US20060012866A1 - Arrangement for microscopic observation and/or detection and use - Google Patents

Arrangement for microscopic observation and/or detection and use Download PDF

Info

Publication number
US20060012866A1
US20060012866A1 US10/967,322 US96732204A US2006012866A1 US 20060012866 A1 US20060012866 A1 US 20060012866A1 US 96732204 A US96732204 A US 96732204A US 2006012866 A1 US2006012866 A1 US 2006012866A1
Authority
US
United States
Prior art keywords
illumination
sample
objective
microscope
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/967,322
Inventor
Ralf Wolleschensky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Jena GmbH filed Critical Carl Zeiss Jena GmbH
Assigned to CARL ZEISS JENA GMBH reassignment CARL ZEISS JENA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOLLESCHENSKY, RALF
Publication of US20060012866A1 publication Critical patent/US20060012866A1/en
Priority to US11/808,569 priority Critical patent/US7796328B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only

Definitions

  • a mirroring is carried out on the edge outside the actual viewing lens, e.g. using imaging mirrors with small numerical aperture that is mechanically a part of the objective, in order to achieve a very homogeneous Z resolution along a line or surface that is created.
  • a light branching (splitter) for parallel laser illumination of several sides advantageously parallel beams go through a main color splitter, which is also designed as in DE10257237, the disclosure contents of which can be included here, and a scanning optics to the sample.
  • the thickness of the line or surface can be adjusted using the focal width/numerical aperture.
  • the depth resolution is specified by the focal width/numerical aperture of the mirroring from the side.
  • a line scanner it can also be adjusted by a confocal aperture diaphragm that is located before the line detector.
  • the beam splitter is advantageously arranged in the lens diaphragm plate (of the viewing objective) and on the edge, has two points or bars for reflection of the quasi-parallel light beams in the direction of the objective.
  • a reversal (illumination over small transmitting areas) and viewing of the reflected sample light is also an object of the invention.
  • a line is generated and the fluorescence along this line is imaged on a line detector. Shadows are eliminated because of the illumination on both sides. In principle, it would also be possible to illuminate from only one side. In order to generate this line, focusing on the spot is carried out using lateral illumination.
  • the line generated in the object is moved over the object by the scanner present in the pupil (conjugate plane).
  • the scanner descans the line again in the direction of the detection and images it on a line detector.
  • the return light from the sample goes through the partial mirror in the direction of the line detector.
  • the edge area of a reflective strip according to 7563 could also be used with illumination with two points.
  • a cylinder lens or other suitable optics and the mirrors generate an illumination line along the y-axis so that a viewing area occurs in the xy-plane.
  • the objective has reflectors, at least in the area of the illumination.
  • the dimensions are sized such that in wide field a light band can be transferred, whereby this formation can also be used with point beams from the side (image at different times in different areas of the mirror).
  • the mirrors focus parallel beams on the optical axis of the inner objective, the reverse focal planes of the mirrors lie in the objective pupil.
  • An inner lens is used for viewing (detection).
  • no optics are required, an optical effect of the outer ring by using corresponding optics with small aperture is only necessary.
  • the optical section thickness (along the optical axis of the inner objective) is adjusted with the selection of the outer focal width (influence of beam diameter).
  • the mirror optics can be circular, i.e. for rotation-symmetrical illumination of the sample from all sides. This arrangement is especially advantageous during wide field detection.
  • the illumination of the sample is preferably carried out with a ring segment, i.e. from a fixed specified direction. Along the imaged axis, which runs perpendicular to the optical axis, this can be carried out using illumination from one direction or two directions opposite to each other.
  • the two illumination beams preferably form a common focus point in the sample.
  • the objective can be designed as an immersion objective.
  • the space from the sample to the first lens surface, including the mirroring optics, are immersed appropriately from the side.
  • the energy input for generating the same signal per sample volume is identical to that of a regular LSM point scanner, since the direction of incidence lies in the plane of the optical section to be detected.
  • the invention can be adapted to a line scanner especially advantageously, with the use of the scanner that scans the line over the sample and with the use of elements for overlaying the illumination and/or extracting the detection (beam splitter mirror), whereby especially advantageous areas of a beam splitter designed according to DE10257237 can be used.
  • FIG. 1 shows an objective arrangement that consists of a central lens unit Lz, in which it may be a case of a usual viewing object of a microscope.
  • light guides LF are provided in which parallel illumination beams Ls 1 , Ls 2 run in the direction of the sample, at first parallel to the optical axis A of viewing in Lz.
  • the illumination beams Ls 1 , Ls 2 arrive at the reflectors R 1 , R 2 , mounted on housing H, which can be imaging mirrors with small aperture, and focus the illumination beams in a direction perpendicular to the optical viewing axis in a point Pin of the optical axis of the objective Lz.
  • R 1 , R 2 can also be flat reflecting mirrors and then display elements with small aperture can be provided in the light guides LF, whereby R 1 , R 2 are used only for deflection in the direction of the sample and the focus in the sample will be generated by the imaging elements.
  • the waist of the illumination runs almost parallel in the area of the sample and generates, in the sample, a thin illumination line that is imaged in objective pupil P 3 .
  • Objective pupil P 3 , objective Lz and the sample focus are located here in a 2 f arrangement, i.e. in each case at a distance from each other that equals the simple focal width.
  • the objective can be used for telecentric scanning, for example of an illumination line in the sample.
  • a light source LQ is mounted after a beam splitter T that creates two parallel partial beams Ls 1 , Ls 2 that are reflected over a beam splitter lying in the conjugate plane of the objective pupil, this beam splitter having on its edge opposite circular reflecting partial sections ( FIG. 2 b ) and are transferred over a scanner P 2 for movement of the illumination beams over the sample in one direction, scanning optics SO and a tube lens for transfer of an intermediate image ZB onto the objective pupil P 2 .
  • the attachment of the objective according to the lens takes place over the pupil P 3 to the beam of a line scanner, which has an appropriately designed beam splitter, as already described in DE10257237 A21, and the transmitting or reflecting surfaces of which can be used.
  • the illumination line described here is moved through the sample by way of the scanner (in the pupil P 2 ) of the line scanner.
  • the viewing beam is dotted, the illumination beam is a solid line.
  • the image of the sample in the intermediate image ZB is descanned by way of a tube lens, scanning optics and scanner and is imaged onto a slot shutter SB (optional here) in front of a line detector, through the surface of the beam splitter MDB necessary for the sample irradiation (except for the circular reflecting points) by means of pinhole optics PO.
  • FIG. 3 a shows the cross section of the objective pupil on the MDB with the illumination channels BK and the effective area for the viewing FB.
  • FIG. 3 b shows the illuminated line L in the object plane, on which focusing is carried out with the objective and by means of which the detection is recorded.
  • the thickness of the line is adjusted, in that the effective numerical aperture of the lateral optics that is focused with variation along the beam direction in the sample. If this NA is decreased, the line width increases accordingly.
  • the manipulation of the numerical aperture can also be e.g. by a variable ring shutter in the pupil that is not shown, arranged around the illumination channel. By moving the scanner P perpendicular to the longitudinal direction (x axis), the line is moved perpendicular in y direction on the sample.
  • FIG. 4 a shows the arrangement for wide field illumination.
  • a splitter can be used for illumination of the sample from two irradiation directions.
  • FIG. 4 b shows the plane of the objective pupil on the beam splitter MDB with wide field illumination.
  • This advantageously has two line-shaped transmitting areas B 1 , B 2 that are opposite each other on the outer edge, each of which transfers a line-shaped area of the illumination (dotted line) in the direction of the outer area of the objective.
  • These areas are imaged with the reflectors in the direction of the sample with small aperture and form a quasi-parallel surface light area of small thickness through the sample.
  • the adjustment of the thickness is carried out, in turn, by a shutter in the pupil, which is not shown, that contracts the pupil of the illumination channel along the x axis at the location of the pupil.
  • the objective according to the invention is advantageously connected by way of a pupil P 3 as in FIG. 2 to the beam of a line scanner.
  • the illumination is focused in the y direction by a cylinder lens L.
  • a splitter T e.g. double-refractive medium
  • T can be located in the illumination beam to generate 2 partial beams.
  • FIG. 4 c shows the scanned light area in the sample plane (focal plane of the objective).
  • the sample light goes over the beam splitter MDB (reflecting) in the direction of an area detector DEF.
  • a Powell aspherical can optionally be used in front of the cylinder optics ZL 1 in FIG. 4 for homogenizing the illumination along the y-axis.
  • the invention described represents an important expansion of the application possibilities of fast confocal laser scanning microscopes.
  • the importance of such a further development can be understood from reading the standard cell biology literature and the fast cellular and subcellular processes 1 described there and the testing methods used there with a large number of dyes 2 .
  • 1 B. Alberts et al. (2002): Molecular Biology of the Cell; Garland Science. 1,2 G. Karp (2002): Cell and Molecular Biology: Concepts and Experiments; Wiley Text Books. 1,2 R. Yuste et al. (2000): Imaging neurons—a laboratory Manual; Cold Spring Harbor Laboratory Press, New York.
  • the invention has especially great importance for the following processes and procedures:
  • the invention described is suitable, among other things, for the examination of development processes, which are mainly characterized by dynamic process in the range of tenths of a second to hours.
  • Example applications on the level of symplasts and complete organisms are described here as an example:
  • Soll, D. R. et al. describe, in 2003 in Scientific World Journ. 3:827-841, a software-based movement analysis of microscopic data of nuclei and pseudopods of living cells in all 3 spatial dimensions.

Abstract

Arrangement for microscopic observation and/or detection of a sample that is at least partially transparent by way of a microscope objective, whereby an illumination of the sample outside the objective is carried out from at least from one side at an angle to the optical axis of the objective and the illumination light is focused on the sample with a smaller aperture than that of the viewing objective and that a coupling of the illumination light over a beam splitter, preferably in the objective pupil, is carried out for coupling, at its circumference, slightly expanding transmitting or reflecting areas for steering the illumination light to the sample, but otherwise is designed so that it is reflecting or transmitting for the sample light on the rest of the area.

Description

  • Steizer, et al. describe a further development of the “Theta microscope,” as it is called (Lindek, et at.; Journal of modern optics, 1999, vol. 46, no. 5, 843-858) in which the detection is at an angle of 90 degrees to the illumination, the “SPIM,” as it is called (selective plane illumination microscope) (http://www.focusonmicroscopy.org/2004/abstracts/091_Stelzer.pdf).
  • The invention, as it is the object of the patent claims and its advantages will be described in more detail below.
  • As a deviation from the known Theta structure, in this case advantageously a mirroring is carried out on the edge outside the actual viewing lens, e.g. using imaging mirrors with small numerical aperture that is mechanically a part of the objective, in order to achieve a very homogeneous Z resolution along a line or surface that is created.
  • After a light branching (splitter) for parallel laser illumination of several sides, advantageously parallel beams go through a main color splitter, which is also designed as in DE10257237, the disclosure contents of which can be included here, and a scanning optics to the sample.
  • In the sample, there is focusing on one point from at least one side with low numerical aperture, thereby a very flat asymmetrical beam develops that is quasi-equally distributed on the inside of the sample (constant contraction).
  • The thickness of the line or surface can be adjusted using the focal width/numerical aperture.
  • From above, through the lens, there is a viewing (detection) of the illuminated points along this asymmetrical beam with a line or surface detector.
  • The depth resolution is specified by the focal width/numerical aperture of the mirroring from the side. With a line scanner it can also be adjusted by a confocal aperture diaphragm that is located before the line detector.
  • The beam splitter is advantageously arranged in the lens diaphragm plate (of the viewing objective) and on the edge, has two points or bars for reflection of the quasi-parallel light beams in the direction of the objective.
  • Otherwise it is designed so that it is permeable for sample light.
  • A reversal (illumination over small transmitting areas) and viewing of the reflected sample light is also an object of the invention.
  • In the line scanner, a line is detected.
  • In the sample, a line is generated and the fluorescence along this line is imaged on a line detector. Shadows are eliminated because of the illumination on both sides. In principle, it would also be possible to illuminate from only one side. In order to generate this line, focusing on the spot is carried out using lateral illumination.
  • Therefore, a circular distribution of the small cross section is provided on the mirror in the objective pupil.
  • The line generated in the object is moved over the object by the scanner present in the pupil (conjugate plane).
  • The scanner descans the line again in the direction of the detection and images it on a line detector.
  • The return light from the sample goes through the partial mirror in the direction of the line detector.
  • The edge area of a reflective strip according to 7563 could also be used with illumination with two points.
  • In this case, some efficiency would be lost through the uninterrupted strip in the SPIM application. In addition, the objective would have to be replaced with the one described above during line detection.
  • In wide field, for example, a cylinder lens or other suitable optics and the mirrors generate an illumination line along the y-axis so that a viewing area occurs in the xy-plane.
  • For this it is focused into the pupil in the y-direction, and with that an illumination line is created.
  • The objective has reflectors, at least in the area of the illumination.
  • The dimensions are sized such that in wide field a light band can be transferred, whereby this formation can also be used with point beams from the side (image at different times in different areas of the mirror).
  • The mirrors (imaging mirrors) focus parallel beams on the optical axis of the inner objective, the reverse focal planes of the mirrors lie in the objective pupil.
  • An inner lens is used for viewing (detection). In the outer area, no optics are required, an optical effect of the outer ring by using corresponding optics with small aperture is only necessary.
  • The optical section thickness (along the optical axis of the inner objective) is adjusted with the selection of the outer focal width (influence of beam diameter).
  • It could be adjusted variably with variable optics.
  • The mirror optics can be circular, i.e. for rotation-symmetrical illumination of the sample from all sides. This arrangement is especially advantageous during wide field detection. When a line scanner is used, the illumination of the sample is preferably carried out with a ring segment, i.e. from a fixed specified direction. Along the imaged axis, which runs perpendicular to the optical axis, this can be carried out using illumination from one direction or two directions opposite to each other. The two illumination beams preferably form a common focus point in the sample.
  • The objective can be designed as an immersion objective. In this case, the space from the sample to the first lens surface, including the mirroring optics, are immersed appropriately from the side.
  • All points along the line or area through the sample are recorded parallel through the line or in wide field without the necessity of increasing the intensity. (For example, Raman application, with a point scanner would stress the sample with the full power at each point to beyond the destruction limit (heating). If the sample will be read out at the same image rate, a reduction in the power is conceivable. By the paralleling of the sample measurement, the integration time can be increased accordingly for this, so that the measured signal is constant after expiration of the longer integration time.
  • The energy input for generating the same signal per sample volume is identical to that of a regular LSM point scanner, since the direction of incidence lies in the plane of the optical section to be detected.
  • No higher requirements of the light sources exist—but a complete paralleling can be used.
  • No increased energy input is necessary to achieve the same SNR in a line scanner and thus a lower sample stress occurs.
  • This allows the option of examining weak sample interactions, e.g. Raman effects.
  • No special sample preparation is necessary.
  • The invention can be adapted to a line scanner especially advantageously, with the use of the scanner that scans the line over the sample and with the use of elements for overlaying the illumination and/or extracting the detection (beam splitter mirror), whereby especially advantageous areas of a beam splitter designed according to DE10257237 can be used.
  • Attachment of the objective according to the invention in a suitable pupil is advantageously possible.
  • In the following there is a further description using the drawings:
  • FIG. 1 shows an objective arrangement that consists of a central lens unit Lz, in which it may be a case of a usual viewing object of a microscope.
  • In a housing H, outside the lens unit Lz, light guides LF are provided in which parallel illumination beams Ls1, Ls2 run in the direction of the sample, at first parallel to the optical axis A of viewing in Lz. The illumination beams Ls1, Ls2 arrive at the reflectors R1, R2, mounted on housing H, which can be imaging mirrors with small aperture, and focus the illumination beams in a direction perpendicular to the optical viewing axis in a point Pin of the optical axis of the objective Lz.
  • R1, R2 can also be flat reflecting mirrors and then display elements with small aperture can be provided in the light guides LF, whereby R1, R2 are used only for deflection in the direction of the sample and the focus in the sample will be generated by the imaging elements.
  • Because of the small aperture, the waist of the illumination runs almost parallel in the area of the sample and generates, in the sample, a thin illumination line that is imaged in objective pupil P3.
  • Objective pupil P3, objective Lz and the sample focus are located here in a 2 f arrangement, i.e. in each case at a distance from each other that equals the simple focal width.
  • Because of this, the objective can be used for telecentric scanning, for example of an illumination line in the sample.
  • In FIG. 2 a, which applies to the objective pupil P3, a light source LQ is mounted after a beam splitter T that creates two parallel partial beams Ls1, Ls2 that are reflected over a beam splitter lying in the conjugate plane of the objective pupil, this beam splitter having on its edge opposite circular reflecting partial sections (FIG. 2 b) and are transferred over a scanner P2 for movement of the illumination beams over the sample in one direction, scanning optics SO and a tube lens for transfer of an intermediate image ZB onto the objective pupil P2.
  • Advantageously, the attachment of the objective according to the lens takes place over the pupil P3 to the beam of a line scanner, which has an appropriately designed beam splitter, as already described in DE10257237 A21, and the transmitting or reflecting surfaces of which can be used.
  • The illumination line described here is moved through the sample by way of the scanner (in the pupil P2) of the line scanner.
  • The viewing beam is dotted, the illumination beam is a solid line. The image of the sample in the intermediate image ZB is descanned by way of a tube lens, scanning optics and scanner and is imaged onto a slot shutter SB (optional here) in front of a line detector, through the surface of the beam splitter MDB necessary for the sample irradiation (except for the circular reflecting points) by means of pinhole optics PO.
  • FIG. 3 a shows the cross section of the objective pupil on the MDB with the illumination channels BK and the effective area for the viewing FB.
  • FIG. 3 b shows the illuminated line L in the object plane, on which focusing is carried out with the objective and by means of which the detection is recorded. The thickness of the line is adjusted, in that the effective numerical aperture of the lateral optics that is focused with variation along the beam direction in the sample. If this NA is decreased, the line width increases accordingly. The manipulation of the numerical aperture can also be e.g. by a variable ring shutter in the pupil that is not shown, arranged around the illumination channel. By moving the scanner P perpendicular to the longitudinal direction (x axis), the line is moved perpendicular in y direction on the sample.
  • FIG. 4 a shows the arrangement for wide field illumination. In this case a splitter can be used for illumination of the sample from two irradiation directions.
  • FIG. 4 b shows the plane of the objective pupil on the beam splitter MDB with wide field illumination.
  • This advantageously has two line-shaped transmitting areas B1, B2 that are opposite each other on the outer edge, each of which transfers a line-shaped area of the illumination (dotted line) in the direction of the outer area of the objective. These areas are imaged with the reflectors in the direction of the sample with small aperture and form a quasi-parallel surface light area of small thickness through the sample. The adjustment of the thickness is carried out, in turn, by a shutter in the pupil, which is not shown, that contracts the pupil of the illumination channel along the x axis at the location of the pupil.
  • The objective according to the invention is advantageously connected by way of a pupil P3 as in FIG. 2 to the beam of a line scanner.
  • The illumination is focused in the y direction by a cylinder lens L. Optionally a splitter T (e.g. double-refractive medium) can be located in the illumination beam to generate 2 partial beams.
  • FIG. 4 c shows the scanned light area in the sample plane (focal plane of the objective).
  • The sample light (in dotted lines) goes over the beam splitter MDB (reflecting) in the direction of an area detector DEF. A Powell aspherical can optionally be used in front of the cylinder optics ZL1 in FIG. 4 for homogenizing the illumination along the y-axis.
  • The invention described represents an important expansion of the application possibilities of fast confocal laser scanning microscopes. The importance of such a further development can be understood from reading the standard cell biology literature and the fast cellular and subcellular processes1 described there and the testing methods used there with a large number of dyes2.
    1B. Alberts et al. (2002): Molecular Biology of the Cell; Garland Science.

    1,2G. Karp (2002): Cell and Molecular Biology: Concepts and Experiments; Wiley Text Books.

    1,2R. Yuste et al. (2000): Imaging neurons—a laboratory Manual; Cold Spring Harbor Laboratory Press, New York.

    2R. P. Haugland (2003): Handbook of fluorescent Probes and research Products, 10th Edition; Molecular Probes Inc. and Molecular Probes Europe BV.
  • For example, see.:
  • The invention has especially great importance for the following processes and procedures:
  • Development of Organisms
  • The invention described is suitable, among other things, for the examination of development processes, which are mainly characterized by dynamic process in the range of tenths of a second to hours. Example applications on the level of symplasts and complete organisms are described here as an example:
  • Abdul-Karim, M. A. et al. describe, in 2003 in Microvasc. Res., 66:113-125, a long-term analysis of blood vessel changes in the living animal, wherein fluorescence images were recorded at intervals over several days. The 3D data records were evaluated with adaptive algorithms in order to schematically represent movement trajectories.
  • Soll, D. R. et al. describe, in 2003 in Scientific World Journ. 3:827-841, a software-based movement analysis of microscopic data of nuclei and pseudopods of living cells in all 3 spatial dimensions.
  • Grossmann, R. et al. describe, in 2002 in Glia, 37:229-240 a 3D analysis of the movements of rat microglial cells, whereby the data were recorded over up to 10 hours. At the same time, there were also fast reactions of the glia after traumatic, so that a high data rate and corresponding data volume occurred.
  • This relates especially to the following focal points:
      • Analysis of living cells in 3D environment, whose adjacent cells react sensitively to laser illumination and have to be protected from the illumination of the 3D-ROI;
      • Analysis of living cells in 3D environment with labels, that will be selectively bleached by laser light in 3D, e.g. FRET experiments;
      • Analysis of living cells in 3D environment with labels, that will be selectively bleached by laser light in 3D and simultaneously will also be observed outside the ROI, e.g. FRAP AND FLIP experiments;
      • Selective analysis of living cells in 3D environment with labels and pharmaceuticals that exhibit manipulation-related changes due to laser illumination, e.g. activation of transmitters in 3D;
      • Selective analysis of living cells in 3D environment with labels that exhibit manipulation-related color changes due to laser illumination, e.g. paGFP, Kaede;
      • Selective analysis of living cells in 3D environment with vary weak labels that e.g. require an optimum balance of confocality and detection sensitivity.
      • Living cells in a 3D tissue structure with varying multiple labels, e.g. CFP, GFP, YFP, DsRed, HcRed, etc.
      • Living cells in a 3D tissue structure with labels, that have color changes depending on function, e.g. Ca+-Marker
      • Living cells in a 3D tissue structure with labels, that have color changes due to development, e.g. transgenic animals with GFP
      • Living cells in a 3D tissue structure with labels, that have manipulation-related color changes due to laser illumination, e.g. paGFP, Kaede
      • Living cells in a 3D tissue structure with very weak labels that require a restriction of the confocality in favor of the detection sensitivity.
      • The latter-named point in combination with the preceding.

Claims (23)

1-19. (canceled)
20. Arrangement for at least one of microscopic observation and detection of an at least partially transparent specimen comprising:
a microscope viewing objective having an optical axis,
means for illuminating the specimen from the exterior of the objective from at least one side at an angle to the optical axis of the objective, and
focusing means for focusing the illuminating light in the specimen using a smaller aperture than that of the viewing objective.
21. Arrangement according to claim 20, wherein the illumination means includes an aperture small enough so that an essentially parallel light distribution occurs, at least in one sample area.
22. Arrangement according to claim 21, wherein the illumination means include imaging mirrors that image the parallel illumination light along the optical axis of the objective in the direction of the sample.
23. Arrangement according to claim 20, further comprising a flat mirror is mounted after the illumination means for deflection.
24. Arrangement according to claim 20, wherein the illumination means functions to provide illumination from two sides with the same focal point.
25. Arrangement according to claim 20, wherein the focusing means functions to provide parallel beam focusing for generating an illumination line in the sample.
26. Arrangement according to claim 20, further comprising means for providing a two-dimensional beam expansion for generating an illumination area in the sample.
27. Arrangement according to claim 20, further comprising a beam splitter for coupling the illumination light in the objective pupil, the beam splitter being formed for coupling one of small expanded transmitting and reflecting areas on its circumference for steering the illumination light on the sample, but otherwise being designed so that it is one of reflecting and transmitting for the sample light on the rest of the area.
28. Arrangement according to claim 20, further comprising optics for producing an illumination in wide field for generating an illumination line.
29. Arrangement according to claim 20, further comprising means for carrying out the illumination with parallel point beams.
30. Microscope viewing objective for observation of at least partially transparent samples, comprising:
viewing optics having an optical axis,
an objective aperture,
means for illuminating the sample outside of the viewing optics with illumination light in one area of the objective, at least from one side at an angle to the optical axis of the viewing optics that is not equal to zero and
illumination optics having an illumination aperture for focusing the illumination light in the sample, the illumination aperture being smaller than the objective aperture.
31. Microscope objective according to claim 30, wherein the angle is perpendicular to the optical axis.
32. Microscope objective according to claim 30, wherein the aperture of the illumination optics is small enough that a light distribution that is essentially parallel occurs, at least in one sample area.
33. Microscope objective according to claim 30, wherein the illumination optics are imaging mirrors that image parallel illumination light along the optical axis of the objective in the direction of the sample.
34. Microscope objective according to claim 30, further comprising a flat mirror mounted after the illumination optics for deflection.
35. Microscope objective according to claim 30, further comprising means for providing illumination from two sides with a common focal point.
36. Light scanning microscope including a microscope objective according to claim 30, for recording at least one sample area by using a relative movement between the illumination light and the sample,
wherein the illumination light illuminates the sample in parallel in a line at one of several points and areas and
wherein the microscope further comprises a detector having local resolution for simultaneously detecting one of several points and areas and for detecting several points at the same time with a detector.
37. Process for examining weak sample interactions, which comprises using the arrangement according to claim 20.
38. Process according to claim 37, wherein the weak sample interactions are Raman effects.
39. Process for examining weak sample interactions which comprises using the objective according to claim 30.
40. Process for examining weak sample interactions, which comprises using the microscope according to claim 36.
41. Method for examination development processes, comprising the step of:
analyzing dynamic processes in the range of tenths of a second to hours, at the level of united cell structures and entire organisms, using the arrangement for at least one of microscopic observation and detection of a sample that is at least partially transparent, according to claim 20.
US10/967,322 2004-07-16 2004-10-19 Arrangement for microscopic observation and/or detection and use Abandoned US20060012866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/808,569 US7796328B2 (en) 2004-07-16 2007-06-11 Laser scanning microscope with illumination perpendicular to the optical axis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004034957.6 2004-07-16
DE102004034957A DE102004034957A1 (en) 2004-07-16 2004-07-16 Arrangement for microscopic observation and / or detection and use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/808,569 Continuation US7796328B2 (en) 2004-07-16 2007-06-11 Laser scanning microscope with illumination perpendicular to the optical axis

Publications (1)

Publication Number Publication Date
US20060012866A1 true US20060012866A1 (en) 2006-01-19

Family

ID=34673263

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/967,322 Abandoned US20060012866A1 (en) 2004-07-16 2004-10-19 Arrangement for microscopic observation and/or detection and use
US11/808,569 Expired - Fee Related US7796328B2 (en) 2004-07-16 2007-06-11 Laser scanning microscope with illumination perpendicular to the optical axis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/808,569 Expired - Fee Related US7796328B2 (en) 2004-07-16 2007-06-11 Laser scanning microscope with illumination perpendicular to the optical axis

Country Status (6)

Country Link
US (2) US20060012866A1 (en)
EP (1) EP1617255B1 (en)
JP (1) JP4970748B2 (en)
AT (1) ATE422065T1 (en)
DE (2) DE102004034957A1 (en)
GB (1) GB2416403A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161207A1 (en) * 2004-07-16 2009-06-25 Ralf Wolleschensky Optical scanning microscope
US20110036996A1 (en) * 2008-02-13 2011-02-17 Ralf Wolleschensky Apparatus and method for high spatial resolution imaging of a structure of a sample
CN102385151A (en) * 2010-08-30 2012-03-21 徕卡显微系统复合显微镜有限公司 Microscope including micro and macro objectives
US20130107358A1 (en) * 2011-10-28 2013-05-02 Leica Mircosystems Cms Gmbh Method and system for illuminating a sample
RU2494089C2 (en) * 2007-04-20 2013-09-27 Акьюсела Инк. Compounds representing styrene derivatives for treating ophthalmic diseases and disorders
US20150070757A1 (en) * 2007-12-20 2015-03-12 Carl Zeiss Microimaging Gmbh Microscope
WO2016107992A1 (en) 2014-12-29 2016-07-07 Karla Balaa Device for carrying out light-sheet microscopy
JP2016529519A (en) * 2013-08-28 2016-09-23 ナショナル ユニバーシティ オブ シンガポール Fine surface structure with integrated micromirrors for 3D multiscale microscopy
US10458899B2 (en) 2013-06-18 2019-10-29 Leica Microsystems Cms Gmbh Method and optical device for microscopically examining a multiplicity of specimens
US10495865B2 (en) 2015-04-17 2019-12-03 Leica Microsystems Cms Gmbh Method and device for the SPIM analysis of a sample
US11086117B2 (en) 2016-05-04 2021-08-10 Leica Microsystems Cms Gmbh Apparatus and method for light-sheet-like illumination of a sample
US11709137B2 (en) 2019-12-05 2023-07-25 Leica Microsystems Cms Gmbh Light sheet fluorescence microscope

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015063B4 (en) * 2007-03-29 2019-10-17 Carl Zeiss Microscopy Gmbh Optical arrangement for generating a light sheet
US8610085B2 (en) * 2009-08-20 2013-12-17 Bio-Rad Laboratories, Inc. High-speed cellular cross sectional imaging
DE202011110077U1 (en) 2011-10-28 2012-11-29 Leica Microsystems Cms Gmbh Arrangement for illuminating a sample
DE102012211780B4 (en) 2012-07-05 2023-12-07 Carl Zeiss Microscopy Gmbh Device for holding and illuminating samples for a microscope
DE102012211943A1 (en) * 2012-07-09 2014-06-12 Carl Zeiss Microscopy Gmbh microscope
DE102012214568A1 (en) 2012-08-16 2014-02-20 Leica Microsystems Cms Gmbh Optical arrangement and a microscope
DE102013213781A1 (en) * 2013-03-20 2014-09-25 Leica Microsystems Cms Gmbh Method and optical arrangement for manipulating and imaging a microscopic sample
JP2015203708A (en) * 2014-04-10 2015-11-16 オリンパス株式会社 Microscope device
DE102015114756B4 (en) 2014-09-25 2021-07-22 Leica Microsystems Cms Gmbh Mirror device
DE202015009495U1 (en) * 2015-03-27 2017-12-18 J & M Analytik Ag Device for illuminating a sample
LU92846B1 (en) 2015-10-09 2017-05-02 Leica Microsystems Method and illumination arrangement for illuminating a sample layer with a light sheet
JP6768289B2 (en) 2015-12-01 2020-10-14 キヤノン株式会社 Scanning electron microscope
EP3465316A1 (en) 2016-06-03 2019-04-10 Leica Microsystems CMS GmbH Light sheet microscope and microscopic method using a light sheet microscope
DE102017119169B4 (en) 2016-08-22 2023-07-27 Leica Microsystems Cms Gmbh Method and device for SPIM analysis of a sample
EP3887500A2 (en) 2018-11-30 2021-10-06 Corning Incorporated Compact optical imaging system for cell culture monitoring

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943510A (en) * 1931-10-15 1934-01-16 Zeiss Carl Fa Device for light-field and darkfield illumination of microscopic objects
US2357378A (en) * 1941-12-01 1944-09-05 Bausch & Lomb Microscope illuminator
US3857626A (en) * 1971-12-10 1974-12-31 Bausch & Lomb Microscope coaxial illumination apparatus
US4127318A (en) * 1975-09-20 1978-11-28 Ernst Leitz Wetzlar Gmbh Direct illumination apparatus for light and dark field illumination
US4317613A (en) * 1979-08-27 1982-03-02 Johannes Grosser Illumination arrangement for microscopes
US4475796A (en) * 1981-03-13 1984-10-09 Olympus Optical Co., Ltd. Epidark illumination system
US4585315A (en) * 1984-11-13 1986-04-29 International Business Machines Corporation Brightfield/darkfield microscope illuminator
US4626079A (en) * 1984-04-13 1986-12-02 Nippon Kogaku K.K. Dark field illumination apparatus for epi-illumination system
US4881802A (en) * 1987-05-05 1989-11-21 Ernst Leitz Wetzlar Gmbh Combined bright field-dark field incident light illumination apparatus
US4964707A (en) * 1988-12-05 1990-10-23 Olympus Optical Co., Ltd. Differential interference microscope
US4974094A (en) * 1989-12-04 1990-11-27 Yuhkoh Morito Direct lighting/illuminating system for miniature CCD camera
US5351169A (en) * 1992-04-23 1994-09-27 Mitsubishi Kasei Corporation Lighting device
US6179439B1 (en) * 1998-06-10 2001-01-30 Optical Gaging Products, Inc. High-incidence programmable surface illuminator for video inspection systems
US6259557B1 (en) * 1998-04-30 2001-07-10 Nikon Corporation Device and method for dark field illumination
US6392793B1 (en) * 1996-07-22 2002-05-21 Kla-Tencor Corporation High NA imaging system

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935444A (en) * 1930-12-19 1933-11-14 Ernst Leitz Optische Werke Microscope
US1996920A (en) * 1932-09-14 1935-04-09 Zeiss Carl Fa Revolving nose-piece for microscopes
US2097762A (en) * 1933-05-26 1937-11-02 Ernst Leitz Microscope
GB415342A (en) * 1934-03-03 1934-08-23 Carl Reichert Improvements in illuminating devices for microscopes
US2809554A (en) * 1954-07-16 1957-10-15 Zeiss Carl Microscope objective with low magnification for epi-microscopes
DE2331750C3 (en) * 1973-06-22 1978-04-20 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Incident light illumination device for either bright or dark field illumination
JPS5324637U (en) * 1976-08-09 1978-03-02
US4160578A (en) * 1978-04-17 1979-07-10 American Optical Corporation Annular reflector for microscope objective
BE875482A (en) * 1979-04-11 1979-10-11 Chandesais Jean L J IMPROVED RING LIGHT FOR MICROSBUIES
JPS5979817U (en) * 1982-11-18 1984-05-30 株式会社ニコン Objective lens for epidark
DE3409657A1 (en) * 1984-03-16 1985-09-19 Fa. Carl Zeiss, 7920 Heidenheim Dark-field illumination system for microscopes
DE3527322A1 (en) * 1985-07-31 1987-02-12 Zeiss Carl Fa AUTOFOCUS DEVICE FOR LIGHTING MICROSCOPE
WO1989006817A1 (en) * 1988-01-25 1989-07-27 Czirbik Sandor Universal condenser for the illumination of objects
JPH03142301A (en) * 1989-10-30 1991-06-18 Erionikusu:Kk Scanning tunnel microscope
WO1992002842A1 (en) * 1990-07-31 1992-02-20 Scalar Corp. Imaging instrument for observing magnified object
US5325231A (en) * 1991-03-22 1994-06-28 Olympus Optical Co., Ltd. Microscope illuminating apparatus
US5268749A (en) * 1991-07-26 1993-12-07 Kollmorgen Corporation Apparatus and method for providing uniform illumination of a sample plane
JP3217097B2 (en) * 1991-12-18 2001-10-09 科学技術振興事業団 High resolution microscope
JP3359071B2 (en) * 1992-12-11 2002-12-24 オリンパス光学工業株式会社 Epidark objective lens
EP0704695B1 (en) * 1994-09-30 2002-01-16 Scalar Corporation Lighting device for an observation or image pickup apparatus
JPH0943147A (en) * 1995-07-28 1997-02-14 Bunshi Bio Photonics Kenkyusho:Kk Dark-field vertical illuminating type fluorescene microscope device
JP3872871B2 (en) * 1996-07-29 2007-01-24 オリンパス株式会社 Objective lens and microscope
DE19632040C2 (en) * 1996-08-08 1999-11-18 Europ Lab Molekularbiolog Confocal microscope
US5926311A (en) * 1997-02-28 1999-07-20 International Business Machines Corporation Illumination/viewing system for features in transparent materials
US20030076587A1 (en) 1998-07-30 2003-04-24 Carl Zeiss Jena Gmbh Confocal theta microscope
DE19903486C2 (en) * 1999-01-29 2003-03-06 Leica Microsystems Method and device for the optical examination of structured surfaces of objects
JP3634985B2 (en) * 1999-08-26 2005-03-30 住友大阪セメント株式会社 Optical surface inspection mechanism and optical surface inspection apparatus
US6888148B2 (en) * 2001-12-10 2005-05-03 Carl Zeiss Jena Gmbh Arrangement for the optical capture of excited and /or back scattered light beam in a sample

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943510A (en) * 1931-10-15 1934-01-16 Zeiss Carl Fa Device for light-field and darkfield illumination of microscopic objects
US2357378A (en) * 1941-12-01 1944-09-05 Bausch & Lomb Microscope illuminator
US3857626A (en) * 1971-12-10 1974-12-31 Bausch & Lomb Microscope coaxial illumination apparatus
US4127318A (en) * 1975-09-20 1978-11-28 Ernst Leitz Wetzlar Gmbh Direct illumination apparatus for light and dark field illumination
US4317613A (en) * 1979-08-27 1982-03-02 Johannes Grosser Illumination arrangement for microscopes
US4475796A (en) * 1981-03-13 1984-10-09 Olympus Optical Co., Ltd. Epidark illumination system
US4626079A (en) * 1984-04-13 1986-12-02 Nippon Kogaku K.K. Dark field illumination apparatus for epi-illumination system
US4585315A (en) * 1984-11-13 1986-04-29 International Business Machines Corporation Brightfield/darkfield microscope illuminator
US4881802A (en) * 1987-05-05 1989-11-21 Ernst Leitz Wetzlar Gmbh Combined bright field-dark field incident light illumination apparatus
US4964707A (en) * 1988-12-05 1990-10-23 Olympus Optical Co., Ltd. Differential interference microscope
US4974094A (en) * 1989-12-04 1990-11-27 Yuhkoh Morito Direct lighting/illuminating system for miniature CCD camera
US5351169A (en) * 1992-04-23 1994-09-27 Mitsubishi Kasei Corporation Lighting device
US6392793B1 (en) * 1996-07-22 2002-05-21 Kla-Tencor Corporation High NA imaging system
US6259557B1 (en) * 1998-04-30 2001-07-10 Nikon Corporation Device and method for dark field illumination
US6179439B1 (en) * 1998-06-10 2001-01-30 Optical Gaging Products, Inc. High-incidence programmable surface illuminator for video inspection systems

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688504B2 (en) * 2004-07-16 2010-03-30 Carl Zeiss Microimaging Gmbh Optical scanning microscope
US20090161207A1 (en) * 2004-07-16 2009-06-25 Ralf Wolleschensky Optical scanning microscope
RU2494089C2 (en) * 2007-04-20 2013-09-27 Акьюсела Инк. Compounds representing styrene derivatives for treating ophthalmic diseases and disorders
US10054780B2 (en) * 2007-12-20 2018-08-21 Carl Zeiss Microscopy Gmbh Microscope
US20150070757A1 (en) * 2007-12-20 2015-03-12 Carl Zeiss Microimaging Gmbh Microscope
US8362448B2 (en) * 2008-02-13 2013-01-29 Carl Zeiss Microscopy Gmbh Apparatus and method for high spatial resolution imaging of a structure of a sample
US20110036996A1 (en) * 2008-02-13 2011-02-17 Ralf Wolleschensky Apparatus and method for high spatial resolution imaging of a structure of a sample
CN102385151A (en) * 2010-08-30 2012-03-21 徕卡显微系统复合显微镜有限公司 Microscope including micro and macro objectives
US9772481B2 (en) * 2011-10-28 2017-09-26 Leica Microsystems Cms Gmbh Arrangement for use in the illumination of a specimen in SPIM microscopy
US20130107358A1 (en) * 2011-10-28 2013-05-02 Leica Mircosystems Cms Gmbh Method and system for illuminating a sample
CN103091825A (en) * 2011-10-28 2013-05-08 莱卡微系统Cms有限责任公司 Method and system for illuminating a sample
CN104054014A (en) * 2011-10-28 2014-09-17 莱卡微系统Cms有限责任公司 Arrangement for use in the illumination of a specimen in SPIM microscopy
US20140300958A1 (en) * 2011-10-28 2014-10-09 Leica Microsystems Cms Gmbh Arrangement for use in the illumination of a specimen in spim microscopy
US9104020B2 (en) * 2011-10-28 2015-08-11 Leica Microsystems Cms Gmbh Method and system for illuminating a sample
US10458899B2 (en) 2013-06-18 2019-10-29 Leica Microsystems Cms Gmbh Method and optical device for microscopically examining a multiplicity of specimens
JP2016529519A (en) * 2013-08-28 2016-09-23 ナショナル ユニバーシティ オブ シンガポール Fine surface structure with integrated micromirrors for 3D multiscale microscopy
WO2016107992A1 (en) 2014-12-29 2016-07-07 Karla Balaa Device for carrying out light-sheet microscopy
US10712549B2 (en) 2014-12-29 2020-07-14 Gataca Systems Device for carrying out light-sheet microscopy
US10495865B2 (en) 2015-04-17 2019-12-03 Leica Microsystems Cms Gmbh Method and device for the SPIM analysis of a sample
US11086117B2 (en) 2016-05-04 2021-08-10 Leica Microsystems Cms Gmbh Apparatus and method for light-sheet-like illumination of a sample
US11709137B2 (en) 2019-12-05 2023-07-25 Leica Microsystems Cms Gmbh Light sheet fluorescence microscope

Also Published As

Publication number Publication date
DE502004008944D1 (en) 2009-03-19
ATE422065T1 (en) 2009-02-15
EP1617255B1 (en) 2009-01-28
JP4970748B2 (en) 2012-07-11
DE102004034957A1 (en) 2006-02-02
JP2006030992A (en) 2006-02-02
GB0508927D0 (en) 2005-06-08
EP1617255A1 (en) 2006-01-18
GB2416403A (en) 2006-01-25
US7796328B2 (en) 2010-09-14
US20080068710A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
US7796328B2 (en) Laser scanning microscope with illumination perpendicular to the optical axis
US20080030850A1 (en) Arrangement for microscopic observation and/or detection in a light scanning microscope with line scanning and use
US10901194B2 (en) Large field of view, high resolution microscope
US5719391A (en) Fluorescence imaging system employing a macro scanning objective
US20070002435A1 (en) Double-clad fiber scanning microscope
GB2416445A (en) Microscope with increased resolution
JP2006031007A (en) Zoom optical system for optical scanning microscope
GB2416446A (en) Laser scanning microscope
GB2416453A (en) Zoom optics for a confocal laser scanning microscope
US20040263959A1 (en) Scanning beam optical imaging system for macroscopic imaging of an object
CN108020505A (en) The burnt optical tweezer microscopic imaging device of zoom copolymerization and method
CN109211855A (en) Multiple beam multi-photon microscopic imaging device
GB2416260A (en) Confocal laser scanning microscope with additional widefield illumination
JP2006030987A (en) Optical scanning microscope and its use
JP2006030997A (en) Optical scanning microscope with movable perforated disk, and use thereof
JP2006053542A (en) Line scanning system optical scanning microscope and usage of the same
GB2416261A (en) Laser scanning microscope with parallel illumination and simultaneous, locally resolved detection
US20060012870A1 (en) Light scanning microscope with line-by-line scanning and use
GB2416259A (en) Laser confocal scanning microscope with additional widefield illumination
GB2416440A (en) Laser scanning microscope with parallel illumination via distributed point like light sources
CN210243498U (en) Inclined type layered light excitation microscopic imaging device and layered light excitation illuminator
CN114577762A (en) Digital confocal imaging system and method based on digital micro-reflector
CN115685515A (en) Coaxial imaging system and method for single-objective polished section

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS JENA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WOLLESCHENSKY, RALF;REEL/FRAME:016282/0339

Effective date: 20050118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION