US20060033147A1 - Flash memory structure and fabrication method thereof - Google Patents

Flash memory structure and fabrication method thereof Download PDF

Info

Publication number
US20060033147A1
US20060033147A1 US10/981,653 US98165304A US2006033147A1 US 20060033147 A1 US20060033147 A1 US 20060033147A1 US 98165304 A US98165304 A US 98165304A US 2006033147 A1 US2006033147 A1 US 2006033147A1
Authority
US
United States
Prior art keywords
top surface
semiconductor substrate
dielectric layer
insulating dielectric
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/981,653
Inventor
Ming Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Promos Technologies Inc
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Publication of US20060033147A1 publication Critical patent/US20060033147A1/en
Assigned to PROMOS TECHNOLOGIES, INC. reassignment PROMOS TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANG, MING
Priority to US11/531,954 priority Critical patent/US7445995B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • Taiwan Application Serial Number 93124229 filed Aug. 12, 2004, the disclosure of which is hereby incorporated by reference herein in its entirety.
  • the invention pertains to flash memory and, in particular, to a flash memory structure that has a vertical channel region with multiple gates and the fabrication method thereof.
  • Flash memory is one kind of non-volatile memory. It is used to store data in memory unit. Not only can it maintain the memory of data without being charged, it further has the feature of multiple writing/rewriting. Therefore, it has rapidly developed to become the new generation memory device in recent years.
  • the source region, the drain region, and the channel region in the device are located on the same plane, variations in the device size will directly affect the channel length, which in turn forms a restriction in the device size definition.
  • the conventional flash memory structure is stacked gate flash memory, whose structure is similar to electrically erasable and programmable ROM (EEPROM). It has a control gate and a floating gate stacked on the device channel. It achieves the programming purpose by injecting hot carriers from the drain into the floating gate.
  • EEPROM electrically erasable and programmable ROM
  • the stacked gate flash memory has the advantage of a simpler structure for minimizing the device size, the hot carrier injection efficiency is very low.
  • the area of the floating gate and the control gate stacked on the channel also has to decrease. This reduces the capacitance between the floating gate and the control gate, causing increase in the operating voltage.
  • gate units For example, in one type of source injection flash memory, there are three gate units. In addition to the stacked control gate and the floating gate, an injection gate is further provided above the source to induce the injection of hot carriers from the source to the floating gate. Although this type of flash memory can increase the hot carrier injection efficiency with the installation of the injection gate, the addition injection gate results in a larger device size.
  • split-gate flash memory structure which has the same advantage as the source injection flash memory.
  • the coupling ratio between the control gate and the floating gate and the hot carrier injection efficiency can be simultaneously increased, thereby lowering the operating voltage. Nonetheless, it also has a larger size due to the control gate design.
  • An objective of the invention is to provide a flash memory structure and the fabrication method thereof.
  • a device with a vertical channel region is provided to both keep the desired device characteristics and increase the scaling ability of the device.
  • the gate structure covers the vertical channel using multiple surfaces, forming a multiple-surface gate. This can increase the operating efficiency of the flash memory.
  • the flash memory structure includes at least a semiconductor substrate, a source region, a drain region, a first insulating dielectric layer, a floating gate, a second insulating dielectric layer, and a control gate.
  • the semiconductor substrate has a first top surface and a second top surface, with the former higher than the latter.
  • the source region and the drain region are located in the second top surface and the first top surface of the semiconductor substrate, respectively.
  • the semiconductor substrate connecting the source region and the drain region is a vertical channel, and the vertical channel further contains an L-shaped three-dimensional structure.
  • the first insulating dielectric layer is formed on the vertical channel of the semiconductor substrate to completely cover it.
  • the floating gate, the second insulating dielectric layer and the control gate cover the first insulating dielectric layer in sequence. Due to the here-dimensional structure of the vertical channel region, the floating gate can surround the vertical channel region in many faces. In a preferred embodiment, the floating gate surrounds three side surfaces of the vertical channel region. In another embodiment, the floating gate further covers the top surface of the vertical channel region.
  • the first insulating dielectric layer is a tunneling oxide layer.
  • the floating gate may be a polysilicon layer or a silicon nitride layer.
  • the control gate is a polysilicon layer.
  • the flash memory fabrication method includes the step of patterning a semiconductor substrate to remove part of the semiconductor substrate to a depth, forming island blocks in the semiconductor substrate. A trench is thus formed between each two island blocks.
  • the top surface of the island block is the first top surface of the semiconductor substrate.
  • the trench is the second top surface of the semiconductor substrate.
  • the first insulating dielectric layer is formed on the semiconductor substrate, covering the island blocks and the trenches at the same time.
  • a charge storage pattern made from a charge storage layer is formed on the first insulating dielectric layer.
  • the second insulating dielectric layer and the conductive layer are formed in sequence on the charge storage pattern to cover it.
  • the second insulating dielectric layer and the conductive layer are formed, they along with the charge storage layer are further patterned to form at least a gate stack unit.
  • the first insulating dielectric layer in part of the trenches and that in part of the island blocks are exposed on both sides of the gate stack unit.
  • the gate stack unit covers the range of the three side surfaces and/or the top surface of some island blocks, and is positioned on part of the trenches, and the island blocks.
  • ion implantation is performed on the first top surface and the second top surface of the semiconductor substrate, forming the source region and the drain region, respectively.
  • the charge storage layer and the conductive layer mentioned above are used as the floating gate and the control gate, respectively.
  • the semiconductor substrate connecting the source region and the drain region is a vertical channel region, whose three side surfaces and/or top surface are covered by the gate stack unit.
  • the vertical channel region has an L-shaped three-dimensional structure.
  • the channel length and the device size are independent.
  • the channel length is not constrained.
  • the device thus made can still keep good properties.
  • the contact area between the gate and the channel region is not restricted by the change in the device size. Even when the device size shrinks, an appropriate channel length can be maintained to avoid the punch-through or breakdown phenomenon, increasing the reliability and quality of devices.
  • the disclosed structure covers the vertical channel region in many faces to form a multiple-surface gate configuration. Therefore, not only can it effectively increase the contact area between the control gate, the floating gate and the channel region, but also increases the coupling ratio and the device operating capability.
  • the capacitance between the control gate and the floating gate can be increased to lower the operating voltage.
  • an L-shaped carrier path is formed to increase the hot carrier injection rate during the programmable operation of the flash memory, increasing the operating speed and performance of the device.
  • FIGS. 1A to 1 D are schematic cross-sectional views of a method for making a flash memory structure in accordance with embodiments of the invention.
  • FIG. 2 is a schematic cross-sectional view of a flash memory structure according to a preferred embodiment of the invention.
  • the invention provides a flash memory structure and the fabrication method thereof. Using the design of a vertical channel region, the length of the carrier channel is not affected by variations in the device size. Therefore, one can scale the device without influencing the device characteristics.
  • the disclosed flash memory further has the configuration of multiple-surface gate surrounding the carrier channel. This is especially helpful in increasing the operating characteristics of the flash memory and the coupling ratio between the control gate and the floating gate. In the following, we use specific embodiments to explain the disclosed method.
  • FIGS. 1A to 1 D show schematic cross-sectional views of a fabrication method for a flash memory structure.
  • a p-type well is formed on a semiconductor substrate 100 .
  • Its formation method includes performing ion implantation and patterning the semiconductor substrate 100 , defining the electrical property of the semiconductor substrate 100 and the positions of trenches 101 and island blocks 102 thereon.
  • One choice of the material of the semiconductor substrate 100 is silicon (Si).
  • a tunneling oxide layer 104 is first formed on the semiconductor substrate 100 , followed by forming a charge storage layer 106 on the tunneling oxide layer 104 , filling the trenches 101 .
  • the charge storage layer 106 is used as a floating gate.
  • the tunneling oxide layer 104 functions as an insulating dielectric layer between the floating gate and the semiconductor substrate 100 .
  • One choice of the material of the tunneling oxide layer 104 is silicon dioxide (SiO 2 ).
  • the charge storage layer 106 may be a polysilicon layer or a silicon nitride layer.
  • the charge storage layer 106 is then patterned, forming a charge storage circuit pattern parallel to the cross-sectional direction. Afterwards, an inter-layer dielectric layer 108 , a conductive layer 110 , and a nitride covering layer 130 are formed in sequence on the charge storage layer 106 , covering the charge storage circuit pattern at the same time.
  • the conductive layer 110 serves as a control gate.
  • the inter-layer dielectric layer 108 is an insulating dielectric layer between the control gate and the floating gate.
  • the material of the inter-layer dielectric layer 108 may be silicon dioxide or a stack layer consisting of oxide/nitride/oxide (O/N/O).
  • the conductive layer 110 may be a polysilicon layer.
  • a conventional photolithography and etching process is employed to pattern the charge storage layer 106 , the inter-layer dielectric layer 108 , the conductive layer 110 , and the nitride covering layer 130 , defining the gate stack unit.
  • the gate stack unit is composed of a control gate unit 112 , an inter-layer dielectric layer 108 , and a floating gate unit 114 .
  • a sidewall spacer 119 is formed on both sides of the gate stack unit to maintain the electrical isolation among the gate units, as shown in FIG. 1D .
  • the material of the sidewall spacer 119 may be silicon nitride.
  • photo resist and a photolithography process are used to define a source opening and a drain opening.
  • a photo resist layer is first formed on the semiconductor substrate 100 .
  • the photolithography process is performed to simultaneously or respectively define the source opening and the drain opening.
  • the photo resist layer inside the openings is removed later.
  • An ion implantation step is performed on the semiconductor substrate 100 in the source opening and the drain opening, forming an n-type source region 120 and an n-type drain region 122 . Finally, the residual photo resist layer is removed. This completes the procedure of making a flash memory structure with a vertical channel region. If subsequent processes for devices further proceed, such as forming an insulating dielectric layer and forming conductive metal in the source opening and the drain opening, one can make a more complete flash memory control unit. In particular, when a carrier moves from the source region 120 to the drain region 122 , a three-dimensional L-shaped channel (indicated by the arrow 126 ) is formed.
  • the three-dimensional flash memory structure formed using the described method is shown in FIG. 2 .
  • the programming of the flash memory is done with the carriers moving from the source region 220 to the drain region 222 on the semiconductor substrate 200 .
  • the carriers penetrate through the tunneling oxide layer 204 and reach the floating gate 214 in the channel hot carrier injection (CHEI) mode.
  • the path traveled by the carriers from the source region 220 to the drain region 222 is the carrier channel.
  • the control gate 212 and the floating gate 214 are separated by an inter-layer dielectric layer 208 .
  • the floating gate 214 and the control gate 212 form a multiple-surface surrounded channel region.
  • a flash memory structure in accordance with the invention has multiple-surface gate controls.
  • the floating gate 214 and the control gate 212 surround three side surfaces of the channel region.
  • the floating gate 214 and the control gate 212 surround three side surfaces and the top surface of the channel region.
  • the disclosed flash memory has a vertical carrier channel
  • variations in the length of the channel only affect the height in the longitudinal direction without influencing the device size. That is, the channel length and the device size are independent. As a result, the channel size is not restricted by scaling the device.
  • the carriers due to the three-dimensional structure of the vertical channel, the carriers first move upward from the source region 220 and then turn horizontally toward the drain region 222 at around the drain region 222 when moving from the source region 220 to the drain region 222 . Therefore, a three-dimensional L-shaped channel is formed. In this case, the carrier density at the turning point of the L-shaped channel is higher, rendering a higher hot carrier injection rate. This improves the overall carrier injection efficiency of the device.
  • the disclosed flash memory structure and the fabrication method thereof diminish the restriction in the device size by the channel length due to the vertical channel design. Therefore, the device size can be scaled without sacrificing the desired device characteristics.
  • the contact area between the gate and the channel region is not restricted by the device size.
  • the control gate and the floating gate that cover the channel form a multiple-surface gate style. Therefore, the contact area between the control gate, the floating gate and the channel region can be effectively increased without adding more gates. This increases the coupling ratio and the device operating capability. Hence, the capacitance between the control gate and the floating gate is increased to reduce the operating voltage and to enhance the device performance without affecting the device size.
  • the L-shaped carrier path speeds up the hot carrier injection rate during the operation of the flash memory, further enhancing the operating speed and performance of the device.

Abstract

A flash memory structure comprises a semiconductor substrate, a source region, a drain region, a first insulating dielectric layer, a floating gate, a second insulating dielectric layer, and a control gate. The semiconductor substrate has a first top surface and a second top surface that is lower than the first top surface. The source region and the drain region are respectively in the second top surface and the first top surface of the semiconductor substrate, and the semiconductor substrate connecting the source region and the drain region is a vertical channel region. The whole channel region is covered by the first insulating dielectric layer, the floating gate, the second insulating dielectric layer, and the control gate in turn.

Description

    RELATED APPLICATIONS
  • The present application is based on, and claims priority from, Taiwan Application Serial Number 93124229, filed Aug. 12, 2004, the disclosure of which is hereby incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The invention pertains to flash memory and, in particular, to a flash memory structure that has a vertical channel region with multiple gates and the fabrication method thereof.
  • 2. Related Art
  • Flash memory is one kind of non-volatile memory. It is used to store data in memory unit. Not only can it maintain the memory of data without being charged, it further has the feature of multiple writing/rewriting. Therefore, it has rapidly developed to become the new generation memory device in recent years.
  • However, all the current flash memory structures have the problem of no scaling. Particularly when the sizes of electronic products and semiconductor devices become smaller, the fabrication of flash memory faces the bottleneck of being unable to satisfy the requirement of small device sizes and good device properties at the same time.
  • Since the source region, the drain region, and the channel region in the device are located on the same plane, variations in the device size will directly affect the channel length, which in turn forms a restriction in the device size definition.
  • The conventional flash memory structure is stacked gate flash memory, whose structure is similar to electrically erasable and programmable ROM (EEPROM). It has a control gate and a floating gate stacked on the device channel. It achieves the programming purpose by injecting hot carriers from the drain into the floating gate. Although the stacked gate flash memory has the advantage of a simpler structure for minimizing the device size, the hot carrier injection efficiency is very low. As the device size shrinks, not only is the channel length shortened, the area of the floating gate and the control gate stacked on the channel also has to decrease. This reduces the capacitance between the floating gate and the control gate, causing increase in the operating voltage.
  • To increase the hot carrier injection rate, most people add gate units. For example, in one type of source injection flash memory, there are three gate units. In addition to the stacked control gate and the floating gate, an injection gate is further provided above the source to induce the injection of hot carriers from the source to the floating gate. Although this type of flash memory can increase the hot carrier injection efficiency with the installation of the injection gate, the addition injection gate results in a larger device size.
  • There is also a split-gate flash memory structure, which has the same advantage as the source injection flash memory. By increasing the size of the control gate, the coupling ratio between the control gate and the floating gate and the hot carrier injection efficiency can be simultaneously increased, thereby lowering the operating voltage. Nonetheless, it also has a larger size due to the control gate design.
  • Therefore, how to keep the desired flash memory characteristics while at the same time minimizing the device size is an important research trend in the field. Moreover, as the device size becomes smaller, the punch-through or breakdown phenomenon may happen due to the short carrier channel. This will damage the device and reduce the device reliability.
  • SUMMARY OF THE INVENTION
  • An objective of the invention is to provide a flash memory structure and the fabrication method thereof. A device with a vertical channel region is provided to both keep the desired device characteristics and increase the scaling ability of the device. Moreover, the gate structure covers the vertical channel using multiple surfaces, forming a multiple-surface gate. This can increase the operating efficiency of the flash memory.
  • A flash memory structure and the fabrication method thereof are proposed according to the above-mentioned objective. According to an embodiment of the invention, the flash memory structure includes at least a semiconductor substrate, a source region, a drain region, a first insulating dielectric layer, a floating gate, a second insulating dielectric layer, and a control gate. The semiconductor substrate has a first top surface and a second top surface, with the former higher than the latter. The source region and the drain region are located in the second top surface and the first top surface of the semiconductor substrate, respectively. The semiconductor substrate connecting the source region and the drain region is a vertical channel, and the vertical channel further contains an L-shaped three-dimensional structure.
  • The first insulating dielectric layer is formed on the vertical channel of the semiconductor substrate to completely cover it. The floating gate, the second insulating dielectric layer and the control gate cover the first insulating dielectric layer in sequence. Due to the here-dimensional structure of the vertical channel region, the floating gate can surround the vertical channel region in many faces. In a preferred embodiment, the floating gate surrounds three side surfaces of the vertical channel region. In another embodiment, the floating gate further covers the top surface of the vertical channel region. The first insulating dielectric layer is a tunneling oxide layer. The floating gate may be a polysilicon layer or a silicon nitride layer. The control gate is a polysilicon layer.
  • According to another embodiment, the flash memory fabrication method includes the step of patterning a semiconductor substrate to remove part of the semiconductor substrate to a depth, forming island blocks in the semiconductor substrate. A trench is thus formed between each two island blocks. The top surface of the island block is the first top surface of the semiconductor substrate. The trench is the second top surface of the semiconductor substrate.
  • Afterwards, the first insulating dielectric layer is formed on the semiconductor substrate, covering the island blocks and the trenches at the same time. A charge storage pattern made from a charge storage layer is formed on the first insulating dielectric layer. The second insulating dielectric layer and the conductive layer are formed in sequence on the charge storage pattern to cover it.
  • After the second insulating dielectric layer and the conductive layer are formed, they along with the charge storage layer are further patterned to form at least a gate stack unit. The first insulating dielectric layer in part of the trenches and that in part of the island blocks are exposed on both sides of the gate stack unit. In particular, the gate stack unit covers the range of the three side surfaces and/or the top surface of some island blocks, and is positioned on part of the trenches, and the island blocks.
  • Afterwards, ion implantation is performed on the first top surface and the second top surface of the semiconductor substrate, forming the source region and the drain region, respectively.
  • The charge storage layer and the conductive layer mentioned above are used as the floating gate and the control gate, respectively. The semiconductor substrate connecting the source region and the drain region is a vertical channel region, whose three side surfaces and/or top surface are covered by the gate stack unit. In particular, the vertical channel region has an L-shaped three-dimensional structure.
  • From the above description of the disclosed flash memory structure, one sees that variations in the channel length does not have any effect on the device size due to the design of the vertical channel region. That is, the channel length and the device size are independent. When scaling the device, the channel length is not constrained. The device thus made can still keep good properties. Moreover, the contact area between the gate and the channel region is not restricted by the change in the device size. Even when the device size shrinks, an appropriate channel length can be maintained to avoid the punch-through or breakdown phenomenon, increasing the reliability and quality of devices.
  • The disclosed structure covers the vertical channel region in many faces to form a multiple-surface gate configuration. Therefore, not only can it effectively increase the contact area between the control gate, the floating gate and the channel region, but also increases the coupling ratio and the device operating capability. The capacitance between the control gate and the floating gate can be increased to lower the operating voltage.
  • Besides, using the L-shaped three-dimensional structure in the vertical channel region, an L-shaped carrier path is formed to increase the hot carrier injection rate during the programmable operation of the flash memory, increasing the operating speed and performance of the device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects and advantages of the invention will become apparent by reference to the following description and accompanying drawings which are given by way of illustration only, and thus are not limitative of the invention, and wherein:
  • FIGS. 1A to 1D are schematic cross-sectional views of a method for making a flash memory structure in accordance with embodiments of the invention; and
  • FIG. 2 is a schematic cross-sectional view of a flash memory structure according to a preferred embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
  • The invention provides a flash memory structure and the fabrication method thereof. Using the design of a vertical channel region, the length of the carrier channel is not affected by variations in the device size. Therefore, one can scale the device without influencing the device characteristics. The disclosed flash memory further has the configuration of multiple-surface gate surrounding the carrier channel. This is especially helpful in increasing the operating characteristics of the flash memory and the coupling ratio between the control gate and the floating gate. In the following, we use specific embodiments to explain the disclosed method.
  • FIGS. 1A to 1D show schematic cross-sectional views of a fabrication method for a flash memory structure.
  • In FIG. 1A, a p-type well is formed on a semiconductor substrate 100. Its formation method includes performing ion implantation and patterning the semiconductor substrate 100, defining the electrical property of the semiconductor substrate 100 and the positions of trenches 101 and island blocks 102 thereon. One choice of the material of the semiconductor substrate 100 is silicon (Si).
  • In FIG. 1B, a tunneling oxide layer 104 is first formed on the semiconductor substrate 100, followed by forming a charge storage layer 106 on the tunneling oxide layer 104, filling the trenches 101. The charge storage layer 106 is used as a floating gate. The tunneling oxide layer 104 functions as an insulating dielectric layer between the floating gate and the semiconductor substrate 100. One choice of the material of the tunneling oxide layer 104 is silicon dioxide (SiO2). The charge storage layer 106 may be a polysilicon layer or a silicon nitride layer.
  • The charge storage layer 106 is then patterned, forming a charge storage circuit pattern parallel to the cross-sectional direction. Afterwards, an inter-layer dielectric layer 108, a conductive layer 110, and a nitride covering layer 130 are formed in sequence on the charge storage layer 106, covering the charge storage circuit pattern at the same time. In particular, the conductive layer 110 serves as a control gate. The inter-layer dielectric layer 108 is an insulating dielectric layer between the control gate and the floating gate. The material of the inter-layer dielectric layer 108 may be silicon dioxide or a stack layer consisting of oxide/nitride/oxide (O/N/O). The conductive layer 110 may be a polysilicon layer.
  • With reference to FIG. 1C, a conventional photolithography and etching process is employed to pattern the charge storage layer 106, the inter-layer dielectric layer 108, the conductive layer 110, and the nitride covering layer 130, defining the gate stack unit. The gate stack unit is composed of a control gate unit 112, an inter-layer dielectric layer 108, and a floating gate unit 114.
  • After defining the control gate unit 112 and the floating gate unit 114, a sidewall spacer 119 is formed on both sides of the gate stack unit to maintain the electrical isolation among the gate units, as shown in FIG. 1D. The material of the sidewall spacer 119 may be silicon nitride.
  • Afterwards, photo resist and a photolithography process are used to define a source opening and a drain opening. For example, a photo resist layer is first formed on the semiconductor substrate 100. Then the photolithography process is performed to simultaneously or respectively define the source opening and the drain opening. The photo resist layer inside the openings is removed later.
  • An ion implantation step is performed on the semiconductor substrate 100 in the source opening and the drain opening, forming an n-type source region 120 and an n-type drain region 122. Finally, the residual photo resist layer is removed. This completes the procedure of making a flash memory structure with a vertical channel region. If subsequent processes for devices further proceed, such as forming an insulating dielectric layer and forming conductive metal in the source opening and the drain opening, one can make a more complete flash memory control unit. In particular, when a carrier moves from the source region 120 to the drain region 122, a three-dimensional L-shaped channel (indicated by the arrow 126) is formed.
  • The three-dimensional flash memory structure formed using the described method is shown in FIG. 2. The programming of the flash memory is done with the carriers moving from the source region 220 to the drain region 222 on the semiconductor substrate 200. At the drain region 222, the carriers penetrate through the tunneling oxide layer 204 and reach the floating gate 214 in the channel hot carrier injection (CHEI) mode. The path traveled by the carriers from the source region 220 to the drain region 222 is the carrier channel. The control gate 212 and the floating gate 214 are separated by an inter-layer dielectric layer 208.
  • Since the carrier channel in the invention is a three-dimensional vertical structure, which is different from the horizontal channels in the prior art, the floating gate 214 and the control gate 212 form a multiple-surface surrounded channel region. Thus, a flash memory structure in accordance with the invention has multiple-surface gate controls. In a preferred embodiment of the invention, the floating gate 214 and the control gate 212 surround three side surfaces of the channel region. In another embodiment, the floating gate 214 and the control gate 212 surround three side surfaces and the top surface of the channel region.
  • As the disclosed flash memory has a vertical carrier channel, variations in the length of the channel only affect the height in the longitudinal direction without influencing the device size. That is, the channel length and the device size are independent. As a result, the channel size is not restricted by scaling the device.
  • Besides, due to the three-dimensional structure of the vertical channel, the carriers first move upward from the source region 220 and then turn horizontally toward the drain region 222 at around the drain region 222 when moving from the source region 220 to the drain region 222. Therefore, a three-dimensional L-shaped channel is formed. In this case, the carrier density at the turning point of the L-shaped channel is higher, rendering a higher hot carrier injection rate. This improves the overall carrier injection efficiency of the device.
  • From the above-mentioned embodiments of the invention, one sees that the disclosed flash memory structure and the fabrication method thereof diminish the restriction in the device size by the channel length due to the vertical channel design. Therefore, the device size can be scaled without sacrificing the desired device characteristics. The contact area between the gate and the channel region is not restricted by the device size.
  • Furthermore, even when the device size shrinks, an appropriate channel length is maintained to prevent the punch-through or breakdown phenomenon. Thus, the device reliability and quality is assured.
  • As a result of the structure design in the invention, the control gate and the floating gate that cover the channel form a multiple-surface gate style. Therefore, the contact area between the control gate, the floating gate and the channel region can be effectively increased without adding more gates. This increases the coupling ratio and the device operating capability. Hence, the capacitance between the control gate and the floating gate is increased to reduce the operating voltage and to enhance the device performance without affecting the device size.
  • In addition, using the structure of a vertical channel region, the L-shaped carrier path speeds up the hot carrier injection rate during the operation of the flash memory, further enhancing the operating speed and performance of the device.
  • Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.

Claims (20)

1. A flash memory structure, comprising:
a semiconductor substrate having at least a first top surface and at least a second top surface, wherein the first top surface is higher than the second top surface;
a source region formed in the second top surface of the semiconductor substrate;
a drain region formed in the first top surface of the semiconductor substrate, wherein the semiconductor substrate connecting the source region and the drain region is a vertical channel region;
a first insulating dielectric layer conformally formed on the vertical channel region to cover the vertical channel region;
a floating gate covering the first insulating dielectric layer;
a second insulating dielectric layer covering the floating gate; and
a control gate covering the second insulating dielectric layer.
2. The flash memory structure of claim 1, wherein the floating gate is selected from a group consisting of a polysilicon layer and a silicon nitride layer.
3. The flash memory structure of claim 1, wherein the vertical channel region between the source region and the drain region comprises an L-shaped three-dimensional structure.
4. The flash memory structure of claim 1, wherein the first insulating dielectric layer comprises a tunneling oxide layer.
5. The flash memory structure of claim 1, wherein the floating gate surrounds three side surfaces of the vertical channel region.
6. The flash memory structure of claim 5, wherein the floating gate further covers a top surface of the vertical channel.
7. The flash memory structure of claim 1, wherein the control gate comprises a polysilicon layer.
8. A method of fabricating a flash memory structure, comprising the steps of:
patterning a semiconductor substrate to remove part of the semiconductor substrate to a predetermined depth with a plurality of island blocks formed in the semiconductor substrate and a trench formed between two adjacent island blocks, wherein a top surface of each of the island blocks is a first top surface of the semiconductor substrate and a surface of the trench is a second top surface of the semiconductor substrate;
forming a first insulating dielectric layer on the semiconductor substrate to simultaneously cover the island blocks and the trench;
forming a charge storage layer pattern on the first insulating dielectric layer such that the trench is filled with the charge storage layer pattern;
forming a second insulating dielectric layer on the charge storage layer pattern to cover the charge storage layer pattern;
forming a conductive layer on the second insulating dielectric layer to cover the second insulating dielectric layer;
patterning the conductive layer, the second insulating dielectric layer and the charge storage layer pattern to form a gate stack unit such that part of the first insulating dielectric layer in the trench and part of the first insulating dielectric layer on the island block are exposed, wherein the gate stack unit covers at least part of the three side surfaces of the island block, and is positioned on part of the trench and part of the island block; and
implanting ions into part of the first top surface and the second top surface of the semiconductor substrate to form respectively a drain region and a source region.
9. The method of claim 8, wherein the first insulating dielectric layer comprises a tunneling oxide layer.
10. The method of claim 8, wherein the conductive layer comprises a polysilicon layer.
11. The method of claim 8, wherein the charge storage layer pattern is a polysilicon layer or a silicon nitride layer.
12. The method of claim 8, wherein the charge storage layer pattern is used as a floating gate and the conductive layer is used as a control gate.
13. The method of claim 8, further comprising a step of forming a nitride covering layer on the conductive layer after the conductive layer is formed, and before the step of patterning the conductive layer, the second insulating dielectric layer and the charge storage layer pattern.
14. The method of claim 8, further comprising a step of forming a sidewall spacer on one side of the gate stack unit before the step of implanting the ions.
15. The method of claim 8, wherein the semiconductor substrate connecting the source region and the drain region comprises a vertical channel region.
16. The method of claim 15, wherein the vertical channel region comprises an L-shaped three-dimensional structure.
17. The method of claim 15, wherein the gate stack unit formed from the conductive layer, the second insulating dielectric layer and the charge storage layer pattern completely covers the vertical channel path.
18. A flash memory structure with a vertical channel region, comprising:
a semiconductor substrate having at least a first top surface and at least a second top surface, wherein the first top surface is the top surface of an island block in the semiconductor substrate and the second top surface is the surface of a trench in the semiconductor substrate, and the first top surface is higher than the second top surface;
a source region disposed in the second top surface of the semiconductor substrate;
a drain region disposed in the first top surface of the semiconductor substrate, wherein the semiconductor substrate connecting the source region and the drain region is a vertical channel region comprising a sidewall of the island block;
a first insulating dielectric layer formed on the vertical channel region to completely cover the vertical channel region;
a floating gate covering the first insulating dielectric layer to a extent of surrounding three side surfaces of the vertical channel region;
a second insulating dielectric layer covering the floating gate; and
a control gate covering the second insulating dielectric layer.
19. The flash memory structure of claim 18, wherein the vertical channel region connecting the source region and the drain region comprises an L-shaped three-dimensional structure.
20. The flash memory structure of claim 18, further comprising:
a nitride covering layer formed on the control gate; and
two sidewall spacers on both sides of a gate stack unit comprising the floating gate, the second insulating dielectric layer and the control gate.
US10/981,653 2004-08-12 2004-11-05 Flash memory structure and fabrication method thereof Abandoned US20060033147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/531,954 US7445995B2 (en) 2004-08-12 2006-09-14 Flash memory structure and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW093124229A TWI246188B (en) 2004-08-12 2004-08-12 Flash memory structure and fabrication method thereof
TW93124229 2004-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/531,954 Division US7445995B2 (en) 2004-08-12 2006-09-14 Flash memory structure and fabrication method thereof

Publications (1)

Publication Number Publication Date
US20060033147A1 true US20060033147A1 (en) 2006-02-16

Family

ID=35799195

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/981,653 Abandoned US20060033147A1 (en) 2004-08-12 2004-11-05 Flash memory structure and fabrication method thereof
US11/531,954 Active 2024-11-18 US7445995B2 (en) 2004-08-12 2006-09-14 Flash memory structure and fabrication method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/531,954 Active 2024-11-18 US7445995B2 (en) 2004-08-12 2006-09-14 Flash memory structure and fabrication method thereof

Country Status (2)

Country Link
US (2) US20060033147A1 (en)
TW (1) TWI246188B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691018B1 (en) 2006-04-18 2007-03-09 주식회사 하이닉스반도체 Semiconductor device with recess channel and method of manufacturing the same
US20070120171A1 (en) * 2005-10-06 2007-05-31 Promos Technologies Inc. Nonvolatile memory cell with multiple floating gates and a connection region in the channel
US8937346B2 (en) * 2012-05-02 2015-01-20 SK Hynix Inc. Semiconductor device
TWI555180B (en) * 2015-04-16 2016-10-21 物聯記憶體科技股份有限公司 Non-volatile memory
CN108807412A (en) * 2017-05-04 2018-11-13 上海格易电子有限公司 A kind of floating-gate memory and preparation method thereof
US20200058775A1 (en) * 2017-08-29 2020-02-20 International Business Machines Corporation Twin gate tunnel field-effect transistor (fet)
WO2023279718A1 (en) * 2021-07-08 2023-01-12 长鑫存储技术有限公司 Semiconductor structure and semiconductor structure manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550382B2 (en) * 2005-05-31 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
KR20120057794A (en) * 2010-11-29 2012-06-07 삼성전자주식회사 Non volatile memory devices and methods of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495441A (en) * 1994-05-18 1996-02-27 United Microelectronics Corporation Split-gate flash memory cell
US6017795A (en) * 1998-05-06 2000-01-25 Taiwan Semiconductor Manufacturing Company Method of fabricating buried source to shrink cell dimension and increase coupling ratio in split-gate flash
US20020070405A1 (en) * 2000-07-12 2002-06-13 Nobuyo Sugiyama Nonvolatile semiconductor memory device and method for fabricating the same
US20040166631A1 (en) * 2001-07-13 2004-08-26 Hurley Kelly T. Opitmized flash memory cell
US6821849B2 (en) * 2003-04-03 2004-11-23 Powerchip Semiconductor Corp. Split gate flash memory cell and manufacturing method thereof
US6894339B2 (en) * 2003-01-02 2005-05-17 Actrans System Inc. Flash memory with trench select gate and fabrication process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049652B2 (en) * 2003-12-10 2006-05-23 Sandisk Corporation Pillar cell flash memory technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495441A (en) * 1994-05-18 1996-02-27 United Microelectronics Corporation Split-gate flash memory cell
US6017795A (en) * 1998-05-06 2000-01-25 Taiwan Semiconductor Manufacturing Company Method of fabricating buried source to shrink cell dimension and increase coupling ratio in split-gate flash
US20020070405A1 (en) * 2000-07-12 2002-06-13 Nobuyo Sugiyama Nonvolatile semiconductor memory device and method for fabricating the same
US20040166631A1 (en) * 2001-07-13 2004-08-26 Hurley Kelly T. Opitmized flash memory cell
US6894339B2 (en) * 2003-01-02 2005-05-17 Actrans System Inc. Flash memory with trench select gate and fabrication process
US6821849B2 (en) * 2003-04-03 2004-11-23 Powerchip Semiconductor Corp. Split gate flash memory cell and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070120171A1 (en) * 2005-10-06 2007-05-31 Promos Technologies Inc. Nonvolatile memory cell with multiple floating gates and a connection region in the channel
US7511333B2 (en) * 2005-10-06 2009-03-31 Promos Technologies Inc. Nonvolatile memory cell with multiple floating gates and a connection region in the channel
KR100691018B1 (en) 2006-04-18 2007-03-09 주식회사 하이닉스반도체 Semiconductor device with recess channel and method of manufacturing the same
US8937346B2 (en) * 2012-05-02 2015-01-20 SK Hynix Inc. Semiconductor device
US20150099354A1 (en) * 2012-05-02 2015-04-09 SK Hynix Inc. Semiconductor device
US9123748B2 (en) * 2012-05-02 2015-09-01 SK Hynix Inc. Method of manufacturing a semiconductor device
TWI555180B (en) * 2015-04-16 2016-10-21 物聯記憶體科技股份有限公司 Non-volatile memory
CN108807412A (en) * 2017-05-04 2018-11-13 上海格易电子有限公司 A kind of floating-gate memory and preparation method thereof
US20200058775A1 (en) * 2017-08-29 2020-02-20 International Business Machines Corporation Twin gate tunnel field-effect transistor (fet)
US11557663B2 (en) * 2017-08-29 2023-01-17 International Business Machines Corporation Twin gate tunnel field-effect transistor (FET)
WO2023279718A1 (en) * 2021-07-08 2023-01-12 长鑫存储技术有限公司 Semiconductor structure and semiconductor structure manufacturing method

Also Published As

Publication number Publication date
US7445995B2 (en) 2008-11-04
TW200607081A (en) 2006-02-16
US20070010057A1 (en) 2007-01-11
TWI246188B (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US7445995B2 (en) Flash memory structure and fabrication method thereof
US7601592B2 (en) Method for forming multi-gate non-volatile memory devices using a damascene process
US6709922B2 (en) Method of manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory devices
KR100474176B1 (en) Method for producing a multi-bit memory cell
US7208796B2 (en) Split gate flash memory
KR20080010900A (en) Non-volatile memory device, method of operating the same and method of fabricating the same
KR20060028765A (en) Non-volatile memory device
US20070066014A1 (en) Nonvolatile memory device and method of fabricating the same
CN100499081C (en) Manufacture method of NOR-type flash memory cell array
CN111799270A (en) Semiconductor device with a plurality of transistors
KR20070091833A (en) Non-volatile memory devices and methods of forming the same
KR20070049731A (en) Flash memory and manufacturing method thereof
CN101211860B (en) Methods of forming non-volatile memory device
US8476694B2 (en) Memory cell, memory device and method for manufacturing memory cell
US20140021537A1 (en) Semiconductor device and method for manufacturing the same
US20060192241A1 (en) Non-volatile memory and manufacturing method thereof
KR100742758B1 (en) Flash memory device and fabricating method thereof
CN109860276B (en) Semiconductor device and method of forming the same
TWI700819B (en) Non-volatile memory and manufacturing method thereof
KR100419963B1 (en) Method for manufacturing common source region of flash memory device
TWI517365B (en) Memory device and method for fabricating the same
CN111048513A (en) Method for manufacturing floating gate type flash memory
US8236646B2 (en) Non-volatile memory manufacturing method using STI trench implantation
KR20050069114A (en) Memory device with one poly split gate structure and fabricating method thereof
KR20090100799A (en) Memory device with vertical channel and double split gates

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROMOS TECHNOLOGIES, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANG, MING;REEL/FRAME:017471/0906

Effective date: 20041013

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION