US20050276661A1 - Flood gate with hydraulic draw down deflector - Google Patents

Flood gate with hydraulic draw down deflector Download PDF

Info

Publication number
US20050276661A1
US20050276661A1 US11/086,888 US8688805A US2005276661A1 US 20050276661 A1 US20050276661 A1 US 20050276661A1 US 8688805 A US8688805 A US 8688805A US 2005276661 A1 US2005276661 A1 US 2005276661A1
Authority
US
United States
Prior art keywords
frame
gate
front side
backside
control gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/086,888
Inventor
David Denson
Cory Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/086,888 priority Critical patent/US20050276661A1/en
Priority to PCT/US2005/020148 priority patent/WO2005124033A2/en
Publication of US20050276661A1 publication Critical patent/US20050276661A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/26Vertical-lift gates

Definitions

  • the invention is directed generally to flood gates, and more particularly, to flood gates capable of being loaded with hydraulic forces on either side of the flood gates.
  • Flood gates are used in many applications to control the flow of water. For instance, flood gates may be used to eliminate or substantially reduce the likelihood of floods, to regulate the flow of water for irrigation purposes, or for other purposes.
  • Flood gates are typically supported by an embedded slide, rollers, or other support structure. While positioned in a support structure, a flood gate may moved from a closed position to an open position by raising the gate with a ball screw stem, cable and pulley, or other appropriate manner.
  • flood gates are used to maintain a water level on a front side of the gate that is higher than the water level on a backside of the gate.
  • flood gates have a skin on the front side to prevent flood water from passing through the gate but do not have a skin on the backside surface to reduce weight and cost. Rather, the backside surface is left uncovered, and the support structure forming the gate is open and accessible.
  • Flood gates having this configuration are designed to be loaded with a higher water level proximate to the front side of the gate than on the backside of the gate. In addition, these flood gates are not designed to operate with a high water level on the backside of the gate.
  • the invention is directed to a flood gate control structure usable to regulate flow of water or other fluids.
  • the flood gate may be configured to be loaded with a hydraulic pressure head from a high water level on either side of the gate without inhibiting the gate from being raised while in place in a water body.
  • the flood gate may be formed from a frame composed of a plurality of support members and may include a bottom surface, a front side surface, and a backside surface generally opposite to the front side surface.
  • the flood gate may include a fluid retention plate coupled to the front side surface of the frame. The fluid retention plate forms a skin on the front side surface of the gate to prevent fluids from passing through the gate.
  • the flood gate may also include a deflector coupled to the backside surface of the frame in a position proximate to a bottom surface of the frame.
  • the deflector prevents the creation of hydraulic head forces on the support members that are covered by the deflector proximate to the bottom of the gate where the hydraulic head forces are greatest.
  • the flood gate may also include a transition at the intersection between the bottom surface of the gate and the backside surface.
  • the transition may be a beveled transition, a rounded edge, or other appropriate configuration facilitating fluid flow, reducing hydrologic drag forces ,and reducing the hydraulic forces preventing the gate from being raised.
  • the flood gate may also include a plurality of wheels attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface and a plurality of wheels attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side. The wheels facilitate vertical movement of the gate within flood control structure.
  • An advantage of this invention is that the deflector prevents hydraulic forces from being created and acting upon the support members proximate to a bottom surface of the gate.
  • a smaller, less expensive, mechanized system may be used to raise the gate in a flood control structure than required with a gate used in a system in which hydraulic forces act on a backside of a flood gate.
  • elimination of the hydraulic forces reduces the destructive forces that damage the gate and related mechanized systems.
  • FIG. 1 is a perspective view of water control gate including aspects of this invention
  • FIG. 2 is a perspective view of water control gate including aspects of this invention
  • FIG. 3 is a rear view of the water control gate shown in FIG. 1 ;
  • FIG. 4 is a top section view of the water control gate taken along section line 4 - 4 in FIG. 3 .;
  • FIG. 5 is a right side view of the water control gate shown in FIG. 3 ;
  • FIG. 6 is a left side section view of the water control gate shown taken along section line 6 - 6 in FIG. 3 ;
  • FIG. 7 is a detailed section view of the water control gate shown in FIG. 6 .
  • FIG. 8 is a top section view of the water control gate with an alternative connection device.
  • This invention is directed to a water control gate 10 usable to control the flow of water through flood control systems, such as canals, lakes, reservoirs, marshes, swamps, and other areas.
  • the water control gate 10 may be formed from a gate 10 configured to control the flow of fluids, such as water in a water control system, through the water control gate.
  • the gate 10 may be capable of being loaded with a hydraulic pressure head resulting from a high water level on either side of the structure without inhibiting the gate 10 from being raised while in place in the water control gate 10 .
  • the gate 10 is described below as controlling water, the gate 10 may be used to control other fluids as well and is not limited to only water control, but may be used in waste water systems and other systems.
  • the gate 10 may be formed from a frame 14 having a plurality of support members 16 .
  • the support members 16 may be configured in a honeycomb pattern or grid with a plurality of substantially vertical support members 18 and a plurality of substantially horizontal support members 20 .
  • the support members 16 are not limited to this particular configuration but may be configured differently while providing the necessary support.
  • the support members 16 may be formed from steel, such as galvanized steel or painted steel, or other appropriate materials and may be shaped as a plate, a tubular, or other appropriate shape.
  • the support members 16 may be assembled together with welds or other mechanical fastening systems.
  • the gate 10 may be configured to be movable in a generally vertical position to control fluid flow.
  • the gate 10 may include a plurality of wheels 26 on side surfaces 28 , 30 of the gate 10 enabling the gate 10 to be movable in a generally vertical direction.
  • the gate 10 may be positioned between side embeds, not shown, for positioning the gate 10 in a canal or other water body.
  • the gate 10 may include one or more sliding surfaces 52 on side surfaces 28 , 30 of the gate 10 enabling the gate 10 to move within a recess 54 in a support structure.
  • the recess 54 may be formed in a material, such as but not limited to, an ultra high molecular weight polyethylene (UHMW), or other appropriate material.
  • UHMW ultra high molecular weight polyethylene
  • the gate 10 may be moved while in position in the embeds using any number of mechanized systems, such as, but not limited to, gears, motors, and cable systems.
  • the gate 10 may be movable using hand or motor driven systems.
  • the gate 10 may also include a fluid retention plate 22 coupled to a front side surface 24 of the frame 14 where the fluid retention plate 22 forms a skin on the front side surface 24 of the frame 14 .
  • the fluid retention plate 22 covers substantially all of the front side surface 24 of the frame 14 to prevent fluids, such as water, from flowing past the gate 10 .
  • the fluid retention plate 22 may be relatively thin, such as a skin, yet be of sufficient thickness to withstand forces generated by a hydraulic head of about 10 to 15 feet or less.
  • the gate may have widths up to about 30 feet, any feasible height, and a thickness up to about 18 inches. In at least one embodiment, the gate may weigh about 30,000 pounds.
  • the fluid retention plate 22 may be attached to the frame 14 using welds or other appropriate connection mechanisms.
  • the gate 10 may also include a deflector 32 , which may be referred to as a draw down deflector, coupled to a backside surface 34 of the frame 14 that is generally opposite to the front side surface 24 .
  • the deflector 32 may extend generally across the backside surface 34 of the frame 14 from side surface 28 to side surface 30 . In at least one embodiment, the deflector 32 does not extend entirely across the backside surface 34 .
  • Deflector 32 may prevent fluids from generating hydraulic forces on the support members 16 when the gate 10 is being raised in a water body. Without deflector 32 , hydraulic forces act on the support members 16 that are in the water as the gate 10 is raised in the water body.
  • the deflector 32 may extend from a bottom surface 36 up the backside surface 34 of the gate 10 .
  • the height of the deflector 32 may be determined by the anticipated height of the water level proximate to the backside surface 34 . In at least one embodiment, as shown in FIG. 5 , the height of the deflector 32 may be about one fourth the height of the fluid retention plate 22 . In other embodiments, the deflector 32 may have other heights.
  • the gate 10 may also include a transition 38 on the bottom surface 36 of the gate 10 .
  • the transition 38 may be positioned at the intersection of the backside surface 34 and the bottom surface 36 .
  • the transition 38 facilitates the flow of fluids past the backside surface 34 of the gate 10 as the gate 10 is raised in a water body.
  • the transition 38 also reduces hydraulic forces acting on the gate 10 to restrict upward vertical movement of the gate 10 .
  • the transition 38 may be a beveled transition, a rounded edge, or other appropriate configuration facilitating fluid flow and reducing the hydraulic forces preventing the gate 10 from being raised.
  • the gate 10 controls the flow of fluids under the gate 10 .
  • the gate 10 operates in an embed or other structure in a canal or other water body by controlling the flow of fluids past the gate 10 .
  • a level of fluids proximate to the front side surface 24 of the frame 12 may be higher than a level of fluids proximate to the backside surface 34 .
  • Fluids may be released to flow under the gate 10 by raising the gate 10 , enabling fluids to flow from the area proximate the front side surface 24 under the gate 10 .
  • the gate 10 may be raised with mechanized equipment having sufficient strength to raise the gate 10 . Little resistance exists from the fluids proximate the front side surface 24 of the gate 10 because the fluids generally only contact the fluid retention plate that is positioned generally vertical.
  • the gate 10 may have a level of fluids proximate the backside surface 34 that is in close proximity to a top surface of the gate 10 .
  • hydraulic forces generated by the fluids are exerted on support members 16 accessible the backside surface 34 on the gate 10 .
  • the gate 10 When the gate 10 is raised to allow fluids to flow from the area proximate the backside surface 34 to the area proximate the front side surface 24 , the fluids proximate the backside surface flow downward. This downward motion creates hydraulic forces that are exerted on the support members 16 in addition to hydraulic head forces.
  • the deflector 32 prevents hydraulic forces from developing and being exerted against the support members 16 proximate to the bottom surface 36 , where the hydraulic forces are the greatest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)

Abstract

A flood control gate having one or more deflectors on a backside surface of the gate for reducing hydraulic forces acting upon the gate when the gate is raised in a water body. The gate may have a front side surface configured to prevent fluids from passing through the gate. The deflector may be attached to a backside surface of the gate proximate to a bottom surface. A transition may be located at an intersection of the backside surface and the bottom surface to further facilitate movement of the gate in a water body.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/578,341, filed Jun. 9, 2004.
  • FIELD OF THE INVENTION
  • The invention is directed generally to flood gates, and more particularly, to flood gates capable of being loaded with hydraulic forces on either side of the flood gates.
  • BACKGROUND
  • Flood gates are used in many applications to control the flow of water. For instance, flood gates may be used to eliminate or substantially reduce the likelihood of floods, to regulate the flow of water for irrigation purposes, or for other purposes. Flood gates are typically supported by an embedded slide, rollers, or other support structure. While positioned in a support structure, a flood gate may moved from a closed position to an open position by raising the gate with a ball screw stem, cable and pulley, or other appropriate manner.
  • Many conventional flood gates are used to maintain a water level on a front side of the gate that is higher than the water level on a backside of the gate. Typically, flood gates have a skin on the front side to prevent flood water from passing through the gate but do not have a skin on the backside surface to reduce weight and cost. Rather, the backside surface is left uncovered, and the support structure forming the gate is open and accessible. Flood gates having this configuration are designed to be loaded with a higher water level proximate to the front side of the gate than on the backside of the gate. In addition, these flood gates are not designed to operate with a high water level on the backside of the gate. However, as many flood control protocols change, the use of flood control structures that were designed to be loaded only on a front side are now being loaded with high water levels on the backside of the gate as well. In applications where the backside of these flood gates support high water levels, problems often develop with the mechanized systems used to raise and lower the flood gate. In particular, these mechanized systems were designed to raise a flood gate having a high water level on the front side of the gate where raising the gate creates little downward acting hydraulic forces on the front side of the flood gate and relatively small forces on the supports structure accessible from the backside of the gate because of the, low water level on the back side. Thus, the resistance created by the water when raising a gate in this manner is small. However, when these gates are loaded with high water levels on the backside surface, raising the gate creates large downward hydraulic forces that act on the support members accessible from the backside and increase the load on the gate. This increased load can be so large that the mechanized system used to raise a gate is unable to do so. Thus, the high water level on the backside of the gate prevents the gate from being opened. In light of the changing water management protocols and the existence of numerous flood gates having exposed supports systems on backside surfaces, there exists a need for developing a gate that can operate efficiently whether loaded with a high water level on a front side or back side of a gate.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a flood gate control structure usable to regulate flow of water or other fluids. The flood gate may be configured to be loaded with a hydraulic pressure head from a high water level on either side of the gate without inhibiting the gate from being raised while in place in a water body. The flood gate may be formed from a frame composed of a plurality of support members and may include a bottom surface, a front side surface, and a backside surface generally opposite to the front side surface. The flood gate may include a fluid retention plate coupled to the front side surface of the frame. The fluid retention plate forms a skin on the front side surface of the gate to prevent fluids from passing through the gate.
  • The flood gate may also include a deflector coupled to the backside surface of the frame in a position proximate to a bottom surface of the frame. The deflector prevents the creation of hydraulic head forces on the support members that are covered by the deflector proximate to the bottom of the gate where the hydraulic head forces are greatest. By preventing hydraulic head forces from acting upon the support members forming the bottom portion of the gate, the gate may be raised in a water body using mechanized systems sufficient to raise the gate without having to account for the hydraulic head forces as the hydraulic head forces acting on the support members are minimal.
  • The flood gate may also include a transition at the intersection between the bottom surface of the gate and the backside surface. The transition may be a beveled transition, a rounded edge, or other appropriate configuration facilitating fluid flow, reducing hydrologic drag forces ,and reducing the hydraulic forces preventing the gate from being raised. The flood gate may also include a plurality of wheels attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface and a plurality of wheels attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side. The wheels facilitate vertical movement of the gate within flood control structure.
  • An advantage of this invention is that the deflector prevents hydraulic forces from being created and acting upon the support members proximate to a bottom surface of the gate. As a result, a smaller, less expensive, mechanized system may be used to raise the gate in a flood control structure than required with a gate used in a system in which hydraulic forces act on a backside of a flood gate. In addition, elimination of the hydraulic forces reduces the destructive forces that damage the gate and related mechanized systems.
  • These and other advantages and embodiments of the invention are described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form a part of the specification, illustrate preferred embodiments of the presently disclosed invention(s) and, together with the description, disclose the principles of the invention(s). These several illustrative figures include the following:
  • FIG. 1 is a perspective view of water control gate including aspects of this invention;
  • FIG. 2 is a perspective view of water control gate including aspects of this invention;
  • FIG. 3 is a rear view of the water control gate shown in FIG. 1;
  • FIG. 4 is a top section view of the water control gate taken along section line 4-4 in FIG. 3.;
  • FIG. 5 is a right side view of the water control gate shown in FIG. 3;
  • FIG. 6 is a left side section view of the water control gate shown taken along section line 6-6 in FIG. 3; and
  • FIG. 7 is a detailed section view of the water control gate shown in FIG. 6.
  • FIG. 8 is a top section view of the water control gate with an alternative connection device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention, as shown in FIGS. 1-8, is directed to a water control gate 10 usable to control the flow of water through flood control systems, such as canals, lakes, reservoirs, marshes, swamps, and other areas. In particular, the water control gate 10 may be formed from a gate 10 configured to control the flow of fluids, such as water in a water control system, through the water control gate. The gate 10 may be capable of being loaded with a hydraulic pressure head resulting from a high water level on either side of the structure without inhibiting the gate 10 from being raised while in place in the water control gate 10. While the gate 10 is described below as controlling water, the gate 10 may be used to control other fluids as well and is not limited to only water control, but may be used in waste water systems and other systems.
  • As shown in FIG. 2, the gate 10 may be formed from a frame 14 having a plurality of support members 16. In at least one embodiment, the support members 16 may be configured in a honeycomb pattern or grid with a plurality of substantially vertical support members 18 and a plurality of substantially horizontal support members 20. The support members 16 are not limited to this particular configuration but may be configured differently while providing the necessary support. The support members 16 may be formed from steel, such as galvanized steel or painted steel, or other appropriate materials and may be shaped as a plate, a tubular, or other appropriate shape. The support members 16 may be assembled together with welds or other mechanical fastening systems.
  • The gate 10 may be configured to be movable in a generally vertical position to control fluid flow. In at least one embodiment, as shown in FIG. 5, the gate 10 may include a plurality of wheels 26 on side surfaces 28, 30 of the gate 10 enabling the gate 10 to be movable in a generally vertical direction. For instance, the gate 10 may be positioned between side embeds, not shown, for positioning the gate 10 in a canal or other water body. In an alternative embodiment, as shown in FIG. 8, the gate 10 may include one or more sliding surfaces 52 on side surfaces 28, 30 of the gate 10 enabling the gate 10 to move within a recess 54 in a support structure. The recess 54 may be formed in a material, such as but not limited to, an ultra high molecular weight polyethylene (UHMW), or other appropriate material. The gate 10 may be moved while in position in the embeds using any number of mechanized systems, such as, but not limited to, gears, motors, and cable systems. The gate 10 may be movable using hand or motor driven systems.
  • The gate 10 may also include a fluid retention plate 22 coupled to a front side surface 24 of the frame 14 where the fluid retention plate 22 forms a skin on the front side surface 24 of the frame 14. In at least one embodiment, the fluid retention plate 22 covers substantially all of the front side surface 24 of the frame 14 to prevent fluids, such as water, from flowing past the gate 10. The fluid retention plate 22 may be relatively thin, such as a skin, yet be of sufficient thickness to withstand forces generated by a hydraulic head of about 10 to 15 feet or less. The gate may have widths up to about 30 feet, any feasible height, and a thickness up to about 18 inches. In at least one embodiment, the gate may weigh about 30,000 pounds. The fluid retention plate 22 may be attached to the frame 14 using welds or other appropriate connection mechanisms.
  • The gate 10 may also include a deflector 32, which may be referred to as a draw down deflector, coupled to a backside surface 34 of the frame 14 that is generally opposite to the front side surface 24. The deflector 32 may extend generally across the backside surface 34 of the frame 14 from side surface 28 to side surface 30. In at least one embodiment, the deflector 32 does not extend entirely across the backside surface 34. Deflector 32 may prevent fluids from generating hydraulic forces on the support members 16 when the gate 10 is being raised in a water body. Without deflector 32, hydraulic forces act on the support members 16 that are in the water as the gate 10 is raised in the water body. The deflector 32 may extend from a bottom surface 36 up the backside surface 34 of the gate 10. The height of the deflector 32 may be determined by the anticipated height of the water level proximate to the backside surface 34. In at least one embodiment, as shown in FIG. 5, the height of the deflector 32 may be about one fourth the height of the fluid retention plate 22. In other embodiments, the deflector 32 may have other heights.
  • The gate 10 may also include a transition 38 on the bottom surface 36 of the gate 10. The transition 38 may be positioned at the intersection of the backside surface 34 and the bottom surface 36. The transition 38 facilitates the flow of fluids past the backside surface 34 of the gate 10 as the gate 10 is raised in a water body. The transition 38 also reduces hydraulic forces acting on the gate 10 to restrict upward vertical movement of the gate 10. The transition 38 may be a beveled transition, a rounded edge, or other appropriate configuration facilitating fluid flow and reducing the hydraulic forces preventing the gate 10 from being raised.
  • During operation, the gate 10 controls the flow of fluids under the gate 10. The gate 10 operates in an embed or other structure in a canal or other water body by controlling the flow of fluids past the gate 10. In at least one embodiment, a level of fluids proximate to the front side surface 24 of the frame 12 may be higher than a level of fluids proximate to the backside surface 34. Fluids may be released to flow under the gate 10 by raising the gate 10, enabling fluids to flow from the area proximate the front side surface 24 under the gate 10. The gate 10 may be raised with mechanized equipment having sufficient strength to raise the gate 10. Little resistance exists from the fluids proximate the front side surface 24 of the gate 10 because the fluids generally only contact the fluid retention plate that is positioned generally vertical.
  • In other embodiments, the gate 10 may have a level of fluids proximate the backside surface 34 that is in close proximity to a top surface of the gate 10. In this embodiment, hydraulic forces generated by the fluids are exerted on support members 16 accessible the backside surface 34 on the gate 10. When the gate 10 is raised to allow fluids to flow from the area proximate the backside surface 34 to the area proximate the front side surface 24, the fluids proximate the backside surface flow downward. This downward motion creates hydraulic forces that are exerted on the support members 16 in addition to hydraulic head forces. However, the deflector 32 prevents hydraulic forces from developing and being exerted against the support members 16 proximate to the bottom surface 36, where the hydraulic forces are the greatest. As a result, the hydraulic forces exerted on the support members 16 of the gate 10 are reduced substantially relative to conventional designs. This reduction in hydraulic forces acting on the support members 16 of the gate 10 enable the size of the motors, cables, and other support systems usable to raise and lower the gate 10 to be sized smaller, thereby creating a significant cost savings.
  • The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of this invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of this invention.

Claims (21)

1. A fluid control gate, comprising:
a frame formed from a plurality of support members and having a bottom surface, a front side surface, and a backside surface generally opposite to the front side surface of the frame;
a fluid retention plate coupled to the front side surface of the frame; and
a deflector coupled to the backside surface of the frame in a position proximate to a bottom surface of the frame for reducing hydraulic load on the support members when the fluid control gate is raised in a water body.
2. The fluid control gate of claim 1, wherein the fluid retention plate covers substantially all of the front side surface of the frame.
3. The fluid control gate of claim 1, and the deflector extends substantially across an entire width of the frame.
4. The fluid control gate of claim 1, wherein the deflector extends from the bottom surface of the frame up the backside of the frame a height equal to about one fourth a total height of the fluid retention plate.
5. The fluid control gate of claim 1, further comprising a transition at an intersection between the backside surface and the bottom surface.
6. The fluid control gate of claim 5, wherein the transition is beveled.
7. The fluid control gate of claim 1, wherein the support members comprise a plurality of vertical support members and a plurality of horizontal support members forming a grid.
8. The fluid control gate of claim 1, further comprising a plurality of wheels attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface and a plurality of wheels attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side.
9. The fluid control gate of claim 1, further comprising a sliding surface attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface and a sliding surface attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side.
10. A fluid control gate, comprising:
a frame formed from a plurality of support members and having a bottom surface, a front side surface, and a backside surface generally opposite to the front side surface of the frame;
a fluid retention plate coupled to the front side surface of the frame;
a deflector coupled to the backside surface of the frame in a position proximate to a bottom surface of the frame for reducing hydraulic load on the support members when the fluid control gate is raised in a water body;
a transition at an intersection between the backside surface and the bottom surface; and
a plurality of wheels attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface and attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side.
11. The fluid control gate of claim 10, wherein the fluid retention plate covers substantially all of the front side surface of the frame.
12. The fluid control gate of claim 10, and the deflector extends substantially across an entire width of the fluid retention plate.
13. The fluid control gate of claim 10, wherein the deflector extends from the bottom surface of the frame up the backside of the frame a height equal to about one fourth a total height of the frame.
14. The fluid control gate of claim 10, wherein the transition is beveled.
15. The fluid control gate of claim 10, wherein the support members comprise a plurality of vertical support members and a plurality of horizontal support members forming a grid.
16. The fluid control gate of claim 10, further comprising a plurality of wheels attached to a first side of the frame positioned generally orthogonally to the front side surface and to the backside surface, and a plurality of wheels attached to a second side of the frame positioned generally orthogonally to the front side surface and to the backside surface and generally opposite from the first side.
17. A method of reducing hydraulic load on a fluid control gate, comprising:
assembling a frame comprising a plurality of support members and having a bottom surface, a front side surface and a backside surface generally opposite to the front side surface of the frame and a fluid retention plate coupled to the front side surface of the frame; and
attaching a deflector to the backside surface of the frame in a position proximate to a bottom surface of the frame for reducing hydraulic load on the support members when the fluid control gate is raised in a water body.
18. The method of claim 17, wherein assembling the frame comprises assembling a frame in which the fluid retention plate covers substantially all of the front side surface of the frame and the deflector extends substantially across an entire width of the frame.
19. The method of claim 17, wherein assembling the frame comprises assembling a frame in which the deflector extends from the bottom surface of the frame up the backside of the frame a height equal to about one fourth a total height of the fluid retention plate.
20. The method of claim 17, wherein assembling the frame comprises assembling a frame including a transition at an intersection between the backside surface and the bottom surface.
21. The method of claim 20, wherein assembling the frame comprises assembling a frame including a beveled transition at an intersection between the backside surface and the bottom surface.
US11/086,888 2004-06-09 2005-03-22 Flood gate with hydraulic draw down deflector Abandoned US20050276661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/086,888 US20050276661A1 (en) 2004-06-09 2005-03-22 Flood gate with hydraulic draw down deflector
PCT/US2005/020148 WO2005124033A2 (en) 2004-06-09 2005-06-09 Flood gate with hydraulic draw down deflector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57834104P 2004-06-09 2004-06-09
US11/086,888 US20050276661A1 (en) 2004-06-09 2005-03-22 Flood gate with hydraulic draw down deflector

Publications (1)

Publication Number Publication Date
US20050276661A1 true US20050276661A1 (en) 2005-12-15

Family

ID=35460703

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/086,888 Abandoned US20050276661A1 (en) 2004-06-09 2005-03-22 Flood gate with hydraulic draw down deflector

Country Status (2)

Country Link
US (1) US20050276661A1 (en)
WO (1) WO2005124033A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869455B1 (en) * 2013-11-13 2014-10-28 Azeal J. McFall Flood gate system for doorways
CN115075199A (en) * 2021-03-13 2022-09-20 北京恒润安科技有限公司 Novel gate leaf

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215928B (en) * 2013-04-24 2015-10-21 南京蓝昇船舶修造有限公司 Resistance tide lock door

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US769968A (en) * 1904-05-23 1904-09-13 William J Warren Head-gate for irrigating-ditches.
US1719076A (en) * 1927-06-11 1929-07-02 Newell Fred Regulating head and sluice gate
US4582296A (en) * 1985-03-04 1986-04-15 Lothar Bachmann Composite blade for dampers for ducts of large cross sectional areas
US20030026659A1 (en) * 2001-08-01 2003-02-06 Chun-Ching Wu Water gate opened and closed by oil pressure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US769968A (en) * 1904-05-23 1904-09-13 William J Warren Head-gate for irrigating-ditches.
US1719076A (en) * 1927-06-11 1929-07-02 Newell Fred Regulating head and sluice gate
US4582296A (en) * 1985-03-04 1986-04-15 Lothar Bachmann Composite blade for dampers for ducts of large cross sectional areas
US20030026659A1 (en) * 2001-08-01 2003-02-06 Chun-Ching Wu Water gate opened and closed by oil pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869455B1 (en) * 2013-11-13 2014-10-28 Azeal J. McFall Flood gate system for doorways
CN115075199A (en) * 2021-03-13 2022-09-20 北京恒润安科技有限公司 Novel gate leaf

Also Published As

Publication number Publication date
WO2005124033A2 (en) 2005-12-29
WO2005124033A3 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5588567B2 (en) Self-actuated storm surge barrier
US6281597B1 (en) Hydroelectric installation and method of constructing same
KR20040019056A (en) Water control gate and actuator therefore
JP6775268B1 (en) Watertight structure for flap gate and flap gate equipped with this
US20050276661A1 (en) Flood gate with hydraulic draw down deflector
KR200464944Y1 (en) Up and down type movable weir
KR100597464B1 (en) Floodgate having rubber dam
JP7093560B2 (en) Watertight structure for flap gate and flap gate equipped with this
JP2007211451A (en) Existing gate remodeling method and pump gate
JP2007070924A (en) Roof gate
KR100990698B1 (en) A submerging type dam
KR101064725B1 (en) Movable weir of submergence type
KR101121740B1 (en) A floodgate
KR100787405B1 (en) Flux regulator
JP4395309B2 (en) Floating bridge bridge
JP3760338B2 (en) Rolling gate
JP2005155238A (en) Flap gate apparatus
JP3088524U (en) Gate pump equipment with auxiliary gate
JP4495999B2 (en) Gate facility with movable channel floor
NL1041323B1 (en) Submersible bridge and water way provided with a submersible bridge.
JP2005171691A (en) Pier-less gate
JP4046517B2 (en) Staged opening and closing type gate pump equipment
KR102671735B1 (en) Hydraulic water gate management system including hydraulic motor pump gates
KR100770035B1 (en) A water gate apparatus for using water pressure
KR101262292B1 (en) Flood gate for storing sea water

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION