US20060042664A1 - Apparatus and method for removing a liquid from a rotating substrate surface - Google Patents

Apparatus and method for removing a liquid from a rotating substrate surface Download PDF

Info

Publication number
US20060042664A1
US20060042664A1 US10/930,290 US93029004A US2006042664A1 US 20060042664 A1 US20060042664 A1 US 20060042664A1 US 93029004 A US93029004 A US 93029004A US 2006042664 A1 US2006042664 A1 US 2006042664A1
Authority
US
United States
Prior art keywords
rinsing liquid
rinsing
nozzle
workpiece
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/930,290
Inventor
Vishwas Hardikar
Chris Karlsrud
Tom Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novellus Systems Inc
Original Assignee
Novellus Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novellus Systems Inc filed Critical Novellus Systems Inc
Priority to US10/930,290 priority Critical patent/US20060042664A1/en
Assigned to NOVELLUS SYSTEMS, INC. reassignment NOVELLUS SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARLSRUD, CHRIS, HARDIKAR, VISHWAS, LE, TOM
Publication of US20060042664A1 publication Critical patent/US20060042664A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Definitions

  • the present invention generally relates to an apparatus and method for removing a processing or rinsing liquid from a rotating substrate surface, and more particularly relates to an apparatus and method for removing such a liquid without allowing particles in the liquid to settle on the surface due to liquid evaporation or streaking.
  • Etching compounds, polishes, solvents, and other chemicals used for deposition or polishing methods often leave residues on the wafer. Such compounds must typically be rinsed or otherwise removed to free the wafer of contaminants.
  • An effective wafer cleaning includes a quick drying process. Many benefits gained by an effective rinsing step can be lost if the drying step is not carefully carried out.
  • spin rinse drying which involves mounting a wafer on a chuck and spraying the wafer with a cleaning solvent while the wafer is spinning.
  • a desirable feature of spin rinse drying is the ability to dry each wafer individually and not in batches. Integrated circuits are commonly manufactured individually, with processing steps including implantation, deposition, etching, etc. performed on one substrate at a time. Spin rinse drying allows for the cleaning processes to be performed in line with the other processing steps, removing the need to wait for a certain number of wafers to be ready for combined cleaning.
  • Some spin rinse drying processes utilize the wind created during spinning to dry the cleaning liquid. Air-drying the wafer surface in this manner is somewhat counterproductive because particulates that were dissolved in the liquid will remain on the wafer surface after the liquid evaporates. Also, streak marks are often left on the wafer surface when drying is performed in this manner.
  • the wafer outer regions spin with a greater velocity than the wafer inner regions, and the wafer outer regions are consequently the first areas to dry. When a rotational force causes liquid to spread from the wafer inner areas over the dry outer surface, particulates in the liquid will sometimes create the streak mark.
  • FIG. 1 One improved spin rinse drying apparatus is illustrated in FIG. 1 .
  • a wafer 10 rotates at a speed co while a liquid 16 is delivered to the wafer surface through a dispense tube 12 that slowly moves from the substrate center towards the edge at a speed v.
  • a second nozzle 14 is mounted on the trailing side of the liquid dispense tube 12 .
  • the second nozzle 14 dispenses a tensioactive vapor that reduces the liquid surface tension and creates a strong force, commonly referred to as the Marangoni force, tangential to the wafer surface.
  • the interaction of the rotational force with the Marangoni force physically removes the liquid from the wafer surface instead of allowing the liquid to evaporate.
  • an apparatus for performing a rinsing process on a workpiece surface.
  • the apparatus comprises a platform adapted to seat the workpiece thereon, a chuck connected to the platform and adapted to spin the workpiece during the rinsing process, a mechanical arm adapted to sweep across at least part of the workpiece surface during the rinsing process, first and second rinsing liquid nozzles secured to the mechanical arm, a tensioactive vapor nozzle secured to the arm and disposed between the first and second rinsing liquid nozzles, and first and second flow control elements adapted to separately and independently control rinsing liquid flow rates for the first and second rinsing liquid nozzles, respectively.
  • an apparatus for performing a rinsing process on a workpiece surface comprises a platform adapted to seat the workpiece thereon, a chuck connected to the platform and adapted to spin the workpiece during the rinsing process, a mechanical arm adapted to sweep across at least part of the workpiece surface during the rinsing process, first and second rinsing liquid nozzles secured to the mechanical arm, at least one rinsing liquid source supplying the first and second rinsing liquid nozzles, a tensioactive vapor nozzle secured to the arm and disposed between the first and second rinsing liquid nozzles, and, a tensioactive vapor source supplying the tensioactive vapor nozzle with a composition that, when mixed with the rinsing liquid, reduces the rinsing liquid surface tension on the workpiece surface.
  • a method for rinsing a workpiece surface comprises the steps of dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface, separately and independently controlling rinsing liquid flow rates for each of the first and second rinsing nozzles, and spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by the first rinsing nozzle.
  • a method for rinsing a workpiece surface comprises the steps of dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface, and using a nozzle that is disposed between the rinsing nozzles, spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by the first rinsing nozzle.
  • FIG. 1 ( a ) is a cross sectional view of a conventional spin rinse apparatus that utilizes a rinsing liquid along with a tensioactive vapor to clean a workpiece;
  • FIG. 1 ( b ) is a top view of the apparatus illustrated in FIG. 1 ( a );
  • FIG. 2 is a perspective view of a cleaner module that includes one or more cleaning machines including a spin rinse apparatus according to the present invention
  • FIG. 3 is a top view of a spin rinse apparatus at the beginning of a cleaning process according to an embodiment of the present invention
  • FIG. 4 is a top view of a spin rinse apparatus at the end of a cleaning process according to an embodiment of the present invention
  • FIG. 5 is a perspective view of a nozzle assembly according to an embodiment of the present invention, with the nozzle assembly mounted on an automated arm;
  • FIG. 6 is a perspective view of the nozzle assembly with the nozzle dispensing ends pointed in directions for thoroughly cleaning a workpiece surface according to an embodiment of the invention
  • FIGS. 7 a - c are, respectively, a perspective view, a side view, and a bottom view of a vapor nozzle for use with a spin rinse apparatus according to an embodiment of the present invention
  • FIGS. 8 a - c are, respectively, a perspective view, a side view, and a top view of a first liquid nozzle for use with a spin rinse apparatus according to an embodiment of the present invention.
  • FIGS. 9 a - c are, respectively, a perspective view, a side views differing by 90° of a second liquid nozzle for use with a spin rinse apparatus according to an embodiment of the present invention.
  • the apparatus and method of the present invention accomplish the task of effectively removing a rinsing liquid and the particulates dissolved therein from a workpiece such as a semiconductor wafer, and consequently produce a workpiece surface that is substantially free of particulate residue.
  • the apparatus and method-of the present invention has proven to be particularly effective at removing a rinsing liquid from a workpiece having a hydrophobic surface despite the high susceptibility that hydrophobic surfaces have to streaking.
  • the workpiece surface is cleaned using a spin rinse apparatus that incorporates a plurality of rinsing liquid nozzles to thoroughly wet the workpiece surface, and a tensioactive vapor nozzle to create a Maragoni force that drives the rinsing liquid off of the workpiece surface.
  • the nozzle arrangement and the manner in which the nozzles are controlled to adapt to particular workpieces prevents particulate residue due to evaporation or liquid streaking on the workpiece surface.
  • FIG. 2 illustrates a workpiece cleaning module 50 that includes a plurality of cleaners 20 , 30 , 40 .
  • the cleaners 20 , 30 , 40 in FIG. 2 are all non-contact cleaners, meaning that the cleaners do not use brushes, pads, or other mechanical devices to contact a workpiece during cleaning. It is of course within the scope of the present invention to use both non-contact and contact cleaners as components of the cleaning module 50 as needed. It is also within the scope of the present invention to use non-contact cleaners that are different than the non-contact cleaners 20 , 30 , 40 illustrated in FIG. 2 and described herein.
  • each of the cleaners 20 , 30 , 40 includes a chuck for rotating a workpiece, and an arm on which various cleaning instruments are installed.
  • One cleaner 20 can be a conventional brush scrubbing apparatus in the event that a user wishes for some cleaning to be performed using brush cleaners.
  • Another cleaner 30 can be a megasonic cleaning apparatus.
  • At least one cleaner 40 is an apparatus that combines Marangoni force with rotational force to rinse and clean a workpiece.
  • FIGS. 3 and 4 Top views of a workpiece cleaner 40 according to an exemplary embodiment of the invention are illustrated in FIGS. 3 and 4 , with an arm 22 and nozzles 24 , 26 , 28 secured thereto positioned at a starting point of a cleaning process in FIG. 3 , and at an ending point of the cleaning process in FIG. 4 .
  • a perspective view of the workpiece cleaner 40 is provided in FIG. 5 to more clearly illustrate the relationship between the cleaner 40 and a workpiece 10 to be cleaned.
  • the cleaner 40 includes a workpiece supporting mechanism that includes a platform 32 and a chuck 38 upon which the platform 32 is mounted.
  • the platform 32 is equipped with wafer stabilizing members 34 a that are arranged to closely surround the workpiece periphery and counter during a workpiece cleaning process.
  • the stabilizing members 34 a have a tapered end for guiding the workpiece 10 to a seated position at which at least three of the stabilizing members 34 a secure the workpiece in place. Additional stabilizing members provide additional lateral support for the workpiece and can be added as needed.
  • the cleaner 40 also includes a cleaning fluid distribution mechanism that includes fluid hoses 25 a - c , nozzles 24 , 26 , 28 that distribute fluid from the hoses 25 a - c , and an arm 22 that secures the nozzles 24 , 26 , 28 and sweeps them along an arc between the workpiece center and the outer edge during a cleaning process.
  • the sweeping motion for the arm is controlled independently with respect to the rotation of the chuck 38 and the platform 32 mounted thereon in order to optimize the nozzle positions above the workpiece 10 and to independently optimize the rate at which the workpiece 10 is rotated.
  • Each of the hoses 25 a - c is connected to a different fluid supply source.
  • the first hose 25 a connects the first nozzle 24 with a DI water source 40 .
  • the second hose 25 b connects the second nozzle 26 with a dry tensioactive vapor gas source 44 .
  • the third hose 25 c connects the third nozzle 28 with a DI water source 42 that is separate from the first DI water source 40 .
  • the DI water sources 40 , 42 are a single container, although an important feature of the invention as described in detail below is the ability to separately control the flow rates and pressures for the DI water supplied to each of the two rinsing nozzles 24 , 28 .
  • a bracket 23 located at one end of the arm 22 secures the fluid hoses 25 a - c to prevent tangling and to substantially eliminate the potential for the hoses 25 a - c to be subjected to a tension force as the arm moves.
  • a second bracket 27 is located at an opposite end of the arm positions the nozzles 24 , 26 , 28 and directs their streams toward specific workpiece areas during a cleaning process.
  • a clamp 29 secures the nozzles 24 , 26 , 28 to the bracket 27 .
  • FIGS. 3 and 4 represent the manner in which the arm 22 sweeps the nozzles 24 , 26 , 28 along an arc that traverses the workpiece radius during a cleaning process, beginning in the vicinity of the workpiece center and moving outwardly toward the workpiece edge.
  • FIG. 6 illustrates the manner in which each nozzle 24 , 26 , 28 is positioned on the arm 22 to thoroughly rinse and dry the workpiece 10 .
  • Two nozzles 24 , 28 are rinsing nozzles that dispense DI water onto the workpiece 10 at particular angles and in particular directions.
  • the streams dispensed from the rinsing nozzles 24 , 28 are directional, laminar streams in an exemplary embodiment of the invention, although it is within the scope of the invention for the streams from the rinsing nozzles 24 , 28 to be turbulent sprays as well.
  • FIGS. 7 a - c are perspective, side, and top views of the first DI water nozzle 24 .
  • the nozzle 24 attaches at one end 24 a to a DI water hose 25 a .
  • the nozzle dispensing end 24 b is bent or otherwise disposed at an angle with respect to a vertical plane in order to direct DI water onto the workpiece 10 at an acute angle with respect to the horizontally disposed workpiece surface being cleaned. From FIG. 6 it can be seen that at the start of the cleaning process the DI water is dispensed onto the workpiece center.
  • the nozzle dispensing end 24 b is bent or otherwise positioned to dispense the DI water at an angle of about 120° from a vertical plane when the workpiece 10 is spinning on a horizontal plane; or in other words, the nozzle dispensing end 24 b dispenses the DI water at about a 60° angle with respect to the workpiece surface being cleaned.
  • aqueous rinsing liquids can be utilized to rinse the workpiece 10 using the nozzle 24 and also the second rinsing nozzle 28 , described in detail below.
  • the rinsing liquid can include a surfactant to decrease the surface tension between the rinsing liquid and the workpiece surface.
  • a surfactant is particularly advantageous when rinsing a hydrophobic surface since DI water is particularly prone to streaking if there is little surface tension with the workpiece surface.
  • a nonionic surfactant is included in the rinsing liquid.
  • FIGS. 8 a - c are perspective, side, and bottom views of a tensioactive vapor spraying nozzle 26 that is positioned inwardly on the arm 22 with respect to the DI water nozzle 24 .
  • the nozzle 26 is attached at one end 26 a to a tensioactive vapor hose 25 b.
  • a spraying end 26 b sprays a substantially dry gas that includes a vaporized tensioactive compound.
  • the nozzle 26 sprays approximately ⁇ 1% isopropyl alcohol (IPA) vaporized in a nitrogen gas stream.
  • IPA isopropyl alcohol
  • Other tensioactive compounds can be vaporized and sprayed in a carrier gas, with exemplary tensioactive compounds include one or more selected from ethyl acetate, acetone, and diacetone alcohol.
  • the IPA or other tensioactive fluid concentration can be modified to meet the requirements of a particular rinsing process as long as the compound is miscible with the rinsing liquid and, when mixed with the rinsing liquid, yields a mixture having a surface tension that is lower than that of the rinsing liquid by itself.
  • the spraying end 26 b directs the tensioactive vapor onto the workpiece surface at a substantially perpendicular angle in an exemplary embodiment of the invention. From FIG. 6 it can be seen that at the start of the cleaning process the nozzle 26 sprays the tensioactive vapor onto the workpiece center. The tensioactive vapor immediately forces rinsing liquid from the area being sprayed with the dry vapor, creating a circular liquid-vapor boundary as the workpiece 10 rotates. The workpiece 10 is completely dry inside the circle created by the liquid-vapor boundary, and the circle increases in diameter as the tensioactive vapor spraying nozzle 26 moves toward the workpiece outer edge until the workpiece 10 is completely dried.
  • FIGS. 9 a - b are perspective and side views of a second DI water dispensing nozzle 28 .
  • FIG. 9 c is a side view of the nozzle 28 rotated 90° from the position illustrated in FIG. 9 b .
  • the second DI water nozzle 28 is positioned inwardly on the arm 22 with respect to the first DI water nozzle 24 and the tensioactive vapor spraying nozzle 26 .
  • the nozzle 28 attaches at one end 28 a to a DI water hose 25 c that is supplied and controlled entirely separate from the DI water hose 25 a that supplies the first DI water nozzle 24 .
  • the second DI water nozzle 28 is provided to wet the workpiece surface between the workpiece outer surface and the liquid-vapor boundary established by the two other nozzles 24 , 26 .
  • the second DI water nozzle dispensing end 28 b is bent at an angle with respect to a vertical plane in order to direct DI water onto the horizontally disposed workpiece 10 in an outward direction. From FIG. 6 it can be seen that at the start of the cleaning process the DI water from the second DI water nozzle 28 is dispensed toward the workpiece outer edge, beginning at a position that is closer to the workpiece outer edge than the stream from the first DI water nozzle 24 .
  • the nozzle dispensing end 28 b is bent or otherwise positioned to dispense at an angle of about 120° from a vertical plane when the workpiece 10 is spinning on a horizontal plane; or in other words, the nozzle dispensing end 28 b dispenses the DI water at about a 60° angle with respect to the workpiece surface.
  • the first DI water nozzle 24 also dispenses the workpiece surface at about a 60° angle, but is pointed toward the workpiece center at the beginning of the cleaning process.
  • the second DI water nozzle is pointed toward the workpiece outer edge, and the directions in which the nozzles 24 , 28 are pointed in a horizontal plane preferably differ by approximately 90°. Consequently, the second DI water nozzle 28 is always dispensing an area that is closer to the closest workpiece outer edge than the area being rinsed by the first DI water nozzle 24 , and therefore prevents streaking from occurring near the workpiece outer edge.
  • each of the DI water nozzles 24 , 28 is supplied by separate DI water sources 40 , 42 , allowing the water flow rate in the second DI water nozzle 28 to be increased or decreased as needed to thoroughly wet the wafer periphery without affecting the flow rate and the rinsing process for the first DI water nozzle 24 .
  • the DI water sources 40 , 42 are a single container.
  • each DI water nozzle 24 , 28 is separately and independently controlled using valves 41 , 43 or other flow control elements such as pressure regulators. Further, each DI nozzle 24 , 28 is separately secured to the arm 22 using the clamp 27 and bracket 29 , so the distances between the DI water nozzle dispensing ends 24 a , 28 a and the workpiece surface can be individually adjusted as necessary.
  • aqueous rinsing liquids can be utilized to rinse the workpiece 10 using the second DI nozzle 28 , such as a surfactant to decrease the surface tension between the rinsing liquid and the workpiece surface.
  • a nonionic surfactant is included in the rinsing liquid.
  • nozzles 24 , 26 , 28 are mounted on the arm 22 .
  • the motion of the arm and the nozzles mounted thereon is controlled independently with respect to the motion of the tensioactive vapor spraying nozzle 26 which is mounted on a separate arm or other device that sweeps above the workpiece surface.
  • each of the nozzles 24 , 26 , 28 can be moved at independent rates and in independent directions by mounting each on different arms or other devices that sweep above the workpiece surface.
  • Each nozzle dispensing or spraying end 24 a , 26 a , 28 a is positioned between about 5 mm and about 10 mm from a workpiece surface, and preferably between about 5 mm and about 7 mm from the workpiece surface.
  • the workpiece spins at a rate of about 200 to about 1000 rpm, preferably between about 200 and about 300 rpm.
  • the flow rate for each of the DI water nozzles 24 , 28 is set between about 155 ml/min and about 175 ml/min at a pressure of approximately 30 psi.
  • the workpiece is dried and substantially free of streaking or particulate residue when the flow rate from the tensioactive vapor spraying nozzle 26 is up to about 3 L/min, and preferably approximately 2 L/min with the pressure set at approximately 30 psi.
  • the distance between the center of the tensioactive vapor spray and either of the DI water streams is between about 5 mm and about 7 mm, although the first DI water nozzle 24 is directed toward the center of the tensioactive vapor spray while the second DI water nozzle 28 is directed away from the center of the tensioactive vapor spray, and preferably dispenses at angle that differs from that of the first DI water nozzle 24 in a horizontal plane by approximately 90°.
  • the tensioactive vapor spray nozzle 26 dispenses a tensioactive vapor, such as approximately ⁇ 1% IPA in N 2 , and the tensioactive vapor reduces the liquid surface tension and creates a Marangoni force tangential to the wafer surface. The interaction of the rotational force with the Marangoni force physically removes the liquid from the wafer surface instead of allowing the liquid to evaporate.
  • the second DI water nozzle 28 is closed as the stream therefrom passes over the workpiece outer edge.
  • the stream from the first DI water nozzle 24 then passes over the workpiece outer edge and the nozzle 24 is closed.
  • the tensioactive vapor spray nozzle 26 continues to dry the workpiece 10 until the nozzle 26 passes over the workpiece outer edge, producing a workpiece that is dried and substantially free of streaking or particulate residue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

An apparatus and method for performing a rinsing process on a workpiece surface, the apparatus including a platform adapted to seat the workpiece thereon, a chuck connected to the platform and adapted to spin the workpiece during the rinsing process, a mechanical arm adapted to sweep across at least part of the workpiece surface during the rinsing process, first and second rinsing liquid nozzles secured to the mechanical arm, a tensioactive vapor nozzle secured to the arm and disposed between the first and second rinsing liquid nozzles, and first and second flow control elements adapted to separately and independently control rinsing liquid flow rates for the first and second rinsing liquid nozzles, respectively.

Description

    TECHNICAL FIELD
  • The present invention generally relates to an apparatus and method for removing a processing or rinsing liquid from a rotating substrate surface, and more particularly relates to an apparatus and method for removing such a liquid without allowing particles in the liquid to settle on the surface due to liquid evaporation or streaking.
  • BACKGROUND
  • During a typical semiconductor wafer fabrication process it is necessary to subject the wafer to a plurality of cleaning steps. Etching compounds, polishes, solvents, and other chemicals used for deposition or polishing methods often leave residues on the wafer. Such compounds must typically be rinsed or otherwise removed to free the wafer of contaminants. An effective wafer cleaning includes a quick drying process. Many benefits gained by an effective rinsing step can be lost if the drying step is not carefully carried out.
  • One common method for cleaning a semiconductor wafer is spin rinse drying, which involves mounting a wafer on a chuck and spraying the wafer with a cleaning solvent while the wafer is spinning. A desirable feature of spin rinse drying is the ability to dry each wafer individually and not in batches. Integrated circuits are commonly manufactured individually, with processing steps including implantation, deposition, etching, etc. performed on one substrate at a time. Spin rinse drying allows for the cleaning processes to be performed in line with the other processing steps, removing the need to wait for a certain number of wafers to be ready for combined cleaning.
  • Some spin rinse drying processes utilize the wind created during spinning to dry the cleaning liquid. Air-drying the wafer surface in this manner is somewhat counterproductive because particulates that were dissolved in the liquid will remain on the wafer surface after the liquid evaporates. Also, streak marks are often left on the wafer surface when drying is performed in this manner. The wafer outer regions spin with a greater velocity than the wafer inner regions, and the wafer outer regions are consequently the first areas to dry. When a rotational force causes liquid to spread from the wafer inner areas over the dry outer surface, particulates in the liquid will sometimes create the streak mark.
  • One improved spin rinse drying apparatus is illustrated in FIG. 1. A wafer 10 rotates at a speed co while a liquid 16 is delivered to the wafer surface through a dispense tube 12 that slowly moves from the substrate center towards the edge at a speed v. A second nozzle 14 is mounted on the trailing side of the liquid dispense tube 12. The second nozzle 14 dispenses a tensioactive vapor that reduces the liquid surface tension and creates a strong force, commonly referred to as the Marangoni force, tangential to the wafer surface. The interaction of the rotational force with the Marangoni force physically removes the liquid from the wafer surface instead of allowing the liquid to evaporate.
  • Although the method described above combining the Marangoni force with rotational force provides a cleaner wafer than a conventional spin drying process, there are still some inherent limitations that impede the production of a wafer that is substantially free of streak marks or other particulate residue. One such limitation is the tendency for some drying to still occur at the wafer outer periphery before the inner areas are completely rinsed and dried. The wafer outer periphery still dries due to liquid evaporation while inner wafer areas are being physically dried by the forces produced by the tensioactive vapor and the rotating wafer. Particulate residue from the evaporated liquid is not easily removed, even using the combined tensioactive vapor and rinsing liquid.
  • Accordingly, it is desirable to provide a rinsing and drying apparatus and method that enable removal of rinsing liquid and the particulates dissolved therein at the same time. In addition, it is desirable to provide a rinsing and drying apparatus and method that produces a wafer or other workpiece substantially free of particulates due to liquid streaking or evaporation residue. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
  • BRIEF SUMMARY
  • According to one embodiment of the invention, an apparatus is provided for performing a rinsing process on a workpiece surface. The apparatus comprises a platform adapted to seat the workpiece thereon, a chuck connected to the platform and adapted to spin the workpiece during the rinsing process, a mechanical arm adapted to sweep across at least part of the workpiece surface during the rinsing process, first and second rinsing liquid nozzles secured to the mechanical arm, a tensioactive vapor nozzle secured to the arm and disposed between the first and second rinsing liquid nozzles, and first and second flow control elements adapted to separately and independently control rinsing liquid flow rates for the first and second rinsing liquid nozzles, respectively.
  • According to another embodiment of the invention, an apparatus for performing a rinsing process on a workpiece surface comprises a platform adapted to seat the workpiece thereon, a chuck connected to the platform and adapted to spin the workpiece during the rinsing process, a mechanical arm adapted to sweep across at least part of the workpiece surface during the rinsing process, first and second rinsing liquid nozzles secured to the mechanical arm, at least one rinsing liquid source supplying the first and second rinsing liquid nozzles, a tensioactive vapor nozzle secured to the arm and disposed between the first and second rinsing liquid nozzles, and, a tensioactive vapor source supplying the tensioactive vapor nozzle with a composition that, when mixed with the rinsing liquid, reduces the rinsing liquid surface tension on the workpiece surface.
  • According to another embodiment of the invention, a method for rinsing a workpiece surface is provided. The method comprises the steps of dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface, separately and independently controlling rinsing liquid flow rates for each of the first and second rinsing nozzles, and spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by the first rinsing nozzle.
  • According to another embodiment of the invention, a method for rinsing a workpiece surface comprises the steps of dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface, and using a nozzle that is disposed between the rinsing nozzles, spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by the first rinsing nozzle.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
  • FIG. 1(a) is a cross sectional view of a conventional spin rinse apparatus that utilizes a rinsing liquid along with a tensioactive vapor to clean a workpiece;
  • FIG. 1(b) is a top view of the apparatus illustrated in FIG. 1(a);
  • FIG. 2 is a perspective view of a cleaner module that includes one or more cleaning machines including a spin rinse apparatus according to the present invention;
  • FIG. 3 is a top view of a spin rinse apparatus at the beginning of a cleaning process according to an embodiment of the present invention;
  • FIG. 4 is a top view of a spin rinse apparatus at the end of a cleaning process according to an embodiment of the present invention
  • FIG. 5 is a perspective view of a nozzle assembly according to an embodiment of the present invention, with the nozzle assembly mounted on an automated arm;
  • FIG. 6 is a perspective view of the nozzle assembly with the nozzle dispensing ends pointed in directions for thoroughly cleaning a workpiece surface according to an embodiment of the invention;
  • FIGS. 7 a-c are, respectively, a perspective view, a side view, and a bottom view of a vapor nozzle for use with a spin rinse apparatus according to an embodiment of the present invention;
  • FIGS. 8 a-c are, respectively, a perspective view, a side view, and a top view of a first liquid nozzle for use with a spin rinse apparatus according to an embodiment of the present invention; and
  • FIGS. 9 a-c are, respectively, a perspective view, a side views differing by 90° of a second liquid nozzle for use with a spin rinse apparatus according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
  • The apparatus and method of the present invention accomplish the task of effectively removing a rinsing liquid and the particulates dissolved therein from a workpiece such as a semiconductor wafer, and consequently produce a workpiece surface that is substantially free of particulate residue. The apparatus and method-of the present invention has proven to be particularly effective at removing a rinsing liquid from a workpiece having a hydrophobic surface despite the high susceptibility that hydrophobic surfaces have to streaking. The workpiece surface is cleaned using a spin rinse apparatus that incorporates a plurality of rinsing liquid nozzles to thoroughly wet the workpiece surface, and a tensioactive vapor nozzle to create a Maragoni force that drives the rinsing liquid off of the workpiece surface. The nozzle arrangement and the manner in which the nozzles are controlled to adapt to particular workpieces prevents particulate residue due to evaporation or liquid streaking on the workpiece surface.
  • FIG. 2 illustrates a workpiece cleaning module 50 that includes a plurality of cleaners 20, 30, 40. According to one embodiment of the invention the cleaners 20, 30, 40 in FIG. 2 are all non-contact cleaners, meaning that the cleaners do not use brushes, pads, or other mechanical devices to contact a workpiece during cleaning. It is of course within the scope of the present invention to use both non-contact and contact cleaners as components of the cleaning module 50 as needed. It is also within the scope of the present invention to use non-contact cleaners that are different than the non-contact cleaners 20, 30, 40 illustrated in FIG. 2 and described herein. In an exemplary embodiment, each of the cleaners 20, 30, 40 includes a chuck for rotating a workpiece, and an arm on which various cleaning instruments are installed. One cleaner 20 can be a conventional brush scrubbing apparatus in the event that a user wishes for some cleaning to be performed using brush cleaners. Another cleaner 30 can be a megasonic cleaning apparatus. At least one cleaner 40 is an apparatus that combines Marangoni force with rotational force to rinse and clean a workpiece.
  • Top views of a workpiece cleaner 40 according to an exemplary embodiment of the invention are illustrated in FIGS. 3 and 4, with an arm 22 and nozzles 24, 26, 28 secured thereto positioned at a starting point of a cleaning process in FIG. 3, and at an ending point of the cleaning process in FIG. 4. A perspective view of the workpiece cleaner 40 is provided in FIG. 5 to more clearly illustrate the relationship between the cleaner 40 and a workpiece 10 to be cleaned. The cleaner 40 includes a workpiece supporting mechanism that includes a platform 32 and a chuck 38 upon which the platform 32 is mounted. The platform 32 is equipped with wafer stabilizing members 34 a that are arranged to closely surround the workpiece periphery and counter during a workpiece cleaning process. The stabilizing members 34 a have a tapered end for guiding the workpiece 10 to a seated position at which at least three of the stabilizing members 34 a secure the workpiece in place. Additional stabilizing members provide additional lateral support for the workpiece and can be added as needed.
  • The cleaner 40 also includes a cleaning fluid distribution mechanism that includes fluid hoses 25 a-c, nozzles 24, 26, 28 that distribute fluid from the hoses 25 a-c, and an arm 22 that secures the nozzles 24, 26, 28 and sweeps them along an arc between the workpiece center and the outer edge during a cleaning process. In an exemplary embodiment, the sweeping motion for the arm is controlled independently with respect to the rotation of the chuck 38 and the platform 32 mounted thereon in order to optimize the nozzle positions above the workpiece 10 and to independently optimize the rate at which the workpiece 10 is rotated.
  • Each of the hoses 25 a-c is connected to a different fluid supply source. The first hose 25 a connects the first nozzle 24 with a DI water source 40. The second hose 25 b connects the second nozzle 26 with a dry tensioactive vapor gas source 44. The third hose 25 c connects the third nozzle 28 with a DI water source 42 that is separate from the first DI water source 40. Alternatively, the DI water sources 40, 42 are a single container, although an important feature of the invention as described in detail below is the ability to separately control the flow rates and pressures for the DI water supplied to each of the two rinsing nozzles 24, 28. A bracket 23 located at one end of the arm 22 secures the fluid hoses 25 a-c to prevent tangling and to substantially eliminate the potential for the hoses 25 a-c to be subjected to a tension force as the arm moves. A second bracket 27 is located at an opposite end of the arm positions the nozzles 24, 26, 28 and directs their streams toward specific workpiece areas during a cleaning process. A clamp 29 secures the nozzles 24, 26, 28 to the bracket 27.
  • The arced arrows in FIGS. 3 and 4 represent the manner in which the arm 22 sweeps the nozzles 24, 26, 28 along an arc that traverses the workpiece radius during a cleaning process, beginning in the vicinity of the workpiece center and moving outwardly toward the workpiece edge. FIG. 6 illustrates the manner in which each nozzle 24, 26, 28 is positioned on the arm 22 to thoroughly rinse and dry the workpiece 10. Two nozzles 24, 28 are rinsing nozzles that dispense DI water onto the workpiece 10 at particular angles and in particular directions. Consequently, the streams dispensed from the rinsing nozzles 24, 28 are directional, laminar streams in an exemplary embodiment of the invention, although it is within the scope of the invention for the streams from the rinsing nozzles 24, 28 to be turbulent sprays as well.
  • The most outwardly positioned nozzle on the arm 22 is a first DI water nozzle 24. FIGS. 7 a-c are perspective, side, and top views of the first DI water nozzle 24. The nozzle 24 attaches at one end 24 a to a DI water hose 25 a. The nozzle dispensing end 24 b is bent or otherwise disposed at an angle with respect to a vertical plane in order to direct DI water onto the workpiece 10 at an acute angle with respect to the horizontally disposed workpiece surface being cleaned. From FIG. 6 it can be seen that at the start of the cleaning process the DI water is dispensed onto the workpiece center. In an exemplary embodiment, the nozzle dispensing end 24 b is bent or otherwise positioned to dispense the DI water at an angle of about 120° from a vertical plane when the workpiece 10 is spinning on a horizontal plane; or in other words, the nozzle dispensing end 24 b dispenses the DI water at about a 60° angle with respect to the workpiece surface being cleaned.
  • In addition to DI water, other aqueous rinsing liquids can be utilized to rinse the workpiece 10 using the nozzle 24 and also the second rinsing nozzle 28, described in detail below. For example, the rinsing liquid can include a surfactant to decrease the surface tension between the rinsing liquid and the workpiece surface. A surfactant is particularly advantageous when rinsing a hydrophobic surface since DI water is particularly prone to streaking if there is little surface tension with the workpiece surface. In an exemplary embodiment of the invention a nonionic surfactant is included in the rinsing liquid.
  • FIGS. 8 a-c are perspective, side, and bottom views of a tensioactive vapor spraying nozzle 26 that is positioned inwardly on the arm 22 with respect to the DI water nozzle 24. The nozzle 26 is attached at one end 26 a to a tensioactive vapor hose 25 b.
  • A spraying end 26 b sprays a substantially dry gas that includes a vaporized tensioactive compound. In one embodiment of the invention the nozzle 26 sprays approximately <1% isopropyl alcohol (IPA) vaporized in a nitrogen gas stream. Other tensioactive compounds can be vaporized and sprayed in a carrier gas, with exemplary tensioactive compounds include one or more selected from ethyl acetate, acetone, and diacetone alcohol. The IPA or other tensioactive fluid concentration can be modified to meet the requirements of a particular rinsing process as long as the compound is miscible with the rinsing liquid and, when mixed with the rinsing liquid, yields a mixture having a surface tension that is lower than that of the rinsing liquid by itself.
  • The spraying end 26 b directs the tensioactive vapor onto the workpiece surface at a substantially perpendicular angle in an exemplary embodiment of the invention. From FIG. 6 it can be seen that at the start of the cleaning process the nozzle 26 sprays the tensioactive vapor onto the workpiece center. The tensioactive vapor immediately forces rinsing liquid from the area being sprayed with the dry vapor, creating a circular liquid-vapor boundary as the workpiece 10 rotates. The workpiece 10 is completely dry inside the circle created by the liquid-vapor boundary, and the circle increases in diameter as the tensioactive vapor spraying nozzle 26 moves toward the workpiece outer edge until the workpiece 10 is completely dried.
  • FIGS. 9 a-b are perspective and side views of a second DI water dispensing nozzle 28. FIG. 9 c is a side view of the nozzle 28 rotated 90° from the position illustrated in FIG. 9 b. The second DI water nozzle 28 is positioned inwardly on the arm 22 with respect to the first DI water nozzle 24 and the tensioactive vapor spraying nozzle 26. The nozzle 28 attaches at one end 28 a to a DI water hose 25 c that is supplied and controlled entirely separate from the DI water hose 25 a that supplies the first DI water nozzle 24.
  • The second DI water nozzle 28 is provided to wet the workpiece surface between the workpiece outer surface and the liquid-vapor boundary established by the two other nozzles 24, 26. The second DI water nozzle dispensing end 28 b is bent at an angle with respect to a vertical plane in order to direct DI water onto the horizontally disposed workpiece 10 in an outward direction. From FIG. 6 it can be seen that at the start of the cleaning process the DI water from the second DI water nozzle 28 is dispensed toward the workpiece outer edge, beginning at a position that is closer to the workpiece outer edge than the stream from the first DI water nozzle 24. In an exemplary embodiment, the nozzle dispensing end 28 b is bent or otherwise positioned to dispense at an angle of about 120° from a vertical plane when the workpiece 10 is spinning on a horizontal plane; or in other words, the nozzle dispensing end 28 b dispenses the DI water at about a 60° angle with respect to the workpiece surface. The first DI water nozzle 24 also dispenses the workpiece surface at about a 60° angle, but is pointed toward the workpiece center at the beginning of the cleaning process. The second DI water nozzle is pointed toward the workpiece outer edge, and the directions in which the nozzles 24, 28 are pointed in a horizontal plane preferably differ by approximately 90°. Consequently, the second DI water nozzle 28 is always dispensing an area that is closer to the closest workpiece outer edge than the area being rinsed by the first DI water nozzle 24, and therefore prevents streaking from occurring near the workpiece outer edge.
  • As mentioned above, one of the advantages of the present invention comes from having the first DI water nozzle 24 and the second DI water nozzle 28 separately supplied and/or controlled. In one exemplary embodiment of the invention, each of the DI water nozzles 24, 28 is supplied by separate DI water sources 40, 42, allowing the water flow rate in the second DI water nozzle 28 to be increased or decreased as needed to thoroughly wet the wafer periphery without affecting the flow rate and the rinsing process for the first DI water nozzle 24. Alternatively, the DI water sources 40, 42 are a single container. In either case, the rinsing liquid flow rates for each of the DI water nozzles 24, 28 are separately and independently controlled using valves 41, 43 or other flow control elements such as pressure regulators. Further, each DI nozzle 24, 28 is separately secured to the arm 22 using the clamp 27 and bracket 29, so the distances between the DI water nozzle dispensing ends 24 a, 28 a and the workpiece surface can be individually adjusted as necessary.
  • As mentioned previously while describing the first DI nozzle 24, other aqueous rinsing liquids can be utilized to rinse the workpiece 10 using the second DI nozzle 28, such as a surfactant to decrease the surface tension between the rinsing liquid and the workpiece surface. In an exemplary embodiment of the invention a nonionic surfactant is included in the rinsing liquid.
  • Also, in another embodiment of the invention, less than all of the nozzles 24, 26, 28 are mounted on the arm 22. For example, only one or both of the DI nozzles 24, 28 are mounted on the arm 22 according to one embodiment, and the motion of the arm and the nozzles mounted thereon is controlled independently with respect to the motion of the tensioactive vapor spraying nozzle 26 which is mounted on a separate arm or other device that sweeps above the workpiece surface. Further, each of the nozzles 24, 26, 28 can be moved at independent rates and in independent directions by mounting each on different arms or other devices that sweep above the workpiece surface.
  • Conditions for an exemplary cleaning process utilizing the two DI water nozzles 24, 28 and the tensioactive vapor spraying nozzle 26 will now be described. Each nozzle dispensing or spraying end 24 a, 26 a, 28 a is positioned between about 5 mm and about 10 mm from a workpiece surface, and preferably between about 5 mm and about 7 mm from the workpiece surface. During the cleaning process the workpiece spins at a rate of about 200 to about 1000 rpm, preferably between about 200 and about 300 rpm. Once the workpiece 10 is spinning at a predetermined rate, the flow rate for each of the DI water nozzles 24, 28 is set between about 155 ml/min and about 175 ml/min at a pressure of approximately 30 psi. The workpiece is dried and substantially free of streaking or particulate residue when the flow rate from the tensioactive vapor spraying nozzle 26 is up to about 3 L/min, and preferably approximately 2 L/min with the pressure set at approximately 30 psi.
  • As the nozzles 24, 26, 28 are swept along an arc over the workpiece 10, the distance between the center of the tensioactive vapor spray and either of the DI water streams is between about 5 mm and about 7 mm, although the first DI water nozzle 24 is directed toward the center of the tensioactive vapor spray while the second DI water nozzle 28 is directed away from the center of the tensioactive vapor spray, and preferably dispenses at angle that differs from that of the first DI water nozzle 24 in a horizontal plane by approximately 90°. The tensioactive vapor spray nozzle 26 dispenses a tensioactive vapor, such as approximately <1% IPA in N2, and the tensioactive vapor reduces the liquid surface tension and creates a Marangoni force tangential to the wafer surface. The interaction of the rotational force with the Marangoni force physically removes the liquid from the wafer surface instead of allowing the liquid to evaporate. At the end of the cleaning process, the second DI water nozzle 28 is closed as the stream therefrom passes over the workpiece outer edge. The stream from the first DI water nozzle 24 then passes over the workpiece outer edge and the nozzle 24 is closed. The tensioactive vapor spray nozzle 26 continues to dry the workpiece 10 until the nozzle 26 passes over the workpiece outer edge, producing a workpiece that is dried and substantially free of streaking or particulate residue.
  • While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.

Claims (53)

1. An apparatus for performing a rinsing process on a workpiece surface, comprising:
a platform adapted to seat the workpiece thereon;
a chuck connected to the platform and adapted to spin the workpiece during the rinsing process;
a mechanical arm having a first end, the arm being adapted to sweep the first end across at least part of the workpiece surface during the rinsing process;
first and second rinsing liquid nozzles secured to the mechanical arm first end;
a tensioactive vapor nozzle secured to the mechanical arm first end and disposed between the first and second rinsing liquid nozzles; and
first and second flow control elements adapted to separately and independently control rinsing liquid flow rates for the first and second rinsing liquid nozzles, respectively.
2. The apparatus according to claim 1, further comprising at least one rinsing liquid source supplying the first and second rinsing liquid nozzles.
3. The apparatus according to claim 2, wherein first and second rinsing liquid sources separately and independently supply the first and second rinsing liquid nozzles, respectively.
4. The apparatus according to claim 2, wherein the rinsing liquid in the rinsing liquid source comprises DI water.
5. The apparatus according to claim 4, wherein the rinsing liquid further comprises a surfactant that, when mixed with the rinsing liquid, decreases the rinsing liquid surface tension on a hydrophobic surface.
6. The apparatus according to claim 1, further comprising a tensioactive vapor source supplying the tensioactive vapor nozzle with a composition that, when mixed with the rinsing liquid, reduces the rinsing liquid surface tension on the workpiece surface.
7. The apparatus according to claim 6, wherein the tensioactive vapor in the tensioactive vapor source is nitrogen gas mixed with isopropyl alcohol vapor.
8. The apparatus according to claim 1, wherein the mechanical arm is adapted to sweep in an arc over the workpiece surface during the rinsing process.
9. The apparatus according to claim 1, wherein the second rinsing liquid nozzle is positioned to always dispense nearer to a closest workpiece outer edge than the first rinsing liquid nozzle during the rinsing process.
10. The apparatus according to claim 1, wherein the first rinsing liquid nozzle is the most outwardly positioned nozzle on the mechanical arm and the second rinsing liquid nozzle is the most inwardly positioned nozzle on the mechanical arm.
11. The apparatus according to claim 10, wherein the first rinsing liquid nozzle is positioned to dispense toward an area where the tensioactive vapor nozzle sprays the workpiece during the rinsing process.
12. The apparatus according to claim 11, wherein the tensioactive vapor nozzle is positioned to spray the workpiece at a substantially perpendicular angle with respect to the workpiece surface during the rinsing process.
13. The apparatus according to claim 11, wherein the second rinsing liquid nozzle is positioned to dispense toward an outer edge of the workpiece during the rinsing process.
14. The apparatus according to claim 13, wherein the first and second rinsing liquid nozzles are pointed in directions that in a horizontal plane differ by approximately 90°.
15. The apparatus according to claim 1, wherein the chuck is adapted to have spinning parameters that are controlled independent of any motion parameters for the mechanical arm.
16. An apparatus for performing a rinsing process on a workpiece surface, comprising:
a platform adapted to seat the workpiece thereon;
a chuck connected to the platform and adapted to spin the workpiece during the rinsing process;
a mechanical arm having a first end, the mechanical arm being adapted to sweep across at least part of the workpiece surface during the rinsing process;
first and second rinsing liquid nozzles secured to the mechanical arm first end;
at least one rinsing liquid source supplying the first and second rinsing liquid nozzles;
a tensioactive vapor nozzle secured to the mechanical arm first end and disposed between the first and second rinsing liquid nozzles; and
a tensioactive vapor source supplying the tensioactive vapor nozzle with a composition that, when mixed with the rinsing liquid, reduces the rinsing liquid surface tension on the workpiece surface.
17. The apparatus according to claim 16, wherein first and second rinsing liquid sources separately and independently supply the first and second rinsing liquid nozzles, respectively.
18. The apparatus according to claim 17, wherein the rinsing liquid in the rinsing liquid source comprises DI water.
19. The apparatus according to claim 18, wherein the rinsing liquid further comprises a surfactant that, when mixed with the rinsing liquid, decreases the rinsing liquid surface tension on a hydrophobic surface.
20. The apparatus according to claim 16, wherein the tensioactive vapor in the tensioactive vapor source is nitrogen gas mixed with isopropyl alcohol vapor.
21. The apparatus according to claim 16, wherein the mechanical arm is adapted to sweep in an arc over the workpiece surface during the rinsing process.
22. The apparatus according to claim 16, wherein the second rinsing liquid nozzle is positioned to always dispense nearer to a closest workpiece outer edge than the first rinsing liquid nozzle during the rinsing process.
23. The apparatus according to claim 16, wherein the first rinsing liquid nozzle is the most outwardly positioned nozzle on the mechanical arm and the second rinsing liquid nozzle is the most inwardly positioned nozzle on the mechanical arm.
24. The apparatus according to claim 23, wherein the first rinsing liquid nozzle is positioned to dispense toward an area where the tensioactive vapor nozzle sprays the, workpiece during the rinsing process.
25. The apparatus according to claim 24, wherein the tensioactive vapor nozzle is positioned to spray the workpiece a substantially perpendicular angle with respect to the workpiece surface during the rinsing process.
26. The apparatus according to claim 24, wherein the second rinsing liquid nozzle is positioned to dispense toward an outer edge of the workpiece during the rinsing process.
27. The apparatus according to claim 26, wherein the first and second rinsing liquid nozzles are pointed in directions that in a horizontal plane differ by approximately 90°.
28. The apparatus according to claim 16, wherein the chuck is adapted to have spinning parameters that are controlled independent of any motion parameters for the mechanical arm.
29. A method for rinsing a workpiece surface, comprising the steps of:
dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface;
separately and independently controlling rinsing liquid flow rates for each of the first and second rinsing nozzles; and
spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by at least the first rinsing nozzle.
30. The method according to claim 29, further comprising the step of supplying rinsing liquid to the first and second rinsing liquid nozzles from separate rinsing liquid sources.
31. The method according to claim 29, wherein the rinsing liquid comprises DI water.
32. The method according to claim 31, wherein the rinsing liquid further comprises a surfactant that decreases the rinsing liquid surface tension on the hydrophobic surface.
33. The method according to claim 29, wherein the tensioactive composition is nitrogen gas mixed with isopropyl alcohol vapor.
34. The method according to claim 29, wherein the nozzles are swept in an arc over the workpiece surface.
35. The method according to claim 29, wherein the second rinsing liquid nozzle always dispenses nearer to a closest workpiece outer edge than the first rinsing liquid nozzle.
36. The method according to claim 29, wherein the rinsing nozzles are mounted on a mechanical arm that sweeps the nozzles over the workpiece surface, with the first rinsing nozzle being the most outwardly positioned nozzle on the mechanical arm and the second rinsing liquid nozzle being the most inwardly positioned nozzle on the mechanical arm.
37. The method according to claim 29, wherein the tensioactive vapor nozzle sprays the workpiece at a substantially perpendicular angle with respect to the workpiece surface during the rinsing process.
38. The method according to claim 29, wherein the second rinsing liquid nozzle dispenses toward an outer edge of the workpiece during the rinsing process.
39. The method according to claim 29, wherein the first and second rinsing liquid nozzles are pointed in directions that in a horizontal plane differ by approximately 90°.
40. The method according to claim 36, further comprising the step of separately and independently controlling motion parameters for the workpiece and for the mechanical arm.
41. A method for rinsing a workpiece surface, comprising the steps of:
dispensing a rinsing liquid onto the workpiece surface using first and second rinsing nozzles while sweeping the rinsing nozzles over at least part of the workpiece surface; and
using a nozzle that is disposed between the rinsing nozzles, spraying a tensioactive vapor composition onto an area of the workpiece surface that is simultaneously being rinsed by at least the first rinsing nozzle.
42. The method according to claim 41, further comprising the step of separately and independently controlling rinsing liquid flow rates for each of the first and second rinsing nozzles.
43. The method according to claim 41, further comprising the step of supplying rinsing liquid to the first and second rinsing liquid nozzles from separate rinsing liquid sources.
44. The method according to claim 41, wherein the rinsing liquid comprises DI water.
45. The method according to claim 44, wherein the rinsing liquid further comprises a surfactant that decreases the rinsing liquid surface tension on the hydrophobic surface.
46. The method according to claim 41, wherein the tensioactive composition is nitrogen gas mixed with isopropyl alcohol vapor.
47. The method according to claim 41, wherein the nozzles are swept in an arc over the workpiece surface.
48. The method according to claim 41, wherein the second rinsing liquid nozzle always dispenses nearer to a closest workpiece outer edge than the first rinsing liquid nozzle.
49. The method according to claim 41, wherein the rinsing nozzles are mounted on a mechanical arm that sweeps the nozzles over the workpiece surface, with the first rinsing nozzle being the most outwardly positioned nozzle on the mechanical arm and the second rinsing liquid nozzle being the most inwardly positioned nozzle on the mechanical arm.
50. The method according to claim 41, wherein the tensioactive vapor nozzle sprays the workpiece at a substantially perpendicular angle with respect to the workpiece surface during the rinsing process.
51. The method according to claim 41, wherein the second rinsing liquid nozzle dispenses toward an outer edge of the workpiece during the rinsing process.
52. The method according to claim 41, wherein the first and second rinsing liquid nozzles are pointed in directions that in a horizontal plane differ by approximately 90°.
53. The method according to claim 49, further comprising the step of separately and independently controlling motion parameters for the workpiece and for the mechanical arm.
US10/930,290 2004-08-30 2004-08-30 Apparatus and method for removing a liquid from a rotating substrate surface Abandoned US20060042664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/930,290 US20060042664A1 (en) 2004-08-30 2004-08-30 Apparatus and method for removing a liquid from a rotating substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/930,290 US20060042664A1 (en) 2004-08-30 2004-08-30 Apparatus and method for removing a liquid from a rotating substrate surface

Publications (1)

Publication Number Publication Date
US20060042664A1 true US20060042664A1 (en) 2006-03-02

Family

ID=35941322

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/930,290 Abandoned US20060042664A1 (en) 2004-08-30 2004-08-30 Apparatus and method for removing a liquid from a rotating substrate surface

Country Status (1)

Country Link
US (1) US20060042664A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196526A1 (en) * 2005-03-04 2006-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of spin-on wafer cleaning
US20080087304A1 (en) * 2006-08-18 2008-04-17 Cole Franklin System and method for processing a substrate utilizing a gas stream for particle removal
DE102007031314A1 (en) * 2007-07-05 2009-01-08 Hamatech Ape Gmbh & Co. Kg Method and device for drying a surface of a substrate
US20120260952A1 (en) * 2011-04-12 2012-10-18 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
US20140080385A1 (en) * 2012-09-19 2014-03-20 Ebara Corporation Polishing apparatus
US20210193456A1 (en) * 2017-10-23 2021-06-24 Lam Research Ag Systems and methods for preventing stiction of high aspect ratio structures and/or repairing high aspect ratio structures
US11626297B2 (en) * 2016-10-25 2023-04-11 Acm Research (Shanghai), Inc. Apparatus and method for wet process on semiconductor substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832751A (en) * 1995-02-24 1998-11-10 Elitas S.N.C. Di Belluzi Lino & C. Impregnating machine for surface impregnating hides or similar products
US5997653A (en) * 1996-10-07 1999-12-07 Tokyo Electron Limited Method for washing and drying substrates
US20010009155A1 (en) * 1999-12-24 2001-07-26 m . FSI LTD. Substrate treatment process and apparatus
US6334902B1 (en) * 1997-09-24 2002-01-01 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for removing a liquid from a surface
US6383331B1 (en) * 1999-04-06 2002-05-07 Sez Semiconductor-Equipment Zubehor Fur Die Halbeiterfertigung Ag Device for discharging two or more media with media nozzles
US6398975B1 (en) * 1997-09-24 2002-06-04 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for localized liquid treatment of the surface of a substrate
US6491764B2 (en) * 1997-09-24 2002-12-10 Interuniversitair Microelektronics Centrum (Imec) Method and apparatus for removing a liquid from a surface of a rotating substrate
US20030022515A1 (en) * 2001-07-26 2003-01-30 Kabushiki Kaisha Toshiba Method and device of forming a film using a coating material and method of manufacturing a semiconductor device
US20030098040A1 (en) * 2001-11-27 2003-05-29 Chang-Hyeon Nam Cleaning method and cleaning apparatus for performing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832751A (en) * 1995-02-24 1998-11-10 Elitas S.N.C. Di Belluzi Lino & C. Impregnating machine for surface impregnating hides or similar products
US5997653A (en) * 1996-10-07 1999-12-07 Tokyo Electron Limited Method for washing and drying substrates
US6334902B1 (en) * 1997-09-24 2002-01-01 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for removing a liquid from a surface
US6398975B1 (en) * 1997-09-24 2002-06-04 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for localized liquid treatment of the surface of a substrate
US6491764B2 (en) * 1997-09-24 2002-12-10 Interuniversitair Microelektronics Centrum (Imec) Method and apparatus for removing a liquid from a surface of a rotating substrate
US6568408B2 (en) * 1997-09-24 2003-05-27 Interuniversitair Microelektronica Centrum (Imec, Vzw) Method and apparatus for removing a liquid from a surface of a rotating substrate
US6383331B1 (en) * 1999-04-06 2002-05-07 Sez Semiconductor-Equipment Zubehor Fur Die Halbeiterfertigung Ag Device for discharging two or more media with media nozzles
US20010009155A1 (en) * 1999-12-24 2001-07-26 m . FSI LTD. Substrate treatment process and apparatus
US20030022515A1 (en) * 2001-07-26 2003-01-30 Kabushiki Kaisha Toshiba Method and device of forming a film using a coating material and method of manufacturing a semiconductor device
US20030098040A1 (en) * 2001-11-27 2003-05-29 Chang-Hyeon Nam Cleaning method and cleaning apparatus for performing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196526A1 (en) * 2005-03-04 2006-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of spin-on wafer cleaning
US7611589B2 (en) * 2005-03-04 2009-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of spin-on wafer cleaning
US20080087304A1 (en) * 2006-08-18 2008-04-17 Cole Franklin System and method for processing a substrate utilizing a gas stream for particle removal
DE102007031314A1 (en) * 2007-07-05 2009-01-08 Hamatech Ape Gmbh & Co. Kg Method and device for drying a surface of a substrate
WO2009003646A2 (en) * 2007-07-05 2009-01-08 Hamatech Ape Gmbh & Co. Kg Method and apparatus for drying a substrate surface
WO2009003646A3 (en) * 2007-07-05 2009-04-02 Hamatech Ape Gmbh & Co Kg Method and apparatus for drying a substrate surface
US20120260952A1 (en) * 2011-04-12 2012-10-18 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
US9412627B2 (en) * 2011-04-12 2016-08-09 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
US20140080385A1 (en) * 2012-09-19 2014-03-20 Ebara Corporation Polishing apparatus
US11626297B2 (en) * 2016-10-25 2023-04-11 Acm Research (Shanghai), Inc. Apparatus and method for wet process on semiconductor substrate
US20210193456A1 (en) * 2017-10-23 2021-06-24 Lam Research Ag Systems and methods for preventing stiction of high aspect ratio structures and/or repairing high aspect ratio structures
US11854792B2 (en) * 2017-10-23 2023-12-26 Lam Research Ag Systems and methods for preventing stiction of high aspect ratio structures and/or repairing high aspect ratio structures

Similar Documents

Publication Publication Date Title
US8261758B2 (en) Apparatus and method for cleaning and removing liquids from front and back sides of a rotating workpiece
US5952050A (en) Chemical dispensing system for semiconductor wafer processing
US7387689B2 (en) Methods for drying semiconductor wafer surfaces using a plurality of inlets and outlets held in close proximity to the wafer surfaces
US8337659B2 (en) Substrate processing method and substrate processing apparatus
US7503983B2 (en) Methods of proximity head brushing
US20060207636A1 (en) Multi-menisci processing apparatus
WO2022007538A1 (en) Vertical marangoni wafer processing device
US20080135069A1 (en) Method and apparatus for active particle and contaminant removal in wet clean processes in semiconductor manufacturing
CN101583439B (en) Method for cleaning a surface
JP5523099B2 (en) Apparatus and method for removing liquid from the surface of a disk-shaped article
KR100797421B1 (en) Method and System of Cleaning a Wafer after Chemical Mechanical Polishing or Plasma Processing
US20100108095A1 (en) Substrate processing apparatus and substrate cleaning method
US20060042664A1 (en) Apparatus and method for removing a liquid from a rotating substrate surface
US11232958B2 (en) System and method for self-cleaning wet treatment process
CN113471108B (en) Vertical rotatory processing apparatus of wafer based on marangoni effect
US20080041427A1 (en) Temperature control of a substrate during wet processes
KR100749544B1 (en) Apparatus and method for cleaning a substrate
KR100405449B1 (en) Cleaning apparatus for semiconducter wafer
KR19990075167A (en) Wafer drying apparatus and wafer drying method using the same
US20090255555A1 (en) Advanced cleaning process using integrated momentum transfer and controlled cavitation
KR20060032914A (en) Apparatus for removing impurities on wafer
KR19990080106A (en) Equipment for cleaning of semiconductor devices
WO2021230344A1 (en) Cleaning device and cleaning method
US20170110315A1 (en) Apparatus of processing semiconductor substrate
CN116878240A (en) Marangoni drying method and wafer processing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVELLUS SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARDIKAR, VISHWAS;KARLSRUD, CHRIS;LE, TOM;REEL/FRAME:015759/0910;SIGNING DATES FROM 20040809 TO 20040810

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION