5.
- Satya-Prakash K L, Pathak S, Hsu T C, Olive M, Cailleau R. Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of lq, 1 lq and HeLa-like marker chromosomes. Cancer Genet Cytogenet 1981 January;3(1):61-73
MCF7
Tissue: adenocarcinoma, mammary gland, breast
Metastatic site: pleural effusion
Receptors: estrogen receptor+
Oncogenes: wnt7h+
This cell line is also known to moderately express c-erbB-2 and overexpress c-myc oncogene
Cellular product: Insulin like growth factor binding protein (IGFBP) -
- Soule H D et al. Ahuman cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51: 1409-1416, 1973
- Landers J E et al. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 57: 3562-3568, 1997
- Bacus S S et al. Differentiation of cultured human cancer cells (AU-565 and MCF7) associated with loss of cell surface HER-2/neu oligonucleotide. Mol. Carcinog. 3: 350-362, 1990
MCF10CA1 - MCF10 cells are derived from benign breast tissue from a woman with fibrocystic disease. MCF10 lines consists of several lines, one is MCF10A, an immortalized normal human breast cell line. MCF10A was transformed with T24 Ha-ras to make MCF10AneoT cells. MCF10AT with neoplastic progression potential was derived from xenograft passaged MCF1O-AneoT. MCF10AT generates carcinoma in about 25% of xenografts. Fully malignant MCF10CA1 lines were derived from several xenograft passages of MCF10AT.
MCF10CA1a forms tumors 100% of the time and it metastasizes. A kariotype of MCF10CA1a shows an extra copy ofchromosome 1. It metastasizes into thelung 36 days after IV injection of the cells. -
- Santner S J et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research and treatment 65:101-110, 2001.
MYC-MT-1 - A female MMTV-C-MYC transgenic mouse developed a mammary tumor. The tumor was isolated and a small fresh tissue is put into culture with a medium conditioned by Dr. Jushoa Liao at Karmanos Cancer Institute. This tumor cell line was established after 10 passages.
- NMuMG
- Tissue: Mouse normal mammary gland, epithelial
- Strain: NAMRU, female
- Tumorigenic: produce benign tumor in mice
-
- Owens R B. Glandular epithelial cells from mice: a method for selective cultivation. J. Natl. Cancer Inst. 52: 1375-1378, 1974
- Owens R B et al. Epithelial cell cultures from normal glandular tissue of mice. J. Natl. Cancer Inst. 53: 261-269, 1974
- Yingling J M et al. Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc. Natl. Acad. Sci. USA 93: 8940-8944, 1996
BxPC-3
Tissue: adenocarcinoma, pancreas
Cellular product: mucin, pancreatic cancer specific antigen; CEA, carcinoma embryonic antigen.
Source: 61 year old female
Tumorigenic: yes
Oncogenes: c-Ki-ras -
- Tan M H et al. Characterization of a new primary human pancreatic tumor line. Cancer Invest. 4: 15-23, 1986
- Loor R et al. Use of pancreas-specific antigen in immunodiagnosis of pancreatic cancer. Clin. Lab. Med. 2: 567-578, 1982
- Lan M S et al. Polypeptide core of a human pancreatic tumor mucin antigen. Cancer Res. 50: 2997-3001, 1990
- Chambers J A and Harris A. Expression of the cystic fibrosis gene and the major pancreatic mucin gene, MUC1, in human ductal epithelial cells. J. Cell Sci. 105: 417-422, 1993
T-47D
Tissue: ductal carcinoma, mammary gland, breast, duct
Metastatic site: pleural effusion
Source: pleural effusion of a 54 years old female with infiltrating ductal carcinoma of the breast
Receptor expression: estrogen, androgen, calcitonin, progesteron, glucocorticoid and prolactin positive.
Oncogenes: wnt3+ and wnt7h+ - This cell line is also know to overexpress c-erbB-2
-
- Keydar I et al., Establishment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer 15: 659-670, 1979
- Judge S M and Chatterton R T Jr. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D). Cancer Res. 43: 4407-4412, 1983
- Lamp S J et al. Calcitonin induction of a persistent activated state of adenylate cyclase in human breast cancer cells (T-47D). J. Biol. Chem. 256: 12269-12274, 1981
- Sher E et al. Whole-cell uptake and nuclear localization of 1,25-dihydroxy-cholecalciferol by breast cancer cells (T-47D) in culture. Biochem. J. 200: 315-320, 1981
- Freake H C et al. 1,25-Dihydroxyvitamin D3 specifically binds to a human breast cancer cell line (T-47D) and stimulates growth. Biochem. Biophys. Res. Commun. 101: 1131-1138, 1981
- Faust J B and Meeker T C. Amplification and expression of the bcl-1 gene in human solid tumor cell lines. Cancer Res. 52: 2460-2463, 1992 RF33514:
- Huguet E L et al. Differential expression of
2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 54: 2615-2621, 1994human Wnt genes
BT-474
Tissue: ductal carcinoma, mammary gland, breast
Source: 60 year old female
Oncogene: c-erbB-2 -
- Lasfargues E Y et al. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer Inst. 61: 967-978, 1978
- Lasfargues E Y et al. A human breast tumor cell line (BT-474) that supports mouse mammary tumor virus replication. In vitro 15: 723-729, 1979
- Littlewood-Evans A J et al. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. 57: 5386-5390, 1997
WSU-FSCCL
Human B-cell line established in 1993
Source: from peripheral blood of a male patient with low grade follicular small cleaved cell lymphoma in leukemic phase.
Oncogenes: exhibiting chromosomal translocation for both c-myc and bcl-2 -
- Mohammad R M, Mohamed A N, Smith M R, Jawadi N S, AL-Khatib A. A unique EBV-Negative Low Grade Lymphoma Line (WSU-FSCCL) Exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet 70:62-67, 1993
B. Cell Culture - Human breast cancer cells, MCF7, MCF10CA1a, MDA-
MB 231, MDA-MB 435.eB, and human normal breast cells, MCF10A were all obtained from Karmanos Cancer Institute. All cells were cultured in DMEM/F12 media (Gibco, Md.) supplemented with 10 mM HEPES, 29 mM sodium bicarbonate, penicillin (100 units/ml) and streptomycin (100 μg/ml). In addition, 10% calf serum, 10 μg/ml insulin (Sigma Chemical, St Louis, Mo.), and 0.5 nM estradiol was used in MCF7 media. 5% horse serum and insulin (10 μg/ml) was used for MCF10Cala, and 10% fetal calf serum was used for MDA- 231 and 435 lines. MCF 1.0A culture was supplemented with 5% horse serum, insulin. (10 μg/ml), 100 ng/ml cholera enterotoxin (Calbiochem, Calif.), 0.5 μg/ml hydrocortisone (Sigma Chemical) and 20 ng/ml epidermal growth factor (Sigma Chemical). All flasks and plates were incubated in a humidified atmosphere of 95% air and 5% CO2 at 37° C.MB - MYC-MT-1 cells were also cultured in DMEM/F12 media containing 10 ng/ml EGF (epithelial growth factor), 1 nM estradiol, 10 μg/ml insulin and 10% FBS (fetal bovine serum). BxPC-3 pancreatic carcinoma cell line and BT-474, breast tumor cell line were cultured in RPMI 1640 with 10% FBS. Breast tumor cell line, T-47D was cultured in the same media as BT-474 with the addition of 2.5 μg/ml insulin. NMuMG (normal mouse mammary gland cells) cell line was grown in DMEM media with 4.5 g/l glucose, 10 μg/ml insulin and 10% FBS.
- All the above cells were seeded at 2500 to 5,000 cells/well in 96 well plates. The cells were treated with oligonucleotide compounds in fresh media (100 μl total volume) 24 hours after seeding. The media was replaced with fresh media without
oligonucleotides 24 hours after treatment and every 48 hours for 6 to 7 days or until the control cells were 80 to 100% confluent. The inhibitory effect of oligonucleotide was evaluated using an MTT staining technique. - Human follicular lymphoma cell line, WSU-FSCCL was used to evaluate the effect of antic-myc oligonucleotides as well as anti-Bcl-2 oligonucleotides. FSCCL cells grow as a single cell suspension in tissue culture. The culture was maintained in RPMI 1640 supplemented with 10% fetal bovine serum, 1% L-glutamine, 100 units/ml penicillin and 1.00 μg/ml streptomycin. FSCCL cells were treated in 24 well plates (2×105 cells/well/ml) with oligonucleotide compounds and incubated in a humidified atmosphere of 95% air and 5% CO2 at 37° C. The cells were counted every 24 hours using a hemocytometer.
- C. Oligonucleotide Preparation
- All oligonucleotides were synthesized, gel purified anal lyophilized by BIOSYNTHESIS (Lewisville, Tex.) or Qiagen (Valencia, Calif.). Methylated oligonucleotides were methylated at all CpG sites. Methylated Oligonucleotides were dissolved in pure sterile water (Gibco, Invitrogen Corporation) and used to treat cells in culture.
- D. Lipofectin Encapsulation
- 20 μg lipofectin (Invitrogen) and 16 μg oligonucleotides were each incubated with 200 μl Opti-MEM (Invitrogen) media in separate sterile tubes at room temperature for 45 min. They were then combined and incubated for an additional 15 min. 1.6 ml Opti-MEM media was then added to a final volume of 2 ml and a
final concentration 1 μM oligonucleotide. The concentration of lipofectin and oligonucleotides can be adjusted based on their molecular weight and desired concentration of compounds. There was no cytotoxic effect at this level. - E. Cell Growth Inhibition Assay
- Cell growth inhibition was assessed using 3-[4,5-Dimethyl-thiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) purchased from Sigma Chemical (St. Louis, Mo.). Cells were resuspended in culture media at 50,000 cells/ml and 100 μl was distributed into each well of a 96-well, flat bottomed plate (Costar Corning, N.Y., USA) and incubated for 24 hours. Media was changed to 100 μl fresh media containing the desired concentration of oligonucleotides and incubated for 24 hours. Controls had media with pure sterile water equal to the volume of oligonucleotide solution. The media was changed without further addition of oligonucleotides every 24 hours until the control cultures were confluent (6 to 7 days). Thereafter the media was removed and plates were washed two times with phosphate-buffered saline (PBS) and 100 μl of serum free media containing 0.5 mg/ml MTT dye was added into each well and incubated for 1 hour at 37° C. The media with dye was removed, washed with PBS and 100 μl of dimethyl sulfoxide (DMSO) was added to solubilize the reactive dye. The absorbance values were read using an automatic multiwell spectrophotometer (Bio-Tek Microplate Autoreader, Winooski, Vt., USA). Each treatment was repeated at least 3 times with 8 independent wells each time.
- F. Protein Extraction and Western Blot Analysis
- The cells were seeded and cultured in T25 tissue culture flasks (Costar, Corning, N.Y., USA) at 200,000 cells/flask. The cells were allowed to attach for 24 hours. The media was replaced with fresh media containing 10 to 20 μM oligonucleotides and incubated for 24 hours. The media was changed every 48 hours without further addition of inhibitors and cell cultures were continued until the control flasks were confluent (6-7 days). Cells were harvested using 1× trypsin:EDTA (Invitrogen, Gibco, Md.) and collected by centrifugation at 2000 rpm for 5 min. Cells were resuspended in 125 mM Tris-HCL buffer (pH 6.8), sonicated with 10-20% output and lysed in an equal volume of 8% SDS for a final concentration of 4% SDS. Cells extracts were boiled for 10 min, chilled on ice and centrifuged at 2,000 rpm for 5 min before collecting the supernatant. The protein was quantitated using BCA protein assay kit (Pierce, Rockford, Ill.). 50 to 100 μg of proteins were subjected to 10 to 15% gel (depending on molecular weight of each protein) electrophoresis and transferred to nitrocellulose membrane (Schleicher & Schuell, Kence, N.H.). Each membrane was blocked with 10% dry milk in TBSTe (Tris buffered saline, Tween 20) for 2 hr, prior to incubation with primary antibodies in TBST overnight. Antibodies to human c-myc, c-ha-ras and erbB-2 were mice IgG (Pharmingen San Diego, Calif.). Membranes were washed 3 times, 15 min each in TBST, then incubated with secondary antibodies conjugated with peroxidase for 1 hr. The membranes were washed 5 times, 10 min each in TBST and incubated with 2 ml each of Lumino/Enhancer and Stable peroxide solution (PERCE) for 1 min. The membranes were exposed to X-ray film for 2 min (exposure time is adjusted from 10 seconds up to 24 hr if necessary).
- c-ki-RAS
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-ki-Ras gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 13 and 19 . The sequences of the oligonucleotides targeted against c-ki-Ras as well as the sequence of c-ki-Ras gene are shown inFIGS. 5 and 6 . - Bcl-2
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the bcl-2 gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 14 and 20 . The sequences of the oligonucleotides targeted against bcl-2 as well as the sequence of bcl-2 gene are shown inFIGS. 1 and 2 . - c-ha-RAS
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-ha-Ras gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 16 and 22 . The sequences of the oligonucleotides targeted against c-ha-Ras as well as the sequence of c-ha-Ras gene are shown inFIGS. 7 and 8 . - c-erbB-2
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-erbB-2 gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 15 and 21 . The sequences of the oligonucleotides targeted against c-erbB-2 as well as the sequence of c-erbB-2 gene are shown inFIGS. 3 and 4 . - c-myc
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the c-myc gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 17 and 23 . The sequences of the oligonucleotides targeted against c-myc as well as the sequence of c-myc gene are shown inFIGS. 9 and 10 . - TGF-α
- This example describes the ability of oligonucleotide compounds targeted against the promoter of the TGF-α gene to inhibit the growth of cancer cell lines. Experiments were performed as described in Example 1. The results are shown in
FIGS. 18 and 24 . The sequences of the oligonucleotides targeted against TGF-α as well as the sequence of TGF-α gene are shown inFIGS. 11 and 12 . - Inhibition of Cell Growth by Non-Methylated Oligonucleotides
- This example describes the inhibition of growth of lymphoma cell lines by non-methylated oligonucleotides targeted towards Bcl-2. WSU-FSCCL cells were plated in 24 well plates at 2×105 cells/well at t=−24 hr. For each time point to be harvested, triplicate wells were treated at t=0 with the oligos at the concentrations indicated. Controls were plated in triplicate. Plates were incubated at 37° C. All cultures were monitored through out the experiment by cell count and viability every 24 hr for 4 days using trypan blue stain and hemacytometer.
- The MABL2 oligonucleotide is targeted to the promoter region of Bcl-2 [5′-CAX GCA XGX GCA TCC CXG CCX GTG-3′]. Pho-Mabl-2 is an unmethylated version of MABL-2 [5′-CAC GCA CGC GCA TCC CCG CCC GTG-3′]. WSU-FSCCL—derived from human B cell lymphoma (low-grade follicular small-cleaved cell lymphoma). The experimental protocol is shown in Table 2.
TABLE 2 Target Viability Harvest Group Gene Compound Cells Conc. Formulation Assay for Methyl 1 Bcl-2 MABL2 FSCCL 10 uM none n = 3 @ 24, n = 3 @ 72 48 & 72 hr hr 2 Bcl-2 MABL2 FSCCL 3 uM none n = 3 @ 24, n = 3 @ 72 48 & 72 hr hr 3 Bcl-2 PhoMABL2 FSCCL 10 uM none n = 3 @ 24, n = 3 @ 72 48 & 72 hr hr 4 none none FSCCL n/a none n = 3 @ 24, n = 3 @ 72 48 & 72 hr hr - The results are shown in
FIG. 31 . The results demonstrate that the unmethylated oligonucleotide directed against Bcl-2 is as effective as the methylated oligonucleotide in inhibiting cell growth. - All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.
Claims (38)
Priority Applications (21)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/858,145 US7498315B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,146 US20060229267A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,013 US20060135455A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,341 US20050287667A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,164 US7524827B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,094 US20080152700A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| CA002569183A CA2569183A1 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| BRPI0511770-4A BRPI0511770A (en) | 2004-06-01 | 2005-06-01 | methods and compositions for inhibiting gene expression |
| EP09171679A EP2141173B1 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| PCT/US2005/018993 WO2005118824A2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| ES09171679T ES2402532T3 (en) | 2004-06-01 | 2005-06-01 | Procedures and compositions for the inhibition of gene expression |
| CN200580025490XA CN101014608B (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for inhibiting gene expression |
| US11/628,424 US8815599B2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| AU2005250453A AU2005250453B2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| JP2007515472A JP4906717B2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for inhibition of gene expression |
| EP05804859A EP1773859A4 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| PL09171679T PL2141173T3 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| HK07112496.7A HK1107098B (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| JP2011250762A JP5922913B2 (en) | 2004-06-01 | 2011-11-16 | Methods and compositions for inhibition of gene expression |
| US14/327,945 US9393258B2 (en) | 2004-06-01 | 2014-07-10 | Methods and compositions for the inhibition of gene expression |
| JP2015023485A JP2015133967A (en) | 2004-06-01 | 2015-02-09 | Methods and compositions for inhibition of gene expression |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/858,146 US20060229267A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,013 US20060135455A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,094 US20080152700A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,145 US7498315B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,164 US7524827B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,341 US20050287667A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US61197404P | 2004-09-22 | 2004-09-22 | |
| US63721204P | 2004-12-17 | 2004-12-17 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/858,094 Continuation-In-Part US20080152700A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
Related Child Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/018993 Continuation-In-Part WO2005118824A2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| US11/628,424 Continuation-In-Part US8815599B2 (en) | 2004-06-01 | 2005-06-01 | Methods and compositions for the inhibition of gene expression |
| PCT/US2006/018993 Continuation-In-Part WO2007008285A2 (en) | 2005-07-08 | 2006-05-16 | System and method of processing asset financing transactions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060135455A1 true US20060135455A1 (en) | 2006-06-22 |
Family
ID=35463455
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/858,094 Abandoned US20080152700A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,146 Abandoned US20060229267A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,164 Expired - Fee Related US7524827B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,145 Expired - Fee Related US7498315B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,341 Abandoned US20050287667A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,013 Abandoned US20060135455A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
Family Applications Before (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/858,094 Abandoned US20080152700A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,146 Abandoned US20060229267A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,164 Expired - Fee Related US7524827B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,145 Expired - Fee Related US7498315B2 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
| US10/858,341 Abandoned US20050287667A1 (en) | 2004-06-01 | 2004-06-01 | Methods and compositions for the inhibition of gene expression |
Country Status (10)
| Country | Link |
|---|---|
| US (6) | US20080152700A1 (en) |
| EP (2) | EP2141173B1 (en) |
| JP (3) | JP4906717B2 (en) |
| CN (1) | CN101014608B (en) |
| AU (1) | AU2005250453B2 (en) |
| BR (1) | BRPI0511770A (en) |
| CA (1) | CA2569183A1 (en) |
| ES (1) | ES2402532T3 (en) |
| PL (1) | PL2141173T3 (en) |
| WO (1) | WO2005118824A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090220584A1 (en) * | 2005-12-01 | 2009-09-03 | Neal Clifford Goodwin | Amphoteric Liposome Formulation |
| US20110135710A1 (en) * | 2004-06-01 | 2011-06-09 | Pronai Therapeutics, Inc. | Methods and Compositions for the Inhibition of Gene Expression |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3111258B2 (en) | 1991-03-14 | 2000-11-20 | 古野電気株式会社 | Underwater detector |
| US20080152700A1 (en) * | 2004-06-01 | 2008-06-26 | Reza Sheikhnejad | Methods and compositions for the inhibition of gene expression |
| JP5623016B2 (en) * | 2005-12-01 | 2014-11-12 | プロネイ・セラピューティクス・インコーポレイテッドPronaitherapeutics, Inc. | Cancer therapy and pharmaceutical composition used therefor |
| EP2924440A3 (en) * | 2006-06-07 | 2016-03-09 | Health Diagnostic Laboratory, Inc. | Markers associated with arteriovascular events and methods of use thereof |
| EP2121925A2 (en) * | 2007-03-02 | 2009-11-25 | MDRNA, Inc. | Nucleic acid compounds for inhibiting ras gene expression and uses thereof |
| US9023819B2 (en) * | 2008-06-09 | 2015-05-05 | National Chung Cheng University | Treatment of a disease or a condition associated with aberrant gene hypomethylation by a method involving tailored epigenomic modification |
| SG10201908987VA (en) * | 2009-12-25 | 2019-11-28 | Chugai Pharmaceutical Co Ltd | Method for searching and screening for target of anti-cancer agent using non-human animal model having nog established cancer cell line transplanted therein |
| EP2626414B1 (en) | 2010-10-06 | 2020-07-15 | Chugai Seiyaku Kabushiki Kaisha | Cancer stem cell mass and process for production thereof |
| US8597695B1 (en) | 2010-11-13 | 2013-12-03 | Sirbal Ltd. | Herbal combinations for treatment of a skin condition |
| US8541382B2 (en) | 2010-11-13 | 2013-09-24 | Sirbal Ltd. | Cardiac glycoside analogs in combination with emodin for cancer therapy |
| US9095606B1 (en) | 2010-11-13 | 2015-08-04 | Sirbal Ltd. | Molecular and herbal combinations for treating psoriasis |
| US9066974B1 (en) | 2010-11-13 | 2015-06-30 | Sirbal Ltd. | Molecular and herbal combinations for treating psoriasis |
| WO2013035824A1 (en) | 2011-09-07 | 2013-03-14 | ファーマロジカルズ・リサーチ プライベート リミテッド | Cancer stem cell isolation |
| JP6291254B2 (en) | 2011-10-28 | 2018-03-14 | 中外製薬株式会社 | Cancer stem cell specific molecule |
| WO2013183964A1 (en) * | 2012-06-07 | 2013-12-12 | 한양대학교 산학협력단 | Target protein for diagnosing and treating lung cancer |
| CN108101851A (en) | 2012-09-17 | 2018-06-01 | 马德里加尔制药公司 | The method of synthetic thyroid hormone analogs and its polymorph |
| BR112015010220A2 (en) | 2012-11-05 | 2017-12-05 | Pronai Therapeutics Inc | methods of using biomarkers for cancer treatment |
| US20160040163A1 (en) * | 2013-03-15 | 2016-02-11 | Pronai Therapeutics, Inc. | Dnai for the modulation of genes |
| WO2015082950A1 (en) | 2013-12-02 | 2015-06-11 | Sirbal Ltd. | Herbal combinations for treatment of a skin condition |
| WO2015091525A1 (en) * | 2013-12-16 | 2015-06-25 | Syddansk Universitet | Ras exon 2 skipping for cancer treatment |
| EP3328498B1 (en) | 2015-07-29 | 2021-05-05 | Sirbal Ltd. | Medical kit comprising herbal combinations for treating psoriasis |
| CN105581979A (en) * | 2016-02-24 | 2016-05-18 | 南京大学 | Nucleic acid liposome nano medicine for inhibiting HER-2 expression as well as preparation method and application thereof |
| JP2019533019A (en) | 2016-10-18 | 2019-11-14 | マドリガル ファーマシューティカルズ インコーポレイテッドMadrigal Pharmaceuticals,Inc. | Methods for treating liver or lipid disorders with THR-beta agonists |
| JP2020518633A (en) * | 2017-05-04 | 2020-06-25 | サノフイSanofi | Methods for treating Alport syndrome |
| JP7427227B2 (en) * | 2020-01-21 | 2024-02-05 | 学校法人産業医科大学 | KRAS antisense oligonucleotide that reduces tumor cell survival and its uses |
| US12377104B1 (en) | 2024-02-06 | 2025-08-05 | Madrigal Pharmaceuticals, Inc. | Methods for treating a fatty liver disease |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5286717A (en) * | 1987-03-25 | 1994-02-15 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
| US5518885A (en) * | 1994-04-19 | 1996-05-21 | The United States Of America As Represented By The Department Of Health & Human Services | ERBB2 promoter binding protein in neoplastic disease |
| US5705188A (en) * | 1993-02-19 | 1998-01-06 | Nippon Shinyaku Company, Ltd. | Drug composition containing nucleic acid copolymer |
| US5840497A (en) * | 1993-06-11 | 1998-11-24 | The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization | Method for specific silencing of genes by DNA methylation |
| US5874416A (en) * | 1997-11-07 | 1999-02-23 | Sheikhnejad; Gholamreza | RAS antisense inhibition |
| US5968748A (en) * | 1998-03-26 | 1999-10-19 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide modulation of human HER-2 expression |
| US6177274B1 (en) * | 1998-05-20 | 2001-01-23 | Expression Genetics, Inc. | Hepatocyte targeting polyethylene glyco-grafted poly-L-lysine polymeric gene carrier |
| US6287591B1 (en) * | 1997-05-14 | 2001-09-11 | Inex Pharmaceuticals Corp. | Charged therapeutic agents encapsulated in lipid particles containing four lipid components |
| US6365345B1 (en) * | 1993-12-23 | 2002-04-02 | Biognostik Gesellscahft Für Biomokekulare Diagnostik mbH | Antisense nucleic acids for the prevention and treatment of disorders in which expression of c-erbB plays a role |
| US6440743B1 (en) * | 1994-11-18 | 2002-08-27 | Supratek Pharma Inc. | Methods of using polynucleotide compositions |
| US20040006036A1 (en) * | 2000-04-12 | 2004-01-08 | Gmr, A Delaware Corporation | Silencing transcription by methylation |
| US20050181037A1 (en) * | 2002-05-24 | 2005-08-18 | Neopharm, Inc. | Cardiolipin compositions their methods of preparation and use |
Family Cites Families (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
| US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
| US4981785A (en) | 1988-06-06 | 1991-01-01 | Ventrex Laboratories, Inc. | Apparatus and method for performing immunoassays |
| US5831066A (en) * | 1988-12-22 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Regulation of bcl-2 gene expression |
| US5108921A (en) | 1989-04-03 | 1992-04-28 | Purdue Research Foundation | Method for enhanced transmembrane transport of exogenous molecules |
| US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
| US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
| WO1992020698A1 (en) * | 1991-05-17 | 1992-11-26 | Uab Research Foundation | Sequence specific dna binding drugs |
| WO1994008003A1 (en) * | 1991-06-14 | 1994-04-14 | Isis Pharmaceuticals, Inc. | ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE |
| US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
| US5719262A (en) | 1993-11-22 | 1998-02-17 | Buchardt, Deceased; Ole | Peptide nucleic acids having amino acid side chains |
| US5714331A (en) | 1991-05-24 | 1998-02-03 | Buchardt, Deceased; Ole | Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility |
| US5582986A (en) * | 1991-06-14 | 1996-12-10 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide inhibition of the ras gene |
| US5474796A (en) * | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
| US5846717A (en) | 1996-01-24 | 1998-12-08 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
| US5994069A (en) | 1996-01-24 | 1999-11-30 | Third Wave Technologies, Inc. | Detection of nucleic acids by multiple sequential invasive cleavages |
| US5792608A (en) * | 1991-12-12 | 1998-08-11 | Gilead Sciences, Inc. | Nuclease stable and binding competent oligomers and methods for their use |
| US5376313A (en) | 1992-03-27 | 1994-12-27 | Abbott Laboratories | Injection molding a plastic assay cuvette having low birefringence |
| WO1994017086A1 (en) | 1993-01-25 | 1994-08-04 | Apollon, Inc. | Gene regulation by targeting putative intramolecular triple helix |
| US5643765A (en) | 1993-04-06 | 1997-07-01 | University Of Rochester | Method for quantitative measurement of gene expression using multiplex competitive reverse transcriptase-polymerase chain reaction |
| US5876978A (en) | 1993-04-06 | 1999-03-02 | Medical College Of Ohio | Method for quantitative measurement of gene expression using multiplex competitive reverse transcriptase-polymerase chain reaction |
| US5639606A (en) | 1993-04-06 | 1997-06-17 | The University Of Rochester | Method for quantitative measurement of gene expression using multiplex competitive reverse transcriptase-polymerase chain reaction |
| US5538848A (en) | 1994-11-16 | 1996-07-23 | Applied Biosystems Division, Perkin-Elmer Corp. | Method for detecting nucleic acid amplification using self-quenching fluorescence probe |
| US5599677A (en) | 1993-12-29 | 1997-02-04 | Abbott Laboratories | Immunoassays for prostate specific antigen |
| US5599922A (en) | 1994-03-18 | 1997-02-04 | Lynx Therapeutics, Inc. | Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties |
| US6077835A (en) | 1994-03-23 | 2000-06-20 | Case Western Reserve University | Delivery of compacted nucleic acid to cells |
| US5844107A (en) | 1994-03-23 | 1998-12-01 | Case Western Reserve University | Compacted nucleic acids and their delivery to cells |
| WO1996018732A2 (en) | 1994-12-15 | 1996-06-20 | Board Of Trustees Of The University Of Illinois | Sequence-specific inhibition of dna synthesis by triplex-forming oligonucleotides |
| US5744335A (en) | 1995-09-19 | 1998-04-28 | Mirus Corporation | Process of transfecting a cell with a polynucleotide mixed with an amphipathic compound and a DNA-binding protein |
| WO1997014440A1 (en) | 1995-10-19 | 1997-04-24 | Johnson & Johnson Interventional Systems | Conjugation of c-myc antisense oligonucleotides with cholesterol to significantly enhance their inhibitory effect on neointimal hyperplasia |
| DE19542372A1 (en) | 1995-11-14 | 1997-05-15 | Bayer Ag | Acylated 5-aminoisothiazoles |
| US6379966B2 (en) | 1999-02-26 | 2002-04-30 | Mirus Corporation | Intravascular delivery of non-viral nucleic acid |
| WO1997023782A1 (en) | 1995-12-22 | 1997-07-03 | Abbott Laboratories | Fluorescence polarization immunoassay diagnostic method |
| US6126964A (en) | 1996-01-04 | 2000-10-03 | Mirus Corporation | Process of making a compound by forming a polymer from a template drug |
| US5985557A (en) | 1996-01-24 | 1999-11-16 | Third Wave Technologies, Inc. | Invasive cleavage of nucleic acids |
| US5994316A (en) | 1996-02-21 | 1999-11-30 | The Immune Response Corporation | Method of preparing polynucleotide-carrier complexes for delivery to cells |
| US6254854B1 (en) | 1996-05-24 | 2001-07-03 | The Penn Research Foundation | Porous particles for deep lung delivery |
| US5885529A (en) | 1996-06-28 | 1999-03-23 | Dpc Cirrus, Inc. | Automated immunoassay analyzer |
| US6977244B2 (en) * | 1996-10-04 | 2005-12-20 | Board Of Regents, The University Of Texas Systems | Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides |
| WO1999020626A1 (en) | 1997-10-17 | 1999-04-29 | Purdue Research Foundation | Folic acid derivatives |
| US6383811B2 (en) | 1997-12-30 | 2002-05-07 | Mirus Corporation | Polyampholytes for delivering polyions to a cell |
| US6429200B1 (en) | 1998-07-17 | 2002-08-06 | Mirus Corporation | Reverse micelles for delivery of nucleic acids |
| US6169177B1 (en) | 1998-11-06 | 2001-01-02 | Isis Pharmaceuticals, Inc. | Processes for the synthesis of oligomeric compounds |
| US6458382B1 (en) | 1999-11-12 | 2002-10-01 | Mirus Corporation | Nucleic acid transfer complexes |
| US20040241651A1 (en) * | 2000-04-07 | 2004-12-02 | Alexander Olek | Detection of single nucleotide polymorphisms (snp's) and cytosine-methylations |
| DE60231868D1 (en) | 2001-04-24 | 2009-05-20 | Purdue Research Foundation | FOLAT MIMETICS AND THEIR FOLAT RECEPTOR BINDING CONJUGATES |
| US20050176025A1 (en) * | 2001-05-18 | 2005-08-11 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA) |
| ITMI20012367A1 (en) * | 2001-11-09 | 2003-05-09 | Visufarma S R L | ANTISENSE OLIGONUCLEOTIDES THAT REGULATE THE EXPRESSION OF THE ANTIAPOPTOTIC GENE BCL-2 |
| CA2505680A1 (en) * | 2002-11-14 | 2004-06-03 | Genta Salus Llc | Inhibitory oliogonucleotides targeted to bcl-2 |
| JP2006509010A (en) | 2002-12-05 | 2006-03-16 | インペリアル・カレッジ・イノベイションズ・リミテッド | Control of apoptosis |
| WO2004056971A2 (en) * | 2002-12-19 | 2004-07-08 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
| WO2005061710A1 (en) * | 2003-12-23 | 2005-07-07 | Santaris Pharma A/S | Oligomeric compounds for the modulation of bcl-2 |
| DE102004054730A1 (en) * | 2004-03-28 | 2006-05-11 | Novosom Ag | Serum stable amphoteric liposomes |
| US20080152700A1 (en) * | 2004-06-01 | 2008-06-26 | Reza Sheikhnejad | Methods and compositions for the inhibition of gene expression |
-
2004
- 2004-06-01 US US10/858,094 patent/US20080152700A1/en not_active Abandoned
- 2004-06-01 US US10/858,146 patent/US20060229267A1/en not_active Abandoned
- 2004-06-01 US US10/858,164 patent/US7524827B2/en not_active Expired - Fee Related
- 2004-06-01 US US10/858,145 patent/US7498315B2/en not_active Expired - Fee Related
- 2004-06-01 US US10/858,341 patent/US20050287667A1/en not_active Abandoned
- 2004-06-01 US US10/858,013 patent/US20060135455A1/en not_active Abandoned
-
2005
- 2005-06-01 BR BRPI0511770-4A patent/BRPI0511770A/en not_active IP Right Cessation
- 2005-06-01 WO PCT/US2005/018993 patent/WO2005118824A2/en active Application Filing
- 2005-06-01 PL PL09171679T patent/PL2141173T3/en unknown
- 2005-06-01 ES ES09171679T patent/ES2402532T3/en not_active Expired - Lifetime
- 2005-06-01 AU AU2005250453A patent/AU2005250453B2/en not_active Ceased
- 2005-06-01 JP JP2007515472A patent/JP4906717B2/en not_active Expired - Fee Related
- 2005-06-01 EP EP09171679A patent/EP2141173B1/en not_active Expired - Lifetime
- 2005-06-01 CA CA002569183A patent/CA2569183A1/en not_active Abandoned
- 2005-06-01 EP EP05804859A patent/EP1773859A4/en not_active Withdrawn
- 2005-06-01 CN CN200580025490XA patent/CN101014608B/en not_active Expired - Fee Related
-
2011
- 2011-11-16 JP JP2011250762A patent/JP5922913B2/en not_active Expired - Fee Related
-
2015
- 2015-02-09 JP JP2015023485A patent/JP2015133967A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5286717A (en) * | 1987-03-25 | 1994-02-15 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
| US5705188A (en) * | 1993-02-19 | 1998-01-06 | Nippon Shinyaku Company, Ltd. | Drug composition containing nucleic acid copolymer |
| US5840497A (en) * | 1993-06-11 | 1998-11-24 | The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization | Method for specific silencing of genes by DNA methylation |
| US6365345B1 (en) * | 1993-12-23 | 2002-04-02 | Biognostik Gesellscahft Für Biomokekulare Diagnostik mbH | Antisense nucleic acids for the prevention and treatment of disorders in which expression of c-erbB plays a role |
| US5518885A (en) * | 1994-04-19 | 1996-05-21 | The United States Of America As Represented By The Department Of Health & Human Services | ERBB2 promoter binding protein in neoplastic disease |
| US6440743B1 (en) * | 1994-11-18 | 2002-08-27 | Supratek Pharma Inc. | Methods of using polynucleotide compositions |
| US6287591B1 (en) * | 1997-05-14 | 2001-09-11 | Inex Pharmaceuticals Corp. | Charged therapeutic agents encapsulated in lipid particles containing four lipid components |
| US5874416A (en) * | 1997-11-07 | 1999-02-23 | Sheikhnejad; Gholamreza | RAS antisense inhibition |
| US5968748A (en) * | 1998-03-26 | 1999-10-19 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide modulation of human HER-2 expression |
| US6177274B1 (en) * | 1998-05-20 | 2001-01-23 | Expression Genetics, Inc. | Hepatocyte targeting polyethylene glyco-grafted poly-L-lysine polymeric gene carrier |
| US20040006036A1 (en) * | 2000-04-12 | 2004-01-08 | Gmr, A Delaware Corporation | Silencing transcription by methylation |
| US20050181037A1 (en) * | 2002-05-24 | 2005-08-18 | Neopharm, Inc. | Cardiolipin compositions their methods of preparation and use |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110135710A1 (en) * | 2004-06-01 | 2011-06-09 | Pronai Therapeutics, Inc. | Methods and Compositions for the Inhibition of Gene Expression |
| US8815599B2 (en) | 2004-06-01 | 2014-08-26 | Pronai Therapeutics, Inc. | Methods and compositions for the inhibition of gene expression |
| US9393258B2 (en) | 2004-06-01 | 2016-07-19 | Pronai Therapeutics, Inc. | Methods and compositions for the inhibition of gene expression |
| US20090220584A1 (en) * | 2005-12-01 | 2009-09-03 | Neal Clifford Goodwin | Amphoteric Liposome Formulation |
| US8367628B2 (en) | 2005-12-01 | 2013-02-05 | Pronai Therapeutics, Inc. | Amphoteric liposome formulation |
| US20130323298A1 (en) * | 2005-12-01 | 2013-12-05 | Novosom Ag | Amphoteric Liposome Formulation |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4906717B2 (en) | 2012-03-28 |
| US20050287667A1 (en) | 2005-12-29 |
| AU2005250453B2 (en) | 2012-02-23 |
| EP1773859A4 (en) | 2008-03-26 |
| PL2141173T3 (en) | 2013-08-30 |
| EP2141173B1 (en) | 2013-01-02 |
| EP1773859A2 (en) | 2007-04-18 |
| US20060198828A1 (en) | 2006-09-07 |
| WO2005118824A2 (en) | 2005-12-15 |
| WO2005118824A8 (en) | 2007-01-25 |
| JP2008500838A (en) | 2008-01-17 |
| WO2005118824A9 (en) | 2006-06-15 |
| EP2141173A1 (en) | 2010-01-06 |
| JP5922913B2 (en) | 2016-05-24 |
| ES2402532T3 (en) | 2013-05-06 |
| CN101014608A (en) | 2007-08-08 |
| JP2015133967A (en) | 2015-07-27 |
| JP2012085642A (en) | 2012-05-10 |
| US20060073596A1 (en) | 2006-04-06 |
| WO2005118824A3 (en) | 2006-11-09 |
| HK1107098A1 (en) | 2008-03-28 |
| US20060229267A1 (en) | 2006-10-12 |
| BRPI0511770A (en) | 2008-01-08 |
| CA2569183A1 (en) | 2005-12-15 |
| AU2005250453A1 (en) | 2005-12-15 |
| US20080152700A1 (en) | 2008-06-26 |
| CN101014608B (en) | 2011-07-06 |
| US7524827B2 (en) | 2009-04-28 |
| US7498315B2 (en) | 2009-03-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7498315B2 (en) | Methods and compositions for the inhibition of gene expression | |
| KR101762734B1 (en) | Antisense oligonucleotides directed against connective tissue growth factor and uses thereof | |
| CA3064103C (en) | Compositions and methods for inhibiting gene expression of hepatitis b virus | |
| JP5121106B2 (en) | Antisense therapy for hormone-controlled tumors | |
| US9393258B2 (en) | Methods and compositions for the inhibition of gene expression | |
| KR20030029960A (en) | Antisense Insulin-Like Growth Factor Binding Protein(IGFBP)-2-Oligodeoxynucleotides for Prostate and other Endocrine Tumor Therapy | |
| JPH07506002A (en) | How to induce tumor immunity | |
| US7807647B2 (en) | Methods and compositions for cancer therapy | |
| AU2012202547B2 (en) | Methods and compositions for the inhibition of gene expression | |
| HK1107098B (en) | Methods and compositions for the inhibition of gene expression | |
| AU2015213349A1 (en) | Methods and compositions for the inhibition of gene expression | |
| WO2005091992A2 (en) | Oligonucleotide compositions targeting egr-1 forcancer treatment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PRONIA THERAPEUTICS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOOCH, MINA PATEL;GOODWIN, NEAL;OLSON, DAVID;REEL/FRAME:016251/0289 Effective date: 20041028 |
|
| AS | Assignment |
Owner name: PRONAI THERAPEUTICS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHEIKHNEJAD, GHOLAMREZA;REEL/FRAME:017138/0310 Effective date: 20050921 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: PRONAI THERAPEUTICS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEIKHNEHJAD, GHOLAMREZA;SOOCH, MINA PATEL;GOODWIN, NEAL CLIFFORD;AND OTHERS;REEL/FRAME:020875/0843;SIGNING DATES FROM 20070815 TO 20080428 Owner name: PRONAI THERAPEUTICS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEIKHNEHJAD, GHOLAMREZA;SOOCH, MINA PATEL;GOODWIN, NEAL CLIFFORD;AND OTHERS;SIGNING DATES FROM 20070815 TO 20080428;REEL/FRAME:020875/0843 |