US20060124399A1 - Elevator system - Google Patents
Elevator system Download PDFInfo
- Publication number
- US20060124399A1 US20060124399A1 US10/538,307 US53830705A US2006124399A1 US 20060124399 A1 US20060124399 A1 US 20060124399A1 US 53830705 A US53830705 A US 53830705A US 2006124399 A1 US2006124399 A1 US 2006124399A1
- Authority
- US
- United States
- Prior art keywords
- car
- speed
- over
- running
- running speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
- B66B5/04—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
- B66B5/06—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical
Definitions
- the present invention relates to an elevator apparatus which has a function of setting an over speed and monitoring whether the running speed of a car reaches the over speed.
- a speed governor monitors whether the running speed of a car reaches an over speed.
- the speed governor sets, from car running speed pattern information and car call registration information, an over speed which should be judged as abnormal, and compares the actual car running speed and the set over speed.
- the present invention has been made to solve the above problem, and therefore an object of the present invention is to obtain an elevator apparatus capable of detecting more accurately that the running speed of a car reaches an over speed.
- FIG. 1 is a structural diagram illustrating an elevator apparatus according to Embodiment 1 of the present invention
- FIG. 2 is a block diagram illustrating main portions of FIG. 1 ;
- FIG. 3 is a graph illustrating a running speed pattern, a first over speed, and a second over speed obtained when the car shown in FIG. 1 runs normally from one terminal landing to the other terminal landing;
- FIG. 4 is a structural diagram illustrating an elevator apparatus according to Embodiment 2 of the present invention.
- FIG. 5 is a block diagram illustrating main portions of FIG. 4 ;
- FIG. 6 is a graph illustrating a running speed pattern, a first over speed, and a second over speed obtained when the car shown in FIG. 4 runs normally from a start floor to a destination floor;
- FIG. 7 is a structural diagram illustrating an elevator apparatus according to Embodiment 3 of the present invention.
- FIG. 8 is a block diagram illustrating main portions of FIG. 7 ;
- FIG. 9 is a structural diagram illustrating an elevator apparatus according to Embodiment 4 of the present invention.
- FIG. 10 is a block diagram illustrating main portions of FIG. 9 ;
- FIG. 11 is a structural diagram illustrating an elevator apparatus according to Embodiment 5 of the present invention.
- FIG. 12 is a block diagram illustrating main portions of FIG. 11 ;
- FIG. 13 is a structural diagram illustrating an elevator apparatus according to Embodiment 6 of the present invention.
- FIG. 14 is a block diagram illustrating main portions of FIG. 13 ;
- an acceleration curve and a deceleration curve proximate to the terminal landings are determined using maximum values of acceleration (or deceleration) assumed proximately to the terminal landings. Further, the speed in a constant speed running region is the maximum value of speed assumed in the region. Therefore, when there is no abnormality, the running speed of the car 6 does not exceed the running speed pattern.
- the first over speed is set as a pattern higher than the running speed pattern with a certain extent of margin between itself and the running speed pattern.
- the second over speed is set as a pattern higher than the first over speed with a certain extent of margin between itself and the first over speed. Therefore, the first and the second over speeds do not remain constant, and the first and the second over speeds proximate to the terminal landings are set to be lower than those of the other portion.
- FIG. 4 is a structural diagram illustrating an elevator apparatus according to Embodiment 2 of the present invention
- FIG. 5 is a block diagram illustrating main portions of FIG. 4 .
- destination floor buttons 21 for registering a destination floor are provided to a car 6 .
- Landings on respective floors are provided with landing buttons 22 .
- a call is registered in a control panel 9 , and the control panel 9 generates a running speed pattern of the car 6 .
- the car 6 ascends and descends according to the running speed pattern generated by the control panel 9 .
- the destination floor buttons 21 and the landing buttons 22 are connected to the over speed monitoring portion 15 without the intervention of the control panel 9 . More specifically, a call registration signal from the destination floor buttons 21 and the landing buttons 22 is transmitted to the over speed monitoring portion 15 by a different route from that used for transmission to the control panel 9 .
- the rest of the configuration is other structural components are similar to those of Embodiment 1.
- FIG. 6 is a graph illustrating the running speed pattern, the first over speed, and the second over speed obtained when the car 6 shown in FIG. 4 runs normally from a start floor to a destination floor.
- a solid line denotes the maximum values of the running speed pattern.
- An alternate-long-and-short-dashed line denotes the first over speed.
- a chain-double-dashed line denotes the second over speed.
- the running speed pattern from the start floor to the destination floor is generated based on call registration information obtained from the destination floor buttons 21 and the landing buttons 22 . More specifically, in the over speed setting portion 16 , a running speed pattern different from the running speed pattern generated by the control panel 9 is independently generated without depending on information from the control panel 9 .
- the running speed pattern generated by the over speed setting portion 16 is determined using maximum values of speed assumed with regard to each of an acceleration region, a deceleration region, and a constant speed running region. Therefore, when there is no abnormality, the running speed of the car 6 does not exceed the running speed pattern generated by the over speed setting portion 16 .
- the first over speed is set as a pattern higher than the running speed pattern generated by the over speed setting portion 16 , with a certain extent of margin between itself and the running speed pattern.
- the second over speed is set as a pattern higher than the first over speed with a certain extent of margin between itself and the first over speed. Therefore, the first and the second over speeds do not remain constant, and the first and the second over speeds proximate to the start floor and the destination floor are set to be lower than those of the other portion.
- the running speed pattern is generated every time the car 6 runs. Therefore, the first and the second over speeds are also newly generated every time the car 6 runs according to the change in the running speed pattern.
- the running speed pattern is adjusted, and the first and second over speeds are also adjusted according to the adjustment.
- the over speed monitoring portion 15 is provided with the storage means (memory) and the processing means (CPU).
- the storage means stores the running speed pattern and the first and second over speed patterns as described in the above.
- the processing means generates the running speed pattern and sets the first and second over speeds. Further, the processing means determines the first and second over speeds corresponding to the car position information and compares the car speed information with the first and second over speeds.
- the over speed setting portion 16 since the over speed setting portion 16 generates the running speed pattern independently of the control panel 9 and sets the first and second over speeds based on the running speed pattern, even when the control panel 9 is out of order, it can be detected more accurately that the running speed of the car 6 reaches the first and second over speeds.
- the running speed pattern is generated as running speeds obtained when the car 6 runs normally from a start floor to a destination floor and the first and second over speeds are set to be higher than the running speed pattern with a predetermined margin between themselves and the running speed pattern, the first and second over speeds proximate to the start floor and the destination floor are set to be lower than those of the other portion, and thus, an abnormality of the running speed can be detected at an earlier stage.
- over speed setting portion 16 since the over speed setting portion 16 generates the running speed pattern based on the call registration information from the destination floor buttons 21 and the landing buttons 22 , a more accurate running speed pattern can be generated.
- the over speed setting portion 16 adjusts the running speed pattern and the first and second over speeds according to the change of the destination floor. Thus, it can be detected more accurately that the running speed of the car 6 reaches the first and second over speeds.
- the over speed setting portion needs to generate the running speed patterns of the respective cars based on the call registration information of the cars and to set the first and second over speeds.
- running speed pattern and the first and second over speed patterns are stored in the storage means in Embodiments 1 and 2, only the running speed pattern may be stored in the storage means, and the first and second over speeds may be determined from the running speed pattern according to the car position information as occasion requires.
- FIG. 7 is a structural diagram illustrating an elevator apparatus according to Embodiment 3 of the present invention
- FIG. 8 is a block diagram illustrating main portions of FIG. 7 .
- a load weighing device 23 for detecting the weight of a car 6 is provided to a connecting portion of a main rope 5 and the car 6 .
- Car weight information from the load weighing device 23 is transmitted to a control panel 9 and overload of the car 6 is detected.
- a running speed pattern generated by the control panel 9 is adjusted based on the car weight information from the load weighing device 23 . For example, if the car weight is high, the running speeds in an acceleration region, in a deceleration region, and in a constant speed running region are set to be low. If the car weight is low, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be high.
- the load weighing device 23 is also connected to the over speed monitoring portion 15 without the intervention of the control panel 9 . More specifically, a car weight detection signal from the load weighing device 23 is transmitted to the over speed monitoring portion 15 by a different route from that used for transmission to the control panel 9 .
- the other structural components are similar to those of Embodiment 1.
- the first and second over speeds are set based on a running speed pattern obtained when the car 6 runs normally from one terminal landing to the other terminal landing.
- the running speed pattern is adjusted according to the car weight information, and the first and second over speeds are also adjusted according to the adjustment to the running speed pattern.
- the running speed pattern is adjusted according to the car weight information with regard to each of the acceleration region, the deceleration region, and the constant speed running region. For example, if the car weight is high, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be low, and if the car weight is low, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be high.
- the running speed pattern generated by the control panel 9 is changed according to the car weight information
- the running speed pattern generated by the over speed setting portion 16 can also be adjusted in a similar way, and more appropriate first and second over speeds can be set.
- FIG. 9 is a structural diagram illustrating an elevator apparatus according to Embodiment 4 of the present invention
- FIG. 10 is a block diagram illustrating main portions of FIG. 9 .
- Embodiment 4 adjusts the running speed pattern described in Embodiment 2 according to the car weight information described in Embodiment 3. More specifically, in Embodiment 4, the running speed pattern from a start floor to a destination floor illustrated in FIG. 6 is adjusted according to the car weight information.
- the running speed pattern is changed according to the car weight information in Embodiments 3 and 4
- the first and second over speeds may be directly changed according to the car weight information.
- the load weighing device 23 described in Embodiments 3 and 4 is of a type which is provided to the connecting portion of the main rope 5 and the car 6
- the load weighing device may be of another type, for example, of a type which is provided at a car platform.
- FIG. 11 is a structural diagram illustrating an elevator apparatus according to Embodiment 5 of the present invention
- FIG. 12 is a block diagram illustrating main portions of FIG. 11 .
- information of a running speed pattern generated by a control panel 9 is transmitted to the over speed monitoring portion 15 .
- the over speed monitoring portion 15 has a pattern comparing portion 24 for comparing a running speed pattern generated by the over speed setting portion 16 with the running speed pattern generated by the control panel 9 .
- the pattern comparing portion 24 When the difference between the two running speed patterns is equal to or more than a preset value, the pattern comparing portion 24 outputs a command signal to at least one of the brake actuation command portion 18 and the safety device actuation command portion 19 , and actuates at least one of the braking device 4 and the safety device 8 .
- the other structural components are similar to those of Embodiment 2.
- the pattern comparing portion 24 for comparing the running speed pattern generated by the over speed setting portion 16 with the running speed pattern generated by the control panel 9 is used, it can be monitored whether there is an abnormality of the over speed monitoring portion 15 and of the control panel 9 , and the reliability can be improved.
- FIG. 13 is a structural diagram illustrating an elevator apparatus according to Embodiment 6 of the present invention
- FIG. 14 is a block diagram illustrating main portions of FIG. 13 .
- information of a running speed pattern generated by a control panel 9 is transmitted to the over speed monitoring portion 15 .
- the over speed monitoring portion 15 has a pattern comparing portion 24 for comparing a running speed pattern used by the over speed monitoring portion 15 with the running speed pattern generated by the control panel 9 .
- the pattern comparing portion 24 When the difference between the two running speed patterns is equal to or more than a preset value, the pattern comparing portion 24 outputs a command signal to at least one of the brake actuation command portion 18 and the safety device actuation command portion 19 , and actuates at least one of the braking device 4 and the safety device 8 .
- the other structural components are similar to those of Embodiment 3.
- the pattern comparing portion 24 for comparing the running speed pattern used by the over speed monitoring portion 15 (running speed pattern adjusted according to car weight information) with the running speed pattern generated by the control panel 9 is used, it can be monitored whether there is an abnormality of the over speed monitoring portion 15 and of the control panel 9 , and the reliability can be improved.
- FIG. 15 is a structural diagram illustrating an elevator apparatus according to Embodiment 7 of the present invention
- FIG. 16 is a block diagram illustrating main portions of FIG. 15 .
- information of a running speed pattern generated by a control panel 9 is transmitted to an over speed monitoring portion 16 .
- the over speed monitoring portion 15 has a pattern comparing portion 24 for comparing a running speed pattern generated by the over speed setting portion 16 with the running speed pattern generated by the control panel 9 .
- the pattern comparing portion 24 When the difference between the two running speed patterns is equal to or more than a preset value, the pattern comparing portion 24 outputs a command signal to at least one of the brake actuation command portion 18 and the safety device actuation command portion 19 , and actuates at least one of the braking device 4 and the safety device 8 .
- the other structural components are similar to those of Embodiment 4.
- the pattern comparing portion 24 for comparing the running speed pattern generated by the over speed setting portion 16 with the running speed pattern generated by the control panel 9 is used, it can be monitored whether there is an abnormality of the over speed monitoring portion 15 and of the control panel 9 , and the reliability can be improved.
- the two running speed patterns are directly compared in Embodiments 5 to 7, but may be indirectly compared.
- the first and second over speeds may be determined from the running speed pattern generated by the control panel 9 and may be compared with first and second over speeds set by the over speed monitoring portion 15 .
- the car speed detector and the car position detector are not limited to particular ones, and an encoder, for example, may be used. Also, the car position and the car speed may be measured by, for example, the reflection of detecting light.
- the braking means is not limited to the braking device 4 and the safety device 8 , and may be, for example, a rope brake for clamping the main rope 5 .
- the mechanical structure of the safety device is not limited to a particular one, and every type of safety device may be used.
- the over speed monitoring portion may set only one over speed or may set three or more over speeds.
- the place where the over speed monitoring portion is provided is not limited to a particular place, and the over speed monitoring portion may be provided in the hoistway, in a machine room, or above the car, for example.
- over speeds are set to continuously change according to the running pattern in FIGS. 3 and 6
- the over speeds may be set to change stepwise.
- the over speed monitoring portion independent of the controller adjusts the over speeds according to the car weight information.
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Elevator Control (AREA)
Abstract
Description
- The present invention relates to an elevator apparatus which has a function of setting an over speed and monitoring whether the running speed of a car reaches the over speed.
- For example, in a conventional elevator apparatus disclosed in JP 2003-10468 A, a speed governor monitors whether the running speed of a car reaches an over speed. The speed governor sets, from car running speed pattern information and car call registration information, an over speed which should be judged as abnormal, and compares the actual car running speed and the set over speed.
- However, in the conventional elevator apparatus, the speed governor obtains the car running speed pattern information and the car call registration information from a control panel. Therefore, when a runaway car is due to an abnormal control panel, information from the control panel can also be abnormal, and thus, there is a fear that the speed governor cannot detect the over speed or the speed governor unnecessarily actuates a braking device.
- The present invention has been made to solve the above problem, and therefore an object of the present invention is to obtain an elevator apparatus capable of detecting more accurately that the running speed of a car reaches an over speed.
- To this end, according to one aspect of the present invention, there is provided an elevator apparatus, comprising a car for ascending and descending in a hoistway; a controller for controlling the ascending and descending of the car; braking means for braking the car; a car speed detector for detecting a running speed of the car; a car position detector for detecting a position of the car; and an over speed monitoring portion for receiving information from the car speed detector and the car position detector, comparing an over speed set correspondingly to the position of the car with the running speed of the car, and actuating the braking means when the running speed of the car reaches the over speed, wherein the over speed monitoring portion sets the over speed independently of the controller.
- Further, according to another aspect of the present invention, there is provided an elevator apparatus including: a car for ascending and descending in a hoistway; braking means for braking the car; a car speed detector for detecting a running speed of the car; a load weighing device for detecting a weight of the car; and an over speed monitoring portion for receiving information from the car speed detector, comparing a set over speed with the running speed of the car, and actuating the braking means when the running speed of the car reaches the over speed, in which the over speed monitoring portion adjusts the over speed according to car weight information obtained from the load weighing device.
- In the accompanying drawings:
-
FIG. 1 is a structural diagram illustrating an elevator apparatus according toEmbodiment 1 of the present invention; -
FIG. 2 is a block diagram illustrating main portions ofFIG. 1 ; -
FIG. 3 is a graph illustrating a running speed pattern, a first over speed, and a second over speed obtained when the car shown inFIG. 1 runs normally from one terminal landing to the other terminal landing; -
FIG. 4 is a structural diagram illustrating an elevator apparatus according toEmbodiment 2 of the present invention; -
FIG. 5 is a block diagram illustrating main portions ofFIG. 4 ; -
FIG. 6 is a graph illustrating a running speed pattern, a first over speed, and a second over speed obtained when the car shown inFIG. 4 runs normally from a start floor to a destination floor; -
FIG. 7 is a structural diagram illustrating an elevator apparatus according toEmbodiment 3 of the present invention; -
FIG. 8 is a block diagram illustrating main portions ofFIG. 7 ; -
FIG. 9 is a structural diagram illustrating an elevator apparatus according toEmbodiment 4 of the present invention; -
FIG. 10 is a block diagram illustrating main portions ofFIG. 9 ; -
FIG. 11 is a structural diagram illustrating an elevator apparatus according toEmbodiment 5 of the present invention; -
FIG. 12 is a block diagram illustrating main portions ofFIG. 11 ; -
FIG. 13 is a structural diagram illustrating an elevator apparatus according toEmbodiment 6 of the present invention; -
FIG. 14 is a block diagram illustrating main portions ofFIG. 13 ; -
FIG. 15 is a structural diagram illustrating an elevator apparatus according toEmbodiment 7 of the present invention; and -
FIG. 16 is a block diagram illustrating main portions ofFIG. 15 . - Preferred embodiments of the present invention are described in the following with reference to the drawings.
-
FIG. 1 is a structural diagram illustrating an elevator apparatus according toEmbodiment 1 of the present invention. In the figure, adriving device 2 is disposed in an upper portion of ahoistway 1. Thedriving device 2 has a drivingsheave 3 and abraking device 4 as braking means for braking rotation of the drivingsheave 3. Amain rope 5 is stretched around the drivingsheave 3. - A
car 6 and acounterweight 7 are connected to themain rope 5 and thereby are hung in thehoistway 1. By rotating the drivingsheave 3, thecar 6 and thecounterweight 7 ascend and descend in thehoistway 1. Thecar 6 has asafety device 8 mounted thereon as braking means for directly braking thecar 6. Thedriving device 2 is controlled by acontrol panel 9 serving as a controller. Thecar 6 ascends and descends according to a running speed pattern (an operating speed target value) generated by thecontrol panel 9. - An
upper pulley 10 is disposed in the upper portion of thehoistway 1. Alower pulley 11 is disposed in a lower portion of thehoistway 1. Aspeed detection rope 12 is stretched around theupper pulley 10 and thelower pulley 11. Both ends of thespeed detection rope 12 are connected to thecar 6, by which thespeed detection rope 12 is disposed like a loop. When thecar 6 ascends and descends, theupper pulley 10 and thelower pulley 11 rotate at a speed corresponding to the running speed of thecar 6. - The
upper pulley 10 is provided with acar speed detector 13 for detecting the running speed of thecar 6 based on the rotation speed of theupper pulley 10 and acar position detector 14 for detecting the position of thecar 6 based on the amount of rotation of theupper pulley 10. - Information from the
car speed detector 13 and from the car position detector is inputted to an overspeed monitoring portion 15. The overspeed monitoring portion 15 sets first and second over speeds (over speed detection levels) which should be judged as abnormal. The first and second over speeds vary depending on the position of thecar 6. - Also, the over
speed monitoring portion 15 monitors the running speed of thecar 6. When the running speed of thecar 6 reaches the first over speed corresponding to the position of thecar 6, the overspeed monitoring portion 15 outputs an actuation command signal to thebraking device 4, and indirectly brakes thecar 6 using thebraking device 4. Further, when the running speed of thecar 6 reaches the second over speed corresponding to the position of thecar 6, the overspeed monitoring portion 15 outputs an actuation command signal to thesafety device 8, and directly brakes thecar 6. -
FIG. 2 is a block diagram illustrating main portions ofFIG. 1 . In the figure, the overspeed monitoring portion 15 has an overspeed setting portion 16, a comparing/judging portion 17, a brakeactuation command portion 18, and a safety deviceactuation command portion 19. The first and second over speeds are set by the overspeed setting portion 16. - The comparing/
judging portion 17 compares the first and second over speeds set by the overspeed setting portion 16 with the running speed of thecar 6 detected by thecar speed detector 13 and judges whether there is an abnormality or not. The brakeactuation command portion 18 outputs an actuation command signal to thebraking device 4 based on a command from the comparing/judging portion 17. The safety deviceactuation command portion 19 outputs an actuation command signal to thesafety device 8 based on a command from the comparing/judging portion 17. - Next, a method of setting the first and second over speeds in the over
speed setting portion 16 ofEmbodiment 1 is described.FIG. 3 is a graph illustrating the running speed pattern, the first over speed, and the second over speed obtained when thecar 6 shown inFIG. 1 runs normally from one terminal landing to the other terminal landing. - In the figure, a solid line denotes the maximum values of the running speed pattern. An alternate-long-and-short-dashed line denotes the first over speed. Further, a chain-double-dashed line denotes the second over speed.
- In the running speed pattern, an acceleration curve and a deceleration curve proximate to the terminal landings are determined using maximum values of acceleration (or deceleration) assumed proximately to the terminal landings. Further, the speed in a constant speed running region is the maximum value of speed assumed in the region. Therefore, when there is no abnormality, the running speed of the
car 6 does not exceed the running speed pattern. - The first over speed is set as a pattern higher than the running speed pattern with a certain extent of margin between itself and the running speed pattern. The second over speed is set as a pattern higher than the first over speed with a certain extent of margin between itself and the first over speed. Therefore, the first and the second over speeds do not remain constant, and the first and the second over speeds proximate to the terminal landings are set to be lower than those of the other portion.
- The over
speed monitoring portion 15 is provided with storage means (a memory) and processing means (a CPU). The storage means stores the running speed pattern and the first and second over speed patterns as described in the above. The processing means determines the first and second over speeds corresponding to the car position information and compares the car speed information with the first and second over speeds. - In such an elevator apparatus, since the over
speed monitoring portion 15 stores the first and the second over speed patterns set according to the position of thecar 6, it is possible to judge whether there is an abnormality or not according to the position of thecar 6 without depending on information from thecontrol panel 9. Accordingly, even when thecontrol panel 9 is out of order, it can be detected more accurately that the running speed of thecar 6 reaches the first and second over speeds. - Further, since the first and second over speeds are set to be higher than the running speed pattern with a predetermined margin between themselves and the running speed pattern obtained when the
car 6 runs normally from one terminal landing to the other terminal landing, the first and second over speeds proximate to the terminal landings are set to be lower than those of the other portion, and thus, an abnormality of the running speed can be detected at an earlier stage. - Next,
FIG. 4 is a structural diagram illustrating an elevator apparatus according toEmbodiment 2 of the present invention, andFIG. 5 is a block diagram illustrating main portions ofFIG. 4 . In the figures,destination floor buttons 21 for registering a destination floor are provided to acar 6. Landings on respective floors are provided withlanding buttons 22. By operating thedestination floor buttons 21 or thelanding buttons 22, a call is registered in acontrol panel 9, and thecontrol panel 9 generates a running speed pattern of thecar 6. Thecar 6 ascends and descends according to the running speed pattern generated by thecontrol panel 9. - The
destination floor buttons 21 and thelanding buttons 22 are connected to the overspeed monitoring portion 15 without the intervention of thecontrol panel 9. More specifically, a call registration signal from thedestination floor buttons 21 and thelanding buttons 22 is transmitted to the overspeed monitoring portion 15 by a different route from that used for transmission to thecontrol panel 9. The rest of the configuration is other structural components are similar to those ofEmbodiment 1. - Next, a method of setting first and second over speeds in the over
speed setting portion 16 ofEmbodiment 2 is described.FIG. 6 is a graph illustrating the running speed pattern, the first over speed, and the second over speed obtained when thecar 6 shown inFIG. 4 runs normally from a start floor to a destination floor. - In the figure, a solid line denotes the maximum values of the running speed pattern. An alternate-long-and-short-dashed line denotes the first over speed. Further, a chain-double-dashed line denotes the second over speed.
- In the over
speed setting portion 16, the running speed pattern from the start floor to the destination floor is generated based on call registration information obtained from thedestination floor buttons 21 and thelanding buttons 22. More specifically, in the overspeed setting portion 16, a running speed pattern different from the running speed pattern generated by thecontrol panel 9 is independently generated without depending on information from thecontrol panel 9. - The running speed pattern generated by the over
speed setting portion 16 is determined using maximum values of speed assumed with regard to each of an acceleration region, a deceleration region, and a constant speed running region. Therefore, when there is no abnormality, the running speed of thecar 6 does not exceed the running speed pattern generated by the overspeed setting portion 16. - The first over speed is set as a pattern higher than the running speed pattern generated by the over
speed setting portion 16, with a certain extent of margin between itself and the running speed pattern. The second over speed is set as a pattern higher than the first over speed with a certain extent of margin between itself and the first over speed. Therefore, the first and the second over speeds do not remain constant, and the first and the second over speeds proximate to the start floor and the destination floor are set to be lower than those of the other portion. - The running speed pattern is generated every time the
car 6 runs. Therefore, the first and the second over speeds are also newly generated every time thecar 6 runs according to the change in the running speed pattern. When, for example, the destination floor is changed while thecar 6 is running, the running speed pattern is adjusted, and the first and second over speeds are also adjusted according to the adjustment. - The over
speed monitoring portion 15 is provided with the storage means (memory) and the processing means (CPU). The storage means stores the running speed pattern and the first and second over speed patterns as described in the above. The processing means generates the running speed pattern and sets the first and second over speeds. Further, the processing means determines the first and second over speeds corresponding to the car position information and compares the car speed information with the first and second over speeds. - In such an elevator apparatus, since the over
speed setting portion 16 generates the running speed pattern independently of thecontrol panel 9 and sets the first and second over speeds based on the running speed pattern, even when thecontrol panel 9 is out of order, it can be detected more accurately that the running speed of thecar 6 reaches the first and second over speeds. - In addition, since the running speed pattern is generated as running speeds obtained when the
car 6 runs normally from a start floor to a destination floor and the first and second over speeds are set to be higher than the running speed pattern with a predetermined margin between themselves and the running speed pattern, the first and second over speeds proximate to the start floor and the destination floor are set to be lower than those of the other portion, and thus, an abnormality of the running speed can be detected at an earlier stage. - Further, since the over
speed setting portion 16 generates the running speed pattern based on the call registration information from thedestination floor buttons 21 and thelanding buttons 22, a more accurate running speed pattern can be generated. - Still further, when the destination floor is changed while the
car 6 is running, the overspeed setting portion 16 adjusts the running speed pattern and the first and second over speeds according to the change of the destination floor. Thus, it can be detected more accurately that the running speed of thecar 6 reaches the first and second over speeds. - It should be noted that, in an elevator apparatus where a plurality of cars run in a common hoistway, that is, a system where multiple cars serve on one shaft, the over speed setting portion needs to generate the running speed patterns of the respective cars based on the call registration information of the cars and to set the first and second over speeds.
- Although the running speed pattern and the first and second over speed patterns are stored in the storage means in
Embodiments - Next,
FIG. 7 is a structural diagram illustrating an elevator apparatus according toEmbodiment 3 of the present invention, andFIG. 8 is a block diagram illustrating main portions ofFIG. 7 . In the figures, aload weighing device 23 for detecting the weight of acar 6 is provided to a connecting portion of amain rope 5 and thecar 6. Car weight information from theload weighing device 23 is transmitted to acontrol panel 9 and overload of thecar 6 is detected. - A running speed pattern generated by the
control panel 9 is adjusted based on the car weight information from theload weighing device 23. For example, if the car weight is high, the running speeds in an acceleration region, in a deceleration region, and in a constant speed running region are set to be low. If the car weight is low, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be high. - The
load weighing device 23 is also connected to the overspeed monitoring portion 15 without the intervention of thecontrol panel 9. More specifically, a car weight detection signal from theload weighing device 23 is transmitted to the overspeed monitoring portion 15 by a different route from that used for transmission to thecontrol panel 9. The other structural components are similar to those ofEmbodiment 1. - Next, a method of setting first and second over speeds in an over
speed setting portion 16 ofEmbodiment 3 is described. In the overspeed setting portion 16 ofEmbodiment 3, basically similarly to the case ofEmbodiment 1, the first and second over speeds are set based on a running speed pattern obtained when thecar 6 runs normally from one terminal landing to the other terminal landing. However, inEmbodiment 3, the running speed pattern is adjusted according to the car weight information, and the first and second over speeds are also adjusted according to the adjustment to the running speed pattern. - The running speed pattern is adjusted according to the car weight information with regard to each of the acceleration region, the deceleration region, and the constant speed running region. For example, if the car weight is high, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be low, and if the car weight is low, the running speeds in the acceleration region, in the deceleration region, and in the constant speed running region are set to be high.
- In such an elevator apparatus, since the first and second over speeds are adjusted according to the car, weight information, when the running speed pattern generated by the
control panel 9 is changed according to the car weight information, the running speed pattern generated by the overspeed setting portion 16 can also be adjusted in a similar way, and more appropriate first and second over speeds can be set. - Next,
FIG. 9 is a structural diagram illustrating an elevator apparatus according toEmbodiment 4 of the present invention, andFIG. 10 is a block diagram illustrating main portions ofFIG. 9 .Embodiment 4 adjusts the running speed pattern described inEmbodiment 2 according to the car weight information described inEmbodiment 3. More specifically, inEmbodiment 4, the running speed pattern from a start floor to a destination floor illustrated inFIG. 6 is adjusted according to the car weight information. - Even with such an elevator apparatus, it can be detected more accurately that the running speed of a
car 6 reaches first and second over speeds, and more appropriate first and second over speeds can be set. - It should be noted that, although the running speed pattern is changed according to the car weight information in
Embodiments - Further, although the
load weighing device 23 described inEmbodiments main rope 5 and thecar 6, the load weighing device may be of another type, for example, of a type which is provided at a car platform. - Next,
FIG. 11 is a structural diagram illustrating an elevator apparatus according toEmbodiment 5 of the present invention, andFIG. 12 is a block diagram illustrating main portions ofFIG. 11 . In the figures, information of a running speed pattern generated by acontrol panel 9 is transmitted to the overspeed monitoring portion 15. The overspeed monitoring portion 15 has apattern comparing portion 24 for comparing a running speed pattern generated by the overspeed setting portion 16 with the running speed pattern generated by thecontrol panel 9. - When the difference between the two running speed patterns is equal to or more than a preset value, the
pattern comparing portion 24 outputs a command signal to at least one of the brakeactuation command portion 18 and the safety deviceactuation command portion 19, and actuates at least one of thebraking device 4 and thesafety device 8. The other structural components are similar to those ofEmbodiment 2. - In such an elevator apparatus, since the
pattern comparing portion 24 for comparing the running speed pattern generated by the overspeed setting portion 16 with the running speed pattern generated by thecontrol panel 9 is used, it can be monitored whether there is an abnormality of the overspeed monitoring portion 15 and of thecontrol panel 9, and the reliability can be improved. - Next,
FIG. 13 is a structural diagram illustrating an elevator apparatus according toEmbodiment 6 of the present invention, andFIG. 14 is a block diagram illustrating main portions ofFIG. 13 . In the figures, information of a running speed pattern generated by acontrol panel 9 is transmitted to the overspeed monitoring portion 15. The overspeed monitoring portion 15 has apattern comparing portion 24 for comparing a running speed pattern used by the overspeed monitoring portion 15 with the running speed pattern generated by thecontrol panel 9. - When the difference between the two running speed patterns is equal to or more than a preset value, the
pattern comparing portion 24 outputs a command signal to at least one of the brakeactuation command portion 18 and the safety deviceactuation command portion 19, and actuates at least one of thebraking device 4 and thesafety device 8. The other structural components are similar to those ofEmbodiment 3. - In such an elevator apparatus, since the
pattern comparing portion 24 for comparing the running speed pattern used by the over speed monitoring portion 15 (running speed pattern adjusted according to car weight information) with the running speed pattern generated by thecontrol panel 9 is used, it can be monitored whether there is an abnormality of the overspeed monitoring portion 15 and of thecontrol panel 9, and the reliability can be improved. - Next,
FIG. 15 is a structural diagram illustrating an elevator apparatus according toEmbodiment 7 of the present invention, andFIG. 16 is a block diagram illustrating main portions ofFIG. 15 . In the figures, information of a running speed pattern generated by acontrol panel 9 is transmitted to an overspeed monitoring portion 16. The overspeed monitoring portion 15 has apattern comparing portion 24 for comparing a running speed pattern generated by the overspeed setting portion 16 with the running speed pattern generated by thecontrol panel 9. - When the difference between the two running speed patterns is equal to or more than a preset value, the
pattern comparing portion 24 outputs a command signal to at least one of the brakeactuation command portion 18 and the safety deviceactuation command portion 19, and actuates at least one of thebraking device 4 and thesafety device 8. The other structural components are similar to those ofEmbodiment 4. - In such an elevator apparatus, since the
pattern comparing portion 24 for comparing the running speed pattern generated by the overspeed setting portion 16 with the running speed pattern generated by thecontrol panel 9 is used, it can be monitored whether there is an abnormality of the overspeed monitoring portion 15 and of thecontrol panel 9, and the reliability can be improved. - It should be noted that the two running speed patterns are directly compared in
Embodiments 5 to 7, but may be indirectly compared. For example, the first and second over speeds may be determined from the running speed pattern generated by thecontrol panel 9 and may be compared with first and second over speeds set by the overspeed monitoring portion 15. - Further, the car speed detector and the car position detector are not limited to particular ones, and an encoder, for example, may be used. Also, the car position and the car speed may be measured by, for example, the reflection of detecting light.
- Further, the braking means is not limited to the
braking device 4 and thesafety device 8, and may be, for example, a rope brake for clamping themain rope 5. - Still further, the mechanical structure of the safety device is not limited to a particular one, and every type of safety device may be used.
- Further, the first and second over speeds are set in
Embodiments 1 to 7, the over speed monitoring portion may set only one over speed or may set three or more over speeds. - Further, the place where the over speed monitoring portion is provided is not limited to a particular place, and the over speed monitoring portion may be provided in the hoistway, in a machine room, or above the car, for example.
- Still further, although the over speeds are set to continuously change according to the running pattern in
FIGS. 3 and 6 , the over speeds may be set to change stepwise. - Further, although the cases where the over speed monitoring portion independent of the controller adjusts the over speeds according to the car weight information are described in the above, the adjustment of the over speeds may be made by an over speed monitoring portion which depends on the controller according to the car weight information.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/285,467 US7575100B2 (en) | 2003-11-21 | 2008-10-06 | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/014923 WO2005049468A1 (en) | 2003-11-21 | 2003-11-21 | Elevator system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/285,467 Division US7575100B2 (en) | 2003-11-21 | 2008-10-06 | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060124399A1 true US20060124399A1 (en) | 2006-06-15 |
US7448472B2 US7448472B2 (en) | 2008-11-11 |
Family
ID=34611326
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/538,307 Expired - Fee Related US7448472B2 (en) | 2003-11-21 | 2003-11-21 | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed |
US12/285,467 Expired - Fee Related US7575100B2 (en) | 2003-11-21 | 2008-10-06 | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/285,467 Expired - Fee Related US7575100B2 (en) | 2003-11-21 | 2008-10-06 | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed |
Country Status (5)
Country | Link |
---|---|
US (2) | US7448472B2 (en) |
EP (1) | EP1688383A4 (en) |
JP (1) | JP4368854B2 (en) |
CN (1) | CN1741949B (en) |
WO (1) | WO2005049468A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090178889A1 (en) * | 2006-08-14 | 2009-07-16 | Kone Corporation | Elevator system |
US20090283367A1 (en) * | 2006-04-13 | 2009-11-19 | Mitsubishi Electric Corporation | Elevator apparatus |
US20100147182A1 (en) * | 2006-11-23 | 2010-06-17 | Franckie Tamisier | simulation method for simulating braking of a cable transport facility, a diagnosis method for diagnosing the braking of such a facility and control apparatus for controlling the facility |
US20100155182A1 (en) * | 2006-11-20 | 2010-06-24 | Mitsubishi Electric Corporation | Elevator system |
US20100300813A1 (en) * | 2007-06-21 | 2010-12-02 | Mitsubishi Electric Corporatioin | Safety device for elevator and rope slip detection method |
WO2011128493A1 (en) * | 2010-04-16 | 2011-10-20 | Kone Corporation | Elevator system |
US20130118837A1 (en) * | 2010-06-23 | 2013-05-16 | Thyssenkrupp Elevator Ag | Elevator installation |
CN103896124A (en) * | 2012-12-27 | 2014-07-02 | 北京升华电梯有限公司 | Multi-segment speed limiting device |
US20180086605A1 (en) * | 2016-09-26 | 2018-03-29 | Kone Corporation | Impact detection in an elevator door |
US10124991B2 (en) * | 2015-08-13 | 2018-11-13 | Kone Corporation | Car speed monitoring assembly for an elevator |
US11230455B2 (en) * | 2017-07-14 | 2022-01-25 | Inventio Ag | Method for configuring security related configuration parameters in a passenger transport installation |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368854B2 (en) * | 2003-11-21 | 2009-11-18 | 三菱電機株式会社 | Elevator equipment |
US7837300B2 (en) * | 2004-07-15 | 2010-11-23 | Ricoh Company, Ltd. | Liquid jet head, manufacturing method of the liquid jet head, image forming device, nozzle member of the liquid jet head, repellent ink film forming method, cartridge, and liquid jet recording device |
EP1679279B2 (en) * | 2005-01-07 | 2011-03-30 | ThyssenKrupp Elevator AG | Elevator with control system |
FI117381B (en) * | 2005-03-11 | 2006-09-29 | Kone Corp | Elevator group and method for controlling the elevator group |
CN101360675B (en) * | 2006-05-16 | 2011-04-27 | 三菱电机株式会社 | Control apparatus for elevator |
US8162108B2 (en) * | 2006-06-30 | 2012-04-24 | Otis Elevator Company | Elevator having a limit switch for controlling power to the drive system as an elevator car approaches a shallow pit or a low overhead |
FR2904594B1 (en) * | 2006-08-04 | 2008-10-17 | Pomagalski Sa | METHOD FOR CONTROLLING A BRAKING UNIT OF A CABLE TRANSPORTATION SYSTEM AND BRAKING UNIT |
CN101462664B (en) * | 2007-12-21 | 2014-09-17 | 上海三菱电梯有限公司 | Speed limiter of elevator |
JP5381716B2 (en) | 2007-12-27 | 2014-01-08 | 三菱電機株式会社 | Elevator equipment |
FR2928124B1 (en) * | 2008-02-29 | 2012-02-10 | Pomagalski Sa | METHOD FOR CONTROLLING AN ARRAY OR AUXILIARY BRAKING DEVICE OF A CABLE TRANSPORTATION SYSTEM. |
RU2499760C2 (en) * | 2008-12-17 | 2013-11-27 | Отис Элевэйтор Компани | Method of elevator braking control |
JPWO2010125689A1 (en) * | 2009-05-01 | 2012-10-25 | 三菱電機株式会社 | Elevator equipment |
FI20105033A (en) | 2010-01-18 | 2011-07-19 | Kone Corp | Procedure for controlling the movement of a lift basket and lift system |
FI20105587A0 (en) * | 2010-05-25 | 2010-05-25 | Kone Corp | A method for limiting the load on an elevator assembly and an elevator assembly |
KR101456403B1 (en) * | 2010-11-01 | 2014-10-31 | 미쓰비시덴키 가부시키가이샤 | Elevator device |
JP5462836B2 (en) * | 2011-06-06 | 2014-04-02 | 株式会社日立製作所 | Elevator braking device and elevator |
CN102424313A (en) * | 2011-08-19 | 2012-04-25 | 上海新时达电气股份有限公司 | Elevator system |
WO2013115827A1 (en) * | 2012-02-03 | 2013-08-08 | Otis Elevator Company | System and method for reducing speed of an elevator car |
ES2896407T3 (en) * | 2013-08-08 | 2022-02-24 | Kone Corp | Procedure for controlling an elevator and an elevator |
FI125316B (en) * | 2013-09-10 | 2015-08-31 | Kone Corp | Procedure for performing emergency stops and safety arrangements for lifts |
US20170073190A1 (en) * | 2015-09-14 | 2017-03-16 | Otis Elevator Company | Actuator assembly for an elevator governor system and method |
EP3608274A1 (en) * | 2018-08-10 | 2020-02-12 | Otis Elevator Company | Enhancing the transport capacity of an elevator system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155426A (en) * | 1978-05-05 | 1979-05-22 | Westinghouse Electric Corp. | Digital speed pattern generator |
US5229558A (en) * | 1989-10-31 | 1993-07-20 | Kone Elevator Gmbh | Control of an elevator hoisting motor during under voltage conditions in the main power source |
US5780786A (en) * | 1996-03-29 | 1998-07-14 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for use in an elevator |
US5984052A (en) * | 1997-09-17 | 1999-11-16 | Otis Elevator Company | Elevator with reduced counterweight |
US20040200671A1 (en) * | 2001-09-28 | 2004-10-14 | Takuo Kugiya | Elevator device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53107049A (en) * | 1977-03-02 | 1978-09-18 | Mitsubishi Electric Corp | Safety device for elevator |
JPS56149964A (en) * | 1980-04-18 | 1981-11-20 | Hitachi Ltd | Controller for elevator |
JPS5822283A (en) * | 1981-07-29 | 1983-02-09 | 株式会社日立製作所 | Detector for abnormality of elevator |
JP2788369B2 (en) * | 1991-12-05 | 1998-08-20 | 株式会社東芝 | Elevator speed monitoring device |
MY118747A (en) * | 1995-11-08 | 2005-01-31 | Inventio Ag | Method and device for increased safety in elevators |
JPH10231080A (en) * | 1997-02-20 | 1998-09-02 | Toshiba Corp | Elevator control device |
US6170614B1 (en) * | 1998-12-29 | 2001-01-09 | Otis Elevator Company | Electronic overspeed governor for elevators |
DK1401757T4 (en) * | 2001-07-04 | 2011-10-24 | Inventio Ag | A method of preventing an unreasonably high speed of lifting means of a lift |
JP4158883B2 (en) * | 2001-12-10 | 2008-10-01 | 三菱電機株式会社 | Elevator and its control device |
JP4368854B2 (en) * | 2003-11-21 | 2009-11-18 | 三菱電機株式会社 | Elevator equipment |
-
2003
- 2003-11-21 JP JP2005510765A patent/JP4368854B2/en not_active Expired - Fee Related
- 2003-11-21 EP EP03819032A patent/EP1688383A4/en not_active Withdrawn
- 2003-11-21 WO PCT/JP2003/014923 patent/WO2005049468A1/en active Application Filing
- 2003-11-21 US US10/538,307 patent/US7448472B2/en not_active Expired - Fee Related
- 2003-11-21 CN CN2003801090734A patent/CN1741949B/en not_active Expired - Fee Related
-
2008
- 2008-10-06 US US12/285,467 patent/US7575100B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155426A (en) * | 1978-05-05 | 1979-05-22 | Westinghouse Electric Corp. | Digital speed pattern generator |
US5229558A (en) * | 1989-10-31 | 1993-07-20 | Kone Elevator Gmbh | Control of an elevator hoisting motor during under voltage conditions in the main power source |
US5780786A (en) * | 1996-03-29 | 1998-07-14 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for use in an elevator |
US5984052A (en) * | 1997-09-17 | 1999-11-16 | Otis Elevator Company | Elevator with reduced counterweight |
US20040200671A1 (en) * | 2001-09-28 | 2004-10-14 | Takuo Kugiya | Elevator device |
US7228943B2 (en) * | 2001-09-28 | 2007-06-12 | Mitsubishi Denki Kabushiki Kaisha | Elevator apparatus with position correction for overspeed detection |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090283367A1 (en) * | 2006-04-13 | 2009-11-19 | Mitsubishi Electric Corporation | Elevator apparatus |
US7748502B2 (en) | 2006-04-13 | 2010-07-06 | Mitsubishi Electric Corporation | Elevator apparatus |
US8869945B2 (en) * | 2006-08-14 | 2014-10-28 | Kone Corporation | Supplemental elevator safety system |
US20090178889A1 (en) * | 2006-08-14 | 2009-07-16 | Kone Corporation | Elevator system |
US8186484B2 (en) | 2006-11-20 | 2012-05-29 | Mitsubishi Electric Corporation | Elevator system which controls a value of overspeed |
US20100155182A1 (en) * | 2006-11-20 | 2010-06-24 | Mitsubishi Electric Corporation | Elevator system |
US8177035B2 (en) | 2006-11-20 | 2012-05-15 | Mitsubishi Electric Corporation | Elevator system which controls a value of overspeed |
US8177034B2 (en) | 2006-11-20 | 2012-05-15 | Mitsubishi Electric Corporation | Elevator system which controls a value of overspeed |
US20100147182A1 (en) * | 2006-11-23 | 2010-06-17 | Franckie Tamisier | simulation method for simulating braking of a cable transport facility, a diagnosis method for diagnosing the braking of such a facility and control apparatus for controlling the facility |
US8261886B2 (en) | 2007-06-21 | 2012-09-11 | Mitsubishi Electric Corporation | Safety device for elevator and rope slip detection method |
US8297413B2 (en) | 2007-06-21 | 2012-10-30 | Mitsubishi Electric Corporation | Safety device for elevator and rope slip detection method using drive sheave acceleration |
US8336677B2 (en) | 2007-06-21 | 2012-12-25 | Mitsubishi Electric Corporation | Safety device for elevator and rope slip detection method |
US20100300813A1 (en) * | 2007-06-21 | 2010-12-02 | Mitsubishi Electric Corporatioin | Safety device for elevator and rope slip detection method |
WO2011128493A1 (en) * | 2010-04-16 | 2011-10-20 | Kone Corporation | Elevator system |
US8789660B2 (en) | 2010-04-16 | 2014-07-29 | Kone Corporation | Elevator system using a movement profile |
US20130118837A1 (en) * | 2010-06-23 | 2013-05-16 | Thyssenkrupp Elevator Ag | Elevator installation |
CN103896124A (en) * | 2012-12-27 | 2014-07-02 | 北京升华电梯有限公司 | Multi-segment speed limiting device |
US10124991B2 (en) * | 2015-08-13 | 2018-11-13 | Kone Corporation | Car speed monitoring assembly for an elevator |
US20180086605A1 (en) * | 2016-09-26 | 2018-03-29 | Kone Corporation | Impact detection in an elevator door |
US10723593B2 (en) * | 2016-09-26 | 2020-07-28 | Kone Corporation | Impact detection in an elevator door |
US11230455B2 (en) * | 2017-07-14 | 2022-01-25 | Inventio Ag | Method for configuring security related configuration parameters in a passenger transport installation |
Also Published As
Publication number | Publication date |
---|---|
US7448472B2 (en) | 2008-11-11 |
JP4368854B2 (en) | 2009-11-18 |
JPWO2005049468A1 (en) | 2007-06-14 |
CN1741949A (en) | 2006-03-01 |
EP1688383A1 (en) | 2006-08-09 |
EP1688383A4 (en) | 2011-09-21 |
US7575100B2 (en) | 2009-08-18 |
US20090101450A1 (en) | 2009-04-23 |
CN1741949B (en) | 2010-09-08 |
WO2005049468A1 (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7575100B2 (en) | Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed | |
KR100681078B1 (en) | Elevator device | |
US10196234B2 (en) | Method for controlling unintended vertical speed and acceleration of an elevator | |
EP1953107B1 (en) | Brake system for elevator | |
EP2090541B1 (en) | Safety system for elevators | |
KR102065518B1 (en) | Elevator device | |
EP3858775A1 (en) | Monitoring device for elevator compensation roping | |
WO2016190281A1 (en) | Elevator device, control method therefor, and remote determination device for elevator state | |
KR100815674B1 (en) | Elevator safety system | |
CN112912328B (en) | Control system for elevator | |
JP4618636B2 (en) | Elevator equipment | |
US4719994A (en) | Floor re-leveling apparatus for elevator | |
KR100753298B1 (en) | Elevator system | |
CN101844718B (en) | Elevator device | |
JPH05155553A (en) | Velocity monitoring device for elevator | |
JP7121139B2 (en) | elevator controller | |
JPH09278304A (en) | Control device of elevator | |
JPH08217350A (en) | Derailment detecting device for elevator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUGIYA, TAKUO;UEDA, TAKAHARU;OKAMOTO, KEN-ICHI;AND OTHERS;REEL/FRAME:017413/0394;SIGNING DATES FROM 20050519 TO 20050524 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20201111 |